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a b s t r a c t

Artificial neural network (ANN) models are powerful statistical tools which are increasingly

used in modeling complex ecological systems. For interpretation of ANN models, a means

of evaluating how systemic parameters contribute to model output is essential. Developing

a robust, systematic method for interpreting ANN models is the subject of much current

research. We propose a method using sequential randomization of input parameters to

determine the relative proportion to which each input variable contributes to the predic-

tive ability of the ANN model (termed the holdback input randomization method or HIPR

method). Validity of the method was assessed using a simulated data set in which the

relationship between input parameters and output parameters were completely known.

Simulated data sets were generated with known linear, nonlinear, and collinear relation-

ships. The HIPR method was performed repetitively on ANN models trained on these data

sets. The method was successful in predicting rank order of importance on all data sets, per-

forming as well as or better than the recently proposed connectivity weight method. One

main advantage of using this method relative to others is that results can be obtained with-
out making assumptions regarding the architecture of the ANN model used. These results

also serve to illustrate the consistency and information content of ANN models in general,

and highlight their potential use in exploring ecological relationships. The HIPR method is a

robust, simple, general procedure for interpreting complex ecological systems as captured

by ANN models.

with ANNs is that the relative contribution of each systemic
1. Introduction

One of the primary goals of ecology is to establish correla-
tive and putative links between ecological parameters. The
use of artificial neural networks (ANNs) comprises a statistical
modeling tool which has been shown to be highly success-
ful in investigating these links and have had much recent

application to ecological systems (Guégan et al., 1998; Basheer
and Hajmeer, 2000; Lek and Guégan, 2000; Vander Zanden
et al., 2004). ANNs have been shown to be highly competent
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approximators of many complex functions, and have shown
advantages over general linear models in predictive ability
(Hastie et al., 2001). Usage of ANN models has increased such
that ANNs are now found in many statistical packages (e.g.
S-Plus and R, Venables and Ripley, 2002; JMP 5.1-SAS Inst.,
2003). However, a major limitation of modeling ecological data
input parameter to model output generally remains unknown
(Olden and Jackson, 2002; Gevrey et al., 2003; Olden et al.,
2004). Although predictive accuracy is a major benefit of ANN
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odels, without information regarding the relative impor-
ance of parameters in the system, their utility is limited.
evelopment of a method to couple input factors to mean-

ngful output in ANN models is thus of critical importance.
ccurate knowledge of the relative importance of model input
arameters in ANN models in producing output would be use-
ul in guiding conservation policy, monitoring and sampling
trategies, and formulation of testable scientific hypotheses.
NNs may be useful in identifying ecological correlations, but
ithout a way to identify the contributions of input parame-

ers to ANN model output, it is impossible to identify putative
elationships which could be investigated through further
tudy.

Several authors have reviewed the effectiveness of vari-
us methods of estimating the relative importance of input
arameters in ANN models (Gevrey et al., 2003; Olden et al.,
004). Olden et al. (2004) compared a number of methods
o determine the importance of parameters in ANNs using

simulation-based approach. The approaches reviewed by
hese authors ranged from calculation of indices, to sensi-
ivity analysis, to variations on stepwise parametric analysis.
n the simulation-based approach, results from the various

ethods were compared against known relationships in the
imulated data set to test for method effectiveness. Their find-
ng suggests that their newly proposed connection weight

ethod outperforms all other methods in determining rela-
ive parameter importance in ANNs. The connectivity weight

ethod explicitly utilizes fit parameters for the processing of
ata through the ANN model to determine relative parameter

mportance.
We present an alternative method of determining param-

ter importance for ANNs and demonstrate that it performs
s well as the connection weight method. Moreover, the pro-
osed method operates through the manipulation of input
ata and thus, no knowledge about fit parameters is required.
he proposed method can be used in conjunction with com-
ercially available ANN simulators, whereas other proposed
ethods cannot be used because the architecture of the ANN
odels developed is either unknown or ambiguous. The Hold-

ack Input Randomization Method (HIPR-Method) randomizes
ystemic input parameter data sequentially, and compares
he resulting change in the accuracy of the ANNs prediction
f the output from unaltered input data. Through repetition,
onfidence intervals can be placed on the relative importance
f the input parameters. A freely available software package
or implementing this method using multivariate data sets is
eleased in conjunction with this paper.

. Materials and methods

.1. ANN details and data preparation

he ANN type used for this analysis was a fully connected,
eed forward network with a single input layer consisting of
our input neurons, a single hidden layer with five hidden

eurons and a single output layer with one output neuron. In
ddition, the input and hidden layer had a bias neuron feeding
continuously ‘on’ signal to each neuron in those layers. The

igmoidal activation function was of the form f = 1/1 + e−w,
4 ( 2 0 0 7 ) 326–334 327

and the transfer function for the output layer was the iden-
tity function. The type of ANN used in this experiment, and
the error backpropagation training method employed are well
described in Lek et al. (1996) and Olden and Jackson (2002).
Training of the ANN model continued until one of the follow-
ing criteria were met: (1) if the mean squared error (MSE) of
the validation data set continued to increase for five straight
epochs or (2) the MSE of the validation set was reduced by less
than 0.1% for five continuous epochs. Learning rate � was 0.1.

The data set was divided randomly into three parts, a train-
ing, a validation, and a test data set, following a 3:1:1 ratio.
After all data points in the training set were presented once
in random order (termed an epoch), each data point of the
validation set was also presented once in random order, in
order to evaluate the general accuracy of the ANN model. The
mean squared error (MSE) of the target values of the valida-
tion set versus the ANN model output values was calculated.
During repeated epochs, the MSE of the training set declined
monotonically as well as the validation data set. After a certain
degree of training, however, the MSE of the validation data set
will generally begin to increase. In this case, the ANN model
is overtrained, as it is adjusting to specific characteristics of
the training data set and not the overall patterns present in
the data. Training was halted when the MSE of the ANN out-
put using the validation data set began to increase. The test
data set was then used to calculate the general effectiveness
of the ANN model by calculating R2 and MSE of the ANN model
output versus the target values.

2.1.1. HIPR method
Our proposed method is a refinement of an approach pre-
sented by Scardi and Harding (1999), referred to as the
‘perturbation’ method by Olden et al. (2004), to achieve
understanding of relative importance of input variables by
systematically altering input data patterns. The HIPR method
basically consists of an experimental test of an ANN model
using data sets which have been altered in a way to deduce
the relative importance of the input parameters in predicting
the outcome. The procedure to perform the HIPR method can
be summarized as follows:

(1) Optimization of ANN model (see above)
(2) Using the test data set to determine relative input param-

eter importance:

. sequentially feeding each data point in the test data set to
the ANN but replacing the values of one input parameter
by uniformly distributed random values in the interval (0.1,
0.9), the range over which the net was originally trained,

. calculating the mean squared error of the ANN when the
randomized test set has been presented, and

c. repeating the procedure for each input parameter, each
time substituting the original values with uniformly dis-
tributed random values.

The MSE values of the data set with a particular random-

ized parameter in relation to the MSE of the original data set
reflect the relative importance of that input parameter for the
prediction of the ANN. If a parameter does not contribute to
the predictive ability of the ANN, the MSE of the randomized
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data set will be close to the MSE of the original data set. If
a parameter contributes strongly to the predictive ability of
the ANN, the MSE of the data set in which this parameter is
randomized will be greater than the MSE of the original data
set.

Some similarities exist between this method and the step-
wise methods reviewed by Olden et al. (2004). However, several
critical differences exist. The HIPR approach does not involve
the removal of parameters from inclusion in the network,
does not hold parameters at mean values over all data sets,
and operates conceptually on repetitions of the ANN training
process. These differences are important to the improvement
of the HIPR method over the other stepwise methods, and
account for the basic ability of this method to elucidate relative
parameter importance in ANN models.

2.1.2. Repetitions
For the HIPR method, the original values of a data set are
replaced by random values. Thus, the actual outcome is a
stochastic event based on sampling error at the data parti-
tioning phase of the data and repetitions are needed. For each
repetition, a new ANN is trained and new partitions of the
original data set are used. Upon completion of a number of
repetitions, relative parameter importance can be determined
by ranking the mean MSE produced by parameter, and exam-
ining overlap between parameters to determine significance
of the differences (a lack of overlap between one distribution
and 95% of another distribution indicating a significant differ-
ence at a level of ˛ = 0.05). Because the distribution of variance
measures such as MSE is not defined, the assumption of
normality of distribution necessary to implement commonly
used statistical tests such as ANOVA is not met (Sokal and
Rohlf, 1981). Using the method of overlap of data to determine
statistical significance is conservative relative to commonly
used tests such as ANOVA, and therefore represents a viable
alternative which avoids any statistical pitfalls related to
assumptions.

2.1.3. Connection weight method
The connection weight method (Olden et al., 2004) sums the
product of the weight of the connection from input neuron
to the hidden neurons with the weight of the connection from
the hidden neurons to the output neurons for all input param-
eters. The larger the sum of connection weights, the greater
the importance of the parameter that is associated with this
input neuron. The relative importance of input parameter i is
determined through the following formula:

Imp (i) =
n∑

x=1

(CWih(x)CWho(x))

where Imp(i) is the relative importance of parameter i; n the
total number of hidden nodes; x the index number of hidden
node; CWih(x) the connectivity weight between input param-
eter i and hidden node x; CWho(x) is the connectivity weight
between hidden node x and the output node.
2.1.4. Simulated data sets
The HIPR method was tested through application to simu-
lated data sets. In the simulated population data sets, all
2 0 4 ( 2 0 0 7 ) 326–334

functional relationships were known, and results from the
HIPR method were expected to reflect a reasonable interpre-
tation of relative importance of input variables. This has been
termed the virtual ecology approach, the merits of which have
been described by Grimm et al. (1999). The use of standard
simulation-based approaches to assess efficacy of models is
also widely used in statistics (Hastie et al., 2001). A number of
data sets were created where the output variable y showed dif-
ferent mathematical dependency to the input parameters x1

through x4. Parameters x1 through x4 were generated as uni-
formly distributed random numbers over the range 1–10,000,
and were then fed into four fundamentally different func-
tional relationships in the production of an output. For each
correlation, a set of 10,000 patterns was created. All data sets
were rescaled to the interval (0.1, 0.9) before being presented
to the ANN model. The following four functional relationships
were used:

• Multiple linear relationship

y = a1x1 + a2x2 + a3x3 + a4x4 with a1 = 0; a2 = 0.2;

a3 = 0.4; a4 = 0.8.

• Multiple linear relationship with random variation

y = a1x1 + a2x2 + a3x3 + a4x4 + random(10, 000)

with a1 = 0; a2 = 0.2; a3 = 0.4; a4 = 0.8, and random (10,000) rep-
resents a uniformly distributed random number from 1 to
10,000.

• Logarithmic relationship

y = log(ex30.001 + ex40.01).

• Collinear relationship

y = x3x4.

2.1.5. Simulations
For each of the four data sets, a series of 99 repetitions of
data set partitioning and ANN optimization were enacted. For
each repetition, the HIPR method and the connectivity weight
method were implemented to determine relative parameter
importance. These results were then used to determine the
absolute and relative accuracy of both of these methods.

All simulations were implemented using the C++ pro-
gramming language in the Borland Builder 6 environment.
An executable version of this simulation is available at
http://www.bio.upenn.edu/faculty/dunham/hipr/PennNN.zip.

2.2. Mangrove impoundment case study

In order to demonstrate the application of the HIPR method
to actual data, a data set collected in mangrove marsh areas
by one of us (Kemp, unpublished dissertation) in East central
Florida was used as a case study for the HIPR method. The
data set consisted of physical characteristics of sampling sta-
tions in mangrove marsh areas under different management

strategy for mosquito control. Details of sampling strategy and
methodology are presented in Appendix A.

To examine the relative effects of impoundment on water
quality factors, physical characteristics of different stations

http://www.bio.upenn.edu/faculty/dunham/hipr/PennNN.zip
https://www.researchgate.net/publication/222691563_An_accurate_comparison_of_methods_for_quantifying_variable_importance_in_artificial_neural_networks_using_simulated_data?el=1_x_8&enrichId=rgreq-8617e39e75b72a901f9ba4af0405f340-XXX&enrichSource=Y292ZXJQYWdlOzIyMjU0OTQxMztBUzoxMDQwMDQwMDQ2MTQxNDVAMTQwMTgwNzg5NTIyMg==
https://www.researchgate.net/publication/222691563_An_accurate_comparison_of_methods_for_quantifying_variable_importance_in_artificial_neural_networks_using_simulated_data?el=1_x_8&enrichId=rgreq-8617e39e75b72a901f9ba4af0405f340-XXX&enrichSource=Y292ZXJQYWdlOzIyMjU0OTQxMztBUzoxMDQwMDQwMDQ2MTQxNDVAMTQwMTgwNzg5NTIyMg==
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Fig. 1 – Multiple linear correlation. (A) HIPR method:
Relative importance of input parameters x1–x4 as indicated
by MSE of test data set and modified test data sets. (B)
Relative importance of parameters (x1–x4) as indicated by
the connectivity weight method (see text for details) (box
plot: upper and lower boundaries of grey areas represent
75th and 25th percentile, whiskers above and below plot
are 90th and 10th percentile; points are outliers. An
asterisk indicates a significant difference from either the
unaltered test data set (HIPR method) or zero (connectivity
e c o l o g i c a l m o d e l l i n

ere incorporated into a model with the management strategy
f the impoundment as an output variable. Model effective-
ess was evaluated as the ability to predict management
trategy of a particular station in a randomly determined
alidation data set. A total of 203 patterns from nine sites
ere available for analysis. Thus, as compared to the com-
uter simulated data, in this ecological data set the amount
f information was much more restricted. Variables included

n the model were as follows: year of sampling (year), Julian
ate of sampling (JD), surface temperature at station (Temp),
urface dissolved oxygen in parts per million (O2), surface
alinity in parts per thousand (Sal), surface sulfide level in
arts per million (Sulf), per meter stratification in tempera-
ure at station (T strat), stratification in dissolved oxygen at
tation (O2 strat), per meter stratification in sulfide level at
tation (Sulf strat), and per meter stratification in salinity at
tation (Sal strat). Model output was management strategy
categorical: open, managed, or closed). The data was other-

ise prepared in an identical manner as the simulation data,
nd the details of the ANN models trained were also identical.
total of 157 repetitions of the method were usable for the

nalysis.

. Results

erformance of the HIPR and connectivity weight methods
as compared by determining relative parameter importance

n ANNs trained on the simulated data sets, and comparing
hese values with known parameter importance in the func-
ional relationship used to construct the data set. The two
echniques used different criteria to accomplish this. The HIPR

ethod used the mean squared error resulting from the ran-
omization of each parameter, and the connectivity weight
ethod quantified the total of the connection weights from

nput to output for each parameter. Following are the results
f the two methods for each of the four data sets.

.1. Multiple linear relationship

NNs trained on the data set constructed according to a mul-
iple linear relationship had an average R2 value of 0.997
S.D. = 0.000375; N = 99) for ANN model output versus target
actual) values. Of the four simulated data sets, the known
elative parameter importance was the most interpretable for
his relationship. The relative importance of input parame-
ers was determined using the connectivity weight method
nd the HIPR method (N = 99 separate resamplings of data
et and resulting trained ANN models). Fig. 1 shows the rel-
tive importance estimates for the input parameters in the
NNs using both of these methods. Both the HIPR (Fig. 1A)
nd the connectivity weight (Fig. 1B) method were successful
n the identification of parameter importance (x4 > x3 > x2 > x1).
either method ascribed significant importance to x1, a vari-
ble with no functional relationship to the output. However,
he HIPR method appeared to ascribe relative importance

n a nonlinear rather than linear fashion. The connectivity
eight method resulted in more outliers, and greater apparent

tandard deviations versus the HIPR method, although vari-
nces between these methods were not directly comparable.
weight method) as shown by lack of overlap.

Variation around the mean MSE value obtained by the HIPR
method was narrower than the confidence intervals around
the sum of connectivity weights produced by the connectiv-
ity weight method. For parameters x2, x3, and x4, the HIPR
method found MSE values produced by randomizing each one
of these parameters to be significantly higher than MSE values
resulting from unaltered data set. This indicates a loss of infor-
mation used by the ANN model, and therefore, parameters x2,
x3, and x4 all significantly contribute to the predictive ability
of the ANN model. Likewise, the connectivity weight method
showed that connectivity weight values for parameters x2,
x3, and x4 were all significantly greater than zero. Correctly,
neither method showed x1 to be of significant importance in
predicting the output. In summation, both models performed
similarly in terms of determining parameter importance and
significance. Differences between the two methods included

the exponential difference in importance indicated by the
HIPR method as opposed to the connectivity weight method,
and the between-run consistency in the mean squared error
in the HIPR method versus the connectivity weight method.
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Fig. 2 – Multiple linear correlation with uniform random
variation. (A) HIPR method: Relative importance of input
parameters x1–x4 as indicated by MSE of test data set and
modified test data sets. (B) Relative importance of

x4, which was multiplied by a factor an order of magnitude
greater than x3 (0.01 versus 0.001). The nonlinear character of
the relationship coupled with the difference in the magnitude
of the exponents producing this data set most likely accounted

Fig. 3 – Logarithmic (nonlinear) correlation. (A) HIPR
method: Relative importance of input parameters x1–x4 as
parameters (x1–x4) as indicated by the connectivity weight
method (see text for details) (box plot: see Fig. 1 for details).

3.2. Multiple linear relationship with random
variation

The addition of uniformly distributed random variation to the
multiple linear relationship substantially reduced the ability
of ANNs to predict target values. The mean R2 value for out-
put versus target (actual) values from ANNs trained on this
type of data set was 0.449 (S.D. = 0.0092; N = 99). The relative
importance of input parameters as determined through these
methods is shown in Fig. 2. Since R2 values produced by ANN
models for these data sets were lower than for other simu-
lated data sets, it is important to note a particular aspect of
the results. ANN models vary in predictive ability according
to the relationship between variables in the system. When
there is little correlation between input and output param-
eters, the relative parameter importance measured by HIPR
only reflects the partial contribution of the parameter to the
predictive ability of that particular ANN model.

This data set involved a duplicate of the underlying multi-
ple linear relationship of the previous data set, masked by an
addition of uniformly distributed random values. Results mir-

rored those derived from the multiple linear relationship data
set, with HIPR again appearing to exaggerate dependence of
the model upon the most important parameters (Fig. 2). Both
methods correctly identified the relative importance of the
2 0 4 ( 2 0 0 7 ) 326–334

input parameters and their significance, despite the reduced
predictive ability of the ANNs. The differences in outliers
and confidence interval width for the two methods was not
as great for ANN models derived from this data set as for
the multiple linear relationship without noise, although there
appeared to be more variation around the mean per parameter
for the connectivity weight method (Fig. 2B).

3.3. Logarithmic relationship

The nonlinear relationship expressed in these data sets
resulted in highly consistent ANN models with a mean R2

value for model output versus target (actual) values of 0.997
(S.D. = 0.0014; N = 99). The relative importance of the parame-
ters in ANNs trained on this relationship is shown in Fig. 3.
Neither method identified parameters x1 or x2 as signifi-
cant, which was expected because these parameters were not
included in the nonlinear relationship. However, while param-
eter x3 was explicitly included in the nonlinear relationship,
neither method identified this parameter as being significant.
The only important parameter identified by both methods was
indicated by MSE of test data set and modified test data
sets. (B) Relative importance of parameters (x1–x4) as
indicated by the connectivity weight method (see text for
details) (box plot: see Fig. 1 for details).
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Fig. 4 – Multiple co-linear relationship. (A) HIPR method:
Relative importance of input parameters x1–x4 as indicated
by MSE of test data set and modified test data sets. (B)
Relative importance of parameters (x1–x4) as indicated by
the connectivity weight method (see text for details) (box
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are those most consistently related to management strategy.
The average R2 value obtained over all 157 model runs of ANN
models was 0.31.

Fig. 5 – Relative levels of average mean square error
produced in HIPR method for multivariate water quality
data set from impounded mangrove. Abbreviations are
lot: see Fig. 1 for details).

or the lack of significance of x3. In the connectivity weight
ethod there was extensive variation around the mean con-

ectivity weight sum for parameter x4 (Fig. 3B), while there
as very little variation around the mean MSE for the same
arameter produced by the HIPR method (Fig. 3A).

.4. Co-linear relationship

NNs produced from data sets with this relationship had a
elatively high R2 value for output versus target (actual) val-
es of 0.994 (S.D. = 0.012; N = 99). Because this relationship

nvolved a simple multiplication of parameters x3 and x4 with
o additional factorization, the identification of the functional
quivalence of these two parameters was expected. Fig. 4
hows the results of the two methods. In both methods, x3 and

4 were identified as being equal and significant, and x1 and

2 were identified as not significant. As in previous examples,
ithin parameter between-run variation was much greater in

he results from the connectivity weight method than from
he HIPR method (Fig. 4).
The HIPR method proposed in this paper and the connectiv-
ty weight method proposed by Olden et al. (2004) performed
qually well in predicting relative input parameter importance
nd significance over four data sets constructed according to
4 ( 2 0 0 7 ) 326–334 331

different functional relationships (linear, linear with noise,
logarithmic, and co-linear). Main differences between the two
methods appeared to be a greater between-run consistency in
results produced by the HIPR method versus the connectivity
weight method, dispersion around the mean values obtained
in the connectivity weight method, and the tendency of the
HIPR method to emphasize relative dependence on the most
important parameters.

3.5. Mangrove impoundment case study

MSE values obtained in the HIPR analysis for each input
parameter, ranked from lowest to highest, are shown in Fig. 5.
Randomization of the signal in the oxygen parameter pro-
duced the largest MSE, and as such had the largest effect on
the ability of the ANN models to predict management strat-
egy from physical data. Using the method of overlap between
parameters to determine statistical significance, only MSE
values derived from randomizing oxygen, salinity, and stratifi-
cation in salinity were significantly different from the baseline
(validation data set). While the mean MSE values related to
randomization of stratification in sulfur were similar to those
from stratification in salinity, variation was too great to dis-
tinguish this variable from the validation data set. All other
parameters had sufficient amounts of overlap with the valida-
tion data set to make them statistically indistinguishable from
those produced by the validation data set. This illustrates the
relative importance of parameters in ANN models related to
management strategies in mangrove impoundments, as well
as the significance of input parameters in determining the
output. Because the ANN models were trained to differentiate
between management strategies, it can be assumed that the
parameters which were most important to the ANN models
detailed in the text under Section 2. Error bars represent
95% confidence interval. An asterisk denotes a significant
difference between MSE values at the ˛ = 0.05 level using
the overlap method outlined in text.

https://www.researchgate.net/publication/222691563_An_accurate_comparison_of_methods_for_quantifying_variable_importance_in_artificial_neural_networks_using_simulated_data?el=1_x_8&enrichId=rgreq-8617e39e75b72a901f9ba4af0405f340-XXX&enrichSource=Y292ZXJQYWdlOzIyMjU0OTQxMztBUzoxMDQwMDQwMDQ2MTQxNDVAMTQwMTgwNzg5NTIyMg==
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4. Discussion

The HIPR method introduced here performed at a high level
in identifying relative importance values of input parameters,
for all types of data sets studied. In all cases, parameters
which were functionally important in determining output
were identified as significant, while those which were not
important were not incorrectly assigned importance. When
compared with the recently proposed connectivity weight
method recently proposed by Olden et al. (2004), both meth-
ods performed acceptably. This research also represents an
independent confirmation of the accuracy of the connectivity
weight method. Some advantages of the connectivity weight
method lie in its intuitive simplicity. However, we feel there are
a number of distinct advantages to the HIPR method relating
to its functional generality and its use of nonarbitrary criteria
in determining relative parameter importance (MSE). Some of
these are well shown by the ecological example provided.

The analysis of the mangrove ecosystem data demon-
strates the practical use of the HIPR method in interpreting
ecological data. This technique allows the combination of the
great predictive power of ANN models (Hastie et al., 2001), with
the ability to rank the relative importance of different param-
eters within the ANN model based on their contribution to
predictive power. Also, a procedure can be employed to deter-
mine their significance. This combination of predictive power
of ANN models, ranking of importance of input parameters,
and determination of parameter significance is a primary ben-
efit of the HIPR method to ecologists analyzing multivariate
data sets. The example provided here illustrates both these
benefits and some of the caveats of using this method. This
data set, somewhat limited and noisy as compared to the
abundant data provided by computer simulations, is much
more along the lines of the kind of data set likely to be avail-
able on ecological systems, in contrast to the abundant data
provided by computer simulations. Employed here, the simu-
lation data evaluate the effectiveness of the HIPR technique,
while the ecological data represent its application to a more
realistic data set. The significant traits used by ANN models
to distinguish between management strategies in mangrove
impoundments as shown by the HIPR method were salin-
ity and stratification in salinity, and most important, oxygen.
Other factors introduced as input variables did not signifi-
cantly affect the predictive ability of the ANN models. Order
of importance, as well as variation in importance between
different ANN model constructions, is easily observed in this
example. When examining limited ecological data, the choice
of a model validation data set could conceivably affect the
result of the ANN model. In the present example, this is shown
in the high degree of variation seen between model runs for
stratification in sulfide (Fig. 5). While the mean MSEs produced
by this parameter were similar to a significant factor, stratifica-
tion in salinity, variation in the importance of this parameter
between runs as indicated by variation in MSE precluded it
from being significant. Restated, the importance of this factor

depended on the particular choice of the validation set. The
repeated resampling of the data implicit in the HIPR method
prevents a spurious attribution of importance to a variable
owing to chance factors alone. Finally, this example also shows
2 0 4 ( 2 0 0 7 ) 326–334

a caveat of interpreting results from this and any other ANN
or multivariate model. This is mainly that the overall impor-
tance of these parameters in the system determined by the
HIPR method must be constrained by the predictive power of
the ANN models used in the first place. The R2 values obtained
for this particular natural system indicate that much of the
water quality differences between impoundment sites is not
readily explained by the ANN models produced. Other factors
not included in the model, such as site-specific differences,
are also undoubtedly contributing to the variation between
sampling stations. The greater the predictive power of the
ANN model, the greater weight which should be assigned to
factors in the model, and vice versa. However, the example
shown demonstrates how the HIPR method can be used and
the results interpreted to achieve a better understanding of
ecological systems through ANN models.

The criteria by which HIPR and the connectivity weight
methods judge the relative importance of parameters marks
a key difference in approach between the two methods.
Whereas the HIPR method utilizes MSE produced by ran-
domizing input parameters in ANN models, the connectivity
weight method uses the connectivity weights of the ANN
model. This may explain some of the differences observed
in the performance of the two methods. Because the con-
nectivity weight method relies on the unitless connectivity
weights produced during the training of the ANN model, the
variation in connectivity weight values between runs is sen-
sitive to the initial random values of the weights relative to
the HIPR method (Figs. 1, 3 and 4). In the connectivity weight
method, the between-run variation in the sums of connec-
tivity weights depends on their initial random values in the
model before training, and thus the variation in these quan-
tities observed between runs is arbitrary. Consequently, the
arbitrary nature of the connectivity weight values clouds inter-
pretation of the results between sampling runs. The HIPR
method relies on MSE, which is fully comparable between
sampling runs. Greater consistency in results was observed for
the HIPR method and this indicates its greater accuracy and
repeatability in determining relative parameter importance. In
data sets where the number of available data patterns is lim-
ited (as is often the case with ecological data sets), the need
to repeat sampling of validation and test data sets and train
concurrent ANN models becomes much greater to avoid the
problems of sampling error (Lek et al., 1996). In such a situa-
tion, the standardized MSE criterion decidedly makes the HIPR
method the tool of preference.

Because the HIPR method is a quantification of MSE resid-
uals obtained when system parameters are randomized, the
method should perform well over a diverse range of ANN
applications. If more than one output is present in the model,
then relative input parameter importance will be determined
by the MSE summed over all output nodes when that par-
ticular parameter is randomized. For input or output nodes
consisting of binary data, randomization would proceed as
described for the method. Randomization would produce
many values in between the “0”’s and “1”’s of the binary data

set, but it would still meet the main requirements of the
HIPR method, i.e. the uncoupling of the data interrelationships
found in that particular parameter. Following, it would then be
possible to examine the loss in predictive ability of the ANN

https://www.researchgate.net/publication/222691563_An_accurate_comparison_of_methods_for_quantifying_variable_importance_in_artificial_neural_networks_using_simulated_data?el=1_x_8&enrichId=rgreq-8617e39e75b72a901f9ba4af0405f340-XXX&enrichSource=Y292ZXJQYWdlOzIyMjU0OTQxMztBUzoxMDQwMDQwMDQ2MTQxNDVAMTQwMTgwNzg5NTIyMg==
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esulting from randomization of that parameter. In the case
f classification type data, a similar coding of categorical data

nto a continuous output would allow for the quantification
f MSE values occurring when each of the parameters is ran-
omized. For example, let a hypothetical data set consist of
multivariate parameter space characterizing three different

tates (output). In order to train the model, these states would
e coded in the data patterns as outputs in the form of a con-
inuous variable, with the states represented as equidistant
oints on the scale. If all variables are to be rescaled over the
ange (0.1, 0.9), then the three different output states would be
epresented as 0.1, 0.5, and 0.9. The MSEs of the ANN model
or target versus observed values could then be calculated as
n other scenarios, and the relative importance of the input
arameters in accurately classifying the output patterns could
e determined. The use of MSEs to determine relative param-
ter importance allows for much flexibility in the application
f the HIPR method to various types of data sets and ANN
odels.
A key issue regarding the interpretation of HIPR results is

he situation where the ANN used has relatively low predic-
ive power. We can expect this situation in many ecological
ata sets. As these systems are often very complex, it is highly
nlikely all relevant system variables will be included within
single model. Interpretation of the results must always be

one within the context of the predictive power of the ANN.
high importance attributed to a particular input variable

nly represents a relative partial contribution of predictive
ower of the ANN model, and any extrapolation back to its
rue importance in the system must be constrained by it. How-
ver, even in situations where the predictive power of the
NN is low, the use of the HIPR method can provide useful

nsight into important components of the system. Similar to
multivariate analysis (i.e. discriminant analysis), the ANN

raining procedure identifies patterns of variation which pro-
ide the strongest predictive power. If other significant, but
esser axes of variation are orthogonal to the primary varia-
ion represented by the ANN, they will not be represented in
he resulting ANN model. Therefore, the importance of any
arameter identified by HIPR in a modeled system must be
onstrained by the overall predictive power of the ANN model
rom which it is derived.

One interesting difference between the two methods lies in
he exponential appearance of relative parameter importance
roduced by the HIPR method. This may be due to the funda-
ental difference in criteria used by this method to evaluate

elative parameter importance. Because this procedure uses
SE, linear relationships in parameter importance of input

arameters appear to be exponential when the HIPR method
s performed. The absolute order does not change, and it
ould be possible to determine the actual linear relationships
etween the input parameters by quantifying absolute errors
roduced rather than the sum of squared error. While absolute
esiduals could be used in our method, using MSE instead may
erve to accentuate differences between measured parameter
mportances and thus provide better resolution as to relative

arameter importance. Moreover, MSE is the primary criterion
sed to optimize ANN models and may therefore be more rep-
esentative of the relative importance of an input parameter
o network predictive ability.
4 ( 2 0 0 7 ) 326–334 333

The repeated resampling of test/validation data sets from
the original data sets in the HIPR method and the multi-
ple optimizations of ANN models is a superior approach for
determining relative importance estimates, especially when
data are limited. First, the repeated nature of the process
allows for the placement of confidence intervals on the rel-
ative importance of input parameters, and allows for the
objective determination of significance of input parameters.
In this paper, this is done using a determination of the amount
of overlap between two distributions. Repeated resampling of
test data sets reduces the potential for sampling error caused
by choice of a validation or test data set (Lek et al., 1996). While
sampling error is not likely when extremely large, functionally
homogenous data sets are used (such as in this study), it is
likely to be a factor when used for actual ecological data sets,
where data availability is limited. Repeated random selection
of validation data sets enhances the probability that actual
patterns in the data being modeled with ANNs are accurately
represented in the HIPR method.

The HIPR method is also capable of assessing the relative
importance of input parameters in any conceivable configura-
tion of ANN. While the architecture used by most researchers
is very simple (e.g. a feed forward network with a single layer
of hidden nodes), a great number of complex architectures
of ANN are possible. In many cases, these more complicated
architectures outperform ANNs with simpler architectures
(Hastie et al., 2001). The HIPR method requires fewer assump-
tions regarding the architecture of the network due to the
criterion of relative contribution of input parameters in pre-
dicting target values. This may be a key advantage in using
this method over the connectivity weight method in situa-
tions where summation of connectivity weights would not
be a logical way to assess relative parameter importance,
or if the details of the derived ANN are unavailable (as in
some statistical packages). The HIPR method can easily be
implemented in standard ANN simulators by creating mul-
tiple data sets in which one parameter at a time is replaced
by uniformly distributed random values. This can be accom-
plished via computer program, or even by using a spreadsheet
program.

The HIPR approach has some other important differences
with the ‘perturbation’ method (Scardi and Harding, 1999)
evaluated by Olden et al. (2004), which should be noted
here. The randomization of data contained in different input
parameters constrains the values so they do not exceed the
numerical scope of the trained network, i.e. over the range
[0.1, 0.9]. Because the ANN is trained over a given range of val-
ues, the overextension of values fed to the network through
the addition of white noise may result in an unpredictable or
irrelevant outcome. The HIPR method controls for the poten-
tial for the randomized values to produce this undesired effect
by constraining the values to a range ‘native’ to the ANN.

With regard to the development of ANN models as a useful
tool for scientific investigations beyond predicting outcomes
from a series of inputs to the models, this study has some
important broader implications. The prevailing hypothesis

that ANN models operate in an opaque, or even mysterious
manner, and that these properties inhibit the gaining of
valuable insights into the system is not supported by these
results. ANN models derive their predictive power from actual
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patterns of correlation present in the data. As shown in
this paper, they do so in a manner which is consistent over
many repetitions, and the ANN models developed attribute
relative weights of importance proportional to the actual
patterns of importance present in the system. The research
presented here, along with that of other authors, should act
to dispel the notion that ANNs are only useful in classifying
patterns in data, and supports the idea that ANNs are useful
in conjunction with more detailed, even mechanistic studies
as a preliminary identifier of putative ecological correlations.

In summary, the HIPR method represents a robust, general
tool ideal for examining relative parameter importance. This
method may be especially useful in application to multivariate
data sets which are of a size sufficient to train an ANN model
but limited in extent, such as ecological data sets. This pro-
cedure provides the greatest likelihood of identifying relative
contribution of parameters to ecological relationships using
ANN models. This method should be seen as complementary
to existing methods while at the same time having distinct
advantages from the perspective of heuristics, generality, and
interpretability.
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Appendix A

Impounded mangrove data set: The sites at which data were
collected represented a cross section of types of mangrove
areas along the Indian River, Florida. Sites were visited reg-
ularly over the time period June 2000–August 2002. At each
site, several (up to five if possible) sampling stations were
established. It was not always possible to obtain five sampling
stations at every site due to limitations in the amount of open,
standing water and access. On every visit, these stations were
examined for a number of variables, including temperature,
dissolved oxygen, salinity, and sulfide levels. These variables
represented those most likely to be affected by impoundment
of the marsh. In addition, a bottom water sample was obtained

using a drop bottle. Bottom water was examined for the same
variables as surface waters for the purpose of obtaining lev-
els of stratification. Temperature was measured using a 12
gauge copper-constantan calibrated thermocouple dipped in
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thermally conductive silicone. Temperature in degrees Celsius
was read to the nearest 0.1◦ with a handheld digital thermo-
couple reader (Omega model HH-25TC). Dissolved oxygen was
measured using a Sentry analog dissolved oxygen meter and
read to the nearest 0.1 ppm. Salinity was measured using a
handheld VeeGee salinity refractometer to the nearest dimen-
sionless unit (ppt). Finally, sulfide levels were measured using
a LaMotte chemical sulfide test kit (model P-70) and were read
to the nearest ppm. Stratification in these variables at each
sampling station was determined by subtracting the surface
reading from the bottom reading for each variable, and then
standardized for depth of the station in meters to obtain strat-
ification at the station as (units/m). Stratification was thought
to be important in the system because a primary effect of
impoundment is to prevent mixing of the water column.
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