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Abstract. Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed 

phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO3, 

NH3, and HCl, as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and 

human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number 40 

of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model 

calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles 
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are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are 

also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic 

emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog 

droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for 

aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and 5 

buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric 

condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, 

standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local 

and global scale. 

1 The importance of atmospheric acidity  10 

Human activity and natural processes result in emissions of sulfur, nitrogen, ammonia, dust, and other compounds that affect 

the composition of the Earth’s atmosphere. The acidity of suspended atmospheric media, particles and droplets, influences 

many processes that involve the atmosphere and all aspects of the Earth system (e.g., watersheds, marine and terrestrial 

ecosystems) that interface with it, see Fig. 1. Aerosols (also referred to as particulate matter, PM) and cloud droplets throughout 

the atmosphere exhibit a wide range of acidity, each spanning five orders of magnitude or more in molality units, or five units 15 

of pH (Fig. 2). Some anthropogenic emissions (sulfur dioxide, nitrogen oxides, organic acids) increase acidity while others 

(ammonia, non-volatile cations (NVC), amines) reduce acidity. The orders of magnitude differences in water content between 

aerosols and clouds leads to distinctly different acidity levels in these media, as well as their response to changes in precursor 

concentrations. The ability of chemical species to affect particle or cloud droplet acidity is driven by both its degree of acidity 

(or basicity), reflected in their dissociation (or association) constants, and by volatility, with less volatile compounds 20 

partitioning to a greater degree into liquid aerosols and cloud droplets. Semi-volatile species, for which significant fractions 

typically exist in both the gas and condensed phases, include ammonia (NH3), nitric acid (HNO3), hydrochloric acid (HCl), 

and low molecular weight organic acids. Sulfuric acid (H2SO4), by contrast, has extremely low volatility and can be treated as 

entirely in the condensed phase for most applications. Metal cations, including those found in dust and sea salt, are also 

essentially non-volatile. The abundance of these various constituents is a function of emission source and atmospheric 25 

processing and ultimately dictates the pH of fine particles (Fig. 1, 2). 

 

Although aerosol and cloud acidity are distinct in many ways, aerosol forms in part from cloud evaporation, and so aerosol 

composition and acidity may be directly affected by cloud chemistry. Similarly, cloud droplets and ice crystals nucleate on 

pre-existing particles, and therefore much of the material that modulates cloud acidity originates from the precursor aerosol. 30 

In addition, cloud droplets can collide with surfaces resulting in occult deposition (Dollard et al., 1983) or precipitation in the 
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form of rain. With these connections in mind, both aerosol and cloud acidity are important to human health, ecosystem health 

and productivity, climate, and environmental management.  

 

The acidity of atmospheric deposition for dry, wet, and occult pathways is directly affected by aerosol and cloud pH (Fig. 1). 

Thus, programs designed to reduce acid rain (e.g., the Acid Rain Program under Title IV of the 1990 Clean Air Act 5 

Amendments in the U.S.), have had implications for particle and cloud droplet acidity. In terrestrial ecosystems, direct effects 

of acid deposition to foliage include leaching of cations, altered stomatal function and changes in wax structure (Cape, 1993). 

Acid deposition can exacerbate soil acidification (Binkley and Richter, 1987), resulting in loss of soil base cations, leaching 

of nitrate and mobilization of aluminium, affecting terrestrial ecosystem health and the quality of water delivered to streams 

and lakes (Driscoll et al., 2007). Apart from reactive nitrogen, atmospheric deposition is also a significant source of limiting 10 

and trace nutrients such as phosphorus, iron, and copper, especially in the remote oceans (Mahowald et al., 2008; 

Myriokefalitakis et al., 2018). While mineral dust is a major source of these nutrients, combustion sources also emit iron, 

copper and other trace metals (Reff et al., 2009; Ito et al, 2019). Acid processing of aerosol prior to deposition, may greatly 

enhance the solubility of all these compounds increasing their bioavailability and ecosystem impacts (Meskhidze et al., 2003; 

Nenes et al., 2011; Kanakidou et al., 2018). For example, dust aerosols coated by acidic sulfate and nitrate show increased Fe 15 

solubility compared to fresh dust particles, particularly in the fine mode, the deposition of which may promote phytoplankton 

blooms in nutrient-limited regions of the oceans (Meskhidze et al., 2005). The same process occurs for P (e.g., Nenes et al., 

2011; Stockdale et al., 2016); however, the extent to which particle pH may similarly increase the solubility and amount of 

organic forms of nitrogen and phosphorous, a potentially large source to ecosystems (Jickells et al., 2013), is not well known 

(Kanakidou et al., 2018). Deposition of trace nutrients from acid-promoted dissolution into regions of the ocean where the 20 

nutrients are not limiting the biological productivity may enhance the productivity in other regions that are nutrient-limited by 

means of long-range transport by ocean currents. Such a redistribution of nutrients can have important implications for the 

biogeochemistry of the ocean, the oxygenation state, and the carbon cycle (Ito et al., 2016). 

 

Aerosol acidity is also a governing factor for atmospheric dry deposition of inorganic reactive nitrogen species, which is a key 25 

nutrient driving primary productivity in terrestrial and marine ecosystems. The hydrogen ion activity in aqueous aerosols 

affects the partitioning of total nitrate (TNO3 = HNO3 + NO3
-) and total ammonium (TNH4 = NH3 + NH4

+) between the gas 

and aerosol phases. Given the much larger deposition velocity of gases compared to submicron aerosols, pH-mediated 

partitioning influences the effective deposition velocity and lifetime of TNO3, TNH4, and total inorganic N (TNO3 + TNH4). 

Acidity therefore also affects the magnitude and spatial patterns of inorganic N deposition to terrestrial and aquatic ecosystems. 30 

Lower aerosol pH favors partitioning of TNO3 toward gaseous HNO3 rather than aerosol NO3
- thus shortening its lifetime 

(Weber et al., 2016). In contrast, TNH4 (NH3 + NH4
+) partitions toward gaseous NH3 at higher pH. Conditions of aerosol pH 

that promote a short residence time and local dry deposition of TNO3 may conversely result in longer range transport of TNH4 

and a more spatially extensive pattern of deposition and influence from source regions. The presence of dust and sea salt can 
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influence not only pH but the size distribution (Lee et al., 2008, Lee et al., 2004) and resulting deposition velocity of nitrate 

aerosol due to higher deposition velocities of coarse compared to fine mode particles (Slinn, 1977). Variations in this 

scavenging efficiency, dependent upon cloud pH, can also affect atmospheric lifetimes and spatial deposition patterns of TNH4. 

HNO3, due to its strong acidity, is essentially partitioned entirely to cloud droplets for typical cloud pH values (>2). NH3 also 

mostly partitions into cloud drops for pH values below 6, but an appreciable fraction can remain in the gas phase for higher 5 

pH values. Biases in pH in atmospheric models can therefore influence the amount, speciation, and location of N deposition, 

with implications for determining ecosystem critical load exceedances for nutrients and acidity (Bobbink et al., 2010). 

 

PM2.5 is associated with adverse human health effects, including premature mortality (Di et al., 2017; Lepeule et al., 2012; 

Pope et al., 2009; EPA, 2009). Aerosol acidity is associated with health effects of air pollution through its influence on 10 

atmospheric processes that affect the amount and composition of PM2.5 (Fig. 1). The concentration of fine particulate matter 

(PM2.5) is directly modulated by pH through its effects on gas–particle partitioning and pH-dependent condensed-phase 

reactions. The “strong acidity” property of aerosol (Koutrakis et al., 1988) has historically been associated with adverse health 

effects (Dockery et al., 1993; Dockery et al., 1996; Thurston et al., 1994; Raizenne et al., 1996; Spengler et al., 1996; Gwynn 

et al., 2000; EPA, 2009). One reason for this could be that aerosol acidity influences solubilization and the concentrations of 15 

toxic forms of trace species, such as transition and heavy metals, that have been linked to negative health effects (Kelly and 

Fussell, 2012; Lippmann, 2014; Rohr and Wyzga, 2012; Chen and Lippmann, 2009, Frampton et al., 1999). Transition metal 

ions (TMI), such as soluble Cu and Fe from acid dissolution, contribute significantly to the oxidative potential of particles 

(Fang et al., 2017; Poschl and Shiraiwa, 2015), which has been linked to cardiorespiratory emergency department visits with 

a stronger association than PM2.5 mass (Abrams et al., 2017; Bates et al., 2015). Ye et al. (2018) report a strong association 20 

between soluble Fe, which is modulated by particle acidity and aerosol water content, and cardiovascular endpoints. The 

mechanistic link between acidity, TMI dissolution, and health outcomes recently proposed by Fang et al. (2017) may help 

explain why sulfate in the ambient atmosphere is associated with adverse health outcomes – in contrast to studies that show 

little role for sulfate in negative health endpoints (Schlesinger, 2007; Reiss et al., 2007). 

 25 

Aerosol acidity can affect the gas–particle partitioning of semi-volatile toxic organic pollutants and therefore their 

environmental fate and pathways for exposure (Vierke et al., 2013). Some per- and polyfluoroalkyl substances (PFASs), 

including perfluoroalkane sulfonic acids (PFSAs) and perfluoroalkyl carboxylic acids (PFCAs), are strongly acidic and likely 

to be at least partially dissociated (ionized) under pH conditions typical of most atmospheric aerosols (Ahrens et al., 2012). 

Once in the particle phase, they are vulnerable to hydrolysis, which shortens their lifetime in the environment but may lead to 30 

the formation of toxic degradation products (Tebes-Stevens et al., 2017). Aerosol acidity was also recently shown to enhance 

airborne nicotine levels and resulting thirdhand smoke exposure (DeCarlo et al., 2018). Furthermore, aerosol acidity may also 

affect particle toxicity on a per mass basis (increase or decrease) by influencing organic aerosol composition (Arashiro et al., 

2016; Tuet et al., 2017). Many organic compounds that are toxic (e.g., nitrosamines) can also be formed in the aerosol phase 
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under acidic conditions; at the same time, other potentially toxic compounds (e.g., organonitrates) may hydrolyze under 

strongly acidic conditions (Rindelaub et al., 2016a). Even for non-toxic organic aerosol facilitated by acidity, the enhanced (or 

conversely reduced) formation of inert organic mass in the particle promotes the partitioning (or evaporation) of toxic species, 

such as polycyclic aromatic hydrocabons (PAHs) (Liang et al., 1997), from the gas phase to the particle and thereby alter the 

location of deposition in the respiratory airways. For highly soluble organic species, uptake to the aerosol phase can also 5 

potentially extend their atmospheric lifetimes by protecting the species against deposition on vegetation and ground surfaces. 

 

Since acidity impacts the mass and chemical composition of atmospheric aerosols, which scatter and absorb radiation and 

serve as cloud condensation nuclei (CCN), acidity can also affect climate. First, particle pH influences, and is related to, the 

water uptake properties (hygroscopicity) of particles, which in turn can modulate both visibility and the radiative balance 10 

throughout the atmosphere (the aerosol direct climate effect). Cloud pH has been linked to the amount and speciation of aerosol 

upon evaporation, with important radiative effects (Turnock et al., 2019). Changes in acidity can also affect the number of 

chromophores contained within aerosol (so-called brown carbon) and their efficiency to absorb sunlight in the near-UV range 

(Hinrichs et al., 2016; Teich et al., 2017; Phillips et al., 2017). Acidity-induced changes in aerosol affect the ability of particles 

to act as CCN and contribute to the formation of droplets in warm and mixed-phase clouds. For example, insoluble particles, 15 

such as dust, facilitate the production of ice crystals in mixed-phase and cold clouds (Seinfeld and Pandis, 2016); acidification 

of these particles can modify the active sites that ice is formed upon, and thereby affect the distribution of ice and liquid water 

throughout the atmosphere (Sullivan et al., 2010; Reitz et al., 2011). The distribution of droplets and ice also may in turn 

regulate the riming efficiency in mixed-phase clouds (Pruppacher and Klett, 2010) and distribution of clouds throughout the 

atmosphere. Changes in cloud distribution strongly modulate Earth’s radiative balance and the hydrological cycle (IPCC, 20 

2007).  

 

Atmospheric acidity also plays an important role in new particle formation, which is thought to contribute up to 50% of the 

CCN concentrations in the atmosphere, thus acting as a climate regulator (Gordon et al., 2017). Sulfuric acid likely plays a 

critical role in the formation of stable clusters upon which new particles are formed (Weber et al., 1997; Weber et al., 1998), 25 

while bases such as amines and ammonia (Jen et al., 2016) can facilitate stabilization and growth of such clusters. Uptake of 

organic acids through acid-base chemistry (Zhang et al., 2004; Hodshire et al., 2016) and acid-mediated secondary organic 

aerosol formation (e.g., McNeill, 2015) impact the aerosol size distribution with implications for CCN concentrations, cloud 

droplet formation and climate. 

 30 

Understanding particle acidity can facilitate improved air quality management strategies and policy planning to mitigate the 

health and environmental effects of air pollution. Consideration of different policy options and the development of emission 

reduction strategies often relies on chemical transport model (CTM) simulations of future conditions. Such modeling depends 

on the capability of CTMs to adequately simulate responses to policy scenarios. The predictive capability of CTMs is closely 
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linked to their ability to track particle acidity through the pathways shown in Fig. 1. Some studies have pursued the 

development of observation-based indicators for the sensitivity of pollutants to precursor emissions for use in CTM evaluation 

and air quality management (e.g., Gas Ratio, Sect. 4). However, the use of the sensitivity indicators has been limited because 

their robustness has not been well established. Recent work (Shah et al., 2018; Vasilakos et al., 2018) has begun to explore the 

influence of particle acidity on the simulated responsiveness of PM2.5 to emissions changes. Vasilakos et al. (2018) 5 

demonstrated that reliable predictions of particle pH in CTMs are key to modeling the response of PM2.5 components to 

precursor emission changes. Furthermore, pH biases may propagate to biases in nitrate partitioning, dissolved metal 

concentrations, inorganic and organic aerosol amount and composition, aerosol size distributions, and ultimately could affect 

predicted impacts of emissions on ecosystem productivity and public health.  

 10 

This study reviews the current understanding of aerosol and cloud acidity in the atmosphere. The work is motivated by the 

central role of aerosol and cloud acidity in numerous complex atmospheric processes of importance to human health and 

welfare as well as the rapid growth in literature on aerosol acidity in recent years. Despite decades of research on these 

processes, relatively few observational constraints exist for model evaluation. This review aims to collect values of fine aerosol 

and cloud pH as well as discuss the approaches used to determine them. We provide an overview of the range of pH acidity 15 

scales and methods of approximating pH as well as discuss their challenges and advantages (Sect. 2). In addition, we discuss 

the role of chemistry in driving and being modulated by pH (Sect. 3), proxies of pH (Sect. 4), observations of particle (Sect. 

5.1) and cloud (Sect. 5.2) pH, insights from box modeling of particle pH and its approximations and proxies (Sect. 6), the role 

of size and composition (Sect. 7), and regional and global model representations of pH (Sect. 8).  

2 The definition of pH and pH scales  20 

Aerosol acidity is generally not directly measured, despite some recent progress (see Sect. 5.1.1-5.1.2). Instead, estimates are 

obtained from thermodynamic models that involve assumptions, which can vary according to the completeness of the 

atmospheric dataset being considered. The numerical value of pH also differs according to the concentration scale in use. 

Furthermore, pH has a number of different definitions – each devised for a particular application – and can only be measured 

accurately and with metrological traceability for dilute solutions. These facts are not always well understood. This section 25 

summarizes the formal definition of pH and operational definitions and approximations. Thermodynamic models used to 

calculate fine particle pH are also discussed. 

2.1 Definition of acidity in terms of the pH 

The degree of acidity or basicity of a solution can be quantified based on the thermodynamic activity (the effective 

concentration, including non-ideal behavior) of dissolved hydrogen ions (H+). In its most common form, this measure of acidity 30 
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is reported as a dimensionless quantity known as the pH. The International Union of Pure and Applied Chemistry (IUPAC) 

defines pH as (Buck et al., 2002; IUPAC, 1997): 

 pH = −log10(𝑎H+) = −log10 (
𝑚

H+

𝑚⦵  𝛾H+),       (1) 

where 𝑎H+  denotes the activity of H+ in aqueous solution on a molality basis, 𝑚H+  is the molality of H+ (mol kg-1, i.e. moles of 

H+ ions per kg of solvent, typically pure water), and 𝛾H+ is its molal activity coefficient (see Table 1 for a summary of 5 

definitions). The quantity 𝑚⦵ = 1 mol kg-1 is the standard state (unit) molality used to achieve a dimensionless quantity in 

the logarithm (Covington et al., 1985) (omitted for simplicity in future equations). For solid particles or ice clouds, and 

potentially for glassy particles, a single pH value is undefined due either to the lack of a liquid aqueous phase or the potential 

for long intraparticle mixing timescales. In Eq. (1), both 𝑎H+  and 𝛾H+  are molality-based with a reference state of infinite 

dilution in pure water (𝛾H+ ⟶ 1 as 𝑚H+ ⟶ 0). In most calculations involving natural systems the solvent is pure water, and 10 

therefore the molality, mi (mol kg-1), of solute species i is given by 𝑚𝑖 =
𝑛𝑖

𝑛𝑤𝑀𝑤
, where 𝑛𝑖 is the number of moles of i in the 

aerosol or cloud water particles, 𝑛𝑤 the number of moles of water and 𝑀𝑤 the molar mass of water. For some applications 

involving solutions containing large fractions of organic material that are miscible with water, the definition of the 'solvent' 

may be altered to include all non-ionic (organic) species. This is largely for practical reasons and because some thermodynamic 

models of activities in solutions and liquid mixtures (e.g., Yan et al., 1999; Zuend et al., 2008) require it. The activity 15 

coefficients used in the calculation of pH must be consistent with both the definition of what constitutes the solvent and also 

the concentration scale used. Further explanation is given in the Supplementary Information (Sect. S1).  

 

The IUPAC definition of pH (Eq. 1) is regarded as a notional definition, because it involves the activity coefficient of a single 

ion (Buck et al., 2002; Covington et al., 1985). These are inaccessible experimentally because electrolyte solutions (of any 20 

relevant amount of substance) always contain both cations and anions, in proportions yielding an overall electroneutral system. 

Only mean activity coefficients of neutral cation–anion combinations are measurable quantities, such as 𝛾±,HCl = [𝛾
H+𝛾Cl

-]
1

2 in 

the case of the 1:1 electrolyte HCl (e.g., Prausnitz et al., 1999; Robinson and Stokes, 2002). Several, but not all, thermodynamic 

activity coefficient models used in atmospheric science and geochemistry provide a computation of single-ion activity 

coefficients within their mathematical framework (see later discussion of aerosol models, Sect. 2.6). However, these single-25 

ion values are purely conventional in that they depend on assumptions inherent in the derivation of the model equations and, 

unlike mean activity coefficients, are not necessarily comparable between models. 

 

2.2 Alternative pH concentration scales 

Older definitions of pH by IUPAC, alongside Eq. (1), define the pH value on a molarity scale (pH𝑐) (Covington et al., 1985): 30 

 pH𝑐 = −log10(𝑎
H+
(𝑐)

) = −log10 (
𝑐

H+

𝑐⦵  𝛾
H+
(𝑐)

).       (2) 
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The superscript (𝑐) indicates the molarity basis for the activity (𝑎
H+
(𝑐)

) and activity coefficient (𝛾
H+
(𝑐)

), distinct from the molality 

basis. The reference state is still infinite dilution in pure water (𝛾
H+
(𝑐)

→ 1 as 𝑐H+ → 0), and the quantity 𝑐⦵ = 1 mol dm-3 is the 

standard state molarity. The quantity 𝑐H+  denotes the molarity or molar concentration of H+ in an aqueous solution (i.e., mol 

of H+ per dm3 of aqueous solution; IUPAC, 1997). For dilute solutions, 𝑐H+  is practically equivalent to the molar amount of 

ion per dm3 of pure water. Covington et al. (1985) point out that for most applications involving dilute aqueous solutions, the 5 

pH and pHc values obtained from molality and molarity scales (for the same mixture) are of negligible numerical difference. 

The pH difference depends mainly on the density of water, and the difference in molal vs molarity-based pH is approximately 

0.001 pH units at 298.15 K, increasing to about 0.02 pH units at 393.15 K (with larger differences expected for concentrated 

aqueous electrolyte solutions and/or those with mixed solvents).  

 10 

The mole fraction concentration scale is used by the Extended Aerosol Inorganics Model (E-AIM) of Clegg and co-authors 

(Clegg et al., 2001; Wexler and Clegg, 2002, and references therein). The pH on a mole fraction basis, pHx, is given by: 

 pH𝑥 = −log10(𝑎
H+
(𝑥)

) = −log10(𝑥H+  𝑓
H+
∗ ),       (3) 

where 𝑥H+  is the mole fraction of H+ in the solution, 𝑎
H+
(𝑥)

 and 𝑓
H+
∗  are the mole-fraction-based activity and the (rational) activity 

coefficient, respectively, both defined with respect to an infinite dilution reference state in pure water (superscript ∗ or (𝑥)). 15 

The mole fractions of all species i, including water, are calculated as xi = ni/Σj nj, where the summation is calculated over all 

solution species j (ions, uncharged (e.g., organic) solutes, and water).  

 

Conversions among pH values calculated using different concentration scales is necessary to compare model predictions, and 

to report acidity on a consistent basis. Generally, formulae for the conversion of pH are derived based upon the equivalence of 20 

the chemical potentials of solution entities irrespective of concentration scale (see, for example, Robinson and Stokes, 2002). 

The conversions to pH from the equivalent values on the mole fraction and molarity scales are given below, and the derivations 

are given in the Supplementary Information (Sect. S1): 

 pH = pH𝑥 + log10 (𝑀𝑤 ∙ 1
mol

kg
) ≈  pH𝑥 − 1.74436,       (4)  

 pH = pH𝑐 − log10 (
1

𝜌0
∙ 103 kg

m3).        (5) 25 

where, 𝜌0 (kg m-3) is the density of the reference solvent (pure water for the normal case, i.e. when activity coefficients on 

molality and molarity scale are defined with reference state of infinite dilution in pure water, regardless of a presence of 

organics in the solution). Because the density 𝜌0 depends weakly on temperature, the exact relation between pH and pH𝑐 is 

non-linear. In the usual case of water as the reference solvent (𝜌0 close to 1000 kg m-3), the logarithmic difference is small 

(typically < 0.02 pH units), resulting in pH𝑐 ≈ pH (Jia et al., 2018).  30 
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2.3 Approximations of pH 

Approximate values of pH, based upon the definition of pH (Eq. 1) but making simplifying assumptions, can be obtained in 

several ways. For example, the activity coefficient 𝛾H+  could be set to unity and pH computed based on only the free H+ 

molality symbol pHF:  

pHF = −log10(𝑚H+)         (6) 5 

The assumption of 𝛾H+ = 1 is appropriate only in highly dilute aqueous solutions, corresponding to ambient relative humidities 

close to 100%.  

 

Another approach is to use the mean molal ion activity coefficient of an H+–anion pair in place of 𝛾H+ , i.e. 𝛾H+ ≈ 𝛾±,H,X, where 

X is a monovalent anion such as HSO4
-, NO3

-, or Cl- (e.g., Wright, 2007). This approximation can be expected to capture the 10 

typical increase in 𝛾H+  with increasing H+ liquid phase concentration (decreasing ambient RH), although only semi-

quantitatively. The approximate pH determined in this way is labeled as pH±(H, X):  

pH±(H, X) = −log10( 𝑚H+𝛾±,HX).        (7) 

The deviation of pH±(H, X) from pH is related to the ratio of the specified single-ion activity coefficients via pH±(H, X) −

pH =
1

2
log10 (

γ
H+

γX−
). Consequently, the pH approximation by pH±(H, X) is very good for 

𝛾
H+

𝛾X−
≈ 1.0, which is the case in the 15 

highly dilute limit of aqueous electrolyte solutions. Further, it may also hold approximately towards higher electrolyte 

concentrations if both single-ion activity coefficients tend to deviate from 1.0 to a similar degree (which depends on aerosol 

composition).  

 

An alternative to pHF would be to use the total H+ molality, which can be defined as the sum of dissolved H+ and HSO4
- 20 

molalities: 

pHT = −log10(𝑚H+ + 𝑚HSO4-)        (8) 

The use of this definition may be appropriate in contexts where the amount of free H+ is not of interest and/or the computation 

of bisulfate dissociation (which will vary with RH, aerosol composition, and temperature) is impractical. The use of pHF and 

pHT as alternatives to pH, as well as the assumption that pH ≈ pH±(H, X), are tested by the intercomparison of thermodynamic 25 

model predictions for fine particles in Sect. 6.  

2.4 Acidity and the pH scale 

Expressing the acidity of a solution in terms of pH leads to a scale that has two important characteristics: an increase in acidity 

is accompanied by a decrease in pH and vice-versa; and it is a logarithmic scale, meaning that a decrease by one pH unit 

corresponds to a ten-fold increase in H+ activity. Hence, apparently modest changes in pH represent relatively large changes 30 

in acidity. 
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A pH of 7 represents a neutral aqueous solution with values less than 7 generally considered acidic and values larger than 7 

basic in nature. The characterization of pH equal to 7 as neutral is based on the chemical equilibrium between H+ and OH- ions 

arising naturally in aqueous solutions. The auto-dissociation of water (H2O ⇌ OH-
(aq) + H+

(aq)) is described by the temperature 

(T)-dependent equilibrium constant on molality basis, 𝐾𝑤(𝑇). The value of p𝐾𝑤  (= -log10[Kw]) is 14.95 at 0°C and 13.99 at 5 

25°C for pressures encountered in the atmospheric (Bandura and Lvov, 2005) resulting in corresponding pH values of about 

and 7.475and 6.995, respectively, for highly dilute aqueous systems. Both systems are neutral, although the pH values differ. 

  

The pH scale is commonly considered to span values from 0 to 14, but larger and smaller values are also possible as the scale 

has no specific limits. Current large-scale models (Sect. 8) and observations (Sect. 5) indicate that cloud pH has a global mean 10 

somewhere between 4 and 6 and ranges from around 2 to above 7 (Fig. 2). The global distribution of fine particle (nominally 

particles of 2.5 μm in diameter and below, PM2.5) pH is bimodal with a population of particles having a mean pH of 1 – 3 and 

another population, influenced by dust, sea spray, and potentially biomass burning, having an average pH closer to 4 – 5. Fine 

particle pH can be negative (Sect. 5.1), particularly when sulfate is a major component, and is rarely predicted to exceed 7. 

2.5 Measuring pH and operational definition of pH 15 

The small sizes and associated liquid volumes of single particles (which are in chemical equilibrium with vapours) prevent the 

application of standard pH measurement techniques for single aerosol particle and cloud droplet acidity. Instead, samples of 

larger volumes must be collected (e.g., a population of droplets in the case of cloud water, Sect. 5.2) or other methods 

employed, including measurements of aerosol and gas phase compositions and the application of thermodynamic models (Sect. 

2.6) to compute pH values via Eq. (1).  20 

 

With sufficient sample volume, particularly in the case of cloud droplets which typically have low ionic strengths, traditional 

pH measurement techniques can be used. The operational definition of pH is based on the principle of determining the 

difference between the pH of a solution of interest and that of a reference (buffer) solution of known pH by measuring the 

difference in electromotive force, using an electrochemical cell (e.g., a combination electrode coupled to a pH meter). High-25 

precision measurement of absolute pH values of the reference buffer solution used for calibration are made with a so-called 

primary method using electrochemical cells without transference (Harned cells, see Buck et al. 2002). The uncertainty 

associated with typical pH measurements, which use glass electrodes, is of the order of 0.014 for ionic strengths < 0.1 mol kg-

1 and is expected to increase towards higher ionic strength (Buck et al., 2002). Further details on pH measurement methods 

and their relationship to Eq. (1) are provided in the SI.  30 
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The measurement of aerosol pH is problematic because of the difficulty in collecting sufficient sample material without 

perturbing its acidity and also due to the mismatch between ionic strengths present in atmospheric fine particles (> 1 mol kg-1 

and sometimes exceeding 100 mol kg-1, Herrmann et al., 2015) and the molal ionic strength for which normal operational 

techniques are appropriate (no more than about 0.1 mol kg-1). Values of pH based upon primary measurement methods, which 

are used for instrument calibration, cannot be readily defined at high ionic strength. This is because assumptions regarding the 5 

activity coefficient of the Cl- ion (which is needed to establish the pH value of the buffer) are limited to very dilute solutions. 

In addition, the calibration of the pH electrodes requires the ionic strengths of the buffer and test solution (e.g. an aerosol 

sample) to be low and similar in magnitude. A pH electrode, calibrated for dilute conditions, will yield a measured pH that is 

systematically in error to an unknown degree if placed in a solution of higher ionic strength (e.g., Wiesner et al., 2006). Similar 

considerations apply to colorimetric methods (see Sect. 5.1): the equilibria involving the chemical species that provide the 10 

color response depend not solely on 𝑎H+, but on the thermodynamic activities of the sensing species themselves. These will 

vary with the chemical composition and concentration of the solution. Thus, colorimetric methods also require calibration that 

is relevant to the solution media they will be used to measure.  

2.6  Thermodynamic models for pH calculation 

Given the operational difficulties associated with measuring aerosol pH (Sect. 2.5), estimates of the degree of acidity of 15 

particles generally depend upon the use of thermodynamic models. In atmospheric science, a number of different 

thermodynamic models are used to predict equilibrium gas–particle partitioning, liquid-phase activity coefficients, solid–liquid 

and liquid–liquid equilibria, dynamic mass transfer of semi-volatile species, aerosol liquid water content (ALWC), and pH. 

Most models can treat both metastable (supersaturated) solutions or stable states (where solids have formed). Here, some of 

the most widely used models are described, focusing on their general approach, special features, and relevant species in the 20 

context of pH calculations.  

 

The thermodynamic modeling approach inherent in some models (e.g., ISORROPIA, MOSAIC, and EQUISOLV II) does not 

yield single ion activity coefficients that allow for calculation of pH via Eq. 1. For example, ISORROPIA II and MOSAIC 

nominally output information for pHF and studies published prior to this work using those models (see Sect. 5.1), were 25 

approximating acidity by reporting pHF. In this work (Sect. 6), model source codes were modified to use the mean molal 

activity coefficients for different cation–anion pairs (e.g., (H+, HSO4
-) or (H+, Cl-)) in the estimation of pH using pH±(H, X). 

Section 6 and observationally constrained pH estimates focus on equilibrium conditions, although MOSAIC is often used to 

dynamically calculate the transient H+ amount. 

2.6.1 Extended Aerosol Inorganics Model (E-AIM) 30 

The Extended Aerosol Inorganics Model (E-AIM) is a thermodynamic model to calculate gas/liquid/solid equilibrium in 

aqueous aerosol systems containing inorganic ions, water, and an arbitrary number of organic compounds with user-defined 
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properties. It uses the Pitzer–Simonson–Clegg equations (Pitzer and Simonson, 1986; Clegg et al., 1992; Clegg et al., 1998) 

for the calculations of solvent and solute activity coefficients (single ion values) on the mole fraction scale. There are four 

principal models that differ in terms of the species and temperature range considered (Wexler and Clegg, 2002, and references 

therein; Friese and Ebel, 2010). The models include some or all of the following ions and the solid salts and gases that can be 

formed from them: H+, NH4
+, Na+, SO4

2-, HSO4
-, NO3

-, Cl-, and Br-. The possible calculations include the properties of an 5 

aqueous solution of defined composition, as well as the equilibrium state of a gas and particle system at defined RH and 

temperature. In chemical systems containing inorganic ions, the aqueous phase equilibria H+ + SO4
2- ⇌ HSO4

-, NH4
+ ⇌ NH3 

+ H+, and H2O ⇌ H+ + OH- are solved as well as those between aerosol species NH3(aq), H+(aq), NO3
-(aq), Cl-(aq) with the 

gases NH3, HNO3, and HCl. Analogous equilibria (i.e., acid dissociation, gas/liquid equilibrium) can also be solved for user-

specified mono- and di-carboxylic acids, and mono- and di-amines. The model can be used for both acidic and alkaline 10 

aerosols. 

 

The activity coefficients, and contributions to the water activity, of uncharged (or undissociated forms of) organic solutes are 

calculated using the Universal Quasi-Chemical Functional group Activity Coefficients (UNIFAC) model (Fredenslund et al., 

1975). Organic anions are assumed to have the same activity coefficient model interaction parameters as HSO4
- or SO4

2- 15 

(according to their charge), and amine cations are assigned the same parameters as NH4
+. 

 

The E-AIM model is based upon thermodynamic data for pure aqueous solutions and mixtures over a wide range of 

temperatures. This basis in measurements, and the calculation of ionic activities in terms of interactions between pairs and 

triplets of solute species, makes E-AIM generally the most accurate (inorganic) thermodynamic model used in atmospheric 20 

science. Nevertheless, it has some known weaknesses: predictions of rising equilibrium RH with concentration in some 

aqueous NH4
––NO3

-–SO4
2-–H2O aerosols at about 250 K and below (Model II); and similar errors in aqueous aerosols at low 

RH and containing high concentrations of NH4
+ and Cl- (Model IV). To address the latter case some restrictions have been 

placed on the types of calculations that can be carried out (see http://www.aim.env.uea.ac.uk/aim/model4/input4a.html). Most 

relevant to aerosol pH is the fact that calculated molalities of free H+, HSO4
- and SO4

2- in aqueous H2SO4 – and therefore in 25 

mixtures containing the three ions – deviate somewhat from measurements of the stoichiometric dissociation constant of HSO4
- 

obtained spectroscopically (Knopf et al., 2003; Myhre et al., 2003). Myhre et al. (2003) show that there is good agreement 

between modeled and measured degrees of dissociation of HSO4
- (αHSO4) at room temperature up to 30 – 40 wt% acid 

(equivalent to 75 to 56% equilibrium RH), within the relatively large scatter in the data. At 50 wt% acid, and above, the 

calculated αHSO4 are too low, meaning that the molality of free H+ is also too low. These differences increase for H2SO4 30 

concentrations above 35 wt% (5.5 mol kg-1) and temperatures below about 240 K (Knopf et al., 2003). These errors do not 

necessarily lead to errors in pH as the stoichiometric activity of H+ (used in determination of pH, Eq. 1) in aqueous solution is 

accurately reproduced as indicated by accurate predictions of equilibria with acid gases (HNO3 and HCl, Fig. 6 to 12 of Carslaw 

et al., 1995).  
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2.6.2 AIOMFAC-based equilibrium model 

The Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficient (AIOMFAC) model is a thermodynamic 

activity coefficient model treating liquid mixtures containing water, inorganic ions and organic compounds. The model 

combines a Pitzer-type aqueous ion interaction model with a modified UNIFAC model (Fredenslund et al., 1975; Hansen et 

al., 1991), which was originally designed for organic mixtures. As in UNIFAC, AIOMFAC applies a group-contribution 5 

approach to cover a wide variety of organic compounds by a relatively small set of organic functional groups (~16 main 

groups). The AIOMFAC expressions, parameterization and validation based on experimental data, as well as known limitations 

are described in detail elsewhere (Zuend et al., 2011; Zuend et al., 2008).  

 

AIOMFAC presently includes the following inorganic ions: H+, Li+, Na+, K+, NH4
+, Mg2+, Ca2+, Cl-, Br-, NO3

-, HSO4
-, SO4

2-, 10 

(I- forthcoming). Most of these ions can be present simultaneously in an aqueous solution; limitations exist for Li+ in the 

presence of bisulfate (HSO4
-) ions due to a lack of experimental data required for determining associated model parameters. 

However, using a less-rigorous analogy approach, AIOMFAC can approximate those parameters so that all listed ions can be 

treated in solution. The bisulfate dissociation equilibrium is solved numerically using the temperature-dependent equilibrium 

constant parameterization by Knopf et al. (2003). Other inorganic electrolyte species are considered completely dissociated 15 

when in liquid solution – with deviations from that assumption accounted for implicitly by activity coefficients. In contrast to 

the E-AIM model, AIOMFAC does not solve the H2O ⇌ H+ + OH− dissociation equilibrium (which is acceptable when the 

pH is at least an order of magnitude lower than the neutral value). The organic functional groups available in calculations for 

mixed organic–inorganic systems include carboxyl, hydroxyl, ketone, aldehyde, ether, ester, alkenyl, alkyl, hydroperoxide, 

peroxyacid, peroxide, and aromatic functional groups. However, only a subset of these groups is currently available when 20 

HSO4
-, Mg2+ or H+ are present; see https://aiomfac.lab.mcgill.ca/about.html (Fig. 4 on that website). A few species are 

available exclusively for a select set of organic or inorganic systems, e.g., an organonitrate group in non-electrolyte systems 

(Zuend and Seinfeld, 2012) and the methanesulfonate ion in certain organic-free aqueous solutions (CH3SO3
- with H+, Na+, 

NH4
+; Fossum et al., 2018).  

 25 

An online version of AIOMFAC is available at https://aiomfac.lab.mcgill.ca (and http://www.aiomfac.caltech.edu). Note that 

the online AIOMFAC model is simply an activity coefficient model, not a complete gas–liquid thermodynamic equilibrium 

model. A limitation of AIOMFAC is that the composition-dependent degree of dissociation of organic acids (via the carboxyl 

group) is not accounted for explicitly in the determination of acidity. As such, the pH calculations are only meaningful in the 

presence of some amount of inorganic H+. Due to the weak temperature-dependence of activity coefficients, the model is 30 

applicable over a temperature range of about 298 ± 30 K, while most of the experimental training data were for temperatures 

≥ 293 K. AIOMFAC variants with a more sophisticated temperature dependence have been parameterized for electrolyte-free 

aqueous organic systems (Ganbavale et al., 2015).  
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A unique feature of AIOMFAC is its ability to represent non-ideal interactions between organic molecules and inorganic ions 

in liquid solutions up to high concentrations, a feature that is important for the prediction of liquid–liquid phase separation. 

Thermodynamic equilibrium models have been developed with AIOMFAC as their core module, including efficient numerical 

methods for the prediction of liquid–liquid equilibria (Zuend and Seinfeld, 2013) and the equilibrium gas–particle partitioning 

of water and semi-volatile organic compounds (Zuend and Seinfeld, 2012; Zuend et al., 2010).  5 

 

Recent work further extends the AIOMFAC-based gas–particle partitioning model by consideration of the gas–liquid equilibria 

of the following inorganic acids and bases: HNO3, HCl, HBr, and NH3, while H2SO4 is treated as non-volatile (Ma and Zuend, 

in preparation). This equilibrium model is referred to as AIOMFAC–GLE hereafter. For given input in the form of molar 

amounts per unit volume of air at given pressure and temperature, the AIOMFAC–GLE model predicts the compositions of 10 

co-existing phases (gas phase plus up to two liquid phases) and associated activity coefficients of all species in all (liquid) 

phases. This enables a straightforward calculation of phase-specific pH values using Eq. (1). 

2.6.3 MOSAIC 

The Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) is a sectional aerosol model that treats aerosol 

thermodynamics, size-resolved dynamic gas–particle partitioning, heterogeneous chemistry, and coagulation (Zaveri et al., 15 

2008). It includes all major inorganic salts and electrolytes composed of H+, NH4
+, Na+, Ca2+, SO4

2-, HSO4
-, CH3SO3

-, NO3
-, 

Cl-, and CO3
2-. Ions such as K+ and Mg2+ are represented by equivalent amounts of Na+ while other unspecified inorganic 

species such as silica, other inert minerals and trace metals found in soil dust aerosols are lumped together as “other inorganic 

mass” (OIN). MOSAIC also includes carbonaceous species such as black carbon, primary organics, and secondary organics. 

Although organic–inorganic interactions are not presently treated explicitly in MOSAIC, organics and OIN species can absorb 20 

water, which indirectly affects the overall particle pH. The gas-phase species that can partition to the particle phase include 

H2SO4, CH3SO3H (methanesulfonic acid), HNO3, HCl, NH3, and any number of secondary organics. 

 

At a given time step, the thermodynamics submodule MESA (Multicomponent Equilibrium Solver for Aerosols; Zaveri et al., 

2005a) first determines the equilibrium phase state in each size section as a function of particle-phase composition, particle 25 

size (accounting for the Kelvin effect), relative humidity and temperature, with aerosol water content calculated using the 

Zdanovskii–Stokes–Robinson (ZSR) method (Stokes and Robinson, 1966; Zdanovskii, 1948). The dynamic gas–particle 

partitioning module ASTEM (Adaptive Step Time-split Euler Method) then calculates the driving forces for mass transfer of 

the gas-phase species over each bin and integrates the associated mass transfer differential equations for all size sections 

(Zaveri et al., 2008). The mean stoichiometric activity coefficients of electrolytes for the equilibrium phase state and mass 30 

transfer driving force calculations are estimated using the Multicomponent Taylor Expansion Method (MTEM; Zaveri et al., 

2005b). Briefly, MTEM calculates the mean molal activity coefficient of an electrolyte in a multicomponent solution on the 

basis of its values in binary solution for all the electrolytes present in the mixture at the solution water activity (aw), assuming 
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that aw is equal to the ambient RH. For self-consistency most of the MTEM and ZSR parameters are determined using the 

comprehensive Pitzer-Simonson-Clegg model (PSC) (Clegg and Pitzer, 1992; Pitzer and Simonson, 1986; Clegg et al., 1998) 

at 298.15 K. The PSC model is the basis of E-AIM. 

 

In partially or fully deliquesced aerosols, the hydrogen ion molality (𝑚H+) plays a central role in both equilibrium phase state 5 

and mass transfer calculations. For computational efficiency, two solution domains are considered on the basis of the so-called 

molal sulfate ratio, XT: 

 𝑋𝑇 =
𝑚

NH4
++𝑚

Na++2𝑚
Ca2+

𝑚
SO4

2−+𝑚HSO4
−+𝑚CH3SO3

−
 .        (9) 

In the sulfate-rich domain (i.e., XT < 2), the partial dissociation of the bisulfate ion (HSO4
− ⇌  H+ + SO4

2−) and electroneutrality 

equations are simultaneously solved to determine 𝑚H+ , which is subsequently used to determine the equilibrium gas-phase 10 

concentrations of HNO3, HCl, and NH3 at the particle surface for computing their driving forces for mass transfer. In the 

sulfate-poor domain (i.e., XT ≥ 2), HSO4
- is assumed to completely dissociate to SO4

2-, and the use of equilibrium 𝑚H+  to 

calculate the driving forces produces spurious oscillations in the mass transfer of HNO3, HCl, and NH3. This problem is solved 

by introducing the concept of dynamic 𝑚H+ , which is determined by simultaneously solving surface equilibrium equations 

together with the acid-base coupled condensation approximation. At a given time, the dynamic 𝑚H+  is thus a function of the 15 

gas/liquid equilibrium constants and mass transfer coefficients of HNO3, HCl, and NH3 along with their gas- and particle-

phase concentrations. When the gases and particles reach a steady state, the dynamic 𝑚H+  in each size section is equal to the 

equilibrium 𝑚H+ . See Sect. 7 for a further discussion of the role of particle size and mass transfer on pH. 

2.6.4 ISORROPIA II 

ISORROPIA II (Fountoukis and Nenes, 2007; http://isorropia.epfl.ch) is a computationally efficient code that treats the 20 

thermodynamics of inorganic K+–Ca2+–Mg2+–NH4
+–Na+–SO4

2-–NO3
-–Cl-–H2O aerosol systems. NH3, HNO3, and HCl are 

considered present in the solution. The current version, version 2.3, of the code is used in this work (see code website for 

version history). The discrete adjoint of ISORROPIA, called ANISORROPIA, has also been developed (Capps et al., 2012) 

using a combination of automatic differentiation of ISORROPIA II and post-convergence treatments (to account for 

discontinuities in the information flow during solution) to compute the sensitivities of all output parameters of the code to their 25 

relevant inputs with analytical precision. 

 

ISORROPIA II can compute the equilibrium composition for two types of inputs: (a) forward, closed-system problems, in 

which the temperature, relative humidity and total concentrations (gas + aerosol) of aerosol precursors are known, and (b) 

reverse, open-system problems, in which the temperature, relative humidity, and the concentrations of aerosol NH4
+, SO4

2-, 30 

Na+, Cl-, NO3
-, Ca2+, K+, and Mg2+ are used as input.  
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To reduce the computational complexity and increase solver speed, ISORROPIA II uses a segmented solution approach, where 

depending on the relative amounts of each aerosol precursor, major and minor species are defined. The equilibria of the major 

species together with conservation of mass and electroneutrality provide the equilibrium composition. ISORROPIA II uses 

mean activity coefficients for the cation–anion pairs in solution. For this, the Kusik and Meissner (1978) model for specific 

ionic pairs is applied in combination with the Bromley (1973) mixing rule for activity coefficients in the multicomponent 5 

mixtures found in the aerosol. ALWC is computed as a function of RH, using the Zdanovskii–Stokes–Robinson relation 

(Stokes and Robinson, 1966; Zdanovskii, 1948), using a water activity database computed from the E-AIM thermodynamic 

model, and incorporating the effect of temperature. Although the mean activity coefficients of all major cation–anion pairs are 

considered, for certain species (e.g., OH-, and undissociated ammonia, nitric and hydrochloric acid NH3(aq), HNO3(aq), HCl(aq)) 

unity activity coefficients are assumed due to a lack of corresponding data. Also, the first dissociation of sulfuric acid in 10 

solution is always assumed to be complete. 

2.6.5 EQUISOLV II 

EQUISOLV II is a model for calculating gas–aerosol equilibrium in atmospheric systems that contain water vapour, gases 

including NH3, HNO3, and HCl, and soluble inorganic electrolytes distributed across multiple particle size bins (Jacobson, 

1999). Equilibrium is solved using a mass flux iteration technique. The model contains the major inorganic ions H+, NH4
+, 15 

Na+, K+, Mg2+, Ca2+, SO4
2-, HSO4

-, NO3
-, Cl-, and CO3

2- (Jacobson et al., 1999) as well as some minor and trace constituents. 

The thermodynamic treatment is summarized in chapter 17 of Jacobson (2005b).  

 

Mean activity coefficients of the cations and anions in single electrolyte solutions are calculated using polynomials fit to 

available data and reference values at 25 °C, supplemented by similar fits to values of enthalpies and apparent molar heat 20 

capacities of the solutions. Together, using standard relationships, these enable mean activity coefficients to be calculated for 

different temperatures. Mean ionic activity coefficients in mixtures are estimated using the approach of Bromley (1973), based 

on values for the constituent pure aqueous solutions at the total ionic strength of the mixture. The equilibrium HSO4
− ⇌  H+ +

SO4
2− is calculated explicitly and is based on the same thermodynamic treatment as in E-AIM (Clegg and Brimblecombe, 

1995). The approach of Kusik and Meissner (1978) is used to estimate the mean molal activity coefficients 𝛾± (H+, HSO4
−) 25 

and 𝛾± (H+, SO4
2−) in mixtures in order to obtain the equilibrium concentrations of H+, HSO4

−, and SO4
2− (see Sect. 4.2 of 

(Jacobson et al., 1996). This approach will not yield the same values as the treatment of Clegg and Brimblecombe (1995); see 

Sect. 6.1. 

 

The relationship between the water content of aqueous aerosols containing multiple electrolytes and RH is estimated with the 30 

Zdanovskii-Stokes-Robinson relation (Stokes and Robinson, 1966; Zdanovskii, 1948), using polynomials representing single-

solute molalities as a function of water activity (equivalent to equilibrium RH), and incorporating the effect of temperature, 

based upon the same enthalpy and heat capacity data as for the solutions referred to above. 

https://doi.org/10.5194/acp-2019-889
Preprint. Discussion started: 18 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

17 

 

 

2.6.6 Other thermodynamic models 

Many other thermodynamic models have been developed for the prediction of atmospheric aerosol hygroscopicity and related 

properties, including the Gibbs free energy minimization model GFEMN (Ansari and Pandis, 1999) for inorganic aerosol 

systems, ADDEM (Topping et al., 2005a,b) which emphasizes consideration of droplet size (Kelvin effect), and UHAERO 5 

(Amundson et al., 2007; Amundson et al., 2006) which allows for the computation of complex phase diagrams of both 

inorganic and organic systems. These models are based on the Pitzer–Simonson–Clegg model for activity coefficient and pH 

calculations, either directly or via polynomial expressions fitted to that model (and are thus related to E-AIM). The models 

SCAPE and SCAPE 2 (with NVC), for inorganic aerosol thermodynamics (Kim and Seinfeld, 1995; Kim et al., 1993a, b), 

implement several activity coefficient methods, including Bromley’s method (Bromley, 1973), the Kusik and Meissner method 10 

(Kusik and Meissner, 1978) and a Pitzer model. The Equilibrium Simplified Aerosol Model (EQSAM) (Metzger et al., 2002; 

2006) computes gas/liquid/solid partitioning for aqueous inorganic aerosol systems, including crustal cations and iron (II, III) 

species. The numerical complexity of thermodynamic equilibrium models has also led to work focused on the design of 

computational solvers for high efficiency; for example, HETV (Makar et al., 2003) is a vectorized solver for the SO4–NO3–

NH4 system based on the ISORROPIA algorithms. All these thermodynamic models provide a theoretical basis and mechanism 15 

to link cations and anions in aqueous solution to pH or one of its approximations. 

3 Interactions of aerosol and cloud chemistry with acidity  

The previous section highlighted how cations and anions (along with ambient conditions) drive pH in condensed phases with 

a focus on equilibrium conditions and models. In addition, kinetic processes such as cation and anion dissolution influence 

acidity. Furthermore, the acidity of aerosols, clouds, and fogs is tightly coupled with their chemical reactivity. The pH of the 20 

atmospheric aqueous phase affects the partitioning of weakly acidic and basic gases to the condensed phase, and the rate of 

many multiphase chemical reactions. The chemical reactions in the atmospheric aqueous phase, in turn, modulate the pH of 

the aqueous phase. As a result, the acidity of aerosols, cloud droplets, and fog droplets is not only determined by 

thermodynamic equilibrium, but also multiphase chemical kinetics. Because of the complex nature of these couplings between 

acidity and atmospheric aqueous phase chemistry, these issues are presented in more detail in a companion paper currently in 25 

preparation (Tilgner et al., 2019 in prep). The section highlights some important systems where acidity interacts with, and is 

influenced by, condensed-phase chemical reactions. 

 

One important example of a system with chemistry-acidity feedbacks is the multiphase oxidation of sulfur dioxide (SO2) to 

form particulate sulfate (S(IV)→S(VI) conversion, also referred to as ‘sulfur’ oxidation). Sulfate makes up 15% of PM2.5 mass 30 

globally (Sofiev et al., 2018) and is a major component of PM2.5 in areas affected by emissions from combustion of sulfur-
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containing fossil fuels. Multiphase reactions are the primary driving force for oxidation of SO2 to sulfate (Calvert et al., 1985). 

The ionization of SO2 in the aqueous phase under basic conditions enhances its uptake; the effective Henry’s Law constant for 

SO2 varies three orders of magnitude (from 17 M atm-1 to 1.7×104 M atm-1) between pH 3 and pH 6 (Sander, 2015). Therefore, 

sulfate production, especially under acidic conditions, is largely limited by the amount of SO2 that can partition to the aqueous 

phase. Meanwhile, sulfate formation is a major source of acidity in aerosols, fog and cloud droplets (Calvert et al., 1985). In 5 

the absence of buffering, S(IV)→ S(VI) oxidation pathways which are more effective at higher pH, such as oxidation of SO3
2- 

by O3 (Maahs, 1983; Lagrange et al., 1994) or NO2 (Lee and Schwartz, 1983; Clifton et al., 1988), will become quenched with 

increasing sulfate production (Fig. 3, Supplement Sect. S2). However, buffering may be significant in atmospheric waters; 

Collett et al. (1999), for example, demonstrated that buffering in a California fog permitted the fog pH to stay 0.3 to 0.7 pH 

units higher than expected, enhancing the amount of sulfate aerosol present after the fog episode by 50%. 10 

 

Another important process controlled by the acidity of the aqueous phase is the solubility of transition metal ions such as 

Fe(III) and Mn(II), which can catalyze S(IV) oxidation. Transition metals are ubiquitous in the atmosphere, having been 

observed in aerosol samples and cloud/fog/rain water collected around the globe (e.g., Bianco et al., 2017; Hsu et al., 2010). 

Transition metals (particularly Fe, Cu, and Mn) are active in the aqueous-phase chemistry of clouds, fogs, and deliquesced 15 

aerosols, catalyzing reactions and affecting the oxidative capacity of the condensed phase (Deguillaume et al., 2005). Due in 

part to variation in how transition metal emissions are generated from different source types (e.g., mechanically generated 

mineral dust vs. condensation/gas-to-particle conversion of gases emitted during combustion), transition metal 

composition/concentration and source contributions vary across the aerosol size distribution (Deguillaume et al., 2005). This 

has implications for the chemical environment and acidity that metals from different sources are exposed to, the reactions they 20 

participate in, and their potential impacts on human health. 

 

The degree to which transition metals contribute to condensed phase reactions depends on their solubility. TMI solubility 

typically increases as pH decreases, although the relationship between pH and metal solubility is a complex one (Spokes et al., 

1994). Transition metals are often emitted as largely insoluble chemical species, and their solubility increases as the emitted 25 

particles ‘age’ via exposure to acidic gases in the atmosphere. The degree to which pH affects TMI solubility depends on the 

origin of the particles, degree of particle aging which alters a particle’s physicochemical characteristics, and the specific metal 

(Deguillaume et al., 2005; Deguillaume et al., 2010). Several laboratory studies have attempted to elucidate the pH dependence 

of transition metal solubilization for different species. Spokes et al. (1994) found that for a Saharan dust sample, the 

solubilization of Al and Fe, while strongly enhanced at lower pH, was nearly completely reversible with increasing pH. For an 30 

urban aerosol sample, some of the solubilized metals remained in solution with increasing pH, possibly due to complexation 

of the metal species with organic ligands. Manganese was found in both dust and urban particles to be soluble with decreased 

pH, with only limited reversibility as the pH was increased. 
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Acid-catalyzed reactions of hypohalous acids (HOX, where X = Br, Cl or I) in sea salt aerosols influence the oxidative capacity 

of the troposphere (Saiz-Lopez and von Glasow, 2012; von Glasow and Crutzen, 2014; Simpson et al., 2015). The reactions 

of HOX with other halogen ions can lead to the release of reactive halogen gases, which are involved in many key tropospheric 

reaction cycles. Reactions of S(IV) with HOX are another major contributor to sulfate formation in sea salt aerosols (Chen et 

al., 2016; Vogt et al., 1996; von Glasow et al., 2002). These reactions acidify the aerosol (Chen et al., 2016) but may be 5 

considered a sink of reactive halogens, in that they convert HOX to their less-reactive acid form. Reactive halogen gases act 

directly as important sinks of key oxidants, such as O3 and HO2, and therefore indirectly influence other linked systems HOx 

(=OH + HO2) and NOx (=NO + NO2) (Oltmans et al., 1989; Schmidt et al., 2016; Sherwen et al., 2016). Moreover, reactive 

halogen gases, especially the Cl atom, can be powerful oxidants that can rapidly react with important tropospheric organic 

trace gases, such as non-methane volatile organic compounds (VOCs), and dimethylsulfide (Barnes et al., 2006; Hossaini et 10 

al., 2016).  

 

Acidity also impacts the partitioning of weak acids, including organic acids, into aqueous aerosols and cloud/fog droplets by 

controlling their ionization state in the aqueous phase. The hydration of carbonyl groups in compounds that also contain pH 

sensitive moieties, such as α-oxocarboxylic acids, is also highly influenced by acidity (Kerber and Fernando, 2010). Increasing 15 

acidity leads to a decrease of the effective partitioning towards the particle phase of acids and to an increase in the effective 

partitioning of bases, and vice versa (see Fig. 4). In the case of ionizable organic species such as organic acids, key aqueous-

phase oxidants, such as OH, NO3 and O3, can react via different possible reaction pathways and kinetics with the protonated 

and deprotonated forms (Buxton et al., 1988; Herrmann et al., 2010; Herrmann et al., 2015; Bräuer et al., 2019). Accordingly, 

the overall reaction rate constant for oxidation of dissociating compounds can be largely pH dependent, especially for reaction 20 

with nitrate radicals. For organic acids, the overall rate constant typically increases with increasing pH and more efficient 

oxidation can be expected under less acidic conditions. For example, the overall second order rate constant for the reaction of 

nitrate radicals with formic acid (and its ionized, dissociated form) varies from close to 3.8×105 M-1s-1 at pH = 2.0 to 5.1×107 

M-1s-1 at pH = 5 (Exner et al., 1994). Additionally, the increased partitioning of organic acids under less acidic conditions leads 

to even higher oxidations rates. 25 

 

Changes in the pH of a cloud or fog droplet can result from addition of acids or bases to the solution, through partitioning from 

the gas phase, collision/coalescence of droplets or aqueous reactions. The magnitude of the pH change can be strongly affected 

by the presence and ability of weak acids or bases to buffer against that change through proton uptake or release. A buffer is a 

mixture of a weak acid and its conjugate base (e.g., formic acid and formate) or a mix of a weak base and its conjugate acid 30 

(e.g., ammonia and ammonium). The magnitude of an internal buffering effect is greatest when the solution pH is equal to the 

pKa (pKb) of the weak acid (base) buffer. External buffering can also be important, perhaps best illustrated by the uptake of 

additional ammonia from the gas phase in response to a decrease in solution pH (Liljestrand, 1985; Jacob et al., 1986a; Jacob 

et al., 1986b). 
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The formation of secondary organic aerosol material in atmospheric aerosols via multiphase processes is strongly related to 

the acidity. Many atmospheric organic accretion reactions, such as aldol condensation (Noziere and Esteve, 2007; Noziere et 

al., 2010; Sareen et al., 2010; Li et al., 2011), hemiacetal and acetal formation (Jang et al., 2002; Kalberer et al., 2004; Shapiro 

et al., 2009; Loeffler et al., 2006), and esterification of carboxylic acids (Barsanti and Pankow, 2006) are acid-catalyzed. The 5 

acid-catalyzed reactive uptake of epoxide species, especially isoprene epoxydiols (IEPOX) (Paulot et al., 2009; Surratt et al., 

2010), to aerosol water has also emerged as a significant source of secondary organic aerosol material (Lin et al., 2012; Marais 

et al., 2016b, Pye et al., 2013). Because the epoxidic oxygen must be protonated in concert with ring-opening, the reactive 

uptake of IEPOX to aqueous media is strongly pH-dependent, with the reactive uptake coefficient decreasing rapidly with 

increasing pH for pH > 1 (Gaston et al., 2014). Therefore, the rate of IEPOX secondary organic aerosol (SOA) formation is 10 

slow in cloud water because of the generally higher pH compared to particles (McNeill, 2015), but given the relatively large 

liquid water content of clouds, which promotes dissolution, IEPOX uptake could be significant in more acidic cloud droplets 

(pH 3-4) (Tsui et al., 2019). 

 

The trend of decreasing sulfate content in clouds and aerosols across North America and Europe may have implications for 15 

partitioning of inorganic (Vasilakos et al., 2018; Shah et al., 2018) and organic gases between the gas and condensed phases, 

and the dominant mechanisms and rates of multiphase chemical processes in the atmosphere which produce PM2.5 mass, under 

future conditions. Implications of acidity changes for partitioning of semi-volatile compounds and their multiphase chemical 

processing are outlined in more detail in a companion paper (Tilgner et al., 2019 in prep). 

4 Proxies of aerosol pH  20 

pH has been referred to as a master variable as a result of its fundamental role in the condensed phase environment (Strum and 

Morgan, 1996) including the processes highlighted in the previous section. This role suggests that any study interested in 

understanding processes influenced by particle acidity (e.g., gas–particle partitioning, acid-catalyzed reactions, metal 

dissolution) should examine pH. Due to the lack of direct measurements of aerosol pH (see Sect. 2.5, 5.1) as well as 

requirements for data used to calculate pH, multiple methods have been employed in the literature as surrogates or proxies for 25 

fine particle acidity. In some cases, proxies are used to infer a pH and whether particles are acidic or basic. In other cases, 

concepts related to pH, such as PM sensitivity to ammonia vs oxidized nitrogen, are interpreted via molar ratios of species, but 

pH itself is not discussed as a central concept. Since the underlying processes affecting the endpoint of interest (e.g., gas–

particle partitioning of semi-volatile species that contribute to PM mass) is often directly dictated by pH, pH is implicitly 

contained in such analysis. However, since proxies have only an indirect connection to the system’s acidity, interpretation of 30 

results without information on pH can be challenging, incomplete, and in the worst case, incorrect.  
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In this section, the most common aerosol pH proxies are defined and historical context for their development and use provided. 

Proxies are indirectly related to pH and thus differ from the approximations highlighted in Sect. 2.3. Section 6 expands upon 

the information presented here by evaluating the effectiveness of each proxy using box model predictions of pHF based on 

ambient data. 

4.1 Proxies based on electroneutrality 5 

Two of the most commonly used proxy methods for aerosol pH, the cation/anion equivalent ratio (also called the cation/anion 

equivalence ratio or molar ratio, Hennigan et al., 2015), and the charge balance (or strong acidity, Table 2), are based upon the 

principle of solution electroneutrality. In both approaches, H+ is assumed to balance with an excess of anions. In the case of a 

molar ratio, the amount of H+ is assumed to scale inversely with the level of the cations relative to anions. 

 10 

Application of the molar equivalent ratio to infer acidity began with studies comparing measured strong acidity to SO4
2- in 

aerosol samples (Lee et al., 1993; Lee et al., 1999; Liu et al., 1996), because direct measurements of strong acidity (e.g., via 

extraction and measurement by pH probe) have biases associated with sample collection and challenges with data 

interpretation. The concept of the cation/anion equivalent ratio was first applied to NH4
+ and SO4

2- measurements to infer the 

chemical forms of these abundant ions (Junge, 1963; Wall et al., 1988; Moyers et al., 1977; Lewis and Macias, 1980; Macias 15 

et al., 1981).  

 

Electroneutrality and the cation/anion equivalent ratio require the incorporation of all ionic species present in solution in a 

given particle. However, practical measurement limitations and assumptions have led to variations of the cation/anion 

equivalent used throughout the years. One such assumption is that H+ accounts for the charge deficit between the water-soluble 20 

species present in particles that can be readily measured with an ion chromatograph. This typically includes five cation (NH4
+, 

Na+, Ca2+, Mg2+, and K+) and three anion (Cl-, NO3
-, SO4

2-) species (e.g., Quinn et al., 2006; Sun et al., 1998), though it 

occasionally includes a limited group of organic anions (Kerminen et al., 2001). A similar definition has also been applied to 

the non-refractory inorganic species measured with an Aerodyne Aerosol Mass Spectrometer (NH4
+, NO3

-, SO4
2-, and partial 

Cl-) (Zhang et al., 2005; Quinn et al., 2006). If the aerosol is near neutral (pH ≈ 7) or acidity is dictated by components other 25 

than the inorganic ions in the balance (e.g., organic acids) then charge balance will not provide meaningful information (Trebs 

et al., 2005; Lawrence and Koutrakis, 1996). Further, the carbonate system (CO2(aq)–H2CO3–HCO3
-–CO3

2-) must be included 

in the ion balance when the pH is near neutral, or above (Winkler, 1986). 

 

The molar equivalent ratio is frequently simplified to consider only NH4
+, NO3

-, and SO4
2- (Pathak et al., 2009). The 30 

justification for this assumption is that these species represent the dominant fraction of inorganic ions, thereby controlling 

acidity in environments with low levels of crustal species and minor marine influence (Zhang et al., 2005). Non-volatile cations 

have the potential to drive large-scale patterns in pHF (see Fig. 2 as well as Sect. 8), thus making proxies without non-volatile 
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cations potentially invalid over large parts of the globe. Several variations of the molar equivalent ratio using these three 

species have been developed. The degree of sulfate neutralization (DSN), introduced by Pinder et al. (2008a), is defined as: 

 DSN = ([NH4
+] − [NO3

−]) [TSO4]⁄          (10) 

where each term represents the molar concentration of each species in the particle phase. Measurements of sulfate do not 

usually distinguish between bisulfate and sulfate (Solomon et al., 2014), so total sulfate, [TSO4], is used 5 

(where [TSO4] = [HSO4
−] +  [SO4

2−]). The bisulfate anion is often more abundant than the sulfate ion in fine particles; 

however, TSO4 is often conceptualized has having an effective charge of negative 2.  

 

Similar to DSN, the degree of neutralization (DON, Adams et al., 1999) has been suggested, defined as:  

 DON = [NH4
+] (2[TSO4] + [NO3

−])⁄        (11) 10 

Other names have been applied to the DON, including e.g., the neutralization ratio (Lawal et al., 2018). The DON represents 

the ammonium associated with sulfate + nitrate while DSN represents the ammonium associated only with sulfate. In principle, 

this suggests that they account for different aspects of particle acidity (Pinder et al., 2008a); however, DSN and DON were 

highly correlated in California (R2 = 0.961) and the southeastern U.S. (R2 = 0.978) (this work, not shown), two locations with 

very different NO3
- levels, suggesting that they represent the same physical parameter. The importance of this correlation as 15 

an indicator of pH, and its general validity, remains to be studied. 

 

Finally, the simplest form of the cation/anion molar equivalent ratio considers particle acidity based solely on the NH4
+ / SO4

2- 

ratio. This simplification further requires that NO3
- is relatively low (Xue et al., 2011). Acidic conditions are inferred when the 

measured NH4
+/ SO4

2- molar ratios is less than two (Turpin et al., 1997), as this is assumed to indicate when mildly acidic 20 

ammonium sulfate particles begin containing progressively larger amounts of acidic ammonium bisulfate. Particle acidity and 

pH are assumed to scale with NH4
+/ SO4

2-, with decreasing ratios corresponding to decreasing pH (Zhang et al., 2007).  

 

More recently, the total ammonium to sulfate ratio has been proposed as an indicator of pH (Murphy et al., 2017): 

TNH4: TSO4 =
([NH3]+[NH4

+])

[TSO4]
       (12) 25 

Thermodynamic predictions from E-AIM were interpreted using this ratio to show that pH and ammonia volatilization 

increases as TNH4: TSO4 varies from below 1 to above 2 (coinciding with formation of sulfate over bisulfate). While the 

TNH4: TSO4 proxy may not give a precise pH estimate, it can provide general information. For example, the ratio of NH3:SO2 

emissions had been used to predict that aerosol pH may increase in the near future (Murphy et al., 2017) despite relatively 

constant levels in the recent past (Weber et al., 2016).  30 

 

In the case of charge balance, the amount of H+, is determined from the total cation/anion deficit; for this reason, it is expressed 

as hydrogen ion concentration in air, i.e. total molar H+ amount per unit volume of air containing aerosol particles and/or cloud 
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droplets, H+
air (nmole m-3 air or similar). H+

air is related to pH; however, the two are not expected to correlate since the former 

is an extensive property while the latter is an intensive property of an aerosol distribution. For example, a highly acidic (pH < 

1) particle with a low mass may have a lower H+
air than a much larger, moderately acidic (pH > 4) particle. Further, H+

air lacks 

direct modulation by particulate volume (liquid water, the solvent for H+) and activity coefficients. For example, diurnal 

variations in RH cause pHF variations on the order of 1 pH unit in the eastern U.S. (Guo et al., 2015; Battaglia et al., 2017; see 5 

Sect. 5.1). Like the cation/anion equivalent ration, the charge balance metric also assumes specific forms of dissociation state 

for multivalent ions (particularly for sulfate) and is strongly influenced by measurement uncertainty for each ionic species, 

especially when the aerosol is mildly acidic. These are all reasons why Guo et al. (2015) found only a weak correlation between 

H+
air and pHF (r2 = 0.36). 

 10 

In the 1980s – 1990s, experimental methods were developed to estimate the apparent net fine particle (<2.5 µm) strong acidity 

(Koutrakis et al., 1988; Koutrakis et al., 1992; Purdue, 1993). These methods, synthesized in a workshop report (EPA, 1999; 

Purdue, 1993), resulted in an officially documented method for estimating H+
air from measurements. EPA Method IO-4.1 used 

filter extracts in combination with measurements from a commercially available pH probe (titration methods are another 

option) to calculate an estimate of H+
air or H+ as equivalent mass of sulfuric acid. The method relies on efficient particle 15 

collection with minimal filter artifacts and low amounts of nitrate compared to sulfate (EPA, 1999). For example, ammonia 

could displace H+ and neutralize acidic particles during collection without an efficient denuder (Koutrakis et al., 1988). 

Extraction and dilution of ambient samples modifies their chemical environment such that the conditions during measurement 

are different from those in the ambient atmosphere, potentially affecting gas–particle partitioning of total ammonium and 

dissociation of weak acids including bisulfate (Purdue, 1993). Variations of this method were developed to limit the extent of 20 

dilution by measuring the pH of droplets on the surface of a hydrophobic filter using microelectrodes (Winkler, 1986; Keene 

et al., 2004). However, the extent of dilution is still enough to shift the sulfate–bisulfate equilibrium outside of conditions 

present in many atmospheric particles. The use of a strong acidity proxy in many past health studies complicates their 

interpretation regarding the role of acidity since H+
air is only a proxy for pH. 

  25 

Measured aerosol composition can also be used to create charge balance estimates of H+ in air. This method is also referred to 

as ion equivalents and sometimes strong acidity in the literature (e.g., Ito et al., 1998). When charge balance is performed on 

observations, it usually means a summation of all charge equivalent anions and cations in the particle. Excess molar charge 

equivalents of anions compared to cations are assigned to H+
air: 

Hair,cb
+ = 2[TSO4] + [NO3

−] + [Cl−] − ([NH4
+] + [Na+] + [K+] + 2[Ca2+] + 2[Mg2+]).  (13) 30 

 

Thermodynamic equilibrium models use charge balance (reflecting the requirement for solution electroneutrality) as an 

equation or constraint together with all other considerations of species equilibria across the phases present, to obtain a unique 

solution. Some thermodynamic equilibrium models also use the cation/anion equivalent ratio to enhance computational 
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efficiency by identifying major ionic species and compositional domains (e.g., Pilinis and Seinfeld, 1987; Kim et al., 1993b; 

Nenes et al., 1998). However, thermodynamic models do not use charge balance from input data as a proxy for 

pH. Thermodynamic models (either manually, or automatically) evaluate inputs, in terms of a charge balance, to ensure that 

the solution obtained is atmospherically relevant – as e.g., an excess surplus of non-volatile cations may imply a strongly 

alkaline solution that is not found in the atmosphere. This aspect is discussed in more detail in Sect. 6. 5 

 

Operationally, H+
air from charge balance is subject to errors associated with measuring aerosol phase composition which are 

likely to be large and affect interpretation of ambient conditions. These are the same challenges that arise in thermodynamic 

calculations based on particulate-only inputs where biases or uncertainty in the measured species can propagate to errors in 

acidity (Hennigan et al., 2015; Song et al., 2018). When H+
air is small in concentration or incomplete consideration of species 10 

contributing to the charge balance, charge balance may return a value of zero or negative (indicating a surplus of cations) 

owing to limited precision and accuracy in the measurements. Using measured aerosol composition, Murphy et al. (2017) and 

Hennigan et al. (2015) typically found negative values (indicating no H+, theoretically impossible) of H+ from charge balance 

and an error range large enough to span both positive and negative strong acidity estimates at almost all times. State-of-the-art 

measurements are not sufficiently precise to overcome this limitation (Murphy et al., 2017). The limitations of charge balance 15 

are highlighted in Sect. 6 where ion balance estimates near zero show no correlation with pH. 

 

Proxies for acidity have been used in a variety of applications. In the past, proxies were specifically applied in the context of 

acid-catalysed SOA. Evidence for this phenomenon was sought in ambient data based upon landmark studies that demonstrated 

an important role of acid-catalysed reactions in forming SOA in laboratory systems (Jang et al., 2002; Paulot et al., 2009; 20 

Surratt et al., 2010). However, due to a lack of direct particle acidity measurements (see Sect. 5.1 for details and discussion), 

researchers used different acidity proxies to characterize the impacts on SOA formation in the atmosphere. The NH4
+/SO4

2- 

molar ratio was used in several studies (Zhang et al., 2007; Peltier et al., 2007; Tanner et al., 2009) to infer that more acidic 

conditions did not enhance SOA concentrations. Froyd et al. (2010) used airborne measurements of the NH4
+/SO4

2- ratio to 

classify acidic and neutral particle regimes, and inferred a causal effect of acidity on isoprene organosulfate formation at low 25 

NOx in the eastern U.S. Strong associations between SOA concentrations or SOA marker compounds and H+ derived from the 

charge balance were inferred in multiple locations (Pathak et al., 2011; Feng et al., 2012; Budisulistiorini et al., 2013; Nguyen 

et al., 2014). Several other studies investigated the relationship between particle acidity and atmospheric SOA using different 

predicted or derived measures of acidity. H+
air estimates based on operational extraction methods were used extensively in the 

literature to link SOA formation to acidity (Surratt et al., 2007; Offenberg et al., 2009; Zhang et al., 2012). In Beijing, Guo et 30 

al. (2012b) found evidence of acid-catalysed SOA based upon correlations between secondary organic carbon (SOC) 

concentrations and H+ concentrations (nmol m-3) from ISORROPIA, run without gaseous inputs. Li et al. (2013) also observed 

correlations between SOA markers and acidity in China using pH predictions from E-AIM with aerosol inputs only. No 

evidence for acid-catalysed SOA formation was found in a separate study in Pittsburgh, PA that analysed correlations between 
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modeled H+ and measured SOA concentrations (Takahama et al., 2006). Takahama et al. (2006) used gas and particle phase 

inputs for predictions with the GFEMN model and also observed no correlations between pHc (with 𝛾
H+
(𝑐)

 set to unity) and SOA. 

The studies employing proxies likely suffered from problems with the proxies, themselves (as discussed above), and 

confounding factors such as correlations between organic aerosol and sulfate, a major source of acidity, that often occur in 

regional pollution (Sun et al., 2011; Nguyen et al., 2015). These seemingly contradictory results were resolved once pHF was 5 

used, and the conclusions reached in these prior studies have been revisited based upon detailed understanding of the 

underlying chemical mechanisms and additional insight suggesting that the aerosol acidity is frequently not a limiting factor 

in catalysing SOA formation (Surratt et al., 2010; Xu et al., 2015; Weber et al., 2016). Acid-catalyzed isoprene SOA has now 

been implemented in a wide variety of box model and chemical transport model applications that now rely exclusively on 

thermodynamic models for acidity estimates (Pye et al., 2013; Marais et al., 2016b; Riedel et al., 2016; Budisulistiorini et al., 10 

2017). So, while proxies can provide some information on the PM system, they should not be over interpreted as a measure of 

pH. 

4.2 Gas Ratio 

The Gas Ratio (GR) was defined by Ansari and Pandis (1998) to address the realization that inorganic PM concentrations do 

not always respond linearly to changes in sulfate concentrations (a common assumption at the time) and sought to develop a 15 

parameter that can be used for policy requiring only measurement network data. The underlying reason for this nonlinear 

response is that gas–particle partitioning of ammonium and nitrate is sensitive to pH. The Gas Ratio (GR) is defined in molar 

units as follows: 

GR = ([TNH4] − 2[TSO4]) [TNO3]⁄        (14) 

and uses total ammonia (NH3 + NH4
+), and total nitrate (HNO3 + NO3

-). The numerator of the GR is sometimes referred to as 20 

free ammonia, because it is the amount of TNH3 that would be available to form NH4NO3 under the simplistic assumption that 

appreciable NH4NO3 does not form when the molar ratio of TNH4 to TSO4 is less than two (i.e., the stoichiometric ratio of 

(NH4)2SO4). The concept of “free ammonia” is discussed in greater detail below (Sect. 6.2.3). The GR has not been used 

explicitly as a proxy for aerosol pH, but it has been used extensively to define aerosol and composition regimes that relate to 

acidity.  25 

 

Ansari and Pandis (1998) characterized inorganic PM response for changes in TNH4, TNO3, and TSO4 as functions of GR, 

temperature, RH, and system concentrations. Their analysis determined critical values of GR that defined boundaries of the 

PM response regimes. As West et al. (1999) showed, the GR still requires complementary thermodynamic modeling to robustly 

explore the PM response for large sulfate reductions. Other applications of the GR include calculation of GR as a function of 30 

altitude (Adams et al., 1999), characterization of the sulfate-nitrate-ammonia-water aerosol system in the context of natural 

and transboundary pollution over the U.S. (Park et al., 2004), and exploration of the sensitivity of aerosol nitrate to changes in 

temperature, RH, TNH4, TNO3, and sulfate for Pittsburgh (Takahama et al., 2004). In addition, Blanchard and Hidy (2003) 
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considered the GR in a study of the response of nitrate to changes in TNH4, TNO3, and sulfate in the southeastern U.S. A 

relationship was demonstrated between the GR and an excess-NH3 indicator that resembles free ammonia, but accounts for 

chloride and non-volatile cations. Pun and Seigneur (2001) used box model simulations to demonstrate that nitrate 

concentrations in California’s San Joaquin Valley (SJV) would be sensitive to HNO3 levels but not NH3.  

 5 

Pinder et al. (2008a) investigated the response of PM to emissions of NOx, SO2, and NH3, and demonstrated with AIM 

thermodynamic modeling that NH4NO3 can form at low temperature even when the GR is less than zero, in contrast to previous 

assumptions. To address this limitation, they developed an adjusted GR (adjGR) that modified the calculation of free ammonia: 

adjGR =
[TNH4]−DSN×[TSO4]

[TNO3]
=

[TNH4]−([NH4
+]−[NO3

−])

[TNO3]
     (15) 

where DSN is the degree of sulfate neutralization. Using a chemical transport model, Pinder et al. (2008a) demonstrated that 10 

the response of nitrate concentrations to changes in SO2 and NH3 emissions could be reasonably represented as a function of 

the adjGR and GR, but the adjGR provided a better fit for cases where DSN differs significantly from a value of two. In a 

separate study, Pinder et al. (2008b) found a strong relationship between the adjGR and the sensitivity of inorganic PM 

concentrations to NH3 levels at sites in the eastern U.S. 

 15 

Additional metrics similar to GR have been defined. Wang et al. (2011) considered the GR and adjGR in a study of the 

sensitivity of inorganic aerosols to NH3 in mainland eastern China. They also defined a new indicator, the Flex Ratio (FR), 

calculated based on predictions of a statistical response-surface model developed from about 100 CTM simulations probing 

the sensitivity of PM to NH3 and NOx emissions (See Xing et al. (2018) for a precise definition). Nitrate concentrations are 

more sensitive to NH3 than NOx emissions for FR > 1, and nitrate concentrations are more sensitive to NOx than NH3 emissions 20 

for FR < 1. The FR provides a relatively precise estimate of the transition point between NH3-rich and NH3-poor conditions 

for existing NOx emissions levels. However, use of the FR remains limited due to its dependence on the availability of 

response-surface model predictions, which are currently limited to regions in Asia (e.g., Xing et al., 2011; Zhao et al., 2015). 

Wang et al. (2011) reported that the nitrate response regimes indicated by the GR and FR were qualitatively consistent in their 

study. 25 

 

The studies described above, and other studies (e.g., Campbell et al., 2015; Dennis et al., 2008; Lee et al., 2006; San Martini 

et al., 2005; Zhang et al., 2009), have used the GR and adjGR to understand the response of the sulfate-nitrate-ammonium-

water aerosol system to changes in precursor concentrations and emissions. The GR provides a reasonable indication of the 

sensitivity of inorganic PM to changes in TNH4, TNO3, and sulfate in many cases. However, they do not consider the role of 30 

non-volatile cations and universally applicable ranges of GR for demarcating response zones are difficult to define due to the 

dependence on other factors (temperature, RH, and system concentrations). The GR has not been used explicitly as a proxy 

for particle acidity, but the response of nitrate to precursor concentrations can be represented as a function of GR using S-
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shaped curves (Pinder et al., 2008a) that resemble the sigmoid curves reported for gas–particle partitioning of TNO3 as a 

function of pH (Guo et al., 2016). Therefore, some relation is expected between these indicators and particle acidity which is 

shown in Sect. 6.2.3.  

4.3 Semi-volatile species partitioning 

Aerosol pH affects the gas–particle partitioning of semi-volatile acidic and basic compounds in the atmosphere, including 5 

inorganic (HNO3, NH3, HCl) and organic (amines, formic, acetic, and oxalic acid) species. The underlying reason why pH 

affects partitioning is that the protonated and deprotonated forms of the species vary considerably in their volatility (Keene et 

al., 1998; Meskhidze et al., 2003; Guo et al., 2017b). Based on this insight, estimates of aerosol pH can be derived from 

simultaneous measurements of the abundance of a compound in the gas and condensed phases, assuming that the species in 

question are in thermodynamic equilibrium. For example, HNO3 partitioning is determined by:  10 

 HNO3 (g) ⇌ HNO3 (aq)         (R1) 

HNO3 (aq) ⇌ H+ + NO3
-          (R2) 

Reactions R1 and R2 are characterized by the Henry’s law constant (KH) and the acid dissociation constant (Ka), respectively. 

These equilibrium expressions can be combined (see also the derivations provided in the supporting information of Guo et al., 

2017b and Nah et al., 2018) and rearranged to yield: 15 

𝑎H+ =
KHKapHNO3

𝑎NO3
−

         (16) 

where 𝑝𝐻𝑁𝑂3 is the partial pressure of nitric acid, 𝑎𝑁𝑂3
−  is the nitrate activity in deliquesced aerosols, and 𝑎𝐻+  is the H+ 

activity in the aqueous aerosols. pH can be expressed as the fraction of total nitrate in the particle (Fp,NO3 = [NO3
−]/[TNO3] by 

moles), the gas constant (R), temperature, equilibrium constants, and molality-based activity coefficients for species i (γi): 

pH = − log10 (
KHKa(1−Fp,NO3)RT

γNO3−Fp,NO3
)        (17). 20 

An analogous version of Eq. (17) could be applied to any monovalent acid/anion pair (e.g., hydrochloride acid/chloride 

partitioning). pH based on Fp,NH4 ([NH4
+]/[TNH4] by mole) is slightly different.  

pH = − log10 (
γNH4+Fp,NH4

KHKa(1−Fp,NH4)RT
)        (18) 

where Ka is the acid dissociation constant for NH4
+: 

NH4
+ (aq) ⇌ H+ (aq) + NH3 (aq)        (R3) 25 

pH from Eq. (17) and (18) becomes uncertain when Fp is in the vicinity of one or zero, especially when considering the effects 

of observational uncertainty.  

 

Current analytical techniques allow for the direct measurement of nitric acid while the aqueous aerosol nitrate concentration, 

can be derived from the aerosol nitrate mass concentration (µg m-3, directly measured) by using the ALWC (measured or 30 
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estimated). Conversion from aqueous concentrations to activity requires activity coefficients, which can be computed (e.g., 

Clegg et al., 1992), obtained from one of the aerosol thermodynamic equilibrium models, or approximated with a relevant ion 

pair (pH±) (Sect. 2). Most studies to date have simplified the above expressions by assuming activity coefficients of unity 

(molal basis), with aqueous concentrations replacing species activities in Eq. (16) above (Meskhidze et al., 2003; Keene et al., 

2004) and the resulting pH (Eq. 17–18) becoming pHF. 5 

  

Gas–particle partitioning of TNH4, total chlorine (TCl = HCl + Cl-), and TNO3 are all candidates for estimating pH. The 

approach was first discussed in relation to the pH of sea salt aerosols in the marine boundary layer (Keene et al., 1998). 

However, the phase partitioning behaviors of HCl and HNO3 were inconsistent, as measured HNO3/NO3
- implied a pH in the 

~1 – 2 range, but HCl/Cl- levels implied a pH much higher (Keene et al., 1998). These discrepancies were postulated to result 10 

from positive biases in the HNO3 (g) measurements, uncertainties in the thermodynamic constants, and kinetic limitations to 

mass transfer (deviation from equilibrium); however, no mention about the effects of mixing state and ability to predict liquid 

water content was discussed. The first quantitative estimates of aerosol pHc (molarity basis, see Eq. 2) via partitioning were 

done by Keene and Savoie (1998) and used HCl/Cl- partitioning to characterize sea salt particles mixed with anthropogenic 

pollution. Meskhidze et al. (2003) used measured HNO3/NO3
- partitioning to quantify aerosol pHF, with specific applications 15 

to Fe solubility. Keene et al. (2004) extended the analysis and compared the size-dependent aerosol pHc predicted by the phase 

partitioning of NH3, HCl, and HNO3 in marine air. They observed general agreement in the pH predictions based on HNO3 

and HCl partitioning, while acidity based on NH3 partitioning was systematically lower by ~1 – 2 pH units. Keene et al. (2004) 

assumed 𝛾
H+
(𝑐)

 was unity in their calculations and noted this as a likely source of uncertainty. In a study a decade later, Young 

et al. (2013) compared the aerosol pHc (by size, with 𝛾
H+
(𝑐)

 computed by E-AIM) predicted by NH3, HNO3, and HCl phase 20 

partitioning at a continental location near Denver, CO. In this study, aerosol pHc derived from NH3 and HNO3 partitioning 

generally agreed, while pHc predicted from HCl partitioning was systematically higher by ~1 – 2 pH units than the other 

methods. The authors attributed these differences to order-of-magnitude uncertainties in the Henry’s constant of HCl (Sander, 

2015). Similar problems with HCl/Cl- partitioning were observed in the northeast U.S., potentially due to uncertainties in the 

thermodynamic properties of HCl or non-volatile cation measurement artifacts (Haskins et al., 2018). Aerosol pH (pHc and 25 

pHx both evaluated) derived from NH3 partitioning agreed well with E-AIM and ISORROPIA predictions under highly 

polluted conditions in Mexico City (Hennigan et al., 2015). In this study, HNO3 and HCl data were not available to compare 

with the NH3 partitioning calculations, so an evaluation of differences, as was performed by Keene et al. (2004), was not 

possible. 

  30 

The partitioning of semi-volatile carboxylic acids should also provide insight into aerosol pH conditions (Keene et al., 2004). 

Nah et al. (2018) found that oxalic acid partitioning was consistent with its known thermodynamic properties, and thus 

represented a reasonable proxy for aerosol pH in a study in the southeast USA. However, in the same study, the partitioning 
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of formic and acetic acid implied aerosol pH levels that were ~5 – 6 pH units higher than that predicted by ISORROPIA or 

other semi-volatile species, including oxalic acid (Nah et al., 2018). The reasons for such dramatic differences are not known, 

but the formation of organic salts may be one explanation (Paciga et al., 2014; Hakkinen et al., 2014; Tao and Murphy, 2019a). 

  

Efforts to reconcile some of the above differences using model simulations are challenged by large uncertainties in the 5 

emissions (Kelly et al., 2016) and secondary formation (Millet et al., 2015) of key species. Although few other comparisons 

of aerosol pH based upon direct measurements of semi-volatile partitioning have been conducted, semi-volatile species 

partitioning is used as a key evaluation of thermodynamic model predictions of pH. Guo et al. (2015) compared ISORROPIA 

predictions of ALWC and NH3 partitioning with direct measurements in the southeastern U.S. during SOAS. ALWC is 

required for accurate calculations of 𝑎H+  (hence pH) while NH3 partitioning (for aqueous particles) is dependent upon pH. Guo 10 

et al. (2015) observed excellent model–measurement agreement for both ALWC and NH3 partitioning, suggesting that their 

pH predictions were similarly accurate. Comparisons of modeled and measured semi-volatile species partitioning are now 

regularly used to check thermodynamic model predictions of aerosol pH (e.g., Guo et al., 2016; 2017b; 2018b; Murphy et al., 

2017; Nah et al., 2018; Song et al., 2018). 

  15 

Practical measurement limitations have precluded more extensive evaluations of direct pH predictions with partitioning 

predictions of pH. First, the method requires measurable concentrations of a compound in both gas and condensed phases. 

Conditions in which a species is partitioned almost entirely to one phase preclude the application of this method. For example, 

Keene et al. (2004) were unable to make quantitative estimates of aerosol pH based upon formic or acetic acid partitioning 

since the aerosol concentrations were frequently below method detection limits. In certain environments, HNO3 is partitioned 20 

almost entirely in the gas phase, limiting its use for aerosol pH determinations. This limitation also extends to the ability to 

test and validate the thermodynamic models, whose phase partitioning predictions are seen as a key model check since direct 

pH measurements are not yet applied to ambient particles (Liu et al., 2017). Second, this approach applies the instantaneous 

equilibrium assumption, which does not always hold (see Sect. 7 for a discussion on deviations from equilibrium). The 

partitioning method is susceptible to biases associated with sampling semi-volatile components in either the gas or particle 25 

phases. Due to their semi-volatile nature, measurements of these compounds can suffer positive (overestimation) or negative 

(underestimation) artifacts, and the challenges associated with measuring organic (Turpin et al., 2000; Eatough et al., 2003; 

Lipsky and Robinson, 2006) and inorganic (Ashbaugh and Eldred, 2004; Talbot et al., 1990; Pathak et al., 2004; von Bobrutzki 

et al., 2010) semi-volatile compounds have been well documented. Despite major advances in analytical capabilities, such 

challenges persist (Dhawan and Biswas, 2019; Guo et al., 2016; Tao and Murphy, 2019a). Finally, the assumption regarding 30 

the phase state of the aqueous aerosol (i.e., whether it is on the efflorescent or the deliquescent branch of the water uptake 

curve, given hysteresis) has a profound impact on the amount of liquid water present in the aerosol, which in turn affects the 

ionic strength and ions speciation in solution (hence pH). Although studies have confirmed that the liquid water content can 

be in agreement with observations (Guo et al., 2015), and in combination with semi-volatile partitioning measurements provide 
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a well-constrained estimate for aerosol pH, the ALWC predictions central to the pH calculations are not routinely evaluated. 

While organics do not appreciably affect pH in particles consisting of a single aqueous phase (Battaglia et al., 2019), the 

changes in acidity as particle viscosity increases, shifting the phase towards semi-solid and glassy forms and creating a 

heterogeneous distribution of H+ across the particle, are unknown. All these factors eventually limit the precision and range of 

atmospheric conditions for which pH estimates based on semi-volatile species partitioning can be used. The accuracy of 5 

partitioning as well as other proxies an estimate of pH are further discussed in Sect. 6 (specifically Sect. 6.2.3 and 6.3) based 

on box model calculations. 

5 Atmospheric observations of acidity 

The preceding sections have alluded to some of the distinct challenges associated with particle and cloud pH measurements. 

Measuring the pH of nominally sub-10 µm atmospheric aerosols is not routinely possible, as the methods typically available 10 

for bulk condensed phases (e.g., electrochemical pH probes) cannot be applied to the liquid phase of a single particle or a 

population of particles as a result of the extremely low levels of liquid water. Another issue is the highly concentrated nature 

of aerosol solutions, whose ionic strengths are often orders of magnitude above the maximum ionic strength currently accepted 

by the IUPAC definition (0.1 M). As a result, limited direct measurements of aerosol pH exist (Sect. 5.1.1 – 5.1.2) and 

observationally-constrained estimates are usually created from thermodynamic models (Sect. 5.1.3 – 5.1.4). The same 15 

limitations do not exist for fog/cloud water or precipitation, where larger sample volumes can be collected from accessible 

clouds, the associated water is not in equilibrium with the gas phase (although evaporation artifacts may still cause biases), 

and solutions are dilute enough to allow for a direct pH measurement. The latter has been done with electrochemical pH probes 

for decades (Sect. 5.2). 

5.1  Observed aerosol acidity 20 

Challenges associated with measuring semi-volatile species (Sect. 4.3) and maintaining aqueous concentrations found in 

ambient particles have limited direct measurements of aerosol pH for many years. The abundance of many non-volatile ionic 

components of the atmospheric aerosol (e.g., sulfate or sodium) can be measured. However, unperturbed equilibrium contact 

with the gas phase cannot be easily maintained. Determining H+ activity (or molality in the case of pHF) requires knowledge 

of water content, which for non-glassy aerosol is in chemical equilibrium with the gas phase (e.g., Seinfeld and Pandis, 2016). 25 

Thus, if the ALWC changes between sampling and analysis, as often occurs in routine monitoring networks, the pH of that 

particle can shift. A second challenge is that one of the most important cations present in submicron aerosol, NH4
+, is largely 

in equilibrium with gas-phase NH3, so perturbations during collection and processing may result in large 

evaporation/condensation biases (e.g., Guo et al., 2018a).  

 30 
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Despite the obstacles related to measuring the pH of aerosols, the importance of aerosol pH has motivated efforts to more 

directly probe the pH of aerosols. Direct measurements may either provide an ensemble or bulk average pH value (Li and Jang, 

2012; Jang et al., 2008; Ganor et al., 1993; Craig et al., 2018), single particle values (Craig et al., 2017; Rindelaub et al., 

2016b), or intra-particle pH values (Wei et al., 2018). Considerable effort has also been spent to develop pH estimates using a 

combination of thermodynamic modeling with measurements of aerosol and gas-phase composition (e.g., Guo et al., 2018a; 5 

Guo et al., 2017a; Guo et al., 2015; Bougiatioti et al., 2016; Song et al., 2018; and others).  

5.1.1 Bulk pH measurements 

For bulk pH values to be reasonable, composition and partitioning of semi-volatiles among the particles in the population 

should be relatively uniform (see Sect. 7 for a discussion on the role of particle mixing state). For a set of submicron particles 

with homogeneous composition (i.e. an internal mixture, as often found in aged aerosols), this assumption is often satisfied, 10 

particularly at higher RH. The simplest bulk method, first utilized in the late 1980s involved adding a known volume of water 

to a filter and then utilizing a standard electrochemical pH probe to infer so-called strong acidity (Koutrakis et al., 1988). As 

discussed here and in Sect. 4.1, given the semi-volatile nature of water and non-conservative nature of the H+ ion (Saxena et 

al., 1993), this approach has significant shortcomings.  

 15 

The use of pH sensitive indicators has been one of the most common approaches to avoid sample modification. Although only 

a handful of studies have used indicators for aerosol studies, multiple approaches have been applied. Jang et al. (2008) used a 

Teflon filter where the dye metanil yellow was taken up by the filter prior to sampling aerosol. Particle mass was determined 

gravimetrically, and pH sensitive indicators were analysed with a UV-Visible (UV-Vis) spectrometer. Through a calculation 

combining mass, absorption features of the protonated (at 545 nm) and deprotonated (at 420 nm) form, and particle volume 20 

from a simultaneous aerosol size distribution, the mass of H+ was determined and then converted to pH. The RH had to be 

precisely controlled, since any change in water content would limit the reliability of the results. The authors noted the need for 

an online approach to avoid these complications. This work was expanded in Li and Jang (2012) with the use of an optical 

flow chamber to help control the RH and improve transfer from the collection point in a Teflon aerosol chamber to the UV-

Vis spectrometer for measurement. For a tightly controlled system, the dyed filter approach provided particle pH, but the 25 

method has not been reliably applied in the complex ambient atmosphere.  

 

Colorimetric methods have been utilized at different points to determine the pH of aerosols and cloud droplets. Ganor et al. 

(1993) used pH paper on a four-stage impactor (>10 µm, 3.0-10.0 µm, 0.9-3.0 µm, and < 0.9 µm) to probe larger “haze” 

particles in Israel under conditions with RH exceeding 80%, cloud droplets, and fog droplets. Two types of pH paper were 30 

used covering two pH ranges, 0.5-5.0 and 5.0-9.0 (indicator not given), with 0.5 pH unit resolution. For these measurements, 

a size-dependence in acidity was observed, with pH decreasing from 5 to 2 from cloud/fog to large particles using visual 

identification. Submicron haze aerosol pH was characterized as having an overall pH of 1.5 – 2.5 in Israel (Ganor et al., 1993). 
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Craig et al. (2018) recently quantified the measurement of aerosol pH with a precision of 0.1 pH units using particles impacted 

on pH paper followed by rapidly taking a cell phone picture later analysed with a simple image processing script in MatLab. 

For their work, thymol blue (pH = 0 – 2.5) and methyl orange (pH = 2.5 – 4.5) indicator dyes on paper were used for both 

model aerosol in the laboratory and ambient samples at a forested site in Northern Michigan (pH = 1.5 – 3.5) and in Ann Arbor, 

Michigan (pH = 3.0 – 3.5). Water and ammonia volatilization due to increased surface area to volume ratios in smaller particles 5 

explains the observed increase of particle acidity with decreasing particle size but also the inadequacy of pH paper method to 

measure the pH of very small particles (Craig et al., 2018). Ganor et al. (1993) and Craig et al. (2018) mentioned that for the 

colorimetric approach to be effective, the particles must be aqueous with sufficient aerosol water to substantially wet the 

indicator paper, which was not always the case for ambient sampling. The atmospheric samples in Northern Michigan (Craig 

et al., 2018) covering three size ranges (2.5-5.0, 0.4-2.5, and < 0.4 µm) and measuring to smaller sizes than in Ganor et al. 10 

(1993), showed a distinct decrease in pH toward smaller size. For the smallest stage in Craig et al. (2018), variation in pH was 

observed across the samples with values ranging from 1.5 – 3.0, possibly due to differences in pH between individual particles 

in that size range, though further investigation is needed (see Sect. 7 for a discussion on the relationship between particle size 

and pH). Craig et al. (2018) made comparisons to the bulk solutions with the thermodynamic model E-AIM, finding good 

agreement. When applied to the particle data, the thermodynamic model ISORROPIA predict a pHF lower than measured by 15 

roughly a pH unit, while E-AIM was roughly 2 pH units lower. Further testing is needed between thermodynamic models and 

colorimetric methods to explore differences, particularly since the high ionic strengths in particles that may affect organic dye 

activity (e.g., via issues raised in Sect. 2.5). 

5.1.2 Single particle pH measurements 

Several emerging methods have the potential to provide even greater insight into the pH of individual particles but have been 20 

focused on model systems. Determining single particle pH is desirable as the variation of pH values for individual particles 

from the population-level average is not well known. Even a few acidic particles can dominate the average pH value for a 

population in an environment with fresh emissions (e.g., urban area) where the particles have not reached equilibrium with the 

gas concentrations surrounding them (Craig and Ault, 2018). This heteorogeneity may be less important in a regional 

background that has experienced significant atmospheric processing (Guo et al., 2018a). One of the first approaches to single 25 

droplet pH measurement was Ganor (1999), which impacted cloud and fog droplets collected on the four stages of a cascade 

impactor on to a cleaved calcite (CaCO3) crystal. If an acidic droplet containing sulfate was impacted, the microchemical 

reaction produced gypsum (CaSO4·2H2O) crystals. Fog droplet pH values of 3.0 and 4.0 were observed in Israel for sizes of 

1-2 μm and 3-9 μm, respectively. A second single particle method (Dallemagne et al., 2016), used for studying liquid–liquid 

phase separation (LLPS) in larger particles (10-30 µm) with optical microscopy methods, applied a fluorescent indicator 30 

(Oregon Green 488 carboxylic acid, succinimidyl ester) to probe pH before and after phase separation via fluorescence 

microscopy (see Sect. 7.3 for discussion of organic species and their role in acidity).  
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A recently developed approach for probing the pH of individual droplets is the acid-conjugate base method (Rindelaub et al., 

2016b), which calibrates the peak area for the acid and conjugate base measured with Raman microspectroscopy to molar 

concentrations, which along with the acid dissociation constant (Ka) and activity coefficient calculations can be used to 

determine the activity of the H+ ion. Rindelaub et al. (2016b) originally applied this to monitoring sulfate and bisulfate in 

proximity to the pKa of 2. Craig et al. (2017) expanded this method to cover a range of systems (nitric acid–nitrate, bioxalate–5 

oxalate, acetic acid–acetate, and bicarbonate–carbonate, as well as an inorganic–organic mixture). From these systems, a pH 

of -1 to 10 could be probed, covering the full range of atmospherically- relevant particle pH (Fig. 2). The acid-conjugate base 

method originally made use of activity coefficients from the extended Debye-Hückel method (Rindelaub et al., 2016b), but 

has been expanded to other methods in subsequent publications (Craig et al., 2017). In addition to using simplistic model 

systems, recent work has shown that the protonation state of hydroxyl functional groups (–OH) in organic molecules from 10 

SOA formation can be used to estimate pH. Bondy et al. (2018) showed that by modulating pH the protonation state of 2-

methylglyceric acid or 2-methylglyceric acid sulfate ester could be used to roughly identify the pH of a system, though further 

quantification is necessary to assess the accuracy of this approach. This was shown by monitoring the carbonyl (C=O) stretch 

of the carboxylic acid group on 2-methyl glyceric acid when protonated versus the asymmetric and symmetric vibrations of 

the carboxylate group (COO-) when deprotonated. While these vibrations have been successfully measured in ambient aerosols 15 

collected during the SOAS summer 2013 campaign, none of the acid-conjugate base methods has been applied on ambient 

aerosol to evaluate aerosol pH.  

 

Wei et al. (2018) recently probed intraparticle pH variation using Surface-Enhanced Raman Spectroscopy, and showed pH is 

not always uniform within an individual particle. The researchers took the acid-conjugate base method one step further with 20 

nanoprobes by functionalizing a gold nanoparticle dimer with an indicator molecule (4-mercaptobenzoic acid) and monitoring 

the acid versus conjugate base form of the indicator molecule in 20 µm phosphate buffer solution droplets (pH = 7 – 11). They 

showed that within a single particle, a gradient of up to 3.6 pH units could be observed between the core (higher pH) and the 

exterior few microns of the particle (lower pH) due to accumulation of protons at the air/water interface. Such substantial 

differences in pH within a single particle are unexpected (as they imply a large chemical potential difference of H+ ions) and 25 

further independent measurements are needed to confirm this behavior in atmospheric particles. 

5.1.3 Considerations for the development of observationally-derived pH estimates 

Only very recently have methods for direct measurement of aerosol pH become available, and they require considerable 

development before they become routine and generally applied. Until now, most information generated on aerosol acidity 

relies on measurements of particle composition and gas-phase semi-volatiles, in addition to thermodynamic equilibria or 30 

kinetic modeling (see Sect. 2.6). pHF (Table 1) is the most comment approximation of pH reported in literature. The accuracy 

of these estimates depends on and is evaluated by the agreement between observed and modeled gas–particle partitioning of 

pH-sensitive species – typically TNH4, TNO3, and TCl, as well as accuracy of predicted aerosol liquid water (Guo et al., 2015; 
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Guo et al., 2017b; Guo et al., 2018b; Meskhidze et al., 2003; Song et al., 2018). NH3 is an ideal species to measure since gas–

particle partitioning of TNH4 is sensitive to most ambient pH levels and ammonium is often the dominant particle cation. 

However, ammonia measurements are challenging and often not co-located with aerosol composition measurements. 

Bougiatioti et al. (2016) estimated that neglecting gas-phase NH3 levels of about 0.1 to 0.7 μg m-3 in the thermodynamic 

equilibrium calculation of fine aerosol pH could lead to an underestimation in the pHF of around 0.5 units, while Guo et al. 5 

(2015) found neglecting gas-phase NH3 leads to an underestimation of pHF by one unit. Although this magnitude of 

underestimation is not universally applicable when NH3 is missing from the thermodynamic calculations, it may be a 

reasonable bound for most of the atmosphere. Weber et al. (2016) and Guo et al. (2017a) estimated that on average, a 5-fold 

to 10-fold increase in the NH3 levels leads a one unit change in pH. For cases were more than 90% of total ammonium is in 

the aerosol, neglecting gas-phase NH3 should give similar (1 unit) underestimations in pH. Accurately bounding the error 10 

requires aerosol pH calculations to be evaluated against observations in both the aerosol and gas phases. 

 

Routine air quality monitoring networks provide limited opportunity for pH estimation. European networks (European 

Monitoring and Evaluation Programme (EMEP)/EBAS, http://ebas.nilu.no/, and Research Infrastructure for the observation 

of Aerosol, Clouds and Trace Gases (ACTRIS), http://actris.nilu.no/Data/Policy/) provide mainly bulk PM10 aerosol chemical 15 

composition data which prohibits equilibrium assumptions due to the contributions from coarse mode mass. Most routine 

networks in the U.S. measure PM2.5, but the Interagency Monitoring of Protected Visual Environments (IMPROVE, 

http://vista.cira.colostate.edu/Improve/) network lacks measurements of ammonium and the Chemical Speciation Network 

(CSN, https://www.epa.gov/amtic/chemical-speciation-network-csn) ammonium is biased low compared to other networks 

and measurements (Pye et al., 2018; Silvern et al., 2017). The Clean Air Status and Trends Network (CASTNET, 20 

https://www.epa.gov/castnet) provides measurements of NH4
+, NO3

-, and SO4
2-, along with HNO3, SO2, and base cations, at 

approximately 92 sites across the U.S.. However, CASTNET does not size select particles. For IMPROVE and CSN, 

concurrent relevant gas-phase measurements are generally not available. Up until 2015, the Southeastern Aerosol Research 

and Characterization Study (SEARCH) in the United States provided complete hourly particle and gas-phase semi-volatile 

measurements with high accuracy and precision (Edgerton et al., 2006; Hansen et al., 2003). Recent instrumental developments 25 

(MARGA, Liu et al., 2014) enable concurrent measurements of inorganic substances that influence aerosol pH and are present 

in the gas phase (namely HCl, HNO3, HNO2, SO2, NH3) or in the aerosol phase (Cl-, NO3
-, SO4

2-, NH4
+, K+, Ca2+, Mg2+). Online 

NH3 instruments are becoming more available and with sensitivity down to very low concentrations (von Bobrutzki et al., 

2010). In combination with aerosol data, gas-phase measurements generate datasets that can constrain aerosol pH.  

 30 

For submicron aerosol (PM1), the development and operation of aerosol mass spectrometers (AMS, Zhang et al. 2007; Jimenez 

et al.; 2009) and aerosol chemical speciation monitors (ACSM, Ng et al. 2011) during the last decade provides a powerful tool 

to build a database of nonrefractory submicron aerosol composition. This database could constrain aerosol pH when 

complemented by gas-phase measurements, mainly of NH3, as well as measurements of the non-volatile, refractory aerosol 
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components. Such studies, usually performed on a campaign basis, have enabled the estimation of aerosol pH at various 

locations around the globe, including the southeastern US, Greece, and mainland China (Table S6), and ACSM measurements 

could be more routinely available in the future (e.g., ACTRIS, Schmale et al., 2017). However, the contribution of 

organosulfates and organonitrates to AMS measured total sulfate and nitrate (Farmer et al., 2010; Dovrou et al., 2019) must 

be considered to provide robust inorganic aerosol predictions. In locations such as the eastern U.S. in summer where 5 

organosulfates already account for 15% of total sulfate (Riva et al., 2019), AMS measured total sulfate, when used in a 

thermodynamic model as inorganic sulfate, can lead to erroneous predictions of particle composition and thus pH (Pye et al., 

2018). 

 

The largest challenge using network or campaign data to estimate pH is that simultaneous information on NH3 and NH4
+ is 10 

often not available. The National Atmospheric Deposition Program/Ammonia Monitoring Network (AMoN) measures NH3 

on a biweekly schedule at 104 active sites in the U.S. (as of July 29, 2019) (http://nadp.isws.illinois.edu/AMoN). Colocation 

with CASTNET NH4
+ measurements provides NH3 + NH4

+ at approximately 70 sites (Puchalski et al., 2019). The U.K. 

National Ammonium Monitoring Network (NAMN) has been established to measure the spatial distribution and long-term 

trends in atmospheric gaseous NH3 and aerosol NH4
+ (Sutton, 2001; Sutton et al., 1998). In 2016, the network measured 15 

gaseous NH3 on a monthly basis by DEnuder for Long Term Atmospheric (DELTA) sampling at 56 sites and by Adapted 

Low-cost Passive High-Absorption (ALPHA) samplers at a further 38 sites, 9 of these sites used for calibration, in order to 

quantify the spatiotemporal varibility of NH3 and NH4
+ concentrations and deposition across the UK, 

http://www.pollutantdeposition.ceh.ac.uk/content/ammonia-network). Observations show spatially variable changes in NH3 

with both reductions, mainly to the north, and increases, to the south between 1997 and 2007. In nature reserve areas in the 20 

Netherlands, atmospheric ammonia concentrations have been monitored by the Measuring Ammonia in Nature (MAN) 

network (http://man.rivm.nl) since 2005 (Lolkema et al., 2015). In 2015 that network contained 60 natural areas with a total 

of 236 sampling points were NH3 was monitored using passive samplers. While no significant trend has been found on average, 

at 6 stations a significant increasing trend was recorded.  

 25 

The amount of knowledge on the atmospheric distribution of NH3 has increased rapidly in the satellite era since the NH3 

tropospheric column observations from space by the Atmospheric Infrared Sounder (AIRS) sensor on-board the Aqua satellite 

(Warner et al., 2016), the Infrared Atmospheric Sounding Interferometer (IASI) (Clarisse et al., 2009), and the Cross-track 

Infrared Sounder (CrIS) (Shephard and Cady-Pereira, 2015) became available. These satellite observations have shown the 

high NH3 levels associated with animal feeding operations and fertilizer applications as well as biomass burning (especially 30 

wild fires). These data provided a global view of NH3 column distribution, construction of which was inhibited by the spatial 

and temporal variability of NH3 concentrations reflecting its spatially varying sources and its short tropospheric lifetime of up 

to a couple of hours (Dentener and Crutzen, 1994). While there is not yet established methodology to derive aerosol pH from 

space observations, the improvement of near surface information on atmospheric composition in combination with ground-
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level observation network data (perhaps even augmented by model fields of such data) will likely advance our understanding. 

Considerably more challenging, however, is constraining the vertical distributions of aerosol pH – especially since the lower 

temperatures and less abundant water progressively challenge the assumption of thermodynamic equilibrium and may require 

the treatment of particle history and hysteresis (e.g., Wang et al., 2008). 

 5 

5.1.4 Spatial and temporal variability of aerosol pH 

Current observationally-constrained estimates indicate fine mode aerosol is ubiquitously acidic. During winter with low 

temperature and high relative humidity, aerosol pHF is higher than during summer following the liquid water availability and 

temperature (Fig. 5a). This seasonal trend has been widely observed in the eastern U.S. (Guo et al., 2016; Guo et al., 2015), 

Beijing (Tan et al., 2018), Inner Mongolia (Wang et al., 2019a), Hong Kong (Xue et al., 2011), Po Valley, Italy (Squizzato et 10 

al., 2013), Cabauw, Netherlands (Guo et al., 2018b), and eastern Canada (Tao and Murphy, 2019b) with pHF differences 

between seasons spanning from 0.6 to 2.3 pHF units. Wang et al. (2019b) reported the lowest mean aerosol pHF in summer and 

attributed it to the higher contribution of secondary sulfate than in the other seasons and the highest mean aerosol pHF in spring 

likely associated with the influence of dust. The most complete dataset containing seasonality comes from Canada, where 

observationally-derived monthly mean pH values for PM2.5 were constructed for 6 sites over 10 years (Tao and Murphy, 15 

2019b). The Canadian dataset shows summertime minimum pH and wintertime maximum with 1 pH unit of difference (~2 

versus ~3, respectively). Aerosol acidity increases with increasing temperature (0.1 unit increase in pH per 2 K decrease in 

temperature) and decreasing relative humidity. Summer pH is largely dictated by temperature while both meteorological 

factors and aerosol composition affect winter pH. Beijing shows a similar pHF trend with winter having higher pHF than 

summer (pHF of 4.1 vs 1.8) (Tan et al., 2018). However, Beijing data also shows summer 2016–2017 pHF (Ding et al., 2019) 20 

being almost 2 units higher than that in summer 2014 (Tan et al., 2018), potentially indicating effective air pollution mitigation 

strategies. The summer minimum in fine aerosol pH is a common feature of all available pH datasets and is associated with 

the effects of high ambient temperatures and low aerosol water content. Temperature has also been shown to strongly affect 

the partitioning of total ammonium through its effects on solubility and dissociation (Hennigan et al., 2015). Composition can 

also play a role in seasonality as shown in data for Inner Mongolia (Wang et al., 2019a) and at Po Valley (Squizzato et al., 25 

2013) where maximum fine aerosol pHF was found in spring likely due to the influence of desert dust aerosol from Gobi and 

from Sahara deserts respectively during those time periods. The absolute values in Mongolia show partial neutralization of the 

aerosol with pHF between 5 and 6.1, while those for Po Valley are more acidic, being 1.3 pHF units higher in spring (pHF = 

3.6) than in the summer (pHF = 2.3). 

 30 

Similarly, resulting from diurnal changes in temperature and relative humidity, higher pHF is observed during the night 

compared to that during the day (Fig. 5b). For example, acidity shows diurnal variation in China of almost 2 pHF units (Cheng 

et al., 2015), in southern Canada of 0.5 – 5 pH units (Murphy et al., 2017), in the U.S. of 0.65 – 1.5 pHF units (Battaglia et al., 
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2017; Guo et al., 2015; Nah et al., 2018), and about 1 pHF unit in southern California (Guo et al., 2017b). Finokalia experiences 

~1 pHF unit lower pHF during the day than night because of low aerosol water content and high temperatures (Bougiatioti et 

al., 2016). This pattern is amplified by the urban Heat Island Effect through its impact on temperature (Battaglia et al., 2017).  

 

Figure 6 summarizes the current estimates of ambient fine aerosol pH based on literature data summarized in Table S6. Studies 5 

that used only aerosol composition for calculating pH (“reverse mode” aerosol calculations, which are uncertain, e.g., see 

Hennigan et al., 2015) or ion-balance based approaches are excluded from the figure. Mean fine aerosol pHF ranges from 

around 1 to 6 although specific locations and episodes may experience higher or lower acidity. Highly acidic fine aerosols are 

found in South East Asia, the eastern U.S., and other locations. Mainland China, Europe, Canada, Mexico, and the western 

U.S. have on average similar levels of aerosol acidity (2.5 to 3). This spatial variability in pH reflects variability in the chemical 10 

composition of fine aerosols that result from the combined effect of changes in sources and meteorology.  

 

Overall, the eastern U.S. aerosol is predicted to be one of the most acidic locations, with average pHF near a value of 1 (Battaglia 

et al., 2017; Craig et al., 2018; Fang et al., 2017; Weber et al., 206; Pye et al. 2018; Xu et al., 2015; Guo et al., 2016; Guo et 

al., 2015), and higher pHF, by about 1 unit, observed in locations of intensive agriculture with high NH3 concentrations (Nah 15 

et al., 2018) and those influenced by larger particles (Fang et al., 2017; Craig et al., 2018). Higher aerosol pH (2 – 3 in pHF) 

was estimated for Los Angeles in summer (Guo et al., 2017b), similar to observationally derived values for the Eastern 

Mediterranean (0.5 – 2.8 pHF, Bougiatioti et al., 2016). The pHF of PM1 and PM2.5 in Pasadena during the CalNex-2010 

campaign were slightly different with the larger PM2.5 particles having pHF 0.8 units higher than PM1 (Guo et al., 2017b) due 

to the larger water content and more abundant NVC at larger sizes. Greater acidity in submicron (PM1) versus larger (PM2.5) 20 

fine-mode particles is a robust feature in multiple data sets (e.g., Bougiatioti et al., 2016; Fang et al., 2017; Fridlind and 

Jacobson, 2000; Ding et al., 2019; see Sect. 7.1 for a discussion of pH as a function of particle size). Guo et al. (2016) estimated 

the mean pHF at 0.77 ± 0.96 for PM1 aerosol aloft based on aerosol chemical composition measurements during the Wintertime 

Investigation of Transport, Emissions, and Reactivity (WINTER) campaign in the northeastern U.S. and thermodynamic 

modeling. 25 

 

For mainland China, fine aerosol pHF estimates vary, but tend to be mildly acidic (average pHF approximately 4) and span 

from negative values (in Chengdu) to as high as 6.1 for PM2.5 aerosol (Liu et al., 2017; Jia et al., 2018; Song et al. 2018; Tian 

et al., 2018; Cheng et al., 2015; He et al., 2018; Tan et al., 2018; Shi et al., 2017; Guo et al., 2017a; Ding et al., 2019; Jia et al., 

2018b; Wang et al., 2019), while in Southeast Asia (Singapore and Hong Kong) fine aerosol is highly acidic (average pHF 30 

approximately 1) (Behera et al., 2013; Yao et al., 2007). Ding et al. (2019) estimated coarse particles were generally neutral 

or alkaline, based on observations in Beijing and modeling with ISORROPIA II. The strong acidity in Southeast Asia is 

consistent with reported high solubility of particulate iron sampled in the South China sea (Li et al., 2017). Altogether, these 
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data suggest that there is a large spatial gradient of pH across China and Southeast Asia, reflecting the highly variable sources 

of acidity and alkalinity within each region (Shi et al., 2019).  

 

Higher aerosol pHF of 4.60 and 4.75 has been inferred from observations for Hawaii (Pszenny et al., 2004) and for Sao Paulo 

(Vieira-Filho et al., 2016). In the case of Hawaii, the higher pHF is due to the neutralizing effect of non-volatile cations from 5 

sea salt. Sao Paulo is affected by combustion sources and thus emissions of nitrate and NVC that increase the aerosol pHF. 

Bougiatioti et al. (2016) reported that under the influence of biomass burning, aerosol pHF increases to values around 3, 

indicative of the impact of non-volatile cations, particularly potassium, as well as ammonia and nitrate emitted from wood 

burning. In general, aerosol pHF increases when gas-phase NH3 increases and can further be elevated by co-condensation of 

nitrate and water and the presence of non-volatile ions (Guo et al., 2018a; Shi et al., 2019).  10 

 

Information on pH trends over time is limited, due to the scarcity of relevant data. pH data for mainland China published prior 

to 2010 (Tables S6, S7) showed highly acidic aerosol with pHF of -0.16 ± 0.75 in contrast to more recent estimates (mean pHF 

of 3.42±1.75 for 2011 – 2016). Pre-2010 estimates are subject to large uncertainty resulting from their calculation method of 

relying only on aerosol composition information as input. Thermodynamic analysis of data, when carried out in a way that 15 

minimizes pH biases (mostly focused on using total gas and particle composition inputs and higher RH conditions) suggests 

acidity trends that may, at first glance, seem counterintuitive. One of the few such examples published that provides important 

insights can be found for the eastern U.S. during summer. Emissions controls over the last 20 years lead to significant reduction 

in sulfate aerosol, and ammonia levels remained constant or even slightly increased. Despite these important changes, 

summertime aerosol acidity remained the same (Weber et al., 2016). The insensitivity of aerosol pH to changes in emissions 20 

controls in this region is largely driven by the semi-volatility of ammonium, which requires a fraction of it to remain in the gas 

phase as dictated by thermodynamic equilibrium. Similar behaviour was found by Tao and Murphy (2019b) in Canada, where 

summertime aerosol pH did not increase over 10 years despite substantial decreases of sulfate and constant levels of ammonia. 

In the same study, the seasonality and interannual variability of pHF was found to be strongly driven by the temperature changes 

and the resulting shift in thermodynamic partitioning and water uptake. The modeling study of Lawal et al. (2018) also showed 25 

little response of aerosol pHF throughout the Continental U.S. to emission reductions despite the considerable improvements 

in air quality over the period 2001-2011. For this, they used a thermodynamic (ISORROPIA II) and the chemical transport 

(CMAQ) model together with the aerosol pH relevant observations from three monitoring networks (AMoN, SEARCH, and 

CASTNET). However, if sulfate aerosol continues to decrease, aerosol pH may eventually begin increasing (as proposed by 

Tao and Murphy, 2019b). In the southeastern US, when sulfate approaches the 0.2 – 0.3 μg m-3, level, small amounts of NVCs 30 

start affecting pH causing it to increase (Weber et al., 2016). Weber et al. (2016) also calculated that only large increases in 

NH3 together with sulfate reductions can lead to an increase in pH. Thus, for sulfate between 0.1 and 10 μg m-3, pH approaches 

2.5 when NH3 is over 10 μg m-3 and ammonium nitrate is formed. In any location, unusually high levels of NH3 (an order of 

magnitude above the background or higher) associated with localized emissions, (e.g., confined animal feeding operations) 
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can also increase pH (Nah et al., 2018). For locations characterized by high levels of ammonia, strong emissions of nitrate, 

and/or high levels of NVCs, pH may be driven by the water uptake and the mild acidity associated with ammonium nitrate 

aerosol. Furthermore, meteorology (RH, T) is an important driver of pH and meteorological trends influenced by climate 

change or interannual variability, can dominate over any composition changes (Tao and Murphy, 2019b). The eventual 

response of aerosol pH to changing emissions and meteorology can be determined with models – but careful evaluation of 5 

them with in-situ data is critical to ensure that they are in the correct acidity regime (e.g., Vasilakos et al., 2018; Shah et al., 

2018). 

 

5.2 Observed cloud and fog acidity 

Sample collection is usually the largest challenge associated with measuring cloud droplet pH. Once obtained, the pH of 10 

collected cloud and fog water is typically measured using an electronic pH meter and a combination glass electrode. The 

approach to pH measurement in cloud and fog water has been similar over the past several decades. Semi-micro or micro-

electrodes are available to analyze small volumes of available fog/cloud water, with some pH microelectrodes capable of 

measuring as little as 10 µL of sample. The electrodes are typically calibrated using pH 4 (phthalate-based) and 7 (phosphate-

based) buffer solutions, although higher and lower pH calibration buffers are also available (see also supplementary 15 

information Sect. S1). Buck et al. (2002) provide an overview of key buffer requirements (stability, ionic strength, certification, 

low pH change with temperature) and a list of primary buffer standard compositions.  

 

5.2.1 What determines the pH in a cloud/fog droplet? 

The pH of a fog or cloud drop is determined by the balance between acids and bases in solution. The initial composition of a 20 

droplet is determined by the dissolution of soluble material contained within an aerosol particle that serves as the CCN. Further 

changes to composition come from subsequent scavenging of other, non-activated, interstitial particles and from uptake of 

water-soluble gases and aqueous-phase reactions (Sect. 3). While early measurements of cloud and fog composition focused 

on inorganic species, it has become increasingly clear that organic matter also contributes significantly to droplet composition 

(Herckes et al., 2013) and, potentially, to droplet pH. 25 

 

Uptake of gaseous carbon dioxide is an important factor governing cloud pH, especially in remote environments. Equilibration 

of a pure water drop with current levels of atmospheric CO2 at 298 K results in a droplet pH of approximately 5.6, a value 

often referred to as the pH of natural rain or cloud water. Cloud pH values above or below this value are often referred to as 

alkaline or acidic, respectively. 30 
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Sulfuric and nitric acids frequently make significant contributions to cloud/fog drop pH while ammonia is typically the most 

abundant base. Sulfuric acid is taken up through particle scavenging, including scavenging of ammoniated sulfate particles, 

and is also formed in situ through aqueous phase oxidation of sulfur dioxide. Nitric acid is a highly soluble gas, in part because 

of its strong acidity which leads to nearly complete deprotonation in a cloud drop to form nitrate. Addition of nitrate to cloud 

water also comes from scavenging of particles containing solids or dissolved nitrate salts. These include ammonium nitrate, 5 

but also calcium or sodium nitrate, which are frequently formed by reaction of nitric acid or its precursors with sea salt or soil 

dust particles (e.g., ten Brink, 1998; Lee et al., 2008). Cloud water ammonium is derived by uptake of gaseous ammonia, as 

well as from particles containing salts of ammonium with nitrate, sulfate, and organic acids. As a result of these various 

scavenging and oxidation pathways, it is common for cloud/fog composition to be dominated by concentrations of sulfate, 

nitrate, and ammonium (e.g., Weathers et al., 1988; Collett et al., 2002). 10 

 

A variety of weak organic acids and bases, including carboxylic/dicarboxylic acids and amines, can also influence the pH of 

fog or cloud drops. Carboxylic and dicarboxylic acids are frequently reported (e.g., Kawamura and Kaplan, 1984; Weathers et 

al., 1988; Munger et al., 1989; Facchini et al., 1992; Collett et al., 1999; van Pinxteren et al., 2005; Boris et al., 2016) as 

contributors to cloud or fog acidity, even in remote environments, due to the abundance of these compounds, including formic 15 

acid, acetic acid, pyruvic acid, succinic acid, and oxalic acid, in the atmosphere. For these weak acids and bases, the extent of 

partitioning from the gas phase is a sensitive function of droplet pH. Partitioning of weak carboxylic acids, such as formic and 

acetic acids, into the aqueous phase is strongly favored at pH values above the acid’s pKa value, due to the deprotonation of 

the acid in such high-pH solutions. 

5.2.2 Recent observations of cloud/fog pH and long-term trends 20 

Clouds and fogs have been observed to exhibit a wide range of pH values (Table S8). Typical values fall between pH 3 and 6. 

The most acidic observation reported was in an evaporating fog in Corona Del Mar in coastal Southern California, with a pH 

of 1.69 (Hileman, 1983). Other highly acidic pH values include 1.95 for a fog at Mt. Oyama in Japan (Mori et al., 1997), 1.94 

for a fog in Duebendorf, Switzerland (Sigg et al., 1987), and 1.7 for a fog in Kahler Asten, Germany (Kroll and Winkler, 1988). 

Such acidic values are typically associated with large inputs of sulfuric and nitric acids, although hydrochloric acid has also 25 

been an important source of acidity in some urban areas (e.g., the Duebendorf fog). High pH fogs or clouds have also been 

reported in situations with large inputs of ammonia or alkaline soil dust. For example, Collett et al. (1999) reported pH values 

up to 7.43 for radiation fogs in California’s Central Valley, a region with high ammonia concentrations stemming from major 

agricultural activities. Wang et al. (2011) collected cloud water at Mt. Tai, China and observed cloud pH values during periods 

of strong soil dust influence in the range of 6.5 – 6.7. Changing regional transport patterns and resulting variations in inputs of 30 

acids and bases to Mt. Tai clouds, however, resulted in a wide range of values between 2.56 and 7.64 overall at this site. pH 

as high as 7.76, in Ca2+ rich advection fogs, has been observed at a roadside location near Sao Paulo, Brazil (Vasconcellos et 

al., 2018). Fog pH values above 7 have also been reported in polluted fogs in Kanpur, India (Kaul et al.,2011; maximum pH 
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8.07), in Ca2+-rich fogs in Xishuangbanna, China (Zhu et al., 2000; maximum pH 9.15), in marine-influenced clouds at Puy 

de Dome, France (Deguillaume et a., 2013; maximum pH 7.6), and in other locations (see Table S8).  

 

Figure 7 (and Table S8) depicts pH observations from locations around the globe including observations at continental and 

marine locations for fogs and clouds collected by airborne and ground-based sampling platforms. Panels represent different 5 

time periods, from pre-1985 to post 2005, to highlight how strong regional changes in anthropogenic emissions, especially 

sulfur and nitrogen oxides, are incorporated in clouds thus affecting pH. Measurements pre-1985 are mostly associated with 

studies in the United States, Europe, Japan, and Australia. More global interest and coverage was seen in the later 1980s and 

90s, with several measurement sites active in east Asia, Africa, and South America. Since 2005, there has been continued 

interest in cloud and fog observations in some regions, including in China and India, two countries facing increasingly severe 10 

air quality challenges. Globally, observed pH values range from highly acidic to more alkaline. While measurement locations 

are not constant over time, there appears to be a decrease in incidence of more acid clouds and fogs in North America and 

Europe since the 1980s and early 1990s, while trends in the incidence of acid fogs and clouds in East Asia are less clear. 

 

While the global scientific community lacks long-term monitoring programs for cloud/fog composition, there are a few 15 

locations around the world where such measurements have been made routinely, or at least periodically, over periods of a 

decade or more. Figure 8 shows temporal trends in cloud/fog pH from a number of sites in the United States and Japan. Fog 

pH values from radiation fogs in California’s Central Valley show a significant increase from the 1980s to the current decade. 

Herckes et al. (2015) attributed the rapid pH rise in the early part of the record, particularly at sites in the southern part of the 

valley, to decreases in SO2 emissions. A steady climb is also apparent in cloud pH values measured at Whiteface Mountain, 20 

located in upstate New York in the northeastern U.S., consistent with reductions in regional NOx and SO2 emissions. Schwab 

et al. (2016) previously reported decreases in cloud water SO4
2-, NO3

-, NH4
+, and H+ concentrations at Whiteface Mountain of 

3.8%, 3.7%, 2.8%, and 4.3% per year, respectively, over the period 1994-2013. Over this twenty-year period the cloud pH 

increased approximately 0.4 pH units per decade. Cloud pH values have been measured at remote locations in the Luquillo 

Mountains on the Caribbean island of Puerto Rico since 1967. Mean values reported in several studies up through 2012 (Lazrus 25 

et al., 1970; Weathers et al., 1988; Asbury et al., 1994; Gioda et al., 2009; Gioda et al., 2011; Gioda et al., 2013; Reyes-

Rodríguez et al., 2009; Valle-Díaz et al., 2016) fall between 4.6 and 5.8, with no apparent trend. The pH values observed and 

the lack of a clear trend here are consistent with the fairly clean conditions in the region. Long-term records of cloud or fog 

composition are even rarer in Asia. Between the 1960s and 1990s in central Japan (Fig. 8), conditions are fairly acidic, with 

mean pH values mostly between 3 and 4. Measurements after 2000 suggest a possible increase in cloud pH in the region. Long-30 

term (unpublished) cloud pH measurements exist for a few locations in Japan and Taiwan; future anticipated publication may 

shed more light on acidity trends in the region. 
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Figure 9 examines changes in cloud and fog pH measured from 1980 to present in Europe. By combining data from multiple 

locations, a more complete assessment of pH trends on the continent is possible. While there is considerable variability within 

individual record years and between years, the data overall suggest a trend toward increased pH, with values at the present 

time typically about one pH unit higher than in 1980. This increase, also seen in the U.S., is consistent with decreasing 

European emissions of key acid precursors: SO2 and NOx. 5 

 

Given the obvious connections between clouds and precipitation, similarities in the temporal trends of cloud pH with pH trends 

reported in precipitation are worth noting. Vet et al. (2014) analyze a large set of precipitation measurements from around the 

world, considering precipitation composition and its temporal changes by region, with the analyses focused especially on the 

period 2000 – 2007. They report that changes in SO2 and NOx emissions in many regions of the globe result in measurable 10 

changes in sulfate and nitrate wet deposition that in turn produce changes in pH and H+ wet deposition. Vet et al. (2014) note 

that 75% of European sites and 85% of North American sites saw increases in precipitation pH over this time period. A more 

spatially heterogeneous pattern of changing precipitation pH is reported for Asia. Looking at a longer time period, Duan et al. 

(2016) report a decreasing average precipitation pH in China from 1999 – 2006 with pH increasing after 2006, a pattern that 

is the inverse of temporal trends in China’s SO2 emissions. 15 

5.2.3 pH variation across drops within a cloud/fog 

Up to this point, a single pH value for a cloud or fog has been discussed. In reality, each droplet within a fog or cloud is likely 

to have a unique composition. Within a cloud, droplets have a range of sizes as they grow, following initial cloud drop 

activation on CCN, by condensation (water vapor depositing on cloud drops) and coalescence (droplets typically of different 

sizes impacting and forming a single, larger drop). Cloud drops form when a critical supersaturation, associated with the critical 20 

(dry) diameter of the particle, is met following Köhler theory. Köhler theory indicates that larger CCNs activate at lower 

supersaturations and are therefore the first CCNs to be dissolved in droplets. A simple model representing the initial stages of 

condensational growth (Twohy et al., 1989) found that larger cloud drops activate on larger CCNs. Larger particles are typically 

mechanically generated and oftentimes are comprised of more alkaline components, including soil dust and sea salt. Smaller 

particles, typically made up of sulfate, nitrate, ammonium, and organic species, tend to be more acidic (Hoag et al., 1999). 25 

Given that the composition of the CCNs varies with size, then the fog/cloud solute composition will vary with drop size as 

observed in a variety of clouds and fogs (Noone et al., 1988; Ogren et al., 1989; Munger, 1989; Bator and Collett, 1997; Laj 

et al., 1998; van Pinxteren et al., 2016; Moore et al., 2004; Guo et al., 2012a; Herckes et al., 2013). 

  

Other cloud physical processes also affect the solute composition as a function of cloud drop size. Because of the larger surface 30 

area to volume ratio in smaller drops compared to larger cloud drops, water vapor condensation will favor more rapid growth 

(per unit volume) of small drops, quickly diluting their solute concentrations. Furthermore, droplets formed from smaller 

hygroscopic particles are much more diluted at the point of cloud droplet formation (CCN activation), compared to coarse 
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mode particles (e.g., Nenes and Seinfeld, 2003). Coalescence tends to occur among larger and intermediate cloud drops of 

sufficiently different sizes because of their different fall speeds. Thus, coalescence tends to mix the composition of the larger 

drops leaving the composition of very small drops less affected by this process. The same is true for mixed phase, ice-water, 

clouds, where falling ice crystals capture large cloud drops most effectively. Once drops or ice crystals are large enough to fall 

out of the cloud (i.e. precipitation as rain or snow), removal from the atmosphere (by wet deposition) of larger drops and their 5 

dissolved solutes and trace gases will occur. 

 

The rate of mass transfer of other trace components between the gas and aqueous (cloud/fog droplet) phases also depends upon 

the size of the droplet. The kinetic mass transfer coefficient often used to describe the mass transfer between the gas and 

aqueous phases in cloud chemistry models incorporates a representation of gas phase diffusion and interfacial mass transfer 10 

limitations and illustrates the dependence of mass transfer on droplet size, with the overall transfer rate related to the inverse 

of the droplet radius (or inverse of the square of the radius) (Schwartz, 1986). This size dependence of the mass transfer 

coefficient can contribute to mass transfer occurring to and from droplets at variable rates across the droplet size spectrum, 

sometimes leading to slower aqueous concentration increases in large droplets from the uptake of soluble gas phase species 

compared to smaller droplets (Ervens et al., 2003). 15 

  

Measurements of pH in cloud water samples collected by size fractionating cloud water collectors (Collett et al., 1994) revealed 

that pH was lower in small drops compared to large drops for clouds and fogs sampled at various locations in the United States. 

The variation of pH across the droplet size spectrum has important implications for aqueous-phase chemistry, especially for 

S(IV) oxidation to form sulfate (Seidl, 1989; Hegg and Larson, 1990; Pandis et al., 1990; Lin and Chameides, 1991; Roelofs, 20 

1993; Fahey et al., 2005; Gurciullo and Pandis, 1997; Reilly et al., 2001; Tilgner et al., 2013; Hu et al., 2019; Rao and Collett, 

1998), which increases the acidity of the drops. Bulk cloud pHF calculations (i.e. average characteristics, a common treatment 

in chemical transport models, Sect. 8.2) tend to underestimate the fraction of dissolved S(IV) in the form of SO3
2- (where S(IV) 

= SO2·H2O + HSO3
- + SO3

2-), which causes the underestimation of sulfate production rates (Fahey and Pandis, 2003; Hegg et 

al., 1992; Hoag et al., 1999; Moore et al., 2004; Roelofs, 1993). This is particularly true for S(IV) oxidation by ozone (O3), 25 

since the rate constant for SO3
2- + O3 is several orders of magnitude larger than for HSO3

- + O3. Barth (2006) found that pH 

variation across cloud drop sizes is also important for aqueous-phase formaldehyde oxidation forming formic acid, which, as 

a weak acid, can reduce the pH of the drops. Furthermore, Tilgner et al. (2013) demonstrate that a size-resolved multiphase 

chemistry treatment results in higher acidity production in smaller droplets leading to more acidic, smaller CCN particles after 

cloud processing while larger particles tend to be less acidic. 30 

 

Both the composition and pH variation across the droplet population lead to differences in reactivity for different size droplets. 

Not only does the composition of droplets vary across the size spectrum in terms of reactants/oxidants, but many reactions and 

effective Henry’s Law coefficients are pH dependent (Sect. 3). Additionally, droplets of different size settle and deposit at 
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different rates. In fogs, where the net effect of processing can be a cleansing of the atmosphere, larger droplets deposit faster 

than smaller ones, so those species enriched in larger droplets will be removed from the atmosphere faster than those species 

enriched in smaller droplets (Collett et al., 2001; Collett et al., 2008; Fahey et al., 2005). Nevertheless, most chemistry transport 

models still use a bulk water composition (i.e. average characteristics) to compute aqueous phase chemistry. Parameterizations 

informed by how bulk and size-resolved pH differ can be employed to better represent aqueous-phase oxidation within clouds 5 

(see Sect. 8.2). 

5.2.4 Need for future monitoring of cloud pH 

Although cloud and fog sampling is generally more challenging than aerosol collection, pH measurement of the collected 

cloud/fog water is simpler due to its much larger volume and much lower ionic strength. Over the past several decades, fogs 

and clouds have been sampled and their pH determined in areas around the globe. Depending on inputs of key acids and bases, 10 

cloud/fog pH has been observed to range from below 2 to greater than 7. Programs designed to target reductions in acid rain 

have had direct impacts on cloud and fog pH. Analysis of pH observations over the past 25 – 30 years reveals that cloud/fog 

acidity in many regions has decreased as anthropogenic emissions of the important acid precursors, SO2 and NOx, have 

decreased. A continued rise in cloud/fog pH is likely in many regions with planned, future decreases in NOx and SO2 emissions 

and stable or increasing NH3 emissions. Increases in cloud pH are expected to enhance the solubility of gas phase organic 15 

acids, potentially shortening their atmospheric lifetimes. 

 

Much remains to be learned about factors controlling cloud/fog pH in the atmosphere and the influence of this acidity on 

aqueous phase chemistry, including the aqueous phase uptake and oxidation of soluble gases to form secondary inorganic or 

organic aerosol. More detailed measurements of organic acids and bases, and their influence on cloud pH, will be increasingly 20 

important as sulfate and nitrate concentrations decline. Likewise, there is a need for more systematic monitoring of cloud and 

fog composition in key environments, as opposed to the more ad hoc past sampling approaches driven primarily by the 

objectives of process-based research. Because fogs and clouds are good integrators of atmospheric acids and bases in both the 

gas and particle phases, they may offer a convenient and practical basis for ongoing monitoring of atmospheric acidity. Future 

monitoring strategies should consider long-term monitoring at surface sites as well as periodic measurements of cloud 25 

composition from aircraft in order to enhance our understanding of acidity at higher elevations in the troposphere. Future 

measurements should also better document heterogeneity of acidity across individual drops within a cloud or fog, for example 

looking at the size-dependence of drop pH. 

6 Box-model guidance for the use of approximations and proxies of acidity for fine particles 

This section applies the concepts introduced in previous sections regarding the definition of pH (Sect. 2.1), approximations of 30 

pH (Sect. 2.3), and proxies of acidity (Sect. 4). Specifically, E-AIM, AIOMFAC-GLE, MOSAIC, ISORROPIA II, and 
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EQUISOLV II are used to carry out an intercomparison of pH predictions, approximations, and/or proxies using idealized and 

ambient fine particle compositions. Observations of gas–liquid equilibrium of semi-volatile inorganic compounds were 

obtained from published studies from North America, Europe, and China representing what can be found in typical regional 

and global model studies. 

6.1 Idealized scenarios 5 

6.1.1 Description of systems 

In this section, well-constrained acidity calculations were carried out by the models described in Sect. 2.6. The test cases 

involve the prediction of gas–liquid equilibrium of water and semi-volatile inorganic compounds as well as pH for a range of 

equilibrium RH. Three aerosol test systems are compared: (1) an ammonium- and sulfate-rich system, (2) a NaCl-rich, sea-

salt-like aerosol system, and (3) a nitrate- and ammonium-rich, but relatively sulfate-poor system. For each system, moderately 10 

acidic and highly acidic conditions were investigated, while covering seven RH levels: 99 %, 90 %, 80 %, 70 %, 60 %, 50 %, 

and 40 %. All calculations were for a temperature of 25 oC. Molar input concentrations were chosen to represent realistic 

atmospheric conditions, for example using gas phase ammonia concentrations of 1.2 – 25 ppbv typical for suburban to polluted 

air (Wang et al., 2015) and sulfate amounts resulting in ~ 3 – 8 μg m-3 inorganic aerosol mass concentration in the highly acidic 

cases. The input concentrations and conditions for the systems are summarized in Table 3. These input concentrations describe 15 

initial (non-equilibrium) total (gas + liquid) molar amounts per unit volume of air – except for water, which is constrained by 

the given RH. The thermodynamic models equilibrate the different dissolved species and volatile inorganic gases, including 

solving for the equilibrium dissociation degree of bisulfate (HSO4
-) in the liquid aerosol phase, the ammonia–ammonium 

equilibrium, and the aerosol water content. Mean molal activity coefficients for (H+, HSO4
-) or (H+, Cl-) cation–anion pairs are 

used in sulfate-rich and sulfate-poor systems, respectively, to estimate pH using pH±(H, X) (Eq. 7). The calculated pH for all 20 

systems are summarised in Tables S3 – S5. 

 

System 1: Water + (NH4)2SO4 + H2SO4 + NH3 

The first test system is an acidic aqueous ammonium + sulfate / bisulfate system. Input concentrations of the electrolytes 

include (NH4)2SO4 (99.9 % by mass or 50 % by mass for moderately and highly acidic cases respectively) and H2SO4 with a 25 

separate gas phase input of NH3 (mol m-3 air), all of which are then subject to change within a thermodynamic equilibrium 

calculation. No solid–liquid equilibria were considered. The highest pH values predicted are ~ 4 for the slightly acidic case at 

99 % RH, while the lowest pH values of ~ 0.53 to 0.88 were predicted for the highly acidic case at 40 % RH. 

 

System 2: Water + Na2SO4 + NaCl + H2SO4 + HCl 30 
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The second system represents an acidified sea-salt-like aerosol solution, in which Mg2+ was substituted by charge-equivalent 

amounts of Na+. A highly acidic and a moderately acidic variant were created by specifying different amounts of sulfuric acid. 

The input for this system includes HCl, some of which will exist in the gas phase. 

 

System 3: Water + (NH4)2SO4 + H2SO4 + NH3 + HNO3 5 

The third system represents an acidic, nitrate-rich and comparably sulfate-poor aerosol (XT > 2 in Eq. 9). It involves the gas–

liquid equilibration of the inorganic base NH3 and the acid HNO3, critical for establishing the equilibrium pH in the system. 

In the moderately acidic case, the highest pH values are ~ 2.5 at 99 % RH, while the lowest pH values were predicted for the 

highly acidic case at 40 % RH, with the pH ranging between ~ 0.91 and 1.60 depending on the model.  

 10 

6.1.2 Comparison of pH predictions and approximate measures of pH 

Results for systems 1, 2, and 3 are shown in Fig. 10 panels (a), (b), and (c) for moderately acidic and (d), (e), and (f) for highly 

acidic scenarios. The pH values predicted by those models accounting for the single-ion activity coefficient of H+ (E-AIM and 

AIOMFAC-GLE, solid symbols in Fig. 10) differ only slightly from each other. For example, the E-AIM and AIOMFAC–

GLE calculations for system 1 yield pH differences of 0.03 to 0.2 pH units for RH between 99 % and 80 %, while differences 15 

in magnitude of 0.21 to 0.35 pH units result for RH between 70 % and 40 %. Differences are expected to be smaller at high 

RH, where high water contents result in relatively high dilution and model–model differences in activity coefficients become 

smaller (see Sect. 2.5 for challenges at high ionic strength). However, this system illustrates that even at 99 % RH the H+ 

activity coefficients deviate from a value of one and are as small as 0.4. The pH predictions solely based on free H+ (pHF, Eq. 

6) frequently deviate from pH by 1 unit for the idealized scenarios considered here (Fig. 11). Predictions based on total H+ 20 

(pHT, Eq. 8) can differ from pH by up to 2 units. 

 

MOSAIC, EQUISOLV II, and ISORROPIA II use mean molal ion activities when computing the dissociation of bisulfate, the 

gas–liquid equilibrium of ammonia, and other equilibria (single-ion activity coefficients are not computed by these models). 

Therefore, pH predictions with such models require an approximation, for example the application of the mean molal ion 25 

activity approach of Eq. (7) for pH±. Although not a perfect approximation, pH± predictions can be very close to those carried 

out with the single-ion activity coefficient consideration. For example, for the moderately acidic case in system 1 (Fig. 10a, 

MOSAIC predictions differ from those by E-AIM by about 0.03 pH units at 99 % RH (0.07 pH units with respect to 

AIOMFAC–GLE), 0.3 pH units at 80 % RH and 0.46 pH units at 40 % RH (0.75 pH units with respect to AIOMFAC–GLE). 

For system 1, the MOSAIC  pH± value is generally lower than the pH from E-AIM and AIOMFAC–GLE. In the highly acidic 30 

system 1 case, the pH difference between MOSAIC and E-AIM is within 0.03 – 0.21 units, except for a 0.33 pH unit difference 

at 40 % RH. The ISORROPIA II model shows the largest variation in predicted pH over the 99 % to 40 % RH range, especially 

for the highly acidic case (Fig. 10d). For reasons of enhanced computational efficiency, ISORROPIA II uses look-up tables to 
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determine the water content at a specified RH for a given aerosol system and is run with a higher tolerance level for numerical 

convergence than, for example, AIOMFAC-GLE. These efficiency adjustments may contribute to a notable difference in 

predicted water content and resulting pH±, particularly at 99 % RH, compared to the predictions with more rigorous equilibrium 

solvers used by the other models. 

 5 

Generally, the observed differences in pH predicted by the thermodynamic models occur due to a combination of reasons. 

These include: (1) differing predicted liquid water content at given equilibrium RH (water activity); (2) the predicted degree 

of bisulfate dissociation, which depends on the aqueous phase composition and the values of the predicted activity coefficients 

(for H+, SO4
2-, and HSO4

-) involved in the equilibrium; (3) the gas–liquid partitioning of NH3 (or other volatile components 

for systems 2 & 3), and (4) the use of single-ion vs. mean molal ion activity coefficients in the calculation or approximation 10 

of pH. Reasons (1) – (3) affect each other directly, such that any inherent difference among the model equations, for example 

the temperature and ionic strength dependence of water and ion activity coefficients, will lead to a different equilibrium 

solution for the aqueous phase composition and pH. The interplay among composition-dependent activity coefficients and the 

gas–liquid or ion dissociation equilibria are non-linear and may amplify or dampen effects on predicted pH in a complex 

manner. Therefore, given the type of test computations with gas–liquid equilibria considered here, differences among models 15 

on the order of 0.05 – 0.2 pH units (or even larger at very high ionic strengths resulting at moderate to low RH) are to be 

expected. Within this range, pinpointing which of the models is closest to the truth is not possible, but in general, pH from 

models that calculate single-ion activity coefficients (and hence aH+) using a rigorous numerical approach are to be preferred 

over those that assume a unity H+ activity coefficient or those that assume a mean activity coefficient. Figure 10 indicates that 

the disagreement between model predictions typically increases with decreasing water activity (RH) for both moderately and 20 

highly acidic conditions. 

 

For system 2 (sea-salt like), all models predict the highest acidities (lowest pH) at high RH, with the pH values increasing with 

decreasing RH for both the slightly and highly acidic calculation variants (Fig. 10 b,e). This is because most of the HCl in the 

system is present in the gas phase, and this amount remains relatively constant over the whole RH range. Chloride ion activity 25 

in the aqueous phase rises as RH decreases and the aqueous solution becomes more concentrated. As a result, H+ activity 

decreases with decreasing RH to compensate and so maintain equilibrium with the roughly constant partial pressure of HCl(g). 

This rise in pH may be unrealistic compared to typical ambient conditions due to the high HCl and absence of ammonia in this 

test case. The pH predictions by E-AIM model III and AIOMFAC–GLE agree well (absolute differences of 0.01 to 0.06 pH 

units). The MOSAIC and ISORROPIA II predictions of pH in system 2 were carried out using the ions (H+, Cl-) for pH±. For 30 

the moderately acidic conditions, the MOSAIC and ISORROPIA-derived pH± are in good agreement with E-AIM only at 99 % 

RH (0.02 units difference), while larger deviations of 0.15 to 0.75 pH units occur for 90 % to 40 % RH. In this moderately 

acidic case, MOSAIC, ISORROPIA II, and EQUISOLV II tend to systematically overpredict the pH value towards lower RH 

relative to the other models. In the highly acidic case, the MOSAIC–E-AIM deviation is between 0.07 and 0.43 pH units at 
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RH < 99 %. Such deviations are linked to large variations in the molality-based H+ activity coefficients ranging from ~ 0.72 

at 99 % RH to > 30 at 40 % RH (see AIOMFAC–GLE values in Table S4), which lead to larger errors when mean molal 

activity coefficients are used to obtain pH±. This important influence of the H+ activity coefficient or its approximation via 

𝛾±(H+, Cl-) is exemplified by comparison of the ISORROPIA II predictions with E-AIM and the other models. The very high 

activity coefficients of H+ and Cl- predicted by E-AIM, which get larger as RH decreases, result in only very low molalities of 5 

H+ left in the aqueous aerosol. ISORROPIA II yields a mean activity coefficient of (H+, Cl-) that is very low compared to that 

of the other models, and varies little with RH, which means that the predicted HCl concentration in the aerosol is substantially 

higher. This results in the lower, and rather invariant, predicted pH± by ISORROPIA II for RH < 80 %. This example further 

indicates that assuming activity coefficients of unity in the computation of pHF based on free H+ molality (or for pHT) can lead 

to errors in this approximation of actual pH values in concentrated solutions (see also Sect. 6.2). 10 

 

The pH predictions by E-AIM model III and AIOMFAC–GLE agree relatively well for system 3, which contains mainly 

ammonium nitrate (Fig. 10 c,f), especially in the moderately acidic case. There, pH differences are 0.02 units at 99 % RH and 

about 0.10 – 0.12 units between 90 % and 40 % RH, with AIOMFAC–GLE predicting the slightly lower pH. In the highly 

acidic case, the differences are similarly low above 70 % RH, while they are ~ 0.18 to 0.25 pH units between 70 % and 40 % 15 

RH. The deviations between the E-AIM pH and MOSAIC, ISORROPIA II, or EQUISOLV II pH± are clearly larger than those 

between AIOMFAC–GLE and E-AIM. Even at high RH (> 80 %), the acidity estimates from ISORROPIA II and MOSAIC 

can differ from each other by almost 1 pH unit (Fig. 10f). Furthermore, the models using mean molal activity coefficients 

disagree from E-AIM and AIOMFAC-GLE at the highest RH where relatively good agreement is expected due to more dilute 

conditions. There are several reasons mentioned above that may be responsible for these deviations. The activity coefficient 20 

value (reason (4) above) contributes to the difference between MOSAIC/ISORROPIA II/EQUISOLV II and the E-AIM and 

AIOMFAC–GLE models, because the mean molal ion activity coefficient used as a substitute for 𝛾H+ in first three of these 

models can either over- or underpredict the single-ion 𝛾H+ depending on the solution composition. The differences in pH 

predictions by ISORROPIA II compared to those by AIOMFAC-GLE and E-AIM at 99 % and 90 % RH (Fig. 10 f) are mainly 

because ISORROPIA II yields free H+ molalities (𝑚H+) that are similar at the two RH levels, whereas for E-AIM they differ 25 

by a factor of four (higher RH, lower molality). This difference seems to be related to variation in the predicted equilibrium 

gas–aerosol partitioning of total H+: at 99 % RH the cumulative particle-phase mass concentrations of H+ + HSO4
- (~ total 

particle-phase H+) per unit volume of air predicted by E-AIM and ISORROPIA II are similar, but at 90 % RH ISORROPIA II 

predicts a factor of 6 less total H+ than E-AIM. At similar aerosol liquid water content, this yields a lower 𝑚H+ and higher pH 

than expected at 90 %. Elucidating detailed differences in acidity predictions between the thermodynamic models for nitrate-30 

containing systems like system 3 should be considered in future work. 
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Figure 11 compares the different pH estimation options proposed in Sect. 2.3 for use by models that do not predict the single-

ion activity coefficient of H+. All calculations (for the systems shown in Fig. 10 and discussed above) were carried out using 

AIOMFAC-GLE for consistency, and E-AIM is expected to yield similar results. The pH approximations based on total or 

free H+ molality imply the assumption of an H+ activity coefficient of unity. The comparison in Fig. 11 shows that these two 

options tend to show larger deviations from the molality-based pH predicted by AIOMFAC–GLE compared to the use of 5 

single ion activity coefficients. Both pHT and pHF approximate pH within about 0.5 pH units under highly dilute conditions 

with pH greater than about 3. However, pHT becomes a poorer approximation of pH when pH values decrease below 3, mainly 

due to the increasing concentrations of HSO4
-. In the case of the three systems compared here, pHF is overall a better estimate 

for pH than pHT, such that use of total H+ is not recommended for atmospheric aerosols. The suitability of pHF as an 

approximation may be influenced by the specific system being tested (e.g., RH condition, composition) and needs of the 10 

application.  

 

Overall, the AIOMFAC–GLE model results suggest that pH± (with (H+, HSO4
-) or (H+, Cl-) as the ions for the computation of 

𝛾±,HX

(𝑚)
 used in Eq. 7) is better than pHF or pHT in approximating pH.. Computation of the mean molal activity coefficient based 

on (2 H+, SO4
2-) leads to a better pH± approximation only in the moderately acidic case of system 1 (Fig. 11a) at RH < 90 %, 15 

while it is worse than using (H+, HSO4
-) in the highly acidic case of system 1 (open symbols Fig. 11a). Therefore, the use of a 

1:1 electrolyte for pH± is recommended. This mean molal activity coefficient approach is recommended when ISORROPIA II, 

EQUISOLV II, or MOSAIC are used as thermodynamic models for the calculation of aerosol properties.  

 

6.2 Ambient scenarios 20 

6.2.1 Description of datasets and calculations 

Datasets were selected to cover a broad range of acidity, temperature, RH, and species present that drive aerosol pH (Table 4). 

In addition to the major species NH4
+/NH3, SO4

2-, and NO3
-/HNO3, the dataset also contained variable concentrations of Cl-

/HCl and the non-volatile species Na+, Ca2+, K+ and Mg2+ (not shown in the table). A total of more than 7700 data points were 

available for evaluation (Nenes et al., 2019), with ~7200 data points having relative humidities above 35 % and spanning a 25 

temperature range from 252 to 305 K. Given that the MOSAIC box model required – in its current implementation – a manual 

setup of each input condition, a few data points were selected from the total available in each dataset to compare against the 

corresponding predictions from the other models. The points were selected to span the range of RH and sulfate amounts 

encountered in the datasets. Four data points per study location were selected, giving 20 total simulations from MOSAIC to 

compare against. The MOSAIC inputs are summarized in Supplementary Table S9 with results shown in Fig. S6. 30 
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Before thermodynamic calculations are carried out with E-AIM, AIOMFAC-GLE, MOSAIC, and ISORROPIA II, each data 

point was evaluated to ensure that the resulting thermodynamic solution was atmospherically relevant – i.e., with an alkalinity 

that does not exceed that of carbonate aerosol (e.g., CaCO3). Specifically, the charge-equivalent amount of cations is not 

allowed to exceed the abundance of anions which would result in considerable amounts of hydroxyl ion. In the case of E-AIM 

and AIOMFAC-GLE, the composition data were pre-processed and evaluated before input, while MOSAIC and ISORROPIA 5 

II evaluate the data automatically and issue error messages or apply adjustments to the input. The input composition data for 

each model consists of total amounts of Na+, K+, Mg2+, Ca2+, TNH4, TCl, and TNO3, in moles per unit volume of air. The 

prefix T emphasizes the fact that the final three of the amounts are totals of: NH4
+

(aq), NH3(aq), and NH3(g); Cl-
(aq) and HCl(g); 

and NO3
-
(aq) and HNO3(g). The amount of H+ needed to achieve charge balance is calculated from: 

 Z = [TNH4] + [Na+] + [K+] + 2[Mg2+] + 2[Ca2+] – [TCl] – [TNO3] – 2[TSO4],    (19) 10 

This equation differs from the strong acidity charge balance proxy introduced in Sect. 4 since it considers the total (gas + 

particle) amounts of semi-volatile acids and bases rather than exclusively the particle phase as in Eq. (13). If the value of Z is 

zero, then the system is charge balanced with all TNH4 present as NH4
+ (during a model calculation NH3 can still partition into 

the gas phase, but this will occur by dissociation of NH4
+). If the value of Z is greater than zero, there is an excess of cations, 

and a Z amount of TNH4 is assumed to exist as NH3, and the NH4
+ ion in the system is reduced to [TNH4 – Z]. If the value of 15 

Z is less than zero, there is an excess of anions even when all TNH4 is present as NH4
+. In this case, an amount of H+ equal to 

–Z is added to the system. For E-AIM and AIOMFAC, the calculation of Z and adjustments specified above yield the starting 

point for the calculation. The amounts of NH4
+

(aq), NH3(aq), NH3(g), HSO4
-
(aq), OH-

(aq), HCl(g) and HNO3(g) in the system at the 

specified RH and temperature are determined by solving the relevant equilibrium equations. In MOSAIC, the excess Cl- and 

NO3
- anions are transferred to the gas phase as HCl and HNO3, in that order, while any excess SO4

2- in the particle phase is 20 

balanced by adding H+ to the system. The adjusted gas- and particle-phase concentrations are then used as the initial conditions 

for further dynamic gas–particle partitioning. In the case of ISORROPIA II, the aerosol is required to be more acidic than 

aqueous CaCO3 at given RH, so Z should be less or equal to zero. 

 

The presence of non-volatile cations is handled slightly differently by the models. When calcium is present in ISORROPIA II, 25 

the code first forms CaSO4 as a precipitate (Fountoukis and Nenes, 2007). If there is any remaining Ca and its mole-equivalent 

exceeds those of SO4
2-, NO3

-
, and Cl- combined, an error message is noted and the code assumes that the excess Ca2+ is in the 

form of CaCO3 and the pH of dissolved CaCO3 is prescribed at the given RH (see Sect. 7.1 for a discussion of carbonate 

chemistry and pH). If all Ca precipitates out as CaSO4, then the ISORROPIA II code examines if the mole-equivalents of Na+, 

K+, and Mg2+ exceeds that of the NO3
-, Cl-, and remaining SO4

2- combined. If that is the case, an error message is issued, and 30 

the excess cations are ignored. Otherwise, the code then uses the inputs of Na+, free Ca2+, free SO4
2-, etc. to calculate the pH, 

ALWC, and semi-volatile partitioning of TNH4, TCl, and TNO3. A similar approach is taken in MOSAIC, which assumes that 

the maximum possible amount of CaSO4 precipitates out over the full RH range, and any excess Ca after forming Ca(NO3)2 

and CaCl2 is assumed to be in the form of CaCO3. MOSAIC does not explicitly treat K+ and Mg2+, which are instead represented 
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by equivalent moles of Na+. Both E-AIM and AIOMFAC also assume that the maximum possible amount of CaSO4 

precipitates out and is not considered in the gas–particle partitioning calculations for RH < 98 %. Furthermore, E-AIM does 

not consider Ca2+, K+, and Mg2+ in the calculations, but instead uses a charge-equivalent amount of Na+. For AIOMFAC-GLE 

model input, the electroneutral set of ions is mapped to a set of representative electrolyte components. To facilitate 

intercomparison among the models over a wide range in RH, aside from the consideration of the precipitation of solid CaSO4, 5 

the models were run using the assumption of the aerosol phase being present as an aqueous electrolyte solution, potentially 

supersaturated with respect to certain crystalline salts (also referred to as metastable mode in ISORROPIA). Since this 

assumption becomes invalid at low RH, the statistical evaluation of model–model differences and pH approximations was 

restricted to the RH range above 35 %, while model calculations were carried out with the supersaturated solution assumption 

including data points at lower RH.  10 

 

During the calculation of the equilibrium composition and corresponding aerosol pH by ISORROPIA II here, all non-volatile 

cations are converted into their mole-equivalent sodium concentrations. Also, data where non-volatile cation concentrations 

exceed what is required to neutralize the amount of anions (sulfate, nitrate, and chloride) present are not considered. All models 

were allowed to predict partitioning according to their equations and property databases, therefore differences in pH and 15 

activity coefficients are a convolution of all differences in the underlying thermodynamic treatment (equilibrium constants, 

numerical solver tolerance thresholds, calculated activity coefficients, and aerosol water content). A comprehensive accounting 

of the effects of these differences will be the focus of future work – and here we present only the differences in pH between 

models and their different implementations of pH approximations. 

6.2.2 pH and its approximations  20 

The pH values predicted by AIOMFAC-GLE (Fig. 12a) and E-AIM (Fig. 12b) for the combined datasets show both the wide 

range of pH calculated for each of the datasets as well as variability in the results from the two models. E-AIM and AIOMFAC-

GLE agree in their trends but differences increase as RH decreases (as the aqueous aerosols become more concentrated). 

Differences between the models are usually within 0.5 pH units. The most acidic systems are SOAS (Centreville, AL) in the 

southeastern U.S. (pH range: ~ -2 to 2) and WINTER for measurements aloft in the northeast U.S. (pH range ~ -4 to 2), which 25 

in part is related to the very low NH3 concentrations and lack of non-volatile cations. The extremely high acidity branch of 

WINTER data is related to measurements carried out aloft, where temperatures as low as 252 K were encountered. The low 

humidities in that environment decrease aerosol water to very low levels (Guo et al., 2016). The CalNex dataset is characterized 

by intermediate pH values, ranging between 0 and 2.5, mostly driven by higher NH3 levels and presence of NVCs. The Tianjin 

and Cabauw datasets are characterized by the largest concentration of NH3 and NVCs, and for this reason have the highest pH, 30 

reaching a value of 5. 
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In order to understand the uncertainty introduced by using pHF or pH± instead of model-predicted pH, model results are 

examined for each campaign separately. Figure 13 presents the differences between pH predictions and approximations for the 

Cabauw dataset. Calculations of pH with AIOMFAC-GLE (left column) using the various approximations (pHF, pH±) has 

notably different structure than that using E-AIM (right column). In both models, the difference between pH± and pH rarely 

exceed 0.5 pH units, especially for RH above 60 %; pHF is characterized by larger differences, but still mostly within one pH 5 

unit – and reflects the effect of the log10 (γH+) contribution which is largest at the lowest RH. These results are consistent with 

prior studies that assume that the activity coefficient of H+ is equal to unity for the purpose of pH estimation (but not for solving 

the thermodynamic equilibria) (Song at al., 2018). 

 

Results in Fig. 13 suggest that using a H+–X- ion pair and applying an activity coefficient in the calculation of pH± gives less 10 

scatter and absolute bias across the dataset than using pHF within a given model framework (E-AIM or AIOMFAC-GLE). The 

ion pair that leads to the best pH± estimate varies between AIOMFAC-GLE and E-AIM with H+–Cl- and H+–HSO4
- showing 

overall the most promise. The H+–NO3
- pair tends to exhibit a large scatter and systematic bias in the case of E-AIM, while it 

shows the least scatter and bias among all ion pairs in the case of AIOMFAC-GLE. Repeating this exercise for all the other 

datasets (Supplementary Figures S2 – S5) partly supports these observations – but the pattern and magnitude of the differences 15 

(approximate pH minus pH) vary according to the aerosol compositions characteristic of each dataset. For the WINTER data 

in particular (Fig. S5), biases much larger than 0.5 pH units can be seen at lower humidity (which is especially notable for E-

AIM). These deviations can be attributed to the value of the activity coefficient of H+, which becomes very large for the ultra-

high ionic strengths characteristic of the WINTER aerosols at intermediate and low RH. The H+ activity coefficient, which 

exceeds 10 and can reach up to 100, tends to decrease the pH between 1 and 2 units beyond what is expected from pHF (Fig. 20 

S5 b). The results from AIOMFAC-GLE and E-AIM in Figure 13 and supplementary Figs. S2 – S5 show that the calculated 

values of the pH approximations differ between the models in quite complex ways, largely reflecting the different treatments 

of the activity coefficients. These are reflected both in the value of γH+, and secondary effects on liquid water uptake, ion 

dissociation and semi-volatile partitioning.  

 25 

Both ISORROPIA II and MOSAIC nominally output pHF (and can be modified to output pH±); using approximations (pHF or 

pH±) in place of pH introduces uncertainty. ISORROPIA-predicted pH approximations as a function of relative humidity 

compared to AIOMFAC-GLE (left column) and E-AIM (right column, Fig. 14) show that the deviation between pHF and pH 

increases as the humidity decreases, with the largest deviations occurring for the extremely acidic aerosol dataset of WINTER. 

However, for most cases, relative humidities above 60 % are correlated with a deviation from pH that is less than a unit (smaller 30 

differences are seen for AIOMFAC-GLE than E-AIM). Comparisons of MOSAIC calculations, against the predictions from 

ISORROPIA II for the 20 selected cases (Table S9) indicated the two models produce pH± (H+, NO3
-), pH± (H+, Cl-), and pHF 

metrics that are highly correlated (r2 ≥ 0.96) with minimal offset (regression slope within 0.11 pH units of 1:1 line) between 
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the models (Fig. S6). Using the H+–NO3
- ion pair to express pH± from ISORROPIA provides the closest agreement with pH if 

AIOMFAC-GLE is used as a reference.  

 

The pH errors between ISORROPIA II and AIOMFAC-GLE/E-AIM for all the datasets combined are summarized in Table 

5. Using pH± (H+, NO3
-) as a pH approximation shows the lowest RMSE and mean bias error in the case of AIOMFAC-GLE 5 

predictions when considering all field data sets, followed by pH± (H+, Cl-) as the next best approximation. However, when 

considering E-AIM, the evaluation of all data sets shows that pH± (H+, Cl-) and pH± (H+, HSO4
-) are favored over pH± (H+, 

NO3
-), as pH± (H+, NO3

-) shows an RMSE of ~ 1 for the WINTER data, which was characterized by the lowest pH values. The 

comparison between thermodynamic models for the performance of pH proxies include a convolution of numerous errors in 

the cases of ISORROPIA II, MOSAIC, and EQUISOLV II; therefore, they cannot be used to determine a priori which choice 10 

of anion is best for use in pH± (H, X). Some of the pH± (H, X) variants also show a larger dependence on RH than others, with 

the largest deviations from pH typically found towards the problematic region of lower RH (< 50 %); see Fig. 13. Based on 

the combined evaluations of pH approximations by E-AIM and AIOMFAC-GLE against their own pH predictions (no model–

model bias incurred), pH± (H+, Cl-) has the best agreement for the wide pH range examined, although any of the pH± variants 

work sufficiently well, especially at RH > 60 %. 15 

 

6.2.3 Comparison of proxies to aerosol pH 

Several studies have compared certain proxies of acidity (Sect. 4, see also Table 2) to thermodynamic model predictions of 

pHF (Guo et al., 2015; Guo et al., 2016; Hennigan et al., 2015; Lawal et al., 2018; Murphy et al., 2017; Winkler, 1986). 

Predictions of pHF using the semi-volatile partitioning approach (Eq. 18) were evaluated in Mexico City (Hennigan et al., 20 

2015), but more commonly, due to the lack of direct aerosol pHF measurements for comparison, semi-volatile species 

partitioning is often used as a critical check of thermodynamic equilibrium model assumptions and predictive skill (Guo et al., 

2016; Guo et al., 2017a; Guo et al., 2015; Nah et al., 2018). In Fig. 15, comparisons from the literature are extended to include 

more locations, representing diverse chemical regimes, source influences, and meteorological conditions. Proxies introduced 

in Sect. 4 are compared to ISORROPIA II-predicted values of aerosol pHF using gas + aerosol inputs for four locations 25 

(southeast U.S. in summer, California in summer, northeast U.S. in winter, and Tianjin in China in summer; Table 4).  

 

Figure 15 shows that the cation/anion equivalent ratio is fundamentally limited as a proxy for aerosol pHF. The assumption 

applied throughout the literature is that a cation deficit (anion equivalents > cation equivalents excluding H+; ratio < 1; see 

Sect. 4 and Table 2) indicates acidic particles, an anion deficit (ratio > 1) corresponds to alkaline particles. Consequently, a 30 

molar equivalent ratio near unity represents near-neutral conditions. Figure 15 shows clearly that these interpretations of the 

molar ratio are not valid. For a given cation/anion equivalent ratio, predicted pHF values vary by 3 – 4 pHF units. All of the 

data with cation/anion equivalent ratios near unity are predicted to be quite acidic, with pHF < 3 (and often < 1). The behavior 
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in Fig. 15 is consistent with observations at locations in Canada (Murphy et al., 2017) and more broadly across the U.S. (Lawal 

et al., 2018). Even the aerosol predicted by the cation/anion equivalent ratio to be alkaline are actually quite acidic, with pHF 

< 3 for almost all of the data where cation/anion > 1. Even if pHF underestimates pH by 2 units (the maximum underestimation 

in Fig. 14 a,b) particles would still generally be considered acidic. Common simplifying assumptions associated with the molar 

ratio method that were discussed in Sect. 4.1 (e.g., considering only NH4
+–NO3

-–-SO4
2- or NH4

+–SO4
2-) were shown by Guo et 5 

al. (2018) to be especially problematic in estimating pHF. Taken together, these results support prior recommendations against 

use of equivalent ratios as surrogates for particle acidity (Guo et al., 2018b; Hennigan et al., 2015; Lawal et al., 2018; Shi et 

al., 2017).  

 

Estimates of particle acidity based on an ion charge balance are similarly problematic (Fig. 15a). A charge balance of zero, 10 

which corresponds to a cation/anion equivalent ratio of unity, wrongly implies nearly neutral aerosols according to this proxy. 

Excess cations (negative charge balance, Eq. 13, Fig. 15a), which corresponds to cation/anion equivalents ratios > 1, wrongly 

implies alkaline conditions. Figure 15 agrees with prior recommendations against using the charge balance as a proxy for 

particle acidity (Guo et al., 2015; Hennigan et al., 2015; Murphy et al., 2017; Winkler, 1986). The equivalent ratio and charge 

balance methods both suffer from the same deficiencies, which include: sensitivity to limitations in the precision and accuracy 15 

of measurements, not accounting for the buffering effects of many species or the modulating effects of aerosol water, and the 

non-ideal nature of concentrated aqueous particles, which necessitates the computation of species activity coefficients. As 

noted above, some usages of strong acidity, a once commonly used parameter to access aerosol acidity health impacts is 

essentially an ion balance and suffers from similar limitations. A further limitation of the charge balance proxy is the use of an 

extensive quantity (H+
air) to represent an intensive property (pH) of an aerosol distribution, which points to a major design flaw 20 

of that approach. 

 

To our knowledge, Fig. 15c represents the first quantitative comparison between GR (the gas ratio proxy, Table 2) and 

predictions of aerosol pHF. Based on the thermodynamics of gas–particle partitioning, the GR (and adjGR) relationship to pH 

follows a sigmoidal curve that similarly defines the partitioning of semi-volatile species sensitive to pH (e.g., see Fig. 5 in 25 

Pinder et al., 2008a for an illustration of how nitrate PM is a function of GR and adjGR). For the northeast U.S. and California 

data, the GR follows this sigmoidal behaviour and is strongly correlated with predicted pHF. Increasing GR corresponds to 

increasing pH, although the slope and intercept of the two data sets differ substantially since they lie on different areas of the 

curve. In the southeast U.S., the GR results show much larger absolute values than the other locations, since HNO3 

measurements were unavailable and the aerosol nitrate values were used as input for TNO3 (Guo et al., 2015). The GR in 30 

Tianjin shows no relationship with pHF (slope = 0.03, R2 = 0.01), even though the data included complete aerosol and gas 

phase measurements. Although the GR may be highly correlated with pHF in some environments, it is not advisable to use the 

GR as a pHF proxy given the variability observed in Fig. 15. For example, at a given GR, the pHF range spans ~1 – 4 pH units 

while the coefficient of determination ranges from 0.01 to 0.75 across the four locations. This suggests that a posteriori 
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knowledge of the pHF–GR relationship is required to use the GR as a proxy for pH. The GR requires aerosol inorganic 

composition and measurements of both gas-phase NH3 and HNO3. Therefore, with such a data set, pHF (or pH) can be predicted 

directly with one of the thermodynamic equilibrium models, which is the recommended approach.  

 

A fundamental limiting factor in using the GR as a proxy for pH is its assumptions about free ammonia. The GR method 5 

assumes that under ammonia-poor conditions, where TNH4 is less than 2×TSO4, the aerosol is acidic and TNH4 will partition 

predominantly to the aerosol phase (Seinfeld and Pandis, 2016). Similarly, the method assumes that ammonia-rich conditions, 

which exist when TNH4 is greater than 2×TSO4, correspond to largely neutralized aerosols and significant gas-phase NH3 

(Seinfeld and Pandis, 2016). While ammonia-rich particles are less acidic in terms of charge balance (Eq. 13) than ammonia 

poor particles (all else being equal), a plot of pH vs. GR (Fig. S1) shows that even in ammonia-rich conditions with a high GR, 10 

particles do not approach pH near 7. The aerosol is strongly acidic (pH < 1) under ammonia-poor conditions, and a small but 

significant fraction of TNH4 can exist in the gas phase even though the pH is low. The fraction of TNH4 in the gas phase (εNH3) 

approaches 0.1 while the GR < 0, (corresponding to TNH4 < 2×TSO4). Likewise, the aerosol remains strongly acidic even 

under ammonia-rich conditions, where TNH4 exceeds the amount required to neutralize all of the TSO4 (GR > 0). Even when 

the amount of TNH4 greatly exceeds all available TNO3 and TSO4, the aerosol remains strongly acidic (approaching a predicted 15 

pH of 3.7 as the GR approaches 50 in Fig. S1 example). For such high gas ratios the majority of TNH4 (~0.95) resides in the 

gas phase. This phenomenon is somewhat counterintuitive: it seems logical that gas-phase ammonia would react completely 

with acids as strong as HNO3 and H2SO4 until they were fully neutralized. However, the volatility of NH3 is an important 

factor that balances the extent to which it reacts with acidic components in the aerosol phase. This explains the insensitivity of 

aerosol pH in the southeast U.S., even though sulfate levels are also decreasing while ammonia has remained steady or even 20 

increased (Weber et al., 2016).  

 

Aerosol pH calculations based on partitioning of HNO3 and NH3 between the gas and aerosol phases show mixed results when 

compared to predictions by thermodynamic equilibrium models (Fig. 15d-f). In the southeast U.S., the ISORROPIA and NH3 

partitioning-derived pHF values are moderately correlated, with nearly all values within 1 pHF unit of the 1:1 line (Fig. 15f). 25 

In this case, the pH calculated from NH3 partitioning was systematically lower than the thermodynamic model predictions, a 

result that was also observed for predictions in Mexico City (Hennigan et al., 2015). In California, the pHF calculations from 

NH3 and HNO3 partitioning generally did not agree with the thermodynamic model predictions. The model-predicted pHF was 

higher (avg. pHF = 2.67) than the calculation from NH3 (avg. pHF = 1.64) and similar to the one based on HNO3 partitioning 

(avg. pHF = 2.45). Although the pHF calculations from NH3 and HNO3 partitioning lie in the same general area of the graph in 30 

Fig. 15, they were inversely correlated with each other (r = -0.76, not shown), an observation that requires further investigation 

and likely future studies to reconcile. Keene et al. (2004) also observed disagreement between the pHF calculations from NH3 

and HNO3 partitioning. In the northeast U.S., the phase partitioning of HNO3 gave mixed results, as well. At times, the 

predicted and calculated pHF values agreed well, while at other times there were differences of ~2 – 3 pHF units. The greatest 
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discrepancies were observed at the lowest aerosol liquid water contents (mass fraction basis, Fig. 15e), a relationship also 

identified by Guo et al. (2016) and consistent with the idea that activity becomes harder to predict at lower water content (Sect. 

6.1, Fig. 10). Potential problems with pHF calculated from semi-volatile species partitioning have been discussed (Keene et 

al., 1998; Keene and Savoie, 1998; Young et al., 2013). The approach requires measurements of at least one semi-volatile gas-

phase species and the aerosol inorganic composition, which are input into a thermodynamic model to get the ALWC, a required 5 

component to calculate condensed-phase activities in Eq. 16 and needed to use typical Henry’s law coefficients in Eq. 17 and 

18. Therefore, given the need for all these inputs, thermodynamic models should be used to directly predict pH or one of its 

approximations.  

 

6.3 Recommendations on the calculation of pH by approximation and proxy 10 

Where single-ion activity predictions are not available, the comparison based on the ambient datasets used here suggests that 

the best pH approximation is obtained by using Eq. 7 for pH±. However, identifying a universal H+–anion pair that best 

reproduces pH appears to be model-dependent with only pH± (H+, NO3
-) having the potential to be a worse estimate of pH than 

pHF (in the case of E-AIM). Although, on average, all of the approximate measures of pH compare similarly against pH from 

AIOMFAC-GLE and E-AIM, there is a strong dependence of the bias on RH that is mitigated through the use of pH± (as 15 

opposed to pHF), and for this reason it is the recommended approach when ISORROPIA, MOSAIC, EQUISOLV II or similar 

models are used for calculations of pH in the future. Low RH also coincides with time periods where models (both box and 

chemical transport models) face challenges in accurately predicting gas–particle partitioning (e.g., Guo et al., 2016; Kelly et 

al., 2018) thus motivating a need to properly characterize acidity under those conditions. 

 20 

Based on the analyses and discussion presented in this section and Sect. 4, it is strongly recommended that proxies are avoided 

in the analysis of particle acidity. Some of the proxies correlate with pHF, even strongly at times, although this varies greatly 

with ambient conditions (T, RH), composition, and concentration. This leads to large inconsistencies across locations, and 

even within a given observational data set. Often, the proxies are not able to qualitatively distinguish acidic from neutral 

particles or to capture qualitative trends in acidity (e.g., pH increases or decreases with a given indicator). A detailed 25 

comparison with thermodynamic equilibrium model predictions constrained with aerosol and gas inputs is required to identify 

the periods and locations where a proxy may perform adequately; defeating the purpose of using the proxy. With the open 

access and web-based availability of validated aerosol thermodynamic equilibrium models (Sect. 2.6), scientists are 

encouraged to use one or more of these tools in future studies of particle acidity.  
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7 Role of particle size, composition, and mass transfer kinetics in pH heterogeneity 

Traditionally, fine particle pH is calculated assuming equilibrium and a uniform distribution of species across all particles 

(e.g., Sect. 5.1 and 6). Here, the role of differences in particle size, mass transfer, and composition (including presence of 

organic species) in driving pH in a population of particles is highlighted. 

7.1 Role of particle size and composition 5 

The pH of aerosols varies with particle size because of the differences in the chemical composition, hygroscopicity, and gas–

particle equilibration time scales between fine and coarse particles. Fine-mode aerosols are produced by new particle formation 

and growth but are also directly emitted from anthropogenic as well as natural sources (dust and sea salt). At least some of the 

chemistry that initiates new particle formation, and thus drives low pH for the smallest sizes, involves sulfuric acid and acid-

base reactions (Kulmala et al., 2004). Anthropogenically-derived fine mode aerosols are typically composed of inorganic salts, 10 

organic species, and black carbon and are generally acidic. Fine-mode pH is sensitive to the relative amounts of non-volatile 

cations (if any), sulfate, nitrate, and ammonium present in the particle phase (Fig. 2) and continuously responds to the changing 

concentrations of their gas-phase counterparts—H2SO4(g), HNO3(g), and NH3(g) —as well as the ambient RH and 

temperature.  

 15 

In contrast, coarse mode aerosols mainly consist of sea-salt and dust particles directly emitted to the atmosphere as a result of 

wind stress on the surface of the oceans and arid land, respectively. Sea salt and dust contain significant amounts of non-

volatile cations such as Na+, Ca2+, Mg2+, and K+
, whereas the dominant cation in fine mode particles is typically semi-volatile 

ammonium. Dust, and more generally non-volatile cations, can also originate from mechanical wear or disturbances associated 

with anthropogenic activity such as road, residential, and commercial construction as well as brake wear and road salt 20 

application (Philip et al., 2017; Lough et al., 2005; Kolesar et al., 2018). Both fossil fuel and biomass combustion also emit 

non-volatile cations in the PM2.5 size range (Reff et al., 2009). Whether or not non-volatile cations influence pH depends on 

their mixing state with deliquesced particles. In other words, particles of the same size but different compositions should be 

treated as external mixtures when calculating their pH. For example, equilibrium model analysis of bulk ambient aerosol 

observations by Guo et al. (2016) indicate that the refractory ions were externally mixed from PM1 because including those 25 

ions caused deviation between the predicted and measured nitrate partitioning. A small fraction of non-volatile aerosol 

components is sometimes present in the fine mode and tends to reduce acidity. For example, K+ associated with biomass 

burning has been shown to cause higher pH compared to cases with very low K+ levels (Bougiatioti et al., 2016).  

 

Sea-salt and dust are naturally basic or alkaline, as they contain carbonates. The pH of ocean water (≈ 8) is relatively uniform 30 

and sets the pHF for unprocessed sea-salt emissions (Keene et al., 1998). The pH of fresh airborne dust is more difficult to 

assess due to the high degree of heterogeneity in composition and its hygroscopicity; however, it is very likely that ambient 
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dust is not acidic (has pH > 7). Sea salt and dust aerosol can initially maintain high pH (above 5 and close to 7) due to the 

presence of carbonate (CO3
2-/HCO3

-). However, the uptake of acid gases such as SO2(g), HCl(g), HNO3(g) and H2SO4(g) result 

in a chemical reaction (Usher et al., 2003) such as: 

CO3
2-(aq) + 2H+(aq) --> CO2(g) + H2O(l)       (R4)  

Reaction R4 consumes H+ produced from the uptake of acid gases (e.g., HNO3(g) --> H+(aq) + NO3
-(aq), Reaction R1 and R2 5 

combined), allowing the aerosol to maintain its high pH until the carbonate has been depleted via conversion to CO2(g). Once 

the carbonate has been depleted (a process not treated by current equilibrium models, Sect. 2.6), the dust and sea-salt aerosol 

can become acidified by continued uptake of acid gases. Observations of aged sea salt and dust show an internal mixture with 

sulfate, nitrate, and chloride due to such reactions (Fairlie et al., 2010; Kirpes et al., 2018; Tobo et al., 2010). Freshly emitted 

sea-salt aerosol is in the liquid state while Ca-rich dust particles are emitted as solids. Consequently, acidification of sea salt 10 

aerosol is thought to proceed more efficiently due to relatively high mass accommodation coefficients (about 0.1 or higher) 

for condensing acids on liquid particles compared to solid dust aerosol with much lower uptake coefficients ranging between 

10-4 and 10-3 (Alexander et al., 2005; Fairlie et al., 2010). The increase of aerosol water with increasing RH and the 

solubilization of gaseous HCl that is present in the marine boundary layer (due to acid displacement reactions) has also been 

suggested as the reason for increasing acidity of sea-salt aerosols with increasing RH and altitude in the marine environment 15 

(von Glasow and Sander, 2001). Further acidification of sea salt aerosols occurs via displacement of Cl- as HCl(g) due to 

reactions such as (Mcinnes et al., 1994; Zhao and Gao, 2008): 

HNO3(g) + Cl-(aq) --> HCl(g) + NO3
-(aq)       (R5) 

H2SO4(g) + 2Cl-(aq) --> 2HCl(g) + SO4
2-(aq)      (R6) 

Although these reactions do not directly produce additional H+ ions, the resulting H+ molal concentration increases due to a 20 

decrease in the overall aerosol water content in particles containing NaNO3 and Na2SO4, which are less hygroscopic than NaCl. 

 

Overall, atmospheric particle pH is size dependent and generally higher for coarse mode particles due to variations in inorganic 

composition with particle size. Differences as large 4 pH units have been reported between fine and coarse particles (Fang et 

al., 2017; Young et al., 2013). Bulk PM1 and PM2.5 acidity is more similar than fine vs coarse mode acidity (pHF within 1 – 2 25 

units, e.g., Bougiatioti et al., 2016; Guo et al., 2017b), but submicron (diameter < 1 μm) particles still show higher acidity than 

bulk PM2.5. The reason for this is the strong enrichment of aerosol with NVCs from dust and sea salt at the larger sizes (even 

in the fine mode) and role of sulfate in new particle formation and surface-area driven condensation at the small sizes (Fig. 2). 

Significant pH changes can occur in the 1 to 2.5 μm size range (Fang et al., 2017; Ding et al., 2019). The size dependent pH is 

also seen for sea salt aerosol (Fridlind and Jacobson, 2000) as well as in urban aerosols in China (Ding et al., 2019) where the 30 

fine mode is consistently 2-3 pH units lower than the coarse mode. The implications of this acidity gradient are considerable, 

for metal solubility and their impacts on public health and ecosystem productivity, as well as chemistry and semi-volatile 

partitioning of pH-sensitive species. 
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7.2 Role of mass transfer 

Acidity is dependent on particle composition, and particle composition can be affected by mass transfer rates that vary by 

particle size. For fine mode particles, the characteristic time for particle growth or shrinkage from one equilibrium state to 

another after changes in RH is short enough (< 1 s) to justify the assumption of thermodynamic equilibrium with respect to 

water uptake (Pilinis et al., 1989). In comparison, equilibration of semi-volatile components (HNO3, HCl, and NH3) with the 5 

fine mode ranges from 20 min or less (Guo et al., 2018b) up to 10 hours (Meng and Seinfeld 1996; Fridlind and Jacobson, 

2000). In the case of coarse mode aerosols or large accumulation mode aerosols, mass transfer rates for semi-volatile 

components can lead to equilibration time scales of several hours. Hanisch and Crowley (2001), for example, found vapors of 

HNO3 reach equilibrium through uptake by sea spray aerosols of 1-3 μm diameter within 3-10 h. In another study of remote 

marine aerosols, equilibrium in the coarse sea salt mode is reached quickly for NH3, but HNO3 and HCl require much longer 10 

times, of the order of 10 – 300 hours (Fridlind and Jacobson, 2000). In this case, relatively small amounts of TNH4 partition 

to the coarse sea salt particles compared to much larger amounts of HNO3 needed to displace HCl to reach equilibrium. These 

time scales are comparable or can even exceed the lifetime of the particles, implying that some particles can be removed by 

deposition before equilibrium is reached (Fridlind and Jacobson, 2000). In a subsequent theoretical study, Jacobson (2005a) 

found that under at least some conditions equilibrium can be reached within less than 1 h by large particles (< 6 μm) and within 15 

15 min by particles < 3 μm, while in several other cases coarse particles took longer to reach equilibrium. Thus, aerosols of 

different sizes within the fine and coarse modes may not always be in mutual equilibrium due to mass transport limitations, 

and equilibrium alone may not uniquely determine the distribution of condensed semi-volatile gases across the particles of 

different sizes (Wexler and Seinfeld, 1990, 1992).  

 20 

Given the above, both mass transport and thermodynamics must be considered to accurately predict the distribution of semi-

volatile gases and the associated aerosol pH across the entire aerosol size spectrum. However, simulating mass transfer and 

thermodynamics for the size- and composition-distributed aerosol is computationally challenging due to numerical stiffness. 

There are two main sources of numerical stiffness. The first source arises from the large differences in the mass transfer time 

scales for particles of different sizes. Additional stiffness and non-linearity are introduced by H+ ions in partially and fully 25 

deliquesced aerosols. In such cases, the H+ ion molal hydrogen ion concentration (𝑚H+) plays a crucial role in the determination 

of equilibrium aerosol phase state as well as in the determination of equilibrium gas-phase concentrations of HNO3, HCl, and 

NH3 at the particle surface for computing their driving forces for mass transfer. The characteristic time scale for H+ ions is 

quite short relative to other species, especially under “acid-neutral” or “sulfate-poor” conditions, where the pseudosteady-state 

concentrations of H+ ions are two or more orders of magnitude smaller than the sum of all other cations (Sun and Wexler, 30 

1998). Since semi-volatile species in different particles of different sizes are coupled via the gas phase, the numerical solver 

for mass transfer would have to take time steps on the order of the shortest timescale to ensure accuracy for all the species 

across the entire aerosol size distribution. Such small time-steps are computationally prohibitive for common chemical 
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transport model applications. Several attempts have been made over the past 20 years to reduce the stiffness of the system of 

nonlinear ordinary differential equations that describe the multicomponent, size-distributed mass transfer problem so that it 

could be efficiently solved (Capaldo et al., 2000; Hu et al., 2008; Jacobson, 1997; Jacobson, 2002, 2005a; Jacobson et al., 

1996; Pilinis et al., 2000; Sun and Wexler, 1998; Zaveri et al., 2008; Zhang and Wexler, 2006). 

 5 

Here, we illustrate the time-evolution of size-distributed pH using the sectional MOSAIC box model with 60 size bins for a 

scenario (test case 14 in Zaveri et al., 2008) in which fine mode aerosol composed of (NH4)2SO4 and coarse mode aerosol 

composed of NaCl were exposed to appreciable gas-phase concentrations of H2SO4 (1 ppbv), HNO3 (15 ppbv), HCl (1 ppbv), 

and NH3 (10 ppbv) at 85% RH and 298.15 K temperature (Fig. 16). While the fine mode rapidly absorbs significant amounts 

of these gases within the first few minutes of the simulation, it takes nearly 10 h for the aerosol composition, and hence the 10 

pH, to become uniform across the bins of different sizes. Furthermore, the displacement of HCl from the coarse mode due to 

HNO3 absorption occurs slowly over this time, although significant differences in the pH can be seen across the coarse mode 

size bins even after 10 h. In conclusion, it is important to treat dynamic mass transfer to accurately simulate size-distributed 

pH and composition of aerosols. Although challenging, fully dynamic and hybrid (i.e., a combination of equilibrium for fine 

mode and dynamic for coarse mode) numerical methods have been implemented in 3D chemical transport models (Fast et al., 15 

2006; Jacobson et al., 2007; Zhang et al., 2010). 

7.3 Role of organic–inorganic interactions 

Aerosol particles are rarely composed of a completely distinct organic-free aqueous inorganic phase and electrolyte-free 

organic phase – an assumption often made in air quality models for reasons of simplicity. Instead, mixed particles exist 

consisting of a complex mixture of organic compounds, inorganic ions, and water that may be separated into multiple 20 

liquid/solid phases (Bertram et al., 2011; Hallquist et al., 2009; Maria et al., 2004; Murphy et al., 2006; Pöhlker et al., 2012; 

Song et al., 2012; Zuend et al., 2010). The role of organic–inorganic interactions on the acidity of liquid/amorphous aerosol 

phases has been addressed in only a few studies and represents an area of research where further efforts are needed. Particle 

phase acidity could be affected in multiple ways by organic–inorganic interactions: directly by means of non-ideal mixing 

effects on the activity coefficient of H+ (and all other species) in a liquid phase of given composition; indirectly via the effect 25 

of organics on composition and the equilibrium gas–particle partitioning of water and other semi-volatile components 

(including NH3, inorganic and organic acids), as well as the potential for LLPS; and directly by dissociating organic acids that 

contribute dissolved H+ or amines that associate with H+. 

 

A phase-separated particle typically consists of a rather hydrophobic organic-rich phase and an aqueous electrolyte-rich 30 

(salt/ion rich) phase (You et al. (2014) and references therein) (Fig. 17). Note that water and inorganic ions, including H+, can 

exist in the organic-rich phase of a liquid–liquid phase separated system (Pye et al., 2018; Zuend and Seinfeld, 2012). Both 

the detection of LLPS and pH in ambient particles as well as micron-sized droplets in laboratory experiments is a difficult 
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technical challenge (Wei et al., 2018). To our knowledge, no online measurement techniques applicable to field sampling exist 

for that purpose (see Sect. 5.1 for aerosol pH measurement challenges). The current state of knowledge is therefore limited to 

relatively simple laboratory systems and theoretical considerations. Dallemagne et al. (2016) used a model system in the form 

of a super-micron-sized ternary aqueous poly(ethylene glycol)-400 (PEG-400) + ammonium sulfate droplet. They studied this 

system in an RH and temperature-controlled cell with confocal microscopy in the presence of a pH-sensitive fluorescent dye 5 

to determine the pH value at different locations in the liquid drop. They report a small, yet distinct change in pH due to the 

phase transition from a single to two liquid phases for this system when RH decreases: pH = 3.8 ± 0.1 in a single mixed phase 

at > 90 % RH, while the organic-rich shell phase in a LLPS state exhibited pH = 4.2 ± 0.2 at 80 % RH to pH = 4.1 ± 0.1 at 

65 % RH; the pH in the sulfate-rich phase was not determined during LLPS. The pH value of the organic-rich phase was 

similar to that of a corresponding salt-free aqueous PEG-400 solution measured using a standard pH probe. Since changes in 10 

RH lead to changes in particle water content, here causing the LLPS, the degree to which such changes affected the measured 

pH in the Dallemagne et al. (2016) study remain unclear.  

 

Losey et al. (2016) controlled the pH in aqueous solution droplets consisting of 3-methylglutaric acid, ammonium sulfate and 

sodium hydroxide. They found that changes in pH and the degree of methylglutaric acid dissociation (deprotonation), affect 15 

the separation RH (SRH), the onset of LLPS during dehumidification. The SRH was ~79 % for pH = 3.65, ~70 % for pH = 

5.17, and ~64 % for pH = 6.45. The RH at which the two liquid phases merge into a homogeneous single phase was observed 

around 80 % RH in this system, approximately independent of pH – indicating that a hysteresis between SRH and merging 

RH occurs for pH close to neutral, but not at lower pH. While this study did not attempt to measure the pH in distinct liquid 

phases, it indicates that the established pH, resulting from interactions between inorganic electrolytes and organic acids, affects 20 

the LLPS behavior. Losey et al. (2018) further explored similar systems at higher acidity in the presence of sulfuric acid 

(varying the ammonium-to-sulfate ratio from 2.0 to 1.5 to 1.0). They report that all observed RH levels of phase transitions 

were affected by the pH established with sulfuric acid. The SRH consistently decreased with increasing amounts of sulfuric 

acid (toward lower pH); e.g., for 3-methylglutaric acid + ammonium sulfate + sulfuric acid from SRH of ~80 % at pH = 2.68 

to SRH of ~30 % at pH = 0.34. Similar lowering of SRH with increasing acidity was also found for a non-acidic organic 25 

mixture component (1,2,6-hexanediol). Furthermore, at high acidity (here pH lower than 0.5), several of the studied systems 

did not show any LLPS down to very low RH. While the quantitative phase transition behaviour depends on the organic 

component, these experiments by Losey et al. (2018) imply that organic–inorganic interactions can have an impact on mutual 

solubility and phase transitions, in those cases with increasing mutual solubility towards higher acidity. 

 30 

While a LLPS will impact the acidity in coexisting liquid phases, the extent to which the pH values will typically differ between 

the phases – and, related to that, the molar concentrations of hydronium ions and ionic strength – remains an open question. 

Theoretical considerations aid in constraining the range of expectations in this case. Thermodynamic equilibrium between two 

liquid phases, each of neutral electric charge, implies that the electrochemical potential of H+ ions is equivalent in both phases 
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(see Sect. 2). Therefore, the activity-based pH in coexisting phases is expected to be similar, but not necessarily of the exact 

same value. Computations with the AIOMFAC-based liquid–liquid equilibrium model confirm for case studies that the pH in 

two liquid phases is of the same order of magnitude, often with a difference of less than 0.2 pH units (Pye et al., 2018). 

However, H+ molalities (or concentrations) in the two coexisting phases of atmospheric aerosols are predicted to be very 

different, often by up to several orders of magnitude; hence, it is important to calculate pH based on H+ activity, not simply 5 

concentration (see also Sect. 6.3 recommendations for approximating pH). In Pye et al. (2018), several thermodynamic models 

were applied to predict the partitioning of ammonia, water, and organic compounds between the gas and particle phases for 

conditions in the southeastern U.S. during summer 2013. AIOMFAC-based coupled liquid–liquid and gas–particle partitioning 

computations within that study predicted partial to complete miscibility among organic and inorganic aerosol components, 

depending on RH. The AIOMFAC-based model predicted an increase in the concentration of gas-phase ammonia (NH3) 10 

alongside a decrease in acidity when partial miscibility of organics was accounted for. In comparison to calculations with 

complete phase separation between organic and inorganic ions enforced, the interactions of inorganic ions with organic 

compounds (in mixed phases) were predicted to promote an enhanced association of H+ and SO4
2- into HSO4

-, resulting in a 

slightly higher pH (0.1 pH units median increase), since the bisulfate ion is predicted to be more miscible with organic 

compounds than equivalent amounts of H+ and SO4
2- (Pye et al., 2018). This indicates a pH buffering effect of the degree of 15 

bisulfate dissociation; however, additional complexity in understanding the main drivers of such pH changes arises from 

simultaneous changes in the equilibrium gas–particle partitioning of water, organics, and ammonia. 

 

The impact of amines and organic acids on H+ is usually neglected in efforts to model pH. Amines may contribute to aerosol 

alkalinity – especially given their potentially strong proton affinity (Dall’Osto et al., 2019), but they must be in sufficient 20 

quantities to compete with NH3 and other cations. Although not strong sources of protons or cations, these alkaline and acidic 

organics may still be considered together with other water-soluble organic compounds (WSOCs) in the particulate phase in 

terms of their ability to influence the aerosol water content. The uptake of water due to organic components is often used to 

correct the solvent volume and pHF derived based on the inorganic aerosol composition (e.g., Guo et al., 2015; Bougiatioti et 

al., 2016). This implies that aerosol pH is reversibly influenced by the amount of water (driven by RH and composition) 25 

associated with the aerosol particles, which has been shown to drive some of the diurnal variability of pH (Guo et al., 2015).  

 

For systems where a single mixed aerosol phase is assumed, current work indicates dissociating organic acids do not strongly 

affect pH and the limited studies to date suggest that inorganic species drive pH (Battaglia et al., 2019; Song et al., 2018; 

Vasilakos et al., 2018). For the southeastern U.S., pH changes predicted by E-AIM were generally limited to < 0.2 pH units in 30 

response to dramatic increases in oxalic acid (Vasilakos et al., 2018). Similarly, E-AIM predicted that increases in oxalic acid 

concentrations resulted in < 0.1 pH unit changes for polluted Beijing conditions (Song et al., 2018). This is notable since the 

predicted pH in Beijing (neglecting organics) was consistently above the first acid dissociation constant (pKa1) value for oxalic 

acid, conditions where pH is predicted to be most sensitive to organic acids (Nah et al., 2018). Nah et al. (2018) showed that 
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for aerosol pHF varying between 0.9 and 3.8, the inorganic-only predicted pHF was sufficient to define an effective sigmoid 

curve for oxalic acid, one of the most abundant of organic acids with a pKa that is well within this range. Neglecting the effects 

of oxalate on pH by Nah et al. (2018) did not seem to affect the quality of the partitioning. Battaglia et al., (2019) extended 

these prior studies to include additional organic acids (oxalic, glutaric, and malonic acids) as well as three non-acid organics 

(levoglucosan, tetrahydrofuran, and 1-pentanol) mixed with inorganics representative of Beijing winter haze and eastern U.S. 5 

summertime compositions. The changes in pH relative to the inorganic-only system were predicted by AIOMFAC to be quite 

small, generally < 0.2 pH units, when a single aerosol phase was present (Battaglia, Jr., et al., 2019). The response of pH to 

the same organics at lower RH (< 70%) or under LLPS conditions was not characterized.  

 

While current work suggests organic–inorganic interactions only slightly affect the pH, they can drive both LLPS and other 10 

phase transitions. Based on case studies (Pye et al., 2018; Battaglia et al., 2019), the interactions between water and ions are 

likely the main determinants of the resulting pH value. However, considering the complexity and variability of realistic aerosol 

compositions, the extent to which organic–inorganic interactions moderate the pH in liquid phases has not yet been studied in 

depth.  

8 Regional and global model representations and usage of pHF  15 

Chemical transport models and climate models are the ultimate integrators of knowledge that link emissions to the endpoints 

of public health, climate, and deposition. Aerosol acidity, however, is almost never considered or reported in these large 

frameworks (although there are exceptions, e.g., TM4-ECPL reported model-predicted pHF for clouds and particles; Fig. S2 

of Myriokefalitakis et al., 2015), so potentially large differences in acidity may be a driver of bias that has been unidentified 

to date. In the following section, major features of a set of models (Community Multiscale Air Quality modeling system, 20 

CMAQ; Goddard Earth Observing System with Chemistry model, GEOS-Chem; TM4-ECPL; and Weather Research and 

Forecasting coupled with chemistry WRF-Chem) are summarized in terms of fine aerosol pHF predictions (Sect. 8.1). The 

cloud pHF from a subset of the CTMs listed above and the Community Atmosphere Model with Chemistry (CAM-Chem; 

Lamarque et al., 2012; Tilmes et al., 2015), a component of the NCAR Community Earth System Model (CESM), are also 

included (Sect. 8.2). 25 

8.1 Aerosol pHF 

All three-dimensional CTMs presented here use thermodynamic models to predict aerosol composition and thus PM2.5 

predictions are sensitive to pHF. Thermodynamic models for the inorganic system were initially implemented to predict the 

gas–particle partitioning of semi-volatiles including nitric acid and ammonia due to their importance in forming fine particulate 

matter, but later studies have leveraged the predicted acidity for acid-mediated reactions. In TM4-ECPL, the pH of clouds and 30 

aerosol water affects the equilibria and thus chemistry of organic acids as well as the partitioning of reactive nitrogen and the 
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solubilization of the trace elements iron and phosphorus. TM4-ECPL explicitly accounts for interconversion of Fe (II) and Fe 

(III) and formation of oxalate (the partitioning of which is also pH-sensitive, e.g., Nah et al., 2018) that acts as a ligand and 

contributes to secondary organic aerosol. This chemistry has been used to understand changes in oceanic deposition of Fe and 

P from preindustrial, present-day, and future atmospheres (Myriokefalitakis et al., 2015; Myriokefalitkis et al., 2016) as well 

as with regional focus on the Mediterranean region (Kanakidou et al., 2019). The CMAQ v5.1+ (Pye et al., 2013) and GEOS-5 

Chem v11-02+ (Marais et al., 2016a) models use particle acidity, although in slightly different forms, to mediate the uptake of 

isoprene epoxydiols and resulting production of secondary organic aerosol in PM2.5. For purposes of acid-catalyzed particle-

phase reactions, GEOS-Chem uses ISORROPIA II-predicted pHF (Marais et al., 2016a) while CMAQ v5.1 and later consider 

the entire internally mixed fine-mode particle phase abundance in calculating the concentration of H+ (Pye et al., 2013). In 

CMAQ, organic constituents act to dilute H+ (increase pHF when the solvent includes organics) relative to an externally-mixed 10 

or phase-separated assumption (Schmedding et al., 2019). This leads to a moderate correlation between acidity (expressed as 

10-pHF) and isoprene-derived organic aerosol constituents (r2=0.3-0.5) (Budisulistiorini et al., 2017) for the SE US, in contrast 

to acidity pHF estimates under an externally-mixed or inorganic-only solvent assumption that show no significant correlation 

with isoprene SOA (Budisulistiorini et al., 2015). The WRF-Chem model, configured with MOZART chemistry and MOSAIC 

aerosols with the MESA thermodynamic model, uses particle acidity to calculate SOA production from glyoxal (Knote et al., 15 

2014). Even though aqueous production of sulfate in clouds is mediated by cloud pH, heterogeneous sulfate production on 

aqueous aerosol (via pathways in Fig. 3) is generally not considered in models, but future efforts may include these pathways 

due to model underestimates of sulfate in regions like Beijing, China (e.g., Shao et al., 2019; Cheng et al., 2016) and Fairbanks, 

Alaska (Molders and Leelasakultum, 2012). 

 20 

Chemical transport models use a variety of thermodynamic box models depending on their needs for accuracy and efficiency 

or treatment of specific systems and processes. The MESA thermodynamic model is used in CTMs configured with the 

MOSAIC aerosol model (e.g. WRF-Chem; Fast et al., 2006). ISORROPIA II is employed in several CTMs including GEOS-

Chem (v8-03-01 and later), the CMAQ (v5.0 and later) modeling system, NASA GISS, WRF Polyphemus 1.6, the Tracer 

Model (TM) v4,5-ECPL family of models (Appel et al., 2013; Metzger et al., 2018; Myriokefalitakis et al., 2011; Pye et al., 25 

2009), PM-CAMx (both regular and UF versions), and some versions of WRF-Chem (e.g., Zhang et al., 2013). GEOS-Chem, 

CMAQ, and TM4-ECPL assume the fine particles are in metastable equilibrium with the gas phase and employ the forward 

(i.e., gas and aerosol precursors as input) calculation mode of ISORROPIA II to partition semi-volatiles, calculate liquid water 

content, and pHF. While stable vs metastable assumptions strongly affect the amount of liquid water content and may influence 

the resulting composition of the aqueous phase, Song et al. (2018) found that calculations assuming stable and metastable state 30 

yield similar results in terms of pHF when the aerosol is deliquesced for conditions in China. The generality of this finding, 

especially when the complex phase diagram associated with eutectics of multiple salts is fully considered, remains to be 

determined.  
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The pH of the coarse mode is treated to varying degrees in models. TM4-ECPL (Myriokefalitakis et al., 2015) applies the 

equilibrium assumption to internally mixed sulfate, nitrate, ammonium, sea-salt and dust aerosols in the coarse mode after 

equilibrating the fine mode aerosol. CMAQ, starting with v4.7, uses a hybrid approach to mass transfer (Kelly et al., 2010) 

where the internally mixed Aitken and accumulation modes are in equilibrium with the gas phase, and mass transfer with the 

coarse mode is treated dynamically using the difference between the ambient and equilibrium vapor pressure of semi-volatiles 5 

(computed with ISORROPIA II in reverse mode in CMAQ v5.0 and later) as a driving force for condensation/evaporation 

(Capaldo et al., 2000). This driving force, however, is not allowed to exceed the gas-to-particle diffusional limit prescribed in 

CMAQ which would result in numerical instability when the aerosol pH is mildly acidic to alkaline (see Sect. 7.2 for additional 

discussion) (Pilinis et al., 2000). While ISORROPIA is not recommended for estimating pHF in field or laboratory applications 

when only particle composition is available (reverse mode, open system, see discussion in Hennigan et al., 2015 and Song et 10 

al., 2018), the reverse mode can be used for a driving force in a chemical transport model since CTMs represent a closed 

system, species concentrations are not subject to measurement error, and the driving force can be capped at the diffusion 

limitation. For coarse particles in CMAQ, H+ determined via charge balance (assuming all particulate sulfur is in the form of 

sulfate, Eq. 13) is output for diagnostic purposes but is not used within the model. GEOS-Chem does not perform 

thermodynamic calculations for coarse particles. However, it does keep track of coarse-mode sea-salt and dust alkalinity, which 15 

is relevant for calculating heterogeneous reactions on coarse particles. For example, heterogeneous S(IV)+O3 only happens in 

the model when the sea-salt and dust aerosol is still alkaline (Alexander et al., 2005). Heterogeneous reactions between 

hypohalous acids and halide ions (e.g., HOBr+Br-) on sea salt aerosol are acid catalyzed, so these reactions are only allowed 

to occur in the model after the sea-salt alkalinity has been titrated (titrated coarse-mode pH is assumed to be equal to 5) 

(Sherwen et al., 2016). The Weather Research and Forecasting model (Powers et al., 2017; Skamarock et al., 2008) coupled 20 

with chemistry (WRF-Chem version 3.9.1; Fast et al., 2006; Grell et al., 2005) has four aerosol configurations, including a 

bulk aerosol scheme, two modal aerosol schemes, and a sectional aerosol scheme (8 or 4 bin). Figures 19 and 21 use the 4-bin 

sectional aerosol scheme (bins 0.039–0.156, 0.156–0.625, 0.625–2.5, 2.5–10 μm in diameter) with MOSAIC coupled to 

MOZART (Model for Ozone and Related Chemical Tracers, version 4) gas-phase chemistry and cloud water chemistry (Knote 

et al., 2015; Zaveri et al., 2008). Within MOSAIC, the multi-component equilibrium solver for aerosols (MESA, Zaveri et al., 25 

2005a) solves inorganic aerosol thermodynamics for each aerosol size bin (see also Sect. 2.6.3 for a description of MOSAIC). 

 

Even models using the same thermodynamic algorithms can produce different pHF estimates since CTMs differ in their 

assumptions regarding equilibrium, mixing state, emission speciation, composition distribution across size, and chemical 

constituents important for driving pH. Especially notable are differences that occur with respect to the presence, abundance, 30 

and mixing state of non-volatile cations, the presence of which tends to increase pHF – and may further elevate pHF by co-

condensation of nitrate and its associated water uptake (e.g., Guo et al., 2018a). In TM4-ECPL, SO4
2-, NH3, NH4

+, HNO3 and 

NO3
- are explicitly treated. Additional cations in TM4-ECPL (for fine-submicron- and coarse modes) are specified based on 

the composition of mineral dust and sea salt. However, TM4-ECPL does not include Ca and Mg from dust in the fine mode 
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calculations, as also proposed by Ito and Feng (2010), since TM4-ECPL considers all submicron dust and sulfate aerosol to be 

externally mixed in the atmosphere. The opposite assumption is made for coarse particles in TM4-ECPL since sulfate and 

nitrate are produced by heterogeneous processes on coarse particles (leading to an internal mixture) and coarse particle lifetime 

is short (decreasing the likelihood of distinct source plumes interacting). GEOS-Chem, employing a bulk scheme for fine 

aerosol, considers SO4
2-, NH3(g), NH4

+, HNO3(g), NO3
-, Na+, Ca2+, Mg2+, and Cl- from fine-mode sea-salt aerosol. Cations 5 

from dust are not included in GEOS-Chem fine aerosol pHF calculations by default (version 12.0.0), but Ca2+ and Mg2+ from 

fine-mode dust aerosol (assuming 3% and 0.6% by mass dissolution, respectively; Fairlie et al., 2010) were added to 

simulations in this work (see Fig. S7). CMAQ v5.0 and later, with Aitken and accumulation modes for fine aerosol, considers 

non-volatile cations from sea-salt, wildfires, wind-blown dust, and anthropogenic sources such as fugitive road dust, 

agricultural soils, and coal combustion as described by the EPA National Emission Inventory (NEI) and SPECIATE database 10 

(Reff et al., 2009). WRF-Chem configured as MOZART-MOSAIC represents the major aerosol species including sulfate, 

MSA-, NO3
-, Cl-, CO3

2-, NH4
+, Na+, Ca2+ in the charge balance for H+ (other inorganic species, primarily dust particles, are 

considered inert, Sect. 2.6.3). Since HCl is not present in MOZART gas-phase chemistry, displacement of Cl- from sea salt 

aerosols cannot be represented.  

 15 

Chemical transport model predictions of particle acidity in the literature as well as in this paper (Fig. 18-19) are expressed as 

pHF and assume molarity- and molality-based concentrations lead to equivalent pHF with water as the solvent (Sect. 2.2 and 

Jia et al., 2018). CTMs, particularly those that use ISORROPIA or assume externally mixed inorganic and organic particles, 

assume the solvent for H+ is water associated with inorganic electrolytes. In WRF-Chem with MOSAIC, species that do not 

contribute directly to the ion balance (e.g., organics and inert mass) can absorb water, and thereby indirectly influence the pHF 20 

via solvent abundance. TM4-ECPL and CMAQ v5.3 can calculate pHF including solvent water associated with both inorganic 

and organic constituents, but in this paper, only water associated with electrolytes is considered in pHF.  

 

The limited literature to date evaluating CTM-predicted pHF indicates agreement between models and observationally-

constrained estimates within 1 pHF unit or better (summarized in Table S10). Observationally-constrained pHF from the eastern 25 

U.S. in summer at the surface (0.9 ± 0.6, Guo et al., 2015), summer aloft (1.1 ± 0.4, Xu et al., 2016) and winter aloft (0.8 ± 

1.0, Guo et al., 2016) all indicate strongly acidic particles and are in good agreement with GEOS-Chem aloft predicted pHF of 

1.3 during the SEAC4RS 2013 (Marais et al., 2016a) and WINTER 2015 (Shah et al., 2018) campaigns. CMAQ agreement 

with observations in the eastern U.S. are sensitive to assumptions regarding non-volatile cations with surface-level predictions 

of pHF showing good agreement with observations in the work of Vasilakos et al. (2018) (pHF = 0.82) and when non-volatile 30 

cations were excluded in the work of Pye et al. (2018) (pHF = 0.9 ± 0.9). For Centreville, Alabama in the work by Vasilakos 

et al. (2018), CMAQ predicted excessively acidic aerosol during the day and similar to or higher than observationally-

constrained pHF estimates by 1 unit at night. Reductions in non-volatile cations, which may be overpredicted due to errors in 

nocturnal mixing (Appel et al., 2013), reduced the nocturnal pHF in CMAQ making it more consistent with observations 
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(Vasilakos et al., 2018). pHF evaluation in other locations is more limited. Guo et al. (2017b) indicate a pHF for wintertime 

Beijing of 4.2, consistent with GEOS-Chem simulations of Beijing for Autumn/winter (pHF=4.3, range: 3.6 to 5.0; Shao et al., 

2019) and CMAQ (pHF of 4.5 ± 0.8 for Beijing February 2016, this work). Shao et al. (2019) found that including Ca2+, K+, 

and Mg2+ from dust in the aerosol pHF calculations had a small effect on predicted aerosol pHF (increase of 0.1) in Beijing in 

autumn and winter, consistent with Guo et al. (2017b).  5 

  

An evaluation of CTM-predicted pHF can be leveraged to understand the responsiveness of a model to changes in atmospheric 

composition. For example, Vasilakos et al. (2018) show that modeling pHF correctly in CMAQ is critical to accurately partition 

nitrate between the gas and aerosol-phase and thus capture trends in PM2.5 nitrate as sulfate is reduced in the United States. 

Shah et al. (2018) provide insight into the effectiveness of past and future emission reductions by tracking pHF predicted by 10 

GEOS-Chem. Shah et al. (2018) predict that pHF for winter in the eastern U.S. increases from 0.39 to 1.7 between 2007 and 

2023 using GEOS-Chem. As a result, nitrate aerosol concentrations are predicted to decrease less than the reductions of NOx 

emissions and total nitrate would imply. Since regulatory guidance for model application encourages the use of relative 

response factors (RRFs) by PM2.5 component (EPA, 2018), a pHF evaluation can be particularly useful since a bias in pHF can 

result in a bias in gas–particle partitioning sensitivity. However, absolute abundances are also important in model applications, 15 

and thus a pHF evaluation complements evaluation against speciated PM2.5 measurements from networks and intensive 

campaigns.  

 

Figures 18 and 19 show results from four CTMs to give a sense of whether common spatial features exist among models 

predicting fine particle pHF. Differences in fine particle pHF between models are likely caused by differences in model 20 

resolution as well as emission and meteorology scenarios as the ISORROPIA II and MESA thermodynamic models produce 

similar values (Sect. 6). pHF is strongly influenced by non-volatile cations in broad regions affected by dust and sea spray. 

Some of the least acidic fine aerosols (4 < pHF < 7) are predicted in sea spray rich regions and where strong westerlies occur 

over the southern oceans just north of Antarctica. These pHF values are consistent with those of fresh sea spray shortly 

(minutes) after emission (pH ~5, Keene et al., 1998). Other areas over the ocean, for example, the northern Pacific south of 25 

Alaska, show more acidic aerosol, likely influenced by sulfur from shipping in combination with lower concentrations of sea-

spray cations due to colder water temperatures and relatively low wind speed. For all models that include high latitudes in the 

domain, extremely acidic particles are predicted in the Arctic and over Greenland (pHF < 1). No estimates of Arctic aerosol 

pHF are available in the literature, but several studies have inferred low amounts of ammonium and high acidity from proxies 

(Fisher et al., 2011; Croft et al., 2016), yet sources of NH3 from seabirds may neutralize particle acidity in the Arctic 30 

(Wentworth et al., 2016). Other work has noted that sulfur dioxide is able to escape scavenging more effectively during lifting 

than ammonia or ammonium sulfate (Park et al., 2004) thus providing for long-range transport of acidity over alkalinity. The 

decrease in pHF (increase in acidity) due to scavenging also appears in the westerly outflow from China (Fig. 18), consistent 
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with the higher fraction of soluble iron found in particles collected in the region (Li et al., 2017). A similar pattern is also found 

in the easterly outflow region from central America (Fig. 18), although observational confirmation is still needed. 

 

Fine mode pHF downwind of deserts varies by model but is between 4 and 6 for dust-dominant conditions in CMAQ and 

GEOS-Chem. TM4-ECPL does not includes Ca and Mg from dust in the fine mode while it considers those NVCs in the coarse 5 

mode calculations of aerosol pH. This assumption leads to an aerosol pHF in TM4 over the Sahara of ~2-3 for the fine mode 

and ~6-7 for the coarse mode (Fig. 18c,d) further implying that dust cations, if present and internally mixed in the fine mode, 

can affect aerosol by ~4 pHF units (see also Fig. S7 for GEOS-Chem fine aerosol pH predictions with and without dust NVC). 

pHF ~6-7 fine aerosols are predicted in GEOS-Chem over the Sahara and Atlantic outflow of dust, most notably in the winter 

and spring and to a lesser degree in the summer and fall. SO2 emissions are non-zero in Saudi Arabia (Krotkov et al., 2016) 10 

leading to lower pHF for the middle East compared to other desert regions such as the Sahara.  

 

Anthropogenically-dominated locations, such as Europe, Asia, and the United States show different aerosol pHF values but are 

universally predicted to be acidic. All the models in Fig. 18 show a gradient in pHF over Europe with locations in the northern 

part of western Europe (near Germany) showing higher predicted fine aerosol pH (pHF ~2-3) compared to the Mediterranean 15 

Sea where pHF values can be less than 1 and approach 0. This gradient is consistent with enhanced ammonia in northern Europe 

(Clarisse et al., 2009) and the limited European pH data, which includes observationally-constrained estimates for Cabauw in 

the Netherlands (pHF ~3.6; Guo et al., 2018b), for aerosol extracts from Germany (pH ~1-2; Scheinhardt et al., 2013), and for 

Finokalia, Crete (pHF = 1.25 ± 1.14 excluding water associated with organics; Bougiatioti et al., 2016). Predicted aerosol pHF 

indicates moderate acidity (pHF ~3-4) for locations such as Beijing, China and northern India. The eastern U.S. is one of the 20 

more acidic anthropogenically dominated locations with 0 < pHF < 4 (Fig. 19), consistent with or slightly higher than 

observationally constrained estimates (Sect. 5.1.4). The fine horizontal resolution in WRF-Chem and CMAQ continental U.S. 

simulations captures localized increases in pHF due to ammonia from agricultural activity in eastern North Carolina, the Great 

Plains, Idaho’s Snake River Valley, and California’s San Joaquin Valley (Fig. 19a,d).  

 25 

The MOSAIC aerosol model in WRF-Chem provides information on how predicted aerosol pHF varies among different-size 

aerosols with different composition (Fig. S8). The PM2.5 aerosol pHF (aerosol water weighted average for bins 0.039–0.156, 

0.156–0.625, and 0.625–2.5 μm in diameter, Fig. 19d) shows higher values in regions where NaCl aerosol dominates (off coast 

of California, over the Great Salt Lake), moderate pHF values over the Great Plains and off the East Coast, low pHF in the Ohio 

River Valley (due to large SOx emissions and sulfate formation), and the lowest pHF in the Southwest U.S. (where aerosol 30 

water is low). CMAQ (Fig. 19a) predicts similar spatial trends over the U.S. for the fine aerosol pHF (Aitken + accumulation 

modes), but generally predicts less spatial heterogeneity with more acidic particles (by ~1-2 pHF units) over the midwest, and 

slightly less acidic particles (by ~1 pHF) in the southwest. GEOS-Chem and WRF-Chem exhibit differences over Nevada of 5 

pHF units during summer. WRF-Chem indicates more acidic particles in the submicron range compared to PM2.5. The most 
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notable differences between PM2.5 (liquid water weighted sum over bins 1-3) and submicron pHF (liquid water weighted sum 

over bins 1-2) in WRF-Chem occur over the oceans, Gulf of Mexico, and Gulf of California where predicted pHF > 5.6 for the 

larger fine (0.6 to 2.5 μm) bin. Similar values are not seen in the smaller aerosol bins except for one plume of pHF > 5.6 (in bin 

2, 0.156–0.625 μm). The two smallest aerosol size bins have very similar pH values over the continent, while the largest fine 

bin (bin 3) has similar pH values over the continent well inland from the coast and higher pH values near the coasts over land. 5 

Similarly TM4-ECPL shows differences of about 4 pHF units between fine (submicron) and coarse mode particles from 

Arizona and Montana (Fig. 18c,d). Since different sources contribute differently across the size range, heterogeneity in size 

resolved pHF predictions also implies mixing state assumptions in bulk schemes affect pHF estimates and a single pHF value 

across a broad size range does not capture the range of states present in the atmosphere (see also Sect. 7 for a discussion on 

mixing state). 10 

 

Coarse mode aerosol pHF in the WRF-Chem MOSAIC (aerosol size bin 4, 2.5–10 μm size range, Fig. 19e) is generally higher 

than PM2.5 values (Fig. 19d), especially over the oceans where NaCl dominates (note that WRF-Chem v4.1 and earlier does 

not include HCl thereby producing higher aerosol pHF over oceans than expected). In the more arid regions of the southwest 

U.S. and northern Mexico, coarse mode aerosol pHF is quite acidic, while elsewhere over the conterminous U.S. coarse mode 15 

aerosol pHF ranges from 1 to 6, with low values over the Ohio River Valley. Coarse mode aerosol pHF in TM4-ECPL (Fig. 

18d) shows values near 4-6 over the central-western U.S. and Canada and pHF < 2 in the eastern U.S. Coarse mode aerosol 

pHF has similarly low values in other anthropogenic regions (part of Europe, India, and East Asia) as well as southern Africa, 

Indonesia, and most of South America. Over the oceans and remote regions, coarse mode aerosol pHF predicted by TM4-ECPL 

has a value of 6 or greater.  20 

 

8.2 Cloud pH 

Compared to aerosol pH, cloud pH calculations have a longer history in CTMs and climate models, given that sulfate is the 

dominant secondary pollutant in fine particulate matter that is produced primarily in cloud droplets. Recent work has shown 

that when cloud pH increases from a combination of SOx emission controls and increasing NH3 from intensified agriculture, 25 

the efficiency at which SO2 converts to sulfate via in-cloud O3 oxidation can increase thus reducing the effectiveness of SOx 

controls close to emission regions (Paulot et al., 2017).  

 

Compared to CTMs, climate models are more limited in their treatment of semi-volatile inorganic species (e.g., particulate 

nitrate may not be considered as in CAM5; Liu et al., 2012), but generally include sea salt and dust (even if assumed inert) as 30 

well as sulfate. Modeling studies of acid rain with regional models (Carmichael and Peters, 1986; Chang et al., 1987; 

Venkatram et al., 1988) and sulfate production in climate models (Barth et al., 2000; Feichter et al., 1996; Koch et al., 1999) 

include pH since pH dictates the rate of aqueous reactions that convert SO2 to sulfate (Sect. 3). Early global model studies 
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(Barth et al., 2000; Feichter et al., 1996; Park et al., 2004) either prescribed cloud pH, or diagnosed pH from the concentration 

of cloud-water S(IV) / S(VI) and assumed ammonium-to-sulfate ratio. Even recent studies (e.g., Turnock et al., 2019) may 

prescribe cloud pH to simulate sulfate production. In most CTMs, the calculation of cloud pHF is more comprehensive. Five 

such models are described here and pHF estimates are presented in Fig. 20-21. Chemical composition tracked for cloud 

chemistry can be the same as or different from that used in aerosol chemistry. 5 

 

CESM2.0, including CAM6-chem (released in 2018, Fig. 20a, 21a), includes an updated tropospheric chemistry mechanism 

(MOZART-T1) and represents aerosols using a Modal Aerosol Model (MAM; Liu et al., 2012; Liu et al., 2016) with 4 

lognormal modes and including the species sulfate, ammonium, primary and secondary organic matter, black carbon, soil dust, 

and sea salt. MAM considers the thermodynamic partitioning of H2SO4 (gas) and NH3. The MAM scheme does include cloud 10 

chemistry that represents S(IV) oxidation by ozone and hydrogen peroxide to form sulfate and non-reactive uptake of HNO3 

and NH3. The pH is estimated using an iterative method to solve the electroneutrality equation using OH-, HCO3
-, NO3

-, HSO3
-

, SO3
2-, SO4

2-, and NH4
+. The pHF is determined at each chemistry time step and grid point where liquid cloud water exists. 

 

In CMAQ, there are two varieties of the cloud chemistry module: the default cloud chemistry routine that assumes 15 

instantaneous equilibrium to describe the distribution of species between gas/aqueous/ionic forms and the routines that include 

kinetic mass transfer (KMT) considerations. CMAQ’s default cloud chemistry module is based on the work of Walcek and 

Taylor (1986). pHF (Fig. 20b, 21b) is estimated throughout the course of the chemistry calculations by solving the system of 

nonlinear algebraic equations resulting from electroneutrality and ionic/Henry’s Law equilibrium assumptions. Activity 

coefficients, estimated with the Davies equation, are applied to ionic species in solution. For the standard chemical mechanism 20 

(i.e., five S(IV) oxidation reactions and two SOA reactions), the following species are considered in the ion balance and ionic 

strength calculations: H+, OH-, HSO3
-, SO3

2-, HSO4
-, SO4

2-, HCO3
-, CO3

2-, HCO2
-, NH4

+, NO3
-, Cl-, Ca2+, Na+, K+, Mg2+. Fe3+ 

and Mn2+, potentially important players in catalyzing aqueous S oxidation, are included in the ionic strength calculation but 

do not impact droplet pHF as they are assumed to be associated with generic anions, A- and B-. pHF evolves as S(IV) is oxidized 

to S(VI) and additional species are scavenged from interstitial aerosol, allowing species to redistribute between phases and 25 

different (non)ionic forms for the duration of cloud processing. In CMAQ’s KMT family of cloud chemistry modules, 

individual species/ions are tracked, including [H+], and evolve dynamically, using forward and reverse reactions to represent 

ionic equilibria (Fahey et al., 2017). Initial pHF is estimated from known concentrations of activated aerosol species (i.e., all 

accumulation and coarse mode species), and electroneutrality. 

 30 

Bulk cloud pHF calculations were first implemented into GEOS-Chem as described in Alexander et al. (2012). Prior to this, 

cloud pH was assumed to equal 4.5 in GEOS-Chem. In GEOS-Chem (version 12.0.0 with MERRA-2 reanalysis) (Fig. 20c, 

21c), bulk cloud pHF is calculated using local concentrations of SO4
2-, SO2(g), NH3(g), NH4

+, HNO3(g), NO3
-, and CO2(g). 

The cloud water pHF calculation utilizes the electroneutrality equation and the following forms of dissolved species (in moles 
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L-1): SO4
2-, OH- , HCO3

-, CO3
2-, HSO3

-, SO3
2-, NO3

-, NH4
+. The concentration of HSO4

- is assumed negligible, which is valid 

given that most pHF values > 3 where the second dissociation of sulfuric acid is virtually complete. The model assumes a cloud 

mass scavenging efficiency of 0.7 for SO4
2-, NO3

-, and NH4
+ aerosol based on observations (Hegg and Hobbs, 1986; Hegg et 

al., 1984; Schumann, 1991; Sellegri et al., 2003). The concentrations of all species but SO4
2- in the electroneutrality equation 

are calculated based on cloud liquid water content, temperature, each species’ effective Henry’s law constants. For example, 5 

NO3
- is calculated as follows: 

[NO3
−] = (

𝐾𝐻𝐾𝑎

[H+]
) 𝑝

HNO3
         (20) 

where activities are approximated as aqueous concentrations, 𝐾𝐻 is the Henry’s law constant (Reaction R1) for HNO3, Ka is 

the dissociation constant (Reaction R2) for HNO3, and 𝑝𝐻𝑁𝑂3
is the partial pressure of HNO3(g). The resulting cubic equation 

is solved numerically. GEOS-Chem does not account for the effect of organic acids or cations originating from sea salt or dust 10 

(e.g., Na+, Ca2+) on cloud water pHF. HCl is also not part of the cloud pHF calculation because HCl is not yet a transported 

species in the standard version of the model (version 12.0.0). This can easily be implemented into the cloud pHF calculation 

when the chlorine chemistry in GEOS-Chem is updated (Wang et al., 2019b). 

 

Cloud pHF in GEOS-Chem (Fig. 20c, 21c), as well as other models, is utilized for the calculation of sulfate production rates 15 

from in-cloud oxidation of SO2(g). Bulk schemes, such as those described above, tend to underestimate sulfate production 

compared to calculations accounting for heterogeneity in pH with drop size (see Sect. 5.2.3 for a discussion of drivers of 

heterogeneity). To account for this bias, GEOS-Chem utilizes parameterizations developed by Fahey and Pandis (2001) and 

Yuen et al. (1996). The Fahey and Pandis (2001) parameterization is a decision algorithm that determines whether or not cloud 

droplet heterogeneity will impact sulfate production rates. The impact of cloud droplet heterogeneity on sulfate production 20 

rates tends to be most prevalent in the presence of alkaline aerosols such as sea salt (Alexander et al., 2012; Fahey and Pandis, 

2001). If cloud water is acidic enough, heterogeneity will not matter. The Fahey and Pandis (2001) algorithm considered this 

effect and identifies a condition where bulk cloud pHF will underestimate sulfate production rates. GEOS-Chem corrects for 

this low bias in the sulfate production rate utilizing the Yuen et al. (1996) parameterization, which was developed by comparing 

calculated sulfate production rates from a bulk cloud model with a cloud resolving model that accounts for cloud droplet size 25 

heterogeneity. Since the Yuen et al. (1996) parameterization was developed for warm clouds, its use is restricted to 

temperatures above 268 K in GEOS-Chem. Additionally, the Yuen et al. (1996) parametrization is only used in GEOS-Chem 

over the oceans, because the parameterization considers alkalinity typical of sea salt aerosols. The impact of cloud droplet 

heterogeneity on sulfate production rates was implemented into GEOS-Chem by Alexander et al. (2012). 

 30 

In TM4-ECPL (Fig. 20d, 21d), in-cloud pHF is controlled by strong acids (SO4
2-, methanesulfonate, HNO3, NO3

-), bases 

(ammonium ion, NH4
+), as well as by the dissociations of hydrated CO2, SO2, NH3 and of oxalic acid (Myriokefalitakis et al., 

2011). Cloud droplet heterogeneity and dust and sea salt aerosol components are not considered for cloud pHF calculations.  
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The cloud chemistry configured with the WRF-Chem v3.9.1 with MOZART gas chemistry and 4-bin MOSAIC aerosol scheme 

is a bulk cloud water approach that is subsequently partitioned into the 4 cloud water bins (which connect to the 4 aerosol size 

bins). The Fahey and Pandis (2001) aqueous chemistry scheme is implemented and calculates sulfate formation as well as 

formaldehyde oxidation and non-reactive uptake of nitric acid, hydrochloric acid, ammonia, and other trace gases. The pHF is 5 

found using a bisection method to solve the electroneutrality equation, which includes the following species: OH-, HCO3
-, 

CO3
2-, CO3

-, HSO3
-, SO3

2-, HSO4
-, SO4

2-, SO4
-, SO5

-, HSO5
-, HOCH2SO3

-, -OCH2SO3
-, NO2

-, NO3
-, HO2

-, O2
-, HCOO-, Cl-, Cl2

-

, ClOH-, and NH4
+. While trace metal ion chemistry is included in the aqueous-phase formation of sulfate, these metals are not 

part of the pHF calculation. The pHF is determined at each chemistry time step and grid point where liquid cloud water exists 

(Fig. 21e). 10 

  

Model predicted cloud-droplet pHF (Fig. 20-21) reflects atmospheric sources of inorganic species, similar to fine mode aerosol 

pHF, but is further modulated by the presence of clouds and abundance of condensed water. Since cloud droplets are more 

dilute than particles, pHF is generally higher than for fine aerosol. The southern ocean clouds have pHF 4.5-6 with TM4-ECPL 

showing more acidic cloud droplets (pHF = 4.5) in the southern oceans compared to GEOS-Chem and CAM-Chem (pHF ~5-15 

6) due to lack of sea spray and dust aerosol components in TM4-ECPL cloud pHF calculations. Cloud droplet pHF is often 

greater over oceans than continents at the same latitude. GEOS-Chem and CAM-Chem show slightly different north-south 

trends in cloud pH over the Southern Ocean with GEOS-Chem indicating clouds decrease in acidity from Antarctica to the 

equator and CAM-Chem indicating increasing acidity. One cloudwater pH measurement gives a value about 5 for off coast of 

Chile/Peru (Fig. 7), but more measurements are needed, particularly in the southern hemisphere. Note that CAM-Chem, GEOS-20 

Chem, TM4-ECPL, and WRF-Chem do not include dust cations in the cloud pH calculations (CMAQ does include fine and 

coarse dust) and deserts and their downwind areas such as the Sahara and western U.S. (e.g., Hand et al., 2017) show diversity 

on the order of 3-4 pHF units among the models. Measured cloud pH over northern Africa is 6-7 (Fig. 7), consistent with 

CMAQ. TM4-ECPL, which does not consider dust cations in cloud pH calculations, predicts pHF < 4 cloud droplets in arid 

regions such as over the Sahara, southwest U.S., and inland Asia where liquid cloud water may be very low. Dust regions also 25 

coincide with limited cloud coverage so aqueous chemistry is less important. Several models (CMAQ, CAM-Chem, GEOS-

Chem, WRF-Chem, TM4-ECPL) correctly capture locally enhanced acidity for the cloud droplets in the vicinity of the Ohio 

River Valley in the eastern United States as well as in upstate New York at Whiteface Mountain where pH is 4.5-5.0 since 

2010 (Table S11). The pHF gradient from northern to southern Europe is reversed for cloud water compared to aerosols with 

Germany and Poland showing more acidic cloud droplets than over Italy and Spain (GEOS-Chem, CMAQ, TM4-ECPL). For 30 

both clouds and particles, aerosol pHF is higher in northern China (e.g., Beijing) compared to southern China (e.g., the Pearl 

River Delta) except in TM4-ECPL. CAM-Chem, CMAQ, GEOS-Chem, and WRF-Chem do not predict present-day average 

cloud droplet pHF below 3 (which is not strictly the lower limit in observed cloud pH, Fig. 7). For select locations and models 

(Table S11), predicted cloud pH was generally within 2 pH units of observations and often showed better agreement.  
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8.3 Recommendations for improving models 

Evaluation of CTM predictions of fine aerosol pHF in literature (Table S10) suggest reasonable agreement between models 

and observations (pHF within 1 unit for fine aerosols). However, observed estimates of pHF (Sect. 5.1) are extremely limited 

in location and do not fully cover the diversity of environments and values covered by CTM predictions. Furthermore, the 5 

models that have been most evaluated (e.g., CMAQ, GEOS-Chem) tend to use a relatively complete set of inorganic species 

and advanced thermodynamic routines such as ISORROPIA II but this may not reflect the entire CTM or climate model 

community (e.g., CAM-Chem). CTM predictions here indicate that assumptions regarding non-volatile cations, from both dust 

and sea salt, play a large role in CTM predictions of pHF. Prior to the inclusion of Ca, K, and Mg ions from dust in GEOS-

Chem aerosol pHF calculations (this work, Fig. S7), CMAQ and GEOS-Chem showed large pHF differences (multiple pHF 10 

units) in dust outflow regions. Similarly, cloud droplet pHF predictions varied by up to 3-4 pHF units between models in non-

volatile cation-rich environments. Despite cloud droplets generally occupying a smaller range in pHF than particles (Fig. 2), 

models examined here provide no indication that cloud droplet pHF is predicted more consistently across models than aerosol 

pHF. Spatial and temporal variability in clouds, which are challenging to predict and represented differently across models, 

could contribute to some of this model variability. (Note that for 10 of the 11 cases where select models were compared to 15 

observations, models tended to systematically underestimate of overestimate rather than bracket the observed cloud pHF value, 

Table S11). Model-to-model differences in many locations amount to multiple pHF units and observational constraints would 

be needed to evaluate models. In addition to measuring inorganic aerosol constituents and gas-phase semi-volatiles to perform 

thermodynamic calculations, particle mixing state, and cloud properties may also need to be characterized with measurements. 

Remote locations (including over oceans, most of the southern hemisphere, and likely aloft) are locations with diverse CTM 20 

predictions of cloud and particle pHF and are particularly lacking observational constraints of pHF.  

9 Conclusions 

Aerosol and cloud acidity are key drivers of atmospheric chemistry and processes that link emissions to impacts on air quality, 

human health, ecosystems, and climate. Despite their importance, limited information exists on the spatiotemporal distribution 

of atmospheric acidity, its drivers, and its influences. For aerosol acidity, only recently have data become available that can be 25 

used for model evaluation and improvement. This review aims to provide a comprehensive overview of the state of knowledge 

of atmospheric acidity, considering particulate matter as well as clouds and fogs. Apart from a review of the published 

literature, the study also includes a rigorous set of definitions for acidity, the methods used to measure and infer the in-situ 

levels of acidity in each condensed-phase type, and a synthesis and critical evaluation of current estimates. Across the review, 

the following major messages emerge (see the sections listed for more discussion): 30 
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• The various pH definitions in use for characterizing aerosol and cloud-water acidity differ in important ways from 

each other and from the definition of pH by IUPAC, which is based on the negative base-10 logarithm of the molal 

activity of H+ . A nomenclature is provided for the community to document how different studies calculate and express 

aerosol acidity. The use of the definition of pH by IUPAC (Eq. 1), involving the activity coefficient of H+, is 

recommended to best and consistently quantify the pH. (Sect. 2.) 5 

• While thermodynamic partitioning and ionic equilibria are the dominant factors that drive aerosol pH levels, models 

are frequently lacking H+ that is kinetically generated as a result of transient gas- and liquid-phase chemical reactions. 

The representation of kinetic processes is necessary to determine sulfate levels important for driving pH. The 

consequences of varying acidity for organic particle and cloud chemistry have only started to be investigated. (Sect. 

3 and companion paper in prep.) 10 

• Methods for measuring cloud-water pH are relatively established, but methods for measuring aerosol pH remain 

challenging. Measuring aerosol pH is difficult due to the extremely high ionic strengths that are typically found in 

aqueous aerosol, the low amounts of mass, and the extreme sensitivity to environmental perturbations, as well as the 

chemical heterogeneity found in particles across size, location, and time. Methods for determining the pH of bulk 

aerosol samples and individual particles continue to be developed and will address an important measurement gap 15 

that still exists for determining the acidity of aerosol. Particularly important is the application of such methods to 

understand the pH environment from particle to particle and within particles, especially under conditions where the 

aerosol is not at equilibrium or not internally mixed. (Sect. 2, 5, 7.) 

• None of the observationally-based aerosol acidity proxies in use today are suitable as a universal indicator of pH. 

Under certain conditions (strongly acidic conditions), certain proxies may be of limited use and when combined with 20 

gas-phase measurements exhibit some correlation with pH. However, the uncertainty of these proxies remains very 

large, and even the best ones require verification with models. The best estimates of particle pH are obtained from 

thermodynamic model calculations when gas–particle partitioning observations are available for evaluation as well 

as for constraining the calculations. These estimates generally require a thermodynamic equilibrium assumption, 

which is reasonable for submicron aerosol. Direct measurement of NH3 is extremely important, since combined with 25 

aerosol data, it provides a constraint on model-derived acidity estimates and a metric for evaluation. Other semi-

volatile inorganic acidic gases (like HNO3 and HCl) also provide constraints on acidity but are subject to higher 

uncertainty due to interaction with the coarse mode. (Sect. 4 and elsewhere.) 

• Different box model-based estimates of pH using the same inputs differ on average by 0.3 pH units (but can vary up 

to one pH unit, increasing with decreasing RH) depending on the model framework used and the approach for 30 

estimating the H+ activity coefficient. When single-ion activity coefficients are unavailable, an approximation based 
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on the mean molal activity coefficient of a relevant ion pair (e.g., 𝛾±(H+,Cl-) yielding a pH±) can reduce the bias in 

acidity by up to 0.43 pH units for atmospherically relevant conditions. The ion pair that leads to the best single-ion 

activity coefficient for H+ may be model dependent; for example, 𝛾±(H+,NO3
-) yields the best pH± from ISORROPIA 

II. (Sect. 6.)  

• The limited observationally-constrained pH estimates to date establish that acidic aerosol is ubiquitous and can be 5 

extremely acidic (pH as low as -1 averaged over long timescales and episodically even lower). Aerosol pH depends 

on the size, composition, and mixing state of particles. Fine mode aerosols are often dominated by ammonium, sulfate, 

nitrate, and organics and are systematically more acidic (up to 5 pH units) than coarse mode aerosols, which are rich 

in non-volatile cations originating from sea salt and dust. Most observationally-constrained estimates of particle 

acidity to date are the approximation, pHF. Since the accuracy of pHF as a measure of pH depends on RH and 10 

composition (Sect. 6), characterization of ambient pH is incomplete. (Sect. 5.1.) 

• Although aerosols and clouds both tend to be acidic, the response of acidity to changes in precursor emissions is 

distinctly different in the two media. Published studies suggest that reductions in sulfur dioxide and nitrogen oxide 

emissions across the U.S. and Canada have had little impact on aerosol pH, and pH is relatively insensitive to ammonia 

changes. Conversely, clouds and fogs exhibit a broad pH range that is quite sensitive to the relative abundance of 15 

sulfuric and nitric acids and ammonia with multiple locations showing increases in cloud pH as anthropogenic 

emissions are controlled. This is a direct consequence of the liquid water content and other aerosol species being in 

equilibrium with the ambient relative humidity – while in clouds all the species can vary independently of each other. 

(Sect. 5.) 

• Large-scale model variation in predicted pHF, up to 5 pH units in specific locations, is likely not driven by the 20 

thermodynamic representations in models, but by the composition that feeds the thermodynamic calculations 

(especially the emission and microphysical interactions of non-volatile cations with other aerosol components). For 

locations with observationally-constrained pH estimates, agreement between models and observations can be within 

one pH unit. In addition, the global acidity distribution in models and observations can be surprisingly similar (Figure 

2). Cloud pH does not seem to be better constrained than aerosol pH, suggesting that there is considerable work to be 25 

done refining simulations to reach agreement with observational values and trends. Spatial gradients in CTM pH 

predictions (that do not coincide with availability of measurements) suggest regions where future measurements 

should be made. The level of agreement required between models and observations depends on the target of a specific 

assessment (e.g., PM sensitivity to emissions, nutrient deposition, metals solubility). Therefore, model frameworks 

should evaluate their endpoint of interest (e.g., nutrient deposition, PM2.5 concentration) and consider how an error in 30 

predicted pH could lead to a bias. The error in pH may be important for some applications, but not others. (Sect. 8.) 
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Perhaps one of the more important outcomes of this review is the recognition that cloud and aerosol pH emerge as an important 

property for influencing a wide range of CTM predictions, and therefore improvements to how aerosol and cloud pH are 

represented in CTMs could potentially enhance policy and programs informed by these models. pH determines the innate 

response of a model to emission changes, can provide insights that established approaches (evaluation of gas/aerosol 

composition) are not able to provide, and determines the chemical regime for PM formation, nutrient deposition, and soluble 5 

metals. Including and reporting pH (or an approximation thereof) in future studies will increase the understanding of the effects 

of emissions, human activity, and climate change on society and the Earth System as a whole. 
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Appendix A: Nomenclature 

Symbol Description 

𝑎H+  The activity of hydrogen ions in aqueous solution on molality basis 

𝑎H+
(𝑐)

 The activity of H+ ions on a molarity basis 

𝑎
H+
(𝑥)

 The activity of H+ ions on a mole fraction basis 

AMS Aerosol mass spectrometer 

𝑐⦵ The standard state (unit) molarity 

𝑐H+  The molarity or “molar concentration” of hydrogen ions in an aqueous solution (also written using square 

brackets as [H+]) 

CTM Chemical transport model 

FR Flex Ratio, identifies the NH3 emissions level at which the nitrate concentration switches from NH3-

insensitive (or negative sensitivity) to positive NH3 sensitivity 

𝑓
H+
∗  The (rational) activity coefficient based on the mole fraction concentration scale 

H+
air Concentration of aerosol H+ per volume of air (e.g., moles per m-3 of air) 

𝐾𝑤 Activity-based equilibrium constant for the dissociation of water into H+ and OH- 

LLPS Liquid–liquid phase separation  

KMT Kinetic mass transfer 

𝑚⦵ The standard state (unit) molality 

𝑚H+  Molality of H+ (mol kg-1) 

𝑀𝑤 Molar mass of water: 0.018015 kg mol-1 

𝑛𝑖  Number (e.g., moles) of species 𝑖  

PAHs polycyclic aromatic hydrocarbons  

PFASs polyfluoroalkyl substances  

PFSAs perfluroroalkane sulfonic acid 

PFCAs Perfluoroalkyl carboxylic acids  

pH Hydrogen ion potential with activity coefficient and concentration expressed on a molality concentration 

scale (see Table 1) 

pHc pH on a concentration (molarity) basis 

pHx pH on a mole fraction basis 

pHT “Total” pH based on the molality of sulfate and bisulfate ions (see Table 1) 

pHF “Free ion” approximation of pH obtained when the activity coefficient of H+ is unity (see Table 1) 

pH± Approximation of pH using the mean molal ion activity coefficient of an H+ and anion X pair (see Table 1) 

p𝐾𝑤  -log10 of Kw (see Bandura and Lvov (2005) for tabulation of values) 
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PM2.5 Particulate mass with an aerodynamic equivalent diameter below 2.5 μm 

RH Relative humidity 

TMI Transition Metal Ions 

TCl Total chloride (sum of gas-phase hydrochloric acid and aerosol chloride) 

TNO3 Total nitrate (sum of gas-phase nitric acid and particulate nitrate) 

TNH4 Total ammonia (sum of gas-phase ammonia and particulate ammonium) 

VOCs Volatile organic compounds  

WSOC Water-soluble organic compounds  

𝑥H+  The mole fraction of H+ in the solution  

𝛾H+  The molal activity coefficient  

𝛾
H+
(𝑐)

 The molarity-based activity coefficient  

𝛾±,HX Single ion activity coefficient (for monovalent acid HX)  

𝜌0 The density of the reference solvent (water)  
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Code and data availability.  

E-AIM can be run at http://www.aim.env.uea.ac.uk/aim/. 

AIOMFAC can be run at https://aiomfac.lab.mcgill.ca for single liquid phases; code is available at 

https://github.com/andizuend/AIOMFAC. 

MOSAIC is available upon request from its author (Rahul Zaveri). 5 

ISORROPIAII is available at http://isorropia.epfl.ch (access to source code requires login provided by AN upon request). 

EQUISOLV II output was obtained from its creator, Mark Jacobson (jacobson@stanford.edu). 

CAM6-Chem code is available as part of CESM available at http://github.com/ESCOMP/cesm. 

CMAQ v5.2 and v5.3 code is available at https://github.com/USEPA/CMAQ and at doi:10.5281/zenodo.107987. 

GEOS-Chem code is available at https://github.com/geoschem. 10 

TM4-ECPL code is available from its authors (Stelios Myriokefalitakis and Maria Kanakidou) upon request  

Instructions for obtaining WRF-Chem are available at http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. 

 

Box model inputs used in Sect. 6 and observed cloud and fine aerosol pH estimates from literature will be deposited in 

electronic tabular format in the Environmental Protection Agency Science Hub repository upon final publication 15 

(https://catalog.data.gov/harvest/about/epasciencehub, doi:10.23719/1504059). 

 

Supplement. The supplement related to this article is available online and includes additional documentation for definitions of 

pH, methods used to estimate sulfur production as a function of pH (Fig. 3), and details regarding the proxy evaluation (Fig. 

15). In addition, figures further exploring the gas ratio, suitability of pH approximations, an ISORROPIA–MOSIAC 20 

intercomparison, and additional CTM predictions are shown. Data used as box model input, to create spatial maps of particle 

and cloud pH, and for CTM-observation comparisons of pH are available in the supplement. 
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Figures 

 

Figure 1. Sources and receptors of aerosol and cloud droplet acidity. Major primary sources and occurrence in the atmosphere 

are identified in bold red text: sea salt, dust, biomass burning (sources); and aerosols, fog droplets, cloud droplets, precipitation 

(occurrence). Key aerosol processes are indicated by arrows and grey text: nucleation/growth, light scattering, CCN and IN 5 

activation, and gas–particle partitioning. The aerosol sinks (wet, dry and occult deposition) are indicated by blue lines and text. 

The effects that aerosols have in the atmosphere, and on terrestrial and marine ecosystems and human health, are highlighted 

in yellow. Approximate pH ranges of aqueous aerosols and droplets, seawater, and terrestrial surface waters are also given.  
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(a)  

(b)  

 

Figure 2. Characteristics of (a) aerosol and cloud pH drivers and (b) fine-mode aerosol (ground level) and cloudwater pH 

(column average weighted by liquid water content) from observations (Sect. 5) and global simulations (Sect. 8).  5 
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Figure 3. The rates of four in-particle sulfate production pathways (oxidation by O3, NO3, and HOOH and catalyzed by 

transition metal ions (TMI) Fe(III) and Mn(II)) as a function of initial aerosol pH, for Beijing winter haze conditions. See 

Supporting Information Sect. S2 for more details. 

5 
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Figure 4. Calculated dissolved aqueous-phase fraction of benzoic acid as a function of liquid water content and aqueous phase 

acidity. The black lines are the isolines of the aqueous fractions of 10-i (i = 1,...,6). 

 

 5 
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(a)  

 

(b)  

 

Figure 5. (a) Seasonality of fine aerosol acidity (pHF normalized to the annual average) from the literature. Annual average pH for 5 

Canada (Tao and Murphy, 2019b), Beijing 2014 (Tan et al., 2018), Beijing 2016-2017 (Ding et al., 2019), Inner Mongolia (Wang et 

al., 2019a), Po Valley (Squizzato et al., 2013), Cabauw (Guo et al., 2018b), Atlanta (Guo et al., 2015), and Yorkville (Guo et al., 2015; 

Nah et al., 2018) is 2.5, 2.8, 4.3, 5.5, 3.1, 3.6, 1.3, 1.7, respectively. (b) Diurnal cycle of aerosol pHF at four select sites (see Sect. 5 and 

Table S6 for a description of data), expressed as the departure from its daily mean value (3.7, 0.6, 2.1, 3.2, for Cabauw (Guo et al.,  

2018b), SOAS-Centreville (Guo et al., 2015), CalNex-Pasadena (Guo et al., 2017b), and Tianjin (Shi et al., 2017), respectively). 10 

Estimates are pHF except for Tao and Murphy (2019b) who estimate pH. 
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Figure 6. Observationally estimated ground-level fine aerosol pH. Estimates are primarily based on observationally-

constrained thermodynamic equilibrium model predictions reported as pHF. Values correspond to present-day conditions. 

Measurement locations, measurement time periods, reported pH values, and citations are listed in Table S6. Values shown in 5 

the Figure will be available in tabular format via data.gov (see data availability statement).  
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Figure 7. Values of pH in fog and cloud water samples collected around the globe. The measurements are divided into 4 time 

periods to provide better comparison across an era of changing anthropogenic emissions. Plotted points represent reported 
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mean pH values. In cases where mean pH was not reported or calculable from reported data, either the reported median pH or 

the average of reported minimum and maximum H+ concentrations converted to pH are plotted. Measurement locations, 

measurement time periods, reported pH values, and citations are listed in Table S8. Values shown will be available in tabular 

format via data.gov (see data availability statement).  
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Figure 8. Mean cloud/fog pH values reported for individual measurement locations and years, from the 1960s to present. Sites 

are included from the western and northeastern United States, from the Caribbean island of Puerto Rico, and from locations in 

central Japan. See text and Table S8 for references. 5 
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Figure 9. Trend in measured pH values of fogs and clouds sampled in Europe from the 1980s to present. See Table S8 for a 

list of sites and references. The dots represent the average or median values measured at the site and the green interval bars the 

range (minimum, maximum) in the reported data distributions. The trend line indicates an increase of approximately 0.56 pH 5 

units per decade. 

 

 

 

 10 
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Figure 10. Comparison of pH predictions by six aerosol thermodynamics models for seven RH levels, including gas–liquid 

partitioning of volatile components (see details in Table 3). Upper panels show moderately acidic cases, lower panels highly 

acidic cases (with different y-axis scaling). Systems are described in Sect. 6.1: (a, d) System 1: sulfate-rich aqueous (NH4)2SO4 5 

+ H2SO4 + NH3; (b, e) system 2: acidified sea-salt-like aqueous aerosol (Na2SO4 + NaCl + H2SO4 + HCl); (c, f) system 3: 

nitrate-rich aqueous (NH4)2SO4 + H2SO4 + NH3 + HNO3. Models E-AIM and AIOMFAC (solid symbols, green and blue 

respectively) predict pH based on the single-ion activity coefficient of H+, the other models (open symbols, MOSAIC in upward 

orange triangle, ISORROPIA II in purple diamond, EQUISOLV II in downward yellow triangle) approximate pH by a version 

of pH±; the specific mean ion activity coefficients used for pH± by those models are listed in supplemental Tables S3 – S5 for 10 

each system.  
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Figure 11. Comparison of different approximate pH values vs. the molal pH by system (panels a, b, c for system 1, 2 ,3) 

introduced in Sect. 6.1 and also shown in Fig. 10, all calculated by AIOMFAC–GLE. Solid symbols show the moderately 

acidic cases and open symbols the highly acidic cases. pH approximations are based on total H+ (pHT), free H+ (pHF), and pH± 5 

(defined in Table 1). For the pH± variants, the H+ activity coefficient was approximated by the mean molal activity coefficient 

of H+ combined with either SO4
2-, HSO4

-, Cl- or NO3
- (Cl- only for system 2; NO3

- only for system 3). Arrows on the lower 

right indicate the relationship between increasing RH and pH for each system; the highest RH shown is 99 % in all cases. 

Colors indicate different pH approximations (pHT vs pHF vs pH±) including activity coefficient approximations based on 

different ion pairs (for pH±). 10 
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Figure 12. A comparison of calculated pH using (a) AIOMFAC-GLE, and (b) E-AIM as a function of RH for all field campaign 

datasets examined (SOAS Centreville, Cabauw, CalNex, Tianjin and WINTER, see Sect. 6.2 and Table 4 for a description of 5 

the data sets).  
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Figure 13. Comparison of different approximate metrics of pH, using the Cabauw data and calculated by AIOMFAC-GLE 

(left column), and E-AIM (right column). The results are shown as differences from pH as follows: (a, b) pHF - pH; (c, d) pH+ 

(H+,HSO4
-) - pH; (e, f) pH+ (H+,Cl-) - pH; (g, h) pH+(H+

,NO3
-) - pH.5 
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Figure 14. ISORROPIA-calculated pH using the different metrics, and its difference against pH values calculated with 

AIOMFAC-GLE (left column) and, E-AIM (right column). Data shown for all the field campaign observations considered in 

this study (Table 4).  5 
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Figure 15. Comparison of pHF calculated by ISORROPIA with proxies: (a) the charge balance, (b) cation/anion molar 

equivalent ratio, (c) gas ratio (GR), (d, e) HNO3 gas–particle partitioning (Eq. 17), and (f) NH3 gas–particle partitioning (Eq. 

18). The ambient data sets are described in detail in Table 4. The proxy methods were calculated as in Table 2, unless otherwise 

noted. Note the convention for the charge balance calculation in (a) results in a positive value when there is a cation deficit. 5 

The dashed lines in d-f represent the 1:1 line, shown for visual effect. The legend in panel (a) applies to all panels except (e), 

which only shows data for the WINTER data set, colored according to the aerosol water mass fraction (relative to the total 

predicted aerosol mass). 
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Figure 16. Simulated evolution of size-distributed aerosol pH using the sectional MOSAIC aerosol box model: (a) Initial 

aerosol number size distributions for the fine and coarse modes, (b) Time evolution of gas-phase species, and (c) Time 

evolution of aerosol pH as a function of size (bins labeled based on what was initially in the fine and coarse modes). 

  5 
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Figure 17. Sketch of a multicomponent aerosol particle consisting of an organic-rich and an aqueous inorganic-ion rich phase 

in LLPS; here adopting a core–shell morphology. Shown are equilibria of water, organic compounds, as well as inorganic 5 

acids and bases contributing to the overall particulate matter mass, ionic strength and the pH. The dynamically established pH 

exerts control on the gas–particle partitioning of semi-volatile acids and bases, such as HNO3, HCl and NH3. All species may 

partition into all phases; however, inorganic ions tend to favour the aqueous phase, while organic compounds of moderate to 

low polarity will predominantly partition to an organic-rich phase.  

 10 
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Figure 18. Particle pHF at the surface predicted by (a) CMAQv5.2 for Aitken + accumulation modes (2016 northern 

hemisphere annual average), (b) GEOS-Chem for bulk fine aerosol (2015 annual average, version 12.0.0 with additional dust 5 

cations), (c) TM4-ECPL for PM1 (2009 annual average), and (d) TM4-ECPL for coarse aerosol (2009 annual average). Values 

averaged over aerosol liquid water content greater than 0.01 g m-3. The solvent for H+ is water associated with inorganic 

electrolytes. 
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Figure 19. Particle pHF predicted at the surface for June over the contiguous United States by (a) CMAQv5.2 for Aitken + 

accumulation modes (2016), (b) GEOS-Chem for bulk fine aerosol (2015), (c) TM4-ECPL for PM1 (2009), (d) WRF-Chem 5 

v3.9.1 with MOSAIC for PM2.5 aerosols (June 1-14, 2013, liquid water weighted average), and (3) WRF-Chem for coarse 

aerosol (2.5 to 10 μm). Values averaged over aerosol liquid water content greater than 0.01 g m-3. The solvent for H+ is water 

associated with inorganic electrolytes in a-c and total aerosol water (including water associated with organics and OIN) in d-

e. 

 10 
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Figure 20. Liquid-water-weighted vertical column integrated cloud water pHF predicted by: (a) CAM6-Chem (convective 

clouds excluded, June 2015), (b) CMAQv5.3 (resolved clouds only, 2016 annual average), (c) GEOS-Chem (2015 annual 

average), and (d) TM4-ECPL (2009 annual average). Note different color scale compared to particle predictions. White 5 

indicates no cloud water.  
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Figure 21. Liquid-water-weighted vertical column June average cloud water pHF over the contiguous United States predicted 

by: (a) CAM6-Chem (convective clouds excluded, 2015), (b) CMAQv5.3 (resolved clouds only, 2016), (c) GEOS-Chem 

(2015), (d) TM4-ECPL (2009), and (e) WRF-Chem (2013). White indicates no cloud water. 5 
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Tables 

Table 1. Definitions and notation for pH and various molality-based pH approximations. All activity coefficients are on a molality 

basis, relative to a reference state of infinite dilution in pure water. Note, for mathematical rigor (omitted above for simplicity), all 

expressions in the 𝐥𝐨𝐠𝟏𝟎 need to be normalized by unit molality 𝒎⦵.(b) 

Symbol and defining expression  Remarks 

pH = −log10(𝑎H+) = −log10(𝑚H+𝛾H+) recommended IUPAC definition of pH 

pHF = −log10(𝑚H+)  free H+ approximation of pH 

pH±(H, X) = −log10( 𝑚H+𝛾±,HX)  

approximation of pH based on mean molal ion activity coefficient (a) 

of H+ and anion X, with X = Cl-, NO3
- or HSO4

- (choice to be 

specified in parenthesis or as subscript) 

pHT = −log10(𝑚H+ + 𝑚HSO4-)  total H+ approximation of pH 

(a) For 1:1 electrolytes, 𝛾±,HX = √𝛾H+ ∙ 𝛾X
2  . The difference between pH±(H, X) and pH is related to the activity coefficient 5 

ratio, pH±(H, X) − pH =
1

2
log10 (

𝛾
H+

𝛾X−
) . 

(b) With explicit normalization, pHF = −log10 (
𝑚

H+

𝑚⦵ ). 
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Table 2. Definitions of proxy methods. For all quantities the units are moles of chemical species per unit volume of air (e.g., mol m-

3). The quantity [𝐓𝐒𝐎𝟒] is total particulate sulfate, or 𝐭𝐡𝐞 𝐬𝐮𝐦 𝐨𝐟 [𝐇𝐒𝐎𝟒
−] + [𝐒𝐎𝟒

𝟐−]. 

Proxy Definition 

Cation/anion equivalent 

ratio 

Cation
Anion⁄ =

[NH4
+] + [Na+] + [K+] + 2[Ca2+] + 2[Mg2+]

2[TSO4] + [NO3
−] + [Cl−]

 

Degree of sulfate 

neutralization 
DSN = ([NH4

+] − [NO3
−]) [TSO4]⁄  

Degree of neutralization DON = [NH4
+] (2[TSO4] + [NO3

−])⁄  

TNH4: TSO4 TNH4: TSO4 =
([NH3] + [NH4

+])

[TSO4]
 

Strong acidity (charge 

balance) 
Hair,cb

+ = 2[TSO4] + [NO3
−] + [Cl−] − ([NH4

+] + [Na+] + [K+] + 2[Ca2+] + 2[Mg2+]) 

Gas ratio (GR) GR = ([NH3] + [NH4
+] − 2[TSO4]) ([HNO3] + [NO3

−])⁄  

Adjusted gas ratio 

(adjGR) 
adjGR = ([NH3] + [NO3

−]) ([HNO3] + [NO3
−])⁄  

 

 

 5 
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Table 3. Input concentrations (total gas+aerosol) for each of the highly and moderately acidic cases of inorganic systems 1 – 3. 

Compositions are specified in terms of moles of electrolyte and gas-phase species per m3 of air. Model calculations were carried out 

for seven equilibrium RH from 99% to 40%, at 298.15 K and 101.325 kPa pressure.  

System no., case n(NH4)2SO4  

(mol m-3) 

nH2SO4 

(mol m-3) 

nNH3  

(mol m-3) 

nHNO3  

(mol m-3) 

nNa2SO4   

(mol m-3) 

nNaCl   

(mol m-3) 

nHCl   

(mol m-3) 

1, moderately acidic 2.50000E-08 3.37165E-11 1.00E-06 0 0 0 0 

1, highly acidic 1.50000E-08 2.02097E-08 5.00E-08 0 0 0 0 

2, moderately acidic 0 1.00000E-10 0 0 5.61260E-09 1.04451E-07 1.00E-08 

2, highly acidic 0 5.00000E-08 0 0 5.61260E-09 1.04451E-07 1.00E-06 

3, moderately acidic 2.50000E-08 3.37165E-11 1.00E-06 1.00E-06 0 0 0 

3, highly acidic 2.50000E-08 3.37165E-11 1.00E-07 1.00E-07 0 0 0 

 

 5 
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Table 4. Characteristics of the datasets used for the box model intercomparison. Values are reported as mean followed be standard 

deviation in parenthesis. n is the number of data points. (RH, T, and concentration are the same as those in Nenes et al., 2019). 

Dataset ID  
(reference) 

Location  
(Period) 

RH  
(%) 

T 
(K) 

Sulfate 
(μg m-3) 

Total 
Ammonium 

(μg m-3) 

Total Nitrate 
(μg m-3) 

n 

Tianjin 

(Shi et al., 2019) 

Tianjin, China 

(9/Aug/2015- 

22/Aug/2015) 

56.6 (12.4) 301.8 (2.79) 21.46 (10.99) 37.74 (7.68) 18.12 (11.50) 227 

CALNEX 

(Guo et al., 2017b) 

Pasadena, CA, USA 

(17/May/2010-

15/Jun/2010) 

71.3 (15.5) 291.1 (4.26) 2.86 (1.70) 3.44 (1.81) 10.23 (9.74) 482 

Cabauw 

(Guo et al., 2018b) 

Cabauw, Netherlands 

(2/May/2012-

04/Jun/2013) 

78.2 (14.8) 282.2 (7.3) 1.92 (1.57) 9.3 (6.8) 4.1 (3.9) 2612 

WINTER 

(Guo et al., 2016) 

Eastern USA 

(03/Feb/2015) 
56.1 (18.9) 270.8 (6.52) 1.02 (0.08) 0.53 (0.44) 2.12 (2.08) 3121 

SOAS 

(Guo et. al, 2015) 

Centreville, USA 

(06/Jun/2013-

14/Jul/2013) 

72.7 (17.4) 297.9 (3.45) 1.81 (1.18) 0.78 (0.50) 0.12 (0.15) 780 

 

 

 5 

 

 

  

https://doi.org/10.5194/acp-2019-889
Preprint. Discussion started: 18 October 2019
c© Author(s) 2019. CC BY 4.0 License.



 

108 

 

Table 5. (a) Comparison of ISORROPIA II-derived pH approximations against pH. (b, c) Comparison of pH approximations against 

pH when computed by the same model in (b) AIOMFAC-GLE and in (c) E-AIM.  

 
RMSE compared to 

AIOMFAC-GLE 

pH 

MB compared to 

AIOMFAC-GLE 

pH  

RMSE compared 

to E-AIM pH 

MB compared to  

E-AIM pH 

(a) pH approximation by ISORROPIA II(1)     

pHF 0.457 -0.065 0.452 0.097 

pH± (H+, HSO4
-) 0.505 -0.230 0.393 -0.068 

pH± (H+, Cl-) 0.449 0.170 0.527 0.331 

pH± (H+, NO3
-) 0.513 0.372 0.634 0.534 

     

(b) pH approximation by AIOMFAC-GLE(2)     

pHF 0.611 -0.544 - - 

pH± (H+, HSO4
-) 0.272 -0.235 - - 

pH± (H+, Cl-) 0.230 -0.200 - - 

pH± (H+, NO3
-) 0.181 0.073 - - 

     

(c) pH approximation by E-AIM(2)     

pHF - - 0.546 0.123 

pH± (H+, HSO4
-) - - 0.354 0.182 

pH± (H+, Cl-) - - 0.497 0.233 

pH± (H+, NO3
-) - - 0.728 0.493 

 
(1) The pH, as defined by Eq. (1), was calculated using both AIOMFAC-GLE and E-AIM. The comparisons are presented in 

terms of the root mean square error (RMSE) and mean bias (MB) as pH(approx.) - pH, all in pH units. Results were 5 

calculated using all of the SOAS, Cabauw, CalNex, WINTER, and Tianjin datasets (combined) described in Table 4 (n = 

7222 points), with RMSE and MB calculations limited to data points with RH > 35 %. 
(2) Calculations by (b) AIOMFAC-GLE and (c) E-AIM covering the same combined data sets as in (a). 
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