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INTRODUCTION 
 
 

There are immediate needs to develop reliable tissue models for pre-clinical research. It costs 

$2.5 billion and 10-15 years on average to bring a drug to market1. To decrease the cost of drug 

development, it is critical to improve the predictive power of pre-clinical screenings for excluding 

ineffective/toxic candidates as early as possible (so called “fail early, fail cheaply”)2. Currently, the 

typical workflow in pre-clinical tests is to screen drug candidates on statically cultured cells followed 

by animal (e.g. rodent) experiments. However, both models have inherent limitations. Although static 

cell culture experiments are simple to conduct, this method only applies a monolayer of cells in a 

container. For most studies this does not adequately recreate the tissue/organ-level cellular 

complexity and 3D microenvironments (e.g. extracellular matrix, ECM), making many results fail to 

be extrapolated to subsequent clinical trials3. Animal models provide a platform for investigations on 

the organ and system levels. However, these expensive, time-consuming, and low-throughput 

experiments may not reflect human physiology; evidence shows that small genomic differences 

between species can lead to major aggregated physiological variances4. Indeed, based on these 

models, only 1% of the efficacy and toxicity results succeeds in subsequent clinical studies5. 

 

In the past two decades, advances in microfluidic technologies have provided a new platform 

for culturing cells in a more physiologically relevant manner6. Microfluidics are devices with µm-scale 

fluidic channels for controlled flow in small volumes (µL)7. These cell-laden microfluidic devices are 

often referred to as organs-on-a-chip8. This technology can overcome the limitations of both static 

cell cultures and animal studies8-10: 1) the inherent continuous flow in microfluidic devices enables 

continuous nutrient/oxygen supply and waste removal to maintain a stable growth environment for 

cells therein; 2) flow manipulation can apply desired gradients to the cells, which is especially useful 

for dosing studies; 3) the laminar flow in microfluidic channels can mimic blood physics in capillaries 

– shear stress can be introduced, and multiple cell types can be connected for inter-tissue modelling; 

4) human cells are commonly used to obviate the inter-species discrepancy of animal models; and 

5) with precise engineering, studying a single factor is more feasible with organs-on-a-chip than in 

animals. Due to these unique advantages, the organs-on-a-chip technology holds the promise to 

lessen the gap between pre-clinical and clinical studies5. 

 

There have been fantastic reviews focusing on microfluidic designs (e.g. on-chip pumps) for 

organs-on-a-chip applications9, 10. In this paper, we will discuss the topic from a new perspective: the 

ways that cells can be cultured in microfluidics; specifically, integration of scaffolding materials as 



 

ECM to support cell growth and functions. In our opinion, the first generation of “organ-on-a-chip” 

devices should be called “cell-on-a-chip” because cells were cultured as a monolayer on a side of a 

fluidic channel or on embedded porous membranes. Except for a few cell types, such as endothelial 

cells, such models do not recreate the complex 3D cell-cell interactions assisted by ECMs on the 

organ level. Accumulating evidence has revealed the importance of ECMs for in vitro cell cultures11 

as the 3D environment is critical to maintain cell activities and functions including proliferation, 

migration, apoptosis, and responses to drugs, etc12. For instance, Chitcholtan et al observed 

decreased proliferation of RL95-2 and KLE cells when cultured in 3D spheroids as compared to 2D 

monolayers when exposed to the anti-cancer drugs doxorubicin and cisplatin13. Hakkinen reported 

that ECM is an essential factor controlling the migration of fibroblasts. By comparing the migration 

rates of fibroblasts cultured in 3D and 2D environments, fibroblasts had significantly higher migration 

rates in 3D matrices comprised of collagen or cell-derived matrices14. Kloss et al demonstrated that 

apoptosis was affected by ECM dimensionality, particularly in drug-response studies, as 3D cell 

cultures differ in surface area to volume ratio as compared to monolayers15. Further mechanism 

studies revealed that integrins and cadherins on the cell membrane can sense the ECM conditions 

(chemical composition and physical properties such as stiffness), and transduce the information 

intracellularly16. Pampaloni et al and Jensen et al recently provided thorough reviews on the 

significance of ECMs for cell cultures17, 18. Therefore, continuous efforts have recently been made to 

include ECM materials for 3D cell cultures or even co-cultures in microfluidic device. There are two 

main families of scaffolding materials for organs-on-a-chip: hydrogels and electrospun fibers. These 

will be thoroughly reviewed in the following subsections.   

 

 
HYDROGELS AS SCAFFOLDING MATERIALS FOR ORGANS-ON-A-CHIP 

 
 

A brief overview of hydrogels 
 

Hydrogels are cross-linked 3D polymer networks containing large amounts of water up to 

99% by weight19. Hydrogels are permeable because of their expanded microstructure that occurs 

due to the affinity of the polymer backbone to the solvent (water) molecules. As shown in Fig.1, 

when water penetrates the cross-linked network, the backbones are “pushed” outward to 

maximum due to the formation of hydrogen bonds20. The pore size of the hydrogel can be varied 

by altering the hydrogel chemistry and the degree of crosslinking21. 

 



 

Hydrogels can be sorted into three main categories: natural, synthetic, and hybrid 

materials. Natural hydrogel materials directly originate from animals or plants. Animal-sourced 

hydrogels such as collagen are cytocompatible, present native cell-binding ligands, and exhibit 

chemical properties reminiscent of native tissues22, 23. However, these gels usually have limited 

mechanical strengths, long-term stability, and batch-to-batch reproducibility24. Synthetic 

hydrogels, which are chemically synthesized from precursor molecules, can be more reproducibly 

customized to desired mechanical properties but may require additional chemical modifications 

for cell adherence25, 26. Hybrid hydrogels are synthesized from bio-sourced small molecules such 

as hyaluronic acid and amino acids. Mixtures of different types of hydrogels (copolymers) have 

also been utilized to complement each other’s shortcomings27. Many factors should be considered 

when selecting a hydrogel for 3D cell culturing; the most important ones are cell compatibility, 

molecular diffusion rates, and mechanical properties28. There have been insightful reviews 

regarding hydrogel properties for cell cultures28, 29 and thus we will not discuss it further.  

 
Extraction of natural hydrogel materials from animal tissues 

 
Native ECM molecules directly derived from animal tissue have garnered interest for 3D 

cell cultures30. For example, Matrigel, a hydrogel material extracted from decellularized murine 

tumors, has shown great success in tumor-modelling research because of the recapitulation of 

cancer cell microenvironments31. These molecules can be chemically functionalized and/or 

physically mixed with other polymers for optimal performance. Due to the high cost of such 

products from vendors, efforts have been made to develop protocols to extract ECM molecules, 

mainly collagen, from animal tissues32, 33.  

 
Collagen is the primary component of ECM in animals with two main broad types: fibrillar 

and non-fibrillar34. About 90% of collagen in human beings is fibrillar, the molecules of which form 

a triple helix fibrillar structure via hydrogen bonds induced by the abundant proline and 

hydroxyproline residues34, 35. Telopeptides at both ends of a single fibrillar molecule contain a high 

level of lysine and hydroxylysine, which can intermolecularly form aldol crosslinks via the enzyme 

lysyl oxidase36. A schematic representation for the formation of collagen37 can be seen in Fig. 2. 

The intermolecular crosslinks must be broken in order to extract collagen from solid animal 

tissue. The most commonly used techniques for this purpose are acid/base treatment and 

enzymatic digestion38, 39. Acids/bases are used for hydrolysis of native collagen and result in 

partially hydrolysed structures (gelatin)38. Mineral acids, specifically acetic acid, are most often 

used for hydrolysis of collagen38, 40. The enzyme pepsin can be applied to increase the solubility 



 

of collagen due to its ability to cleave the intermolecular aldol crosslinks of the telopeptides38, 41, 

42. Following pre-treatment to remove cells and soluble proteins, additional steps may be 

performed to remove other components such as the removal of excess fats via butanol43. 

Examples of these steps are shown in Table 144-48. The extraction conditions listed do not outline 

additional purification steps which may be needed (e.g. using dialysis to remove pepsin (35 kDa)). 

It is common for steps to be performed at 4 °C to prevent thermal degradation of the material. 

 
 
 
Integration of hydrogels in microfluidics for organs-on-a-chip 
  

After considering the type of hydrogel to be used, the next step is to determine how to 

apply it. On the macro scale it is a matter of dispersing the uncured hydrogel material and then 

crosslinking it. However, this methodology is not suitable when micron resolution is required for 

biomimetic devices. Ultimately, strategies for incorporating hydrogels in microfluidic devices will 

be based on either fabricating a device with hollow channels and filling them with a curable 

hydrogel, or excising channels from a hydrogel bulk material. The technique used is dictated by 

the resolution and complexity of the part of interest49, 50.  

 
Filling hydrogels in pre-made microfluidic devices 

Hydrogels can be filled in premade microfluidic devices as ECMs for 3D cell culture. For 

example, Virumbrales-Muñoz et al. investigated the ability of TNF-related apoptosis inducing 

ligand (TRAIL) to penetrate endothelium and kill tumor cells in a 3D collagen matrix. The 

microfluidic device was fabricated from polydimethylsiloxane (PDMS) via soft lithography. The 

central channel was oxygen plasma treated to promote capillary actions for spontaneous filling. 

Droplets of collagen (1.2 mg/mL, see Ref. 51 for details), which were previously mixed 1:1(v/v) 

with the cancer cell suspension, were placed on top of the device inlet for filling. The collagen was 

then polymerized for 12 minutes at 37 °C. Endothelial cells were cultured in the flow path on top 

of the collagen containing the cancer cells (Fig. 3A). TRAIL was introduced both in its soluble 

form and bound to a large unilamellar vesicle51.  A similar device but with two unique hydrogel 

constructs was prepared by Adriani et al. to model the blood brain barrier and how drugs can 

potentially affect neurocytes and astrocytes52 (Fig. 3B). Here collagen solutions with suspended 

astrocytes (0.6x106 cells/mL) and neurons (5x106 cells/mL) were injected directly into the device 

and then polymerized for 30 minutes at 37 °C. Pavesi et al. utilized a microfluidic device with a 

collagen barrier separating two microfluidic channels. Similarly, cells were suspended in the 

hydrogel solution (5x106 cells/mL), injected directly into the region of interest, and allowed to 



 

polymerize for 40 minutes at 37 °C. The microfluidic channels would flow tumor-specific T-cell 

receptor T (TCR-T) cells parallel to the hydrogel which contained human hepatocytes. The 

efficacy of the TCR-T cells were then observed under different oxygen conditions and in the 

presence of inflammatory cytokines 53 (Fig. 3C). Jeong et al. further developed this technology by 

creating a seven-channel device for studying the effects of tumor spheroids on fibroblast activity 

(Fig. 3D)54.  

The examples described above represent a common methodology for including cell-laden 

hydrogels in existing microfluidic devices, where the prepolymer of the gel is delivered to fill a 

channel or chamber via capillary action and is held in place by surface tension. After subsequent 

curing media is perfused through an adjacent channel, which contacts one side of the gel 

structure, for nutrients and oxygen to be transported to the cells therein through diffusion. While 

simple and straightforward, this method has challenges in specific applications. First, it suspends 

cells in a gel without considering cell alignments. Many cell types such as skeletal muscle fibers 

need to be aligned to exert normal functions55. Second, the lateral flow of media along the surface 

of a gel and the diffusion mechanism for supplying nutrients and removal of waste may be limited 

in terms of efficiency — evidence shows that a gel thicker than 200 µm can cause cell necrosis 

due to insufficient oxygen delivery56.  To circumvent these issues, precise gel localization using 

photolithography has been developed. For example, Agrawal et al demonstrated an innovative 

muscle-on-a-chip model using a photomask to specifically form two hydrogel pillars (100-300 µm) 

within a microfluidic channel. Next, GelMA containing C2C12 muscle cells was cured in a capsule 

shape between the pillars using a second photomask. The results showed that the micropillars 

acted as anchoring points to force the cells to form uniaxially-aligned, densely-packed 3D muscle 

cylinders57. Skardal et al recently created a liver-on-a-chip model with enhanced molecular 

diffusion through hydrogel. A photomask was applied to form islets of cell-laden hydrogels within 

flow paths, such that media could flow around the islets and molecules diffusing from all sides of 

the gel structure58. With this design, liver cells (HEPG2) were alive and functional for over seven 

days58. Overall, photolithography-assisted hydrogel inclusion in microfluidic devices provides 

precise localization and patterning of cells. However, it usually requires UV light to cure the gels 

which may cause phototoxicity issues. All these factors should be considered when choosing a 

method for organs-on-a-chip research.  

 

 

 



 

Fabrication of microchannels in hydrogel parts 

 

Replica Molding 
 

Replica molding can be used to make microfluidics in hydrogels without photocuring 

limitations. There are three types of molds that are commonly used to cast hydrogel-based 

microfluidic devices: master molds prepared by photolithography, physically removable molds, 

and sacrificial molds. As shown in Fig. 4A, a master can be prepared by allowing irradiation to 

pass through the transparent pattern on the photomask, which cross-links the photoresist material 

(e.g. SU-8) in place, creating a raised serpentine microstructure (Fig. 4B). Next, the prepolymer 

of a hydrogel is poured onto the mold (Fig. 4C) followed by gelation. After the hydrogel slab is 

peeled off, it can be sealed to a substrate such as glass to close the channel for flow-based 

experiments (Fig. 4D). For example, Cabodi et al. utilized this technology to fabricate a 

microfluidic device by casting an alginate solution on top of a patterned photoresist prepared via 

lithography59. The cross-sections of microchannels fabricated by this method are typically 

rectangular, but research into scaffold geometry indicates that cell adhesion is affected by the 

shape of the substrate, where rectangular (cross section) channels show a lower degree of cell 

adhesion60. Therefore, He et al. developed a more complicated methodology for fabricating 

hydrogels with circular channels to better emulate internal vasculature. This was accomplished 

by partially crosslinking gelatin which was cast on a semi-circle mold, aligning it with another 

gelatin cast, and completing the crosslinking to form circular hollow channels61. The way that a 

closed microfluidic channel is formed (binding a hydrogel layer on a substrate) can be challenging 

in subsequent applications. Due to the flexibility of hydrogels, deformation will likely occur when 

placing a gel layer on a substrate (e.g., stretching), which can compromise the dimensions and 

shapes of the desired microstructures. Using less flexible hydrogels and alignment markers can 

be a potential solution to this issue62. Some groups measured the amount of shrinkage that 

occurred under different conditions and adjusted the mold pre-emptively for curing results in the 

desired final dimensions63.  

Existing microstructures such as micron-diameter wires can also be embedded in 

hydrogels to form microchannels. For example, Linville and Wong prepared hollow microfluidic 

channels in hydrogel-based devices by crosslinking polymers such as collagen and agarose 

around a wire which was pulled out after the hydrogel gelated 64, 65 (Figs. 4E and 4F). It is simple 

and straightforward to fabricate devices using such physically removable molds. However, this 

method can only generate devices with basic and simple microstructures (e.g. straight channels).  



 

Sacrificial molds can be used to fabricate complicated hollow microstructures in a piece 

of hydrogel. These molds are made by certain materials such as gelatin66, PVA (polyvinyl 

alcohol)67, and alginate68 which can be dissolved after the surrounding hydrogel is fully cured. A 

recent example is by Tocchio et al.; a mold was etched in plexiglass, PVA was carefully poured 

into it, dried overnight, and removed67 (Fig. 5A). This mold was then placed between glass 

spacers and covered in either 2-hydroxyethyl methacrylate (HEMA), agarose, or GelMA67. 

Following curation of the hydrogels and removal of the spacers, the PVA was dissolved by 

washing with water or phosphate-buffered saline67 to form hollow channels in the hydrogel (Fig. 
5B) which could be seeded with endothelial cells to mimic a vasculature system (Fig. 5C). 

Sacrificial molds provide a low-cost way to fabricate desired microstructures in hydrogel. 

However, certain concerns may arise from the additional washing step: the buffer composition 

may cause chemical contamination and/or osmotic shock to the cells; maintaining sterilization 

may also be difficult.  

Overall, replica molding is a simple technique to fabricate hydrogel microfluidic devices, 

however, limitations and challenges exist. To maintain the structural integrity of such a device, 

relatively stiff materials are commonly used which may not support viable cell encapsulation due 

to the high material density (e.g. limited number and size of the pores for diffusion). This perhaps 

explains why these studies mainly used the inner wall of the microchannels as a support surface 

to seed endothelial cells as a vasculature mimic. In addition to the deformation issue of 

microstructures in a soft gel, ports at the ends of flow channels to connect tubing and adaptors 

for liquid delivery/perfusion can also be challenging. The most frequently used method for creating 

ports is using punchers, which excise a portion of the hydrogel of the punch’s diameter. Currently, 

the success of this method relies on user expertise both for using punchers and appropriately 

curing the hydrogel device, and the flexible gel may not be able to seal a tubing tightly for leakage-

free flows. To circumvent these issues, efforts will be needed for new device designs and 

fabrications. For instance, the device shown in Fig. 4E was not connected to tubing. Instead, the 

device was placed vertically with a reservoir on top filled with media, and gravity drove the flow 

through the channel. Multiple materials can also be used to fabricate such a device, with gels of 

high mechanical strengths in the port area for reliable port punching.  

 

 
 
 
 
 
 



 

3D bioprinting 
 

Extrusion-based bioprinting has gained interest in recent years for creating tissue models 

due to its capability for fabricating 3D structures with desired dimensions and shapes in one 

step69. A typical 3D bioprinting process is to extrude bioinks (e.g. hydrogel prepolymer with 

suspended cells) onto a stage layer by layer69. Each layer is cured via various mechanisms such 

as photo irradiation and chemical crosslinkers. Fig. 6 illustrates how a 3D bioprinter works with 

optical components to cure the gel. Numerous bioprinted tissue models have been reported. For 

example, Cao et al. directly printed a mixture of either PEGDA or poly(ethylene glycol) 

octaacrylate (PEGOA) with GelMA, alginate, and photoinitiator to form microfluidic tubes70 (Fig. 
7). These printed tubes acted as blood and lymphatic vessel mimics which were then sealed 

within a GelMA matrix containing suspended MCF-7 tumor cells. Therefore, a tumor model that 

contained blood flow, lymphatic drainage, and cancer cells embedded in surrounding hydrogels 

was fabricated70.  

To avoid the cytotoxicity issue of common photoinitiators, Grigoryan et al. recently 

reported that biocompatible food color molecules can be used to cure PEGDA hydrogels71. They 

also developed a home-made digital micro-mirror setup for the fabrication of complicated 

microchannel networks. They first manufactured an acellular interconnected channel network to 

study the oxygenation of red blood cells (Fig. 8), which was achieved by using a 20 % (w/w) by 

weight PEGDA (6 kDa) solution, as this gel was determined to allow for oxygen diffusion and 

relatively long-term mechanical stability (device could withstand 10,000 ventilation cycles). 

Although not stated by the authors, it is likely that the PEGDA hydrogel may be too dense to 

encapsulate cells for direct tissue printing, because in a subsequent experiment, the authors 

fabricated a PEGDA holder with a prefill space, where fibroin or GelMA gels with suspended 

hepatocyte aggregates were filled and cured in situ.  

Recreating an accurate in vivo mimic often requires the use of multiple materials to 

simulate the different parts of an organ/tissue72; fabrication of such systems can be carried out by 

3D bioprinting. For example, Ruiz-Cantu et al. produced a neocartilage model using chondrocyte-

laden GelMA co-printed with polycaprolactone (PCL)72. Kang et al. bioprinted a fine-tuned mixture 

of gelatin, fibrinogen, hyaluronic acid, and glycerol prepared in Dulbecco’s Modified Eagle 

Medium (DMEM) to make ear constructs73. These constructs were implanted in mice and were 

observed to retain structural integrity over two months and showed signs of surface 



 

vascularization73. Arumugasaamy et al. recently reviewed multimaterial bioprinting and its 

applications at length74. 

The historical drawback of 3D bioprinting is the low resolution due to the flexibility of the 

bioinks and the relatively slow kinetics for curing the hydrogel matrix75. However, recent advances 

have lowered the achievable resolution making it a more attractive option76-78. An example of such 

is light-assisted printing where the resolution is dependent on the light source rather than the 

printing head of an extruder69. Light-assisted techniques have their own drawbacks, such as 

potential cytotoxicity and limitations in printing materials, but are able to push printing resolutions 

down to 5 µm or lower whereas extrusion-based methods are currently limited to 100 µm and 

higher69. Another concern of 3D bioprinting is the high shear stress expressed to the cells. When 

a stream of bioink with cells is pushed out of the extruder orifice, the cells are experiencing a high 

level of shear, which may be deleterious for the cells79. This is especially true when applying a 

smaller orifice to improve resolution79.  

Like the replica molding technology, 3D-bioprinting also makes microfluidic devices from 

hydrogels—a stiff and dense gel can maintain the structural integrity but compromise cell viability 

therein. In an analysis of recent publications, the reported bioprinted devices can be grouped into 

two categories: those with cells encapsulated to mimic a tissue in vivo, and others that act merely 

as a support structure for subsequent cell seeding or perfusion (e.g. erythrocytes perfused 

through a device to mimic blood flow, the example in Fig. 8). In the case of the former, it is 

exceedingly important that the hydrogel chemistry and physics can mimic the in vivo environment. 

Specifically, the bioink used during 3D printing must provide cell adhesion moieties, be permeable 

for oxygen and small molecules, and be mechanically stable80, 81. Common naturally occurring 

materials used as bioinks are those based on agarose, alginate, collagen, and hyaluronic acid80. 

Agarose dissolves and is handled easily, gels at low temperatures, and maintains dimensionality 

for long periods of time81. However, low cell adhesion and proliferation as well as limited 

biosynthesis of cell components has indicated that agarose on its own is insufficient for cell 

culturing82, 83. Kreimendahl et al demonstrated the feasibility of blending agarose with collagen 

and fibrinogen to promote cell culturing while maintaining structural stability84. Alginate is a 

commonly used material owing to its abundance, low cost, and characterized diffusion 

properties85. Furthermore, alginate can be cured significantly quicker than thermally-cured 

hydrogels through the use of multivalent cations85. However, monolithic alginate hydrogels lack 

mechanical stability and adhesion sites, limiting cell attachment81. Strategies to overcome these 

shortcomings have been demonstrated; Jia et al developed a mixture of alginate, GelMA, and 

PEG-tetra-acrylate (PEGTA) to form a high-strength device with perfusable vasculature86. 



 

Functionalization of alginate channels with specific peptides has also been demonstrated to 

promote cell adhesion87. Although collagen is commonly used for cell culturing, it is difficult to be 

used for 3D bioprinting due to its long cure times, during which homogeneity of cell distribution 

may be lost as cells spread81. Modified collagens have made it a viable bioprinting material. For 

instance, Homenick et al demonstrated this by crosslinking collagen with poloxamers to increase 

the Young’s modulus of the overall material81. Overall, as natural materials have low tunability of 

their mechanical properties, it is simpler to blend them with synthetics which can have various 

properties (e.g. molecular weight, degree of functionality, types of functional groups) adjusted 

based on the needs of the application80. 

 When hydrogels are used as a microfluidic device material to support subsequent cell 

inclusion, maintaining mechanical stability becomes a necessity along with other considerations 

such as non-specific molecular adsorption/absorption and surface tensions88. Protocols have 

been reported to functionalize parts of such as device for specific cell applications. For example, 

Koh et al formed microwells for the isolated culturing of cells by fabricating a layer of PEG hydrogel 

walls which circumscribed a hydrophobic floor to selectively pattern cells89. A similar approach 

was shown by Lee et al where micropatterned PEG hydrogels, acting as walls/dividers, were 

placed over a network of electrospun fibers for the localization of cells90.   

In conclusion, with current technologies, it is critical to choose a proper material for 3D-

bioprinting. In addition to the chemistry of a material, the curing conditions (e.g. temperature, time, 

radiation, etc.) can also affect the crosslink density, porosity, and mechanical properties, which 

need to be optimized for each specific application. 

 

 

ELECTROSPUN FIBERS AS SCAFOLDING MATERIALS FOR ORGANS-ON-A-CHIP 

An overview of electrospinning 

The technology of electrospinning 

Electrospinning is a technique that utilizes a high electrical voltage to generate polymer 

fibers on the micro- and nanometer scale91. As shown in Fig. 9, a typical electrospinning setup 

consists of a syringe for dispensing a polymer solution through a metal needle. A high voltage (in 

the range of 5-30kV) is applied to the metal needle, where a Taylor cone forms92. The fibers are 

electrically charged and thus can be deposited on a grounded collector. Due to the tuneable fiber 



 

diameter and mechanical stiffness, and the ability to embed particles/compounds, electrospun 

fibers have been utilized in various applications as scaffolding materials for 3D cell culture93-96.  

Commonly used polymers in electrospinning 

 Both synthetic and natural polymers have been implemented in electrospinning; some of 

the most commonly used ones are summarized in Table 2. After a literature search via Web of 

Science using keywords “Electrospinning” and “Extracellular Matrix”, it was determined that PCL 

(polycaprolactone) and PLA (polylactic acid) are the two most common materials due to their 

biocompatibility and biodegradable nature97-100. Fig. 10A shows the popularity of the materials for 

electrospinning101-195. Most of the research implementing electrospinning focuses on biomimetic 

tissue engineering such as 3D cell cultures (Fig. 10B). 

 In addition to synthesized polymers, the use of natural polymers for electrospinning was 

also explored. For example, collagen and fibronectin solutions can be directly electrospun to 

generate more physiologically relevant ECMs than synthetic polymers196. Silk fibroin has been 

gaining attention recently due to its remarkable characteristics including biocompatibility, high 

water and oxygen uptake, and tunable mechanical properties197. This material can be extracted 

from raw silk following a simple protocol at low costs198.  

Integration of electrospun fibers in microfluidics for organs-on-a-chip studies 

 Most of the applications of electrospun fibers have used static containers to culture cells. 

A standard protocol is to peel the electrospun fiber layer off from the collector, cut it to the desired 

shape, and then place it in a multi-well plate for cell seeding after sterilization199. Although simple, 

this protocol excludes the potential benefits of flow-based cell cultures such as shear stress 

introduction, continuous nutrient supply and waste removal, and gradient control. Therefore, since 

2016, efforts have been made to combine electrospun fibers as scaffolding materials in 

microfluidics to prototype organs-on-a-chip models. There are three main technologies developed 



 

for this purpose: lateral-flow models, direct electrospinning of fibers into a microfluidic channel, 

and modular integration of electrospun fibers. 

Lateral-flow model  

Pimentel et al. recently developed a microfluidic device on a sheet of electrospun fibers 

(Poly(L-lactic acid), PLLA)) as a lateral-flow model for cell culture200. As shown in Fig. 11A, certain 

areas on a sheet of electrospun fibers (the whole square) were blocked to form hydrophobic 

barriers (black; blocking material was not specified by the authors) surrounding channels and 

circular zones. Like paper-based microfluidics, the fibrous nature of the substrate can drive liquid 

flow via capillary actions. However, compared to paper, electrospinning offers the possibility to 

make fibers of desired dimensions and morphologies (Fig. 11B) for specific cell culture 

applications. Also, other components can be premixed in the polymer solution to make composite 

fibers. For example, the authors added NaY, a crystal sodium zeolite, to the fiber to increase the 

hydrophilicity of the material178.  

This technology has unique advantages including simple fabrication and assay 

parallelization (multiple chambers in one device). However, such devices are not suitable for cell 

types that require flow-based shear stress.  

Direct Electrospinning of Fibers into a Microfluidic Channel 

 Chen et al. invented a technology in 2016 called dynamic focusing electrospinning, to 

directly coat electrospun fibers on the inner side of a fluidic channel201. As demonstrated in Fig. 

12A, a 3D-printed sheath device was placed around the metal needle/cannula. With proper 

pressure, the gas (air or N2) flowing out of the sheath confined the PCL fibers through the fluidic 

channel placed under the Taylor cone. The exiting fibers from the bottom end of the fluidic device 

indicated successful fiber coating inside the channel. A uniform layer of microfibers was added to 

the channel wall, which was confirmed by SEM imaging (Fig. 12B). The authors cultured RAW 



 

264.7 macrophages and found that the fibrous scaffold enhanced the production of cytokines 

such as interleukin-6 (IL-6) and vascular endothelial growth factor (VEGF).  

This technology can introduce the flow through a 3D tissue mimic. However, a limitation 

is that the diameter of the fluidic channel cannot be smaller than 1mm.  Although the fibers can 

be focused by the sheath flow, there is a limit of the focusing because the fibers tend to spread 

due to the same charges they bear. Also, the pressure of the gas flow cannot be too high, or 

disruption of the Taylor cone will occur.  

Modular Integration of Electrospun Fibers in Microfluidic Devices 

Chen et al. reported another technology to modularly integrate fibers in microfluidics in 

2018202. As shown in Fig. 13A, instead of directly electrospinning into a microfluidic channel, the 

fibers were coated on a polystyrene sheet first, which was then laser cut into rectangular inserts203. 

The fused edges by the laser immobilized the fibers on the PS substrate. After cells were seeded 

on the fibers, the inserts were plugged into a 3D-printed fluidic device with matching slots (Fig. 

13B). The space between the inserts form the fluidic channel for media to flow through (Figs. 13C 

and 13D). The authors demonstrated that under lipopolysaccharide (LPS) stimulation, the 

response rates of macrophages cultured in the fibrous scaffolds are more physiologically relevant 

than those cultured on a flat surface. 

This technology has prominent advantages. Modularity allows for examination of the cells 

cultured on the inserts before assembly, with failed cultures (e.g. by contamination) being 

replaced without discarding the whole setup. After an experiment, the cell-laden inserts can be 

removed for further studies such as imaging. The space between inserts is customizable for 

tuning shear stress. In our opinion, this is the most applicable technology for integrating 

electrospun fibers in microfluidics to date.  

 



 

CONCLUSION AND PERSPECTIVE 

In this paper, we thoroughly reviewed recent (mainly after 2016) advances in integrating 

scaffolding materials in microfluidics for organs-on-a-chip applications. Various technologies have 

been developed to incorporate hydrogel materials and electrospun fibers on chips for disease 

modeling, pathophysiological studies, and pharmaceutical research, with insightful results 

generated. After reviewing these models, we found that they were fabricated by complicated 

protocols via high-end/expensive instruments, which may explain why the technologies have not 

been widely translated. Organs-on-a-chip hold the potential for extensive breakthroughs in 

disease modeling, drug discovery, and enhancing our understanding of organ functions. However, 

this promising potential will not be achieved without easy translation of the technology to other 

laboratories (e.g. those with expertise in physiology but not chip fabrication). Simplified and 

translational devices should be a research focus in the future. Modularity can help technology 

translation; compared to all-in-one devices which must be discarded if any part fails, modular 

microfluidic devices are more cost-efficient and flexible. For example, a toolkit with various 

modules can be developed, with which organs-on-a-chip models can be simply assembled based 

on specific needs. Also, protocols need to be standardized. For instance, to cure collagen 

hydrogel at 37 ˚C, different curing times have been reported. Standardizing such protocols will 

benefit technology translation. Lastly, most of the reported organs-on-a-chip models were single-

use devices with only one throughput. Considering the high labor, time, and facility investments 

to the fabrication, these factors can depress enthusiasm. Therefore, reusable devices with 

enhanced throughput need to be exploited.  
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