Challenges and Opportunities for Integrating 3D Printing into Physical Therapy

Dr. Amy Hurst

Information Systems Department

Talk Outline

Digital fabrication and AT "Disruption"?

- Overview of relevant tools and capabilities
- Systematic review of Thingiverse.com

Explorations with PTs and 3D Printing

- Alternative 3D modeling software
- Teaching 3D modeling and design
- Strategic outsourcing

Lessons learned and recommendations

Talk Outline

Digital fabrication and AT "Disruption"?

- Overview of relevant tools and capabilities
- Systematic review of Thingiverse.com

Explorations with PTs and 3D Printing

- Alternative 3D modeling software
- Teaching 3D modeling and design
- Strategic outsourcing

Lessons learned and recommendations

Traditional "Making" Tools

New Making Tools

"Personal-scale manufacturing tools **enable people that have no special training** in woodworking, metalsmithing, or embroidery to manufacture their own complex, **one-of-a-kind artisan-style objects**" --Lipson, Factory@Home

3D Printed Plastic

Laser Cut Wood

CNC Milled Metal

Finding Making Tools

Buy a printer

Printer Sharing

SD PRINTED BY

Online Communities

Enable users to share designs, modifications, experiences, knowledge and inspiration

Digital fabrication and AT "Disruption"?

- Overview of relevant tools and capabilities
- Systematic review of Thingiverse.com

Explorations with PTs and 3D Printing

- Alternative 3D modeling software
- Teaching 3D modeling and design
- Strategic outsourcing

Lessons learned and recommendations

Sharing 3D Designs on Thingiverse

Pill box insert for Altoids tins by <u>scanlime</u> Share files ready to be manufactured Users share images and experiences Encourage modifications

What Kinds of Designs are Posted?

Example designs by inclusion criteria

thing:23729

thing:61329

thing:324072

[CHI 2015]

thing:359348

Surveyed all AT posted between 2008-2015

Less than 1% was AT

(363 designs out of 100,000)

- 1. Traditional assistive technologies (6%)
- 2. Accessible media (11%)
- 3. Accessories for assistive devices (8%)
- 4. New assistive technology prototype (4%)
- 5. Prosthetic limbs (17%)
- 6. Medication management tools (36%)
- 7. Other design explicitly intended for disabled or senior users (18%)

What are People Making?

thing:261462

thing:242639

thing:92937

thing:114247

thing:380665

21

thing:188275

thing:242639

thing:114247

thing:92937

thing:261462

thing:114247

thing:188275

thing:201304

thing:201304

thing:157174

Who are the Designers?

[CHI 2015]

Online survey with 69 designers to understand why they made and shared the AT

24	I made this for someone I know
13	I made this for myself
13	This was a personal challenge
8	This isn't intended for a disability
6	This was part of a research project
5	This was required for a class or competition

Talk Outline

Digital fabrication and AT "Disruption"?

- Overview of relevant tools and capabilities
- Systematic overview of Thingiverse.com

Explorations with PTs and 3D Printing

- Alternative 3D modeling software
- Teaching 3D modeling and design
- Strategic outsourcing

Lessons learned and recommendations

Designing Stylus Grip With Clinicians

GripFab Interface

Grips Hole Settings Barrel Settings		Grips Hole Settings Barrel Settings Finish	
What kind of barrel would you like?		How would you like the hole shaped?	
None	•	Circle	•
Creates a simple grip with a hole for items to slide into. Grip Depth: O The diameter of your circle should fit tightly around your object.	0.0 mm	Creates a circular hole for the item to slide into. Good for pens. Diameter: The diameter of your circle should fit tightly around your object.	0.0 mm
Barrel Length:	0 mm	Height: The height of your rectangle should fit tightly around your object. Width:	0.0 mm
Angle: The angle at which you want the barrel to point Grip Grip Depth Hole	0 degrees Left Handed Grip? Submit Barrel	The width of your rectangle should fit tightly around your object.	
			Submit Hole

[TACCESS 2016, ASSETS 2014]

GripFab Interface

Grips Hole Settings Barrel Settings		Grips Hole Settings Barrel Settings	
What kind of barrel would you like?		What kind of barrel would you like?	
Straight	•	Angled	•
Creates an straight barrel. Adds support to longer items. Great for writing.		Creates an angled barrel. Adds support to the item and points it at and angle.	
Grip Depth: OTHE diameter of your circle should fit tightly around your object.	12.4 mm	Grip Depth: The diameter of your circle should fit tightly around your object.	0 mm
Barrel Length:	40 mm	Barrel Length:	40 mm
Angle:	0 degrees	Angle:	degrees
Grip Depth Barrel Length Hole	Left Handed Grip?	The angle at which you want the barrel to point Angle Barrel Barrel Barrel Barrel Barrel Hole Hole	Left Handed Grip?
	Submit Barrel		Submit Barrel

[TACCESS 2016, ASSETS 2014]

GripFab Output Barrels and Angles

[TACCESS 2016, ASSETS 2014]

Talk Outline

Digital fabrication and AT "Disruption"?

- Overview of relevant tools and capabilities
- Systematic overview of Thingiverse.com

Explorations with PTs and 3D Printing

- Alternative 3D modeling software
- Teaching 3D modeling and design
- Strategic outsourcing

Lessons learned and recommendations

Teaching 3D Printing

PT intro class at University Maryland, Baltimore 1st Class Sessions:

- 1. Demystify 3D printing
- 2. Demystify 3D modeling
- 3. Create AT using clay
- 4. Evaluate final AT

Taught class three times

Anticipate a Steep Learning Curve

What is 3D?

Teaching 3D Printing

PT intro class at University Maryland, Baltimore 2nd Class Sessions:

- 1. Demystify 3D printing
- 2. Demystify 3D modeling
- 2. Create AT using clay
- 3. Revise 3D printed AT
- 4. Evaluate final AT

3D Printing Design Exercises

Female (Age 45)

Clinical: Status post TBI, requires use of right quad cane, limited by right wrist flexor synergy

Laymen: Traumatic brain injury caused patient to have limited balance and reduced control of movement of her wrist. Patient uses a cane with four legs.

Design Exercises (Simulated Patient)

Created arm-rest with hand grips for a quad cane. Designed to limit wrist mobility.

[ASSETS 2016]

Year 1 Solution

Design Exercises (Simulated Patient)

Design Exercises (Real Patients)

Class for 2nd year students

- 3 Class sessions
 - Need finding and initial design with patient
 - Revision of first round of 3D models
 - 3. Evaluate 3D printed AT with patient

Communication with Fabricators

Team KP (Group 9) Case Number (Circle One): 1 2 3 4 5

3D Print Order Form

1. Patient description: please provide a description about the client	
a. Fake name: Anything Smith	
b. Age: 70	
c. Need for assistive device (diagnosis): extension of MP and PLP Jts	
d. Expected use of the assisted device: assist w/ opening of (2) hand	
e. Expected impact of patient the assistive device: improve cloor cremina and	
cooking	
 Surface Details: Are there any decorative aspects (surface details) that are not important to your finished print (e.g., fingerprints or other small details)? 	
00	
Material (circle one): STIFF FLEXIBLE	
Please provide a detailed description for why your object should be stiff or flexible?	
we as hand imaging hand life	
Flexibility novides more functionality	
Turnering provides many	
Will this 3D printed object come in contact with your patient's skin? (circle one) (YES NO	
If yes, please describe where the patient will touch it, and how much weight you think they will put on it	
	9
The pt. will be using the device at the hand/finger	-
in not, Not much weight will be out on it	
Jorreise ter match weight to the part of	
. Density (circle one): HOLLOW PARTIALLY FILLED (SOLID)	
How much weight will your object hold (e.g., in pounds)? How much stress will it be under (e.g., constant)?	
a statistics with be driver (e.g., constant)	
No weight, constant tension to keep its in extension	
sama annoscius fores al com	0
some compressive torie w/ finger bend	
Size: Should your printed object be the same size as your clay model? (circle one):	
DICARE SEE MOASILING MUNITS	
YES for boydens NO	
If no should your model he sealed up as down? (Maulane dimension of soo	
in no, should your model be scaled up of bownr (waximum dimensions of 139mm x 139mm x 139mm)	

Designs for Real Clients

Printshop created 3D model from sketches PT students collaboratively fit device to patient

Talk Outline

Digital fabrication and AT "Disruption"?

- Overview of relevant tools and capabilities
- Systematic overview of Thingiverse.com

Explorations with PTs and 3D Printing

- Alternative 3D modeling software
- Teaching 3D modeling and design
- Strategic outsourcing

Lessons learned and recommendations

Maker Employment

n

New Models of Making

Design session with print shop employee, client, and students

Patient holding final 3D printed Grip

"I planned on studying culinary arts in college, but my experiences with the print shop kinda changed my views a little ... I'm thinking about going somewhere in the technology field."

Printshop as a Living Laboratory

Workflow	Hardware and Software		
3D Printing	3D Printer Brands (11): Atom 2.0, Dremel Ideabuilder, Flashforge Creator, Flashforge Finder, Image3D JellyBOX, Lulzbot Taz 4, Raise 3D N2 Plus, Prusa i3, Ultimaker 2 Extended, Ultimaker 3, Rostock Max V2		
	Software: Autodesk Print Studio, Cura, Ideamaker, Matter Control		
20	3D Scanner: NextEngine 3D Scanner		
Scanning	Software: NextEngine Scan Studio, Autodesk Meshmixer, Meshlab		
3D Design	3D Design Software: Autodesk Tinkercad, Autodesk Fusion		
Collab.	Software: Google Calendar, Google Docs, Google Sheets, Gmail, Slack		

- Collaboration and documentation success and breakdowns
- Technical skill
 development
- Professional skill development
- Impact and use of community makerspace
- STEM career awareness

Topics

Digital fabrication and AT "Disruption"?

- Overview of relevant tools and capabilities
- Systematic overview of Thingiverse.com

Explorations with PTs and 3D Printing

- Alternative 3D modeling software
- Teaching 3D modeling and design
- Strategic outsourcing

Lessons learned and recommendations

Time is Most Expensive Resource

[ASSETS 2014, TACCESS 2015, ASSETS 2016]

Design with Familiar Tools

Anticipate a Steep Learning Curve

What is 3D?

Anticipate a Steep Learning Curve

Will it scan?

Size Matters

Materials Matter

Explore New Work Models

Continue studying adoption of "DIY" culture and assistive technology

Study impact of teaching high-tech skills to non-engineers

Create and study opportunities for "Maker" employment

Thank You!

To learn more: amyhurst.com hcc.umbc.edu isrc.umbc.edu

Thank you to all my students, collaborators, participants and supporters.

Erin Buehler, William Easley, Megan Hofmann Scott Hudson, Shaun Kane, Anita Komlodi, Ravi Kuber, Wayne Lutters, Jen Mankoff, Samantha McDonald, Helena Mentis

Thank you to my funders:

NSF QoLT ERC, NSF EAGER, NIDILRR DRRP, Toyota Robotics, Microsoft Research, Nokia Research, and NIST

