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There are many use cases in the medical industry and in research that re-

quire clinical information extraction from the narrative notes in electronic medical

records. Significant advances have been made in recent years from using clinical text

processing systems which rely heavily on the natural language processing. However,

for text that is entered by the clinician at the point of care, where time efficiency is

paramount, a shorthand style of text is used which is not amenable to this approach.

This research describes a novel approach that is robust to grammatically de-

ficient text. It relies on techniques that are able to incorporate micro-contexts

by taking into account scope, proximity, and location of multiple interdependent

matched expressions.

The validity of this approach was established by employing it to create a

semantically rich cognitive search assistant that runs in near real-time over the

corpus of clinical notes from the Veterans Administration. The cognitive search



assistant was able to extract occurrences of pain events in the text with a positive

precision of 84%, a positive recall of 94%, and an F-score of 89% at a rate of 0.31

seconds per note. The extracted results are saved in a semantic representation that

permits a reasoning system to be incorporated to perform cognitively rich searches

when used in conjunction with predefined medical ontologies.

The result is a semantically rich cognitive search assistant capable of near real-

time structured search over clinical text that can be used in interactive applications

such as clinical decision support.
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Chapter 1: Introduction

1.1 Introduction

Clinical documentation is the record of observations, impressions, plans and

other activities arising in the course of patient care. It is intended to be an objective

record of a patient‘s health history, physical findings, and diagnosis. This documen-

tation is important for continuity of care, billing, insurance, legal proceedings, qual-

ity assurance, and research [1]. Because of the extreme diversity and heterogeneity

of health data across health domains and institutions, the advent of electronic med-

ical records (EMR) and computer-based documentation systems have brought with

them a high value on using structured data input forms using standardized sets of

codes to support machine readability and storage in backend databases [2].

However, clinical narrative notes remain the richest source of healthcare data

in the clinical chart, providing highly nuanced insight into patient status, care, and

treatment. Structured data using clinical codes and categories does not accommo-

date uncertainty or express a range of possible differential diagnoses. Unstructured

data has been left largely unexploited because it is notoriously challenging to analyze

automatically [3] [4].

While there are many uses for extracting this information from the EMR, there
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are particularly compelling reasons for its use in clinical decision support systems

(CDS). CDS systems can help practitioners minimize errors, improve quality, and

increase efficiency in healthcare [5]. There is great promise in using natural language

processing (NLP) to perform information extraction from the narrative notes in

electronic medical records (EMR) for use in clinical decision support systems [3].

For CDS, it is not enough to determine that a particular medical concept ap-

pears in a patients record such as a simple text search would provide. Important

contextual information that belongs to that concept, such as anatomical location, is

also relevant. Backache will suggest a difference course of action than a toothache.

Likewise, the onset and duration of a symptom may give important clues in a dif-

ferential diagnosis.

Another critical element for CDS is that, in many clinical settings, the results

must be available in near real-time for interactive use [5]. Key insights from the

notes must be extracted and presented to the clinician quickly. A result that is

returned after the patient leaves, may delay care. In the emergency department,

grave decisions must be rendered very quickly in life-threatening situations, often

with limited information given by a patient concerning their own medical history.

1.1.1 What is the Problem?

Current state of clinical text natural language processing systems:

Currently, the most widely used clinical text processing systems [6] are based on the

assumption that clinical notes employ a well-formed grammatical structure in the

2



narrative portions of the clinical documents. This syntactic structure can then be

leveraged using statistical NLP [7] [8] and machine learning algorithms to determine

dependencies between elements which may be used, for instance, to label atomic

medical concepts appearing in the text to a normative reference terminology. They

are also able to provide shallow semantics consisting of labeling medical events with

their historicity (“history of”), negation (“does not have”), and uncertainty (“may

have”).

There are three major shortcomings in this approach.

Problem 1: For text that is entered by the clinician at the point of care,

where time efficiency is paramount, a shorthand style of text is used that is heav-

ily abbreviated and tends to ignore the rules of grammar, punctuation, and white

space [9]. In a corpus of 1,200 notes coming from the US Veterans Health Ad-

ministration (VHA), grammatically clean text constitutes only 5% of the total text

leaving 95% of the text not amenable to those approaches. This is especially signifi-

cant as the Veterans Health Administration is the largest healthcare provider in the

US [10]. At present, there does not appear to be any extant literature describing

research in labeling and extracting medical concepts from clinical text that have

these characteristics.

Problem 2: While these systems are able to determine context based on

grammatical dependencies in the text, they are not able to determine deeper con-

ceptual dependencies that exist within the medical domain. For example, these

systems are able to correctly identify tokens as numeric values, but they are not

able to determine the semantics of what that number means. In the text “pain
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severity: 10”, the number 10 indicates the severity of pain being experienced, but

these systems can only identify them as ordinary numbers.

Problem 3: These systems focus on labeling the narrative note for all syntac-

tic and medical concepts at a very fine-grained level. This is appropriate for creating

large databases of normalized health data that can be shared across institutions for

open health initiatives, but is computationally complex and requires a great deal

of post-processing to extract particular concepts and their related attributes. This

complexity leads to runtime performance that cannot qualify as near real-time.

In addition, there is one final potential that is not being exploited. The

biomedical world is rich in formal semantic ontologies that define not only the terms

of the domain, but define the relationships between these terms as well. This, in

turn, can be used with reasoning engines to perform inference over those terms and

their relationships. For example, a search query for arm pain would return not only

all instances of arm pain but all instances of elbow pain, wrist pain, and hand pain

as well using the part-of relation. However, this is only possible if the extracted

information is itself encoded in a structured semantic representation based on a

well-defined ontology.

1.1.2 Approach

This research describes an approach that is robust to grammatically deficient

text by not relying on grammatical structure but on the phrasal patterns that are

prevalent in the medical domain. It relies on techniques that are able to incorporate
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micro-contexts by taking into account scope, proximity, and location of multiple

interdependent expressions in order to extract the relevant attributes of medical

concepts. Expressions that rely on specialized lexicons and the results of other ex-

traction algorithms are also accommodated. In addition, in order for the medical

concept extraction to be useful in real clinical decision support systems, the extrac-

tion has been optimized for runtime efficiency in near real-time. Finally, a formal

ontology was constructed so that a semantic representation of the extracted data

may be used with an inference engine.

1.2 Thesis Statement and Contributions

The thesis of this research is: An approach that combines semantic and ma-

chine learning techniques can be used to extract medical concepts from clinical text

for use in clinical decision support systems. Contributions of this research will in-

clude the following:

Medical Concept Knowledge Representation

A semantic knowledge representation for medical concepts that is modular and

can be extended and shared with other applications.

Medical Concept Event Extraction

A novel approach that is robust to grammatically deficient text using tech-

niques that are able to incorporate micro-contexts by taking into account

scope, proximity, and location of multiple interdependent expressions.

Medical Concept Information Retrieval
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Information retrieval techniques that can be used in conjunction with the

knowledge representation to extract portions of the clinical narrative contain-

ing the concept. This part of the system focuses on filtering out all unneeded

text in a way that is highly efficient and scalable in order to provide only that

text which contains the concept into the next phase for the actual extraction.

Clinical Decision Support System

An API to make the results available for clinical decision support systems and

for visualization, as well as a framework for storing and reasoning over the

extracted data.

1.3 Roadmap

The remainder of this document proceeds as follows. Chapter 2 further de-

scribes the current production clinical text processing systems that are in wide use

and the standardized medical terminology systems they are coupled with, followed

by a brief overview of the underlying statistical natural language processing and

machine learning algorithms that underlie these systems. The section ends with a

description of state-of-the-art experimental systems including a description of their

increased capabilities over production systems and results of their evaluation.

Chapter 3 describes the conceptual model employed in carrying out this re-

search. It begins with a description of the original problem in its genesis. The

section then goes on to describe how this problem and the difficulties surrounding

it engendered a new approach to solving this problem.
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Chapters 4 through 7 detail the methods used to implement the conceptual

model to solve the problem.

Chapter 8 discusses how the validity of this approach was established by em-

ploying it to create a semantically rich cognitive search assistant that runs in near

real-time over the corpus of clinical notes from the Veterans Health Administration.

The system is able to extract medical concepts that are signs and symptoms along

with their contextual attributes including location, severity, onset, duration, quality

and type.

Chapters 9 and 10 explains the how the complete extraction algorithm was

evaluated. Chapter 9 discusses the annotation methods that were used to create

the gold standard. Chapter 10 describes the metrics used in the evaluation and

concludes with the final results.
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Chapter 2: Background and Related Work

2.1 Overview

2.1.1 Clinical Text

Meystre et al. define the difference between biomedical text and clinical text

as follows: “[we] define biomedical text to be the kind of text that appears in books,

articles, literature abstracts, posters, and so forth. Clinical texts, on the other hand,

are texts written by clinicians in the clinical setting. These texts describe patients,

their pathologies, their personal, social, and medical histories, findings made during

interviews or during procedures, and so forth. Indeed, the term ‘clinical text’ covers

the entire gamut of narratives appearing in the patient record.”

This text is particularly challenging because of heavily overloaded and domain-

specific short-hand terms and abbreviations, misuse of punctuation and whitespace,

misspellings, and telegraphic sentence fragments. Additionally, there may be the

inclusion of pseudo-tables containing lab results and vital signs, and preformatted

templates that assist the clinician in data entry with fields to be filled in by the

user, all of which tend to be highly idiosyncratic and institution-specific [11] [12] .
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2.1.2 Medical Nomenclature Systems

Another major challenge is the large number of specialized terms that are used

in this domain. Much effort has been invested in developing standardized biomedical

nomenclature systems to define these terms. They contain terms to name anatomy,

diseases and disorders, signs and symptoms, and clinical procedures. Currently

there are over 180 different nomenclature systems defined in the biomedical domain

constituting over seven million individual but sometimes overlapping terms.

While there is some conceptual overlap between lexicons, terminologies, and

ontologies, there are key differences which will be emphasized for the purpose of this

research.

Medical Lexicons

A lexicon is a dictionary of linguistic or factual elements in a specialized field.

The National Library of Medicine (NLM) SPECIALIST lexicon is a large syntactic

lexicon containing both general English and biomedical terms. Each lexical en-

try records the syntactic, morphological, and orthographic properties of the word.

Currently there are 475,000 lexical items. It also contains the most common abbre-

viations for each term. [13].

Figure 2.1 shows a single entry from the SPECIALIST Lexicon. The base

gives the normalized version of the term, spelling variations are listed, entry gives

the identifier within the lexicon, cat gives the part of speech, and variants give

morphological expressions of the base word.
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base=hemoglobin
spelling variant=haemoglobin
entry=E0031208
cat=noun
variants=uncount
variants=reg (plural: hemoglobins, hemoglobins)

Figure 2.1: Example of a lexical entry in the SPECIALIST Lexicon.

Medical Terminologies

A terminology contains a controlled vocabulary of terms that have a spe-

cial meaning within a specific context. Terminology differs from lexicography in

that it involves the study of concepts and/or conceptual systems and their labels,

whereas lexicography studies words and their meanings. The terminology might or

might not contain well-defined relationships between terms such as in a hierarchy of

parent-child relationships. Terminologies are generally associated with library and

information science.

The Systematized Nomenclature of Medicine - Clinical Terms (SNOMED-CT)

claims to be, “the most comprehensive, multilingual clinical healthcare terminology

in the world.” As such, it has become the de facto standard in clinical text pro-

cessing systems to enable meaning-based retrieval from clinical records for use in

clinical decision support, reporting, and analysis applications. SNOMED-CT is

owned, maintained and distributed by the International Health Terminology Stan-

dards Development Organisation (IHTSDO), a not-for-profit association of twenty-

seven countries.
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Medical Ontologies

An ontology represents knowledge as a hierarchy of concepts within a domain,

using a shared vocabulary to denote the types, properties, and inter-relationships

of those concepts. Ontologies are particularly helpful for resolving ambiguity be-

tween domains in entity recognition and for relation extraction. Most importantly,

ontologies support reasoning and lend themselves to reuse.

The Foundation Model of Anatomy (FMA) ontology is a project of the Struc-

tural Informatics Group at the University of Washington. It is a formal, computer-

based representation of classes, types, and relationships of the human body in a form

that is navigable, parseable and interpretable by machine-based systems. Specifi-

cally, the FMA is a domain ontology that represents a coherent body of declara-

tive knowledge about human anatomy. Currently it contains approximately 94,000

classes, over 170,000 terms, and over 2.4 million relationship instances from over

227 relationship types [14] [15].

FMA is open sourced and is licensed under a Creative Commons Attribution

3.0 unsupported License.

2.1.2.1 UMLS

In 1996 the Unified Medical Language System (UMLS) initiative was started

at the National Library of Medicine (NLM) to unify medical vocabularies from

various medical knowledge source so that they could be used across information

systems [16].

11



The Metathesaurus is a terminologic resource within the UMLS environment.

It is the Rosetta Stone of almost all of the medical terminologies, ontologies, coding

systems, and other nomenclatures. It currently contains over 180 families of source

vocabularies, 21 languages, 8.6 million terms, approximately three million concepts,

and more than ten million relations [17] [18].

The UMLS Metathesaurus provides a mapping between all its covered termi-

nologies and provides a common presentation of those terms. In doing so, it has

assigned concept unique identifiers (CUI) for each concept which may encompass

terms from multiple source terminologies which are essentially synonymous. The

CUIs have become the standard identifier for medical terms across a very broad

range in the biomedical domain. One very important functionality this provides is

the normalization of terms such as Addison Disease in the biomedical literature and

Addison’s disease as it is used in clinical repositories.

2.2 Biomedical Entity Recognition

One of the most important tasks in clinical text processing is to recognize

biomedical concepts in the text and to map them to a corresponding term in one

of the standardized nomenclature systems. However, the exact expression of those

terms may differ considerably in the text of clinical notes, and therefore causes

difficulty in recognizing them.

Typically, once these terms have been identified in the text, they are normal-

ized to a unique identification code coming from one of these standard reference
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nomenclature systems. This also referred to as entity recognition whose meaning in

the biomedical domain differs from that of the general NLP domain (in which case

an entity is the name of any person, organization, etc).

2.2.1 Dictionary Lookup

Dictionary lookup employs general search techniques to match words in the

text with terms in a nomenclature system. The time complexity for the lookup

ranges from O(1) for hash lookup, O(logn) for indexed searches, and O(n) for linear

searches through the dictionary where n is the number of terms. As such, it can be

relatively fast compared to other methods. Because most domain terms are covered,

it provides a very high recall on individual words.

However, if the sequence of words in the text don’t match the lexical repre-

sentation defined in the dictionary, it can result in many false negatives. Likewise,

false positives are generated for terms like back that appear in the dictionary, but

have many other meanings in the general case. Dictionary lookup by itself is not

generally effective.

2.2.2 Pattern Matching

Pattern matching uses regular expressions to identify specialized expressions

in the text and combine them with other unknown expressions using wild card

characters. Regular expression algorithms are implemented as character-based de-

terministic finite state automata whose time complexity is O(n) in the length of the
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string [19]. As such, they are relatively fast.

Their primary drawback is that regular expression patterns must be very spe-

cific in order to capture the exact sequences of characters in the text. For example,

the authors in [20] created over 200 regular expression patterns to find the cardiac

ejection fraction measurement in radiology reports in a quality assurance applica-

tion.

2.2.3 ConText

Some patterns depend on the presence of other patterns and how they are co-

located in the text. The co-location can be characterized by the proximity, scope,

and direction of one expression in relation to another. By stipulating the main

expression of interest as the target, and the dependent expression as the modifier,

a dependency relation may be inferred between the target and the modifier. This

allows specific dependencies in the text to be identified without relying on an un-

derlying grammar.

The ConText algorithm [21] is heavily used in clinical text processing systems

to find negation (does not have), certainty (may have), experiencer (patient or family

member), historicity (e.g., has a history of ) or whether the concept is hypothetical

(e.g., if the patient experiences pain...). Figure 2.2 shows an example of this.

An implementation of this algorithm may be freely downloaded from https://

github.com/chapmanbe/pyConTextNLP. The implementation comes with a knowl-

edge base of clinical phrases, their semantic categories, and their regular expression
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Text: The patient does not have pain.
Target pattern: pain

Modifier pattern: does not have
Category: Negation
Direction: Forward

Figure 2.2: Example of how the ConText algorithm determines a depen-
dency between a target expression in the text pain and its modifier does
not have.

patterns. For example, definite negated category has over 80 phrases defined, such

as, are ruled out, can be ruled out for, is negative, and free.

These phrasal patterns are very specific and assume that the text uses clean

underlying grammatical structure. It is also not able to directly leverage terms

defined in a nomenclature system. However, its database base of patterns may be

easily extended, and the algorithm is flexible so that different types of patterns, not

originally envisioned by the authors, could be added.

2.2.4 Natural Language Processing

Natural language processing (NLP) consists of software and algorithms that

are capable of analyzing unstructured textual information in order to understand

human language within a specific context [7].

Statistical NLP relies on the observation that phrases share common dis-

tributional properties when the text follows underlying rules of grammar. Each

word functions as a particular part-of-speech (POS) [22] within a sentence (e.g.,
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noun,verb). Words are grouped into constituent phrases (e.g., noun phrase, verb

phrase) [23]. Phrases combine to create sentences [24].

Once the grammar has been defined, statistical models can be built based on

how words are used within sentences. The language model assigns probabilities to

the words and the transitions between words and phrases based on the grammar.

Parsing uses this model to discover how the words in a given sentence combine and

relate to one another [25].

Parsing can be powerful tool in determining dependencies in the text by dis-

covering their semantic scope. This is particularly important for negations of con-

cepts, and for temporal expressions specified in the text. Figure 2.2.4 shows the

results of processing a simple sentence through the Stanford CoreNLP [26] process-

ing pipeline. The basic and enhanced dependency graphs show the effectiveness of

these algorithms to determine the scope of expressions.

2.2.5 Machine Learning

Machine learning is used in clinical text processing to perform part-of-speech

tagging, but more importantly, to identify and normalize sequences of words in the

text that are diseases, disorders, signs, symptoms, anatomical locations, and med-

ications. Two machine learning algorithms that have been heavily used in clinical

text processing are support vector machines [27] and conditional random fields [28].

Support Vector Machines (SVM): are binary classifiers that use a bag-

of-words approach to encode feature vectors in order to predict a label. In this
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Figure 2.3: The results of NLP algorithms to identify parts-of-speech,
recognize named entities, determine basic and enhance dependencies in
the text

approach, every word in the data is represented as a feature in the vector during

training. Each classification instance encodes any words that appear in that instance

either as a binary indicator or as a normalized count over all words found in the

instance. Random features such, as capitalization status or presence of certain words

in a dictionary, may also be included in the feature vector. SVMs use a supervised

training model that learns weights for each feature in order to assign any given

feature vector instance to one of two predefined classes (labels).
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The time complexity of SVMs for classification of instances is O(n) in the

length of the feature vector. However, the bag-of-words approach does not allow

them to capture sequences of words in the text. Also, because SVMs are binary

classifiers, a separate model must be trained for every label if there are more than

two.

Conditional Random Fields (CRF): are discriminative factor graphs that

are able to classify over multiple labels. In the context of clinical text processing,

the input is a sequence of words. In a linear chain CRF, each word has its own

state, but is also aware of the state of words in a window around it. The states are

encoded as feature functions that compute an output based on the feature values

that are fed into it. Using the chain, the CRF model is able to consider state-to-state

transitions as well as feature-to-state dependencies. During supervised training, the

model employs logistic regression to learn the weights for each of these feature

functions in order to predict a label for the current word or sequence of words.

The time complexity of CRFs for classification is O(n3) although the training

complexity is much higher at O(n7). CRFs are able to identify and classify multi-

word sequences of arbitrary length in the text. However, they have a tendency

to overfit the training data, and tend to fail if arbitrary words are embedded in a

learned sequence.

Comparison of Approaches for Entity Recognition In 2008, Li et al. [29]

presented a comparative study between SVMs and CRFs in a clinical text named

entity recognition. In this study, they used these methods to identify medical con-

cepts in clinical text and to predict one of four semantic classes: Disorders/Diseases,
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Table 2.1: List of features used in comparison

Feature Description

Dictionary lookup True if the term appears in SNOMED-CT
Bag of Words Set of unique words in the context
POS tags Part of Speech tags of the context words
Capitalization All upper case, all lower case, mixed case and initial up-

per case
Window size Number of tokens representing context surrounding the

target word
Distance Proximity of the feature in regard to the target word
Number features Presence or absence of related features

Table 2.2: Comparison Of Classifiers For Identifying Semantic Class of Named En-
tities

Approach Precision Recall F2

Dictionary Lookup 85% 47% 60%
SVM 82% 49% 61%
CRF 96% 77% 86%

Signs/Symptoms, Anatomy, and Drugs. Table 2.1 shows the features used in the

comparison.

Table 2.2 presents the results of the comparison between the SVM and CRF

approaches. The line labeled Dictionary Lookup shows the results of using the CRF

with only the dictionary lookup feature.

In the discussions of the results, the most discriminative features were the

immediate context (the window of words surrounding a target word) and capital-

ization. The least discriminative features were the bag of words indicating that

sequence matters, and POS features indicating that grammatical roles are not as

important as context.
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2.3 Clinical Text Processing Systems

Clinical text information extraction and annotation systems surveyed in this

section predominantly incorporate one or more of the following approaches: pattern

matching systems and/or rule-base systems, statistical NLP systems, and ontological

systems.

cTakes - Mayo clinical Text Analysis and Knowledge Extraction Sys-

tem: cTakes was developed in conjunction with the Mayo Clinic, which is one of

the largest integrated nonprofit medical group practices in the world 1.

cTakes’ unique contribution is “an NLP system specifically tailored to the

clinical narrative that is large-scale, comprehensive, modular, extensible, robust,

open-source and tested at component and system levels...cTakes components are

specifically trained for the clinical domain to create rich linguistic and semantic

annotations. ” [6] [25]

cTakes processing consists of a pipeline of tasks that runs within the UIMA

framework [30] and is made of up the following components: sentence boundary

detector; a tokenizer; a term normalizer based on the SPECIALIST Lexicon; an

OpenNLP POS tagger retrained on clinical data; a shallow parser; and an NER an-

notator which maps concepts to a subset of the UMLS, SNOMED-CT and RxNORM

terminologies where the look-up window consists of noun phrases. cTakes does not

resolve ambiguities that result from identifying multiple terms in the same text span.

Negation annotators implement the NegEx algorithm [31].

1en.wikipedia.org/wiki/Mayo_Clinic
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The sentence boundary detector extends OpenNLPs supervised sentence de-

tector tool to better handle periods, question marks, and exclamation marks. The

tokenizer is a context-dependent process that merges tokens to create date, fraction,

measurement, person title, range, roman numeral, and time tokens by applying rules

(implemented as finite state machines) for each of these types.

“Performance of individual components: sentence boundary detector accu-

racy=0.949; tokenizer accuracy=0.949; part-of-speech tagger accuracy=0.936; shal-

low parser F-score =0.924; named entity recognizer and system-level evaluation

F-score=0.715 for exact and 0.824 for overlapping spans, and accuracy for concept

mapping, negation, and status attributes for exact and overlapping spans of 0.957,

0.943, 0.859, and 0.580, 0.939, and 0.839, respectively.” [6]

2.4 Clinical Decision Support Systems

The term clinical decision support refers broadly to providing clinicians or pa-

tients with computer-generated clinical knowledge and patient-related information,

intelligently filtered or presented at appropriate times, to enhance patient care. [32]

It is estimated that at least 50% of the clinical information describing a patient’s

current condition and stage of therapy resides in the free-form text portions of the

EHR. Notably, medical history and physical exams are included in this. Rindflesch

et al. also determined that, when given the task of summarizing a patient’s health

status, physicians spent 50% of their time in the clinical notes portion of the pa-

tient record. [33] Additionally, even though patient data can be entered into a CDS
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system manually, this would require clinicians to recognize the need for it and to

have time to find and enter the requisite data. Two CDS features associated with

improved patient care therefore are: automatically providing support as part of

the workflow, and providing support at the time and location of decision making.

Demner-Fushman et al. conclude that, “If CDS systems were to depend upon NLP,

it would require reliable, high-quality NLP performance and modular, flexible, and

fast systems.” [11]

Because of these factors, the ability to extract data from free-form text —

and put it into a form that clinical decision support systems can access and utilize

— was identified as being one of the top ten grand challenges in clinical decision

support. [32]

2.5 State of the Art in Clinical Information Extraction

Until recently, clinical text processing research has focused on entity recog-

nition for biomedical concepts in text. However, these concepts don’t stand by

themselves — they have a surrounding context. This is essentially what the narra-

tive note provides.

However, there are very large national and international efforts dedicated to

providing a common format for health information content so that semantically

interoperable information may be created and shared in health records. The two

largest efforts in this area are the International Standards Organization (ISO) Health

Level 7 (HL7) 2 and the Strategic Health IT Advanced Research Projects (SHARP)

2http://www.hl7.org/implement/standards/
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Program 3.

Clinical Information Models (CIM) provide a common format for health

information so that Semantically interoperable information may be created and

shared in health records. These are input templates that define how clinical con-

cepts can be combined using fill-in-the-box and drop-down lists. They provide a

common data model between disparate clinical information systems and fit well

into a relational database architecture. They relieve the need for natural language

and enhance quality control.

CIMs associate clinical concepts with other information depending on its se-

mantic type. However, the relations between the elements are implied by the data

structure; there are no formal semantic relationships defined in the model. Figure

2.5 shows an element for pain from the Sharp model. The PatientIdentifier forms a

link back to the patient, while the other attributes modify the pain event. Notice

that the pain character attribute has predefined values from a value-set. No other

values are allowed in this field.

2.5.0.1 SemEval 2015 Task 14: Analysis of Clinical Text

One of the most recent tasks to push the state of the art in clinical text

processing was SemEval 2015 Task 14: Analysis of Clinical Text challenge [34].

“In addition to recognizing and normalizing named entities in clinical text, one

fundamental task of clinical natural language processing is to identify the potential

modifiers attached to specific named entities, such as negation and uncertainty. The

3http://sharps.org/
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Figure 2.4: Key attributes are associated with the pain event such as
location, onset, and character.

Analysis of Clinical Task is split into two tasks, one on named entity recognition,

and one on template slot filling for the named entities. ”

In Task 1: Disorder Identification, the goal was to recognize the span of a

disorder mention and to normalize it to a unique CUI in the UMLS/SNOMED-CT

terminology in a set of clinical notes. Task 2 focused on identifying the normalized

value for nine modifiers in a disorder mentioned in a clinical note: the CUI of the

disorder (as in Task 1), as well as the potential attributes from the given clinical

information model. In Task 2a, participants are given the disorders, and only the

slots need to be extracted. In Task 2b, required both the disorders and the slot

values to be extracted. Table 2.3 shows the slot values that were to be extracted

from the text to populate the CIM and the results of the top performing team.
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The data for the challenge came from the ShARe corpus containing clinical

notes from the MIMIC II database and was manually annotated for disorder men-

tions and normalized to an UMLS Concept Unique Identifier (CUI) when possible.

The notes consisted of radiology reports and discharge summaries. There were a ap-

proximately 88,000 disease/disorder terms to normalize against and 22,000 anatom-

ical locations.

The evaluation for Task 1 consisted of calculating the precision, recall and F2

score of the disorder mentions against the gold standard:

Precision = P =
Dtp

Dtp +Dfp

(2.1)

Recall = R =
Dtp

Dtp +Dfn

(2.2)

F2 =
2 ∗ P ∗R
P +R

(2.3)

For Task 2, the evaluations was based on the F2 score of the disorder mention

along with the weighted accuracy of the slot values for that disorder. The weight

for each slot was defined as:

∀i1..nk, weight(s
i
k) = 1− prevalence(sik) (2.4)

where prevalence(sik) is the prevalence in the corpus of the value k for slot i .

25



Thus, weighted per-disorder accuracy is defined as:

WA =

∑K
k=1weight(gsk) ∗ I(gsk, psk)∑K

k=1weight(gsk)
(2.5)

where, like above, gsk is the gold-standard value of slot sk and psk is the predicted

value of slot sk, and I is the identity function: I(x, y) = 1 if x = y and 0 otherwise.

For Task 2b, only true positive disorders were used to compute overall accu-

racy. The final overall weighted score used to compute the rankings as computed as

the F2 score of the disorder recognition multiplied by the weighted accuracy (WA)

of the slot filling.

Table 2.3: Slot attributes for Task 2b
Slot Description

Overall Score F2 ∗WA 80.8%
Disorder sign, symptom, disease 92.6%
Negation denies, does not have 97.6%
Subject patient, family, other, donor 97.3%
Certainty probable, definite 91.2%
Course better, worse, resolved 89.9%
Severity slight, moderate, severe, unmarked 93.9%
Conditional evaluated for 89.9%
Location anatomical location 86.4%
Location CUI anatomical location CUI 81.9%

2.6 Summary

This chapter has described the difficulties associated with mining and extract-

ing information from clinical text. There are well-defined medical nomenclatures

systems used to provide their terms, definitions, relationships, and lexicography.

However, these systems can also present a challenge due to their size. Other impor-

tant components used in clinical text processing, such as, statistical NLP algorithms

26



were described. cTakes, a widely used end-to-end clinical text processing system that

combined nomenclature resources with NLP was covered. Finally, the state-of-the-

art in clinical entity recognition and slot filling was presented along with the results

against which this research will be compared.

The following chapter describes how a particular problem at the Veterans

Health Administration hospital that required clinical text processing to mine patient

records in the EHR failed using these existing clinical text processing approaches.

It then goes on to set forth a new approach to solve this problem.

27



Chapter 3: Conceptual Model

3.1 Problem Genesis

Physicians at the Veterans Administration (VA) in Baltimore were desirous

of studying pain its affects on the care of veterans. Pain is a component in many

different diseases and processes. At the VA, 80% of all ER visits have a primary

complaint involving pain. However, data describing pain events in the patient record

appears largely in the unstructured text, and the amount of text appearing in the

clinical record for each patient is extensive. In the case of an appendicitis patient in

the VA EHR system, a three-day stay in the hospital for a routine appendectomy

produced almost 180 pages of text. By the 3rd day, a physician overseeing the

patient would be required to peruse the entire 180 pages of text to extract facts

of relevance to his clinical approach. This presented a great challenge for these

physicians to research pain in this population. They were not able to unlock the

data in the EMR to enable their research.

Additionally, there was great interest on the part of the physicians at the

VA to use this electronic patient health data for clinical decision support systems.

Radiologists expressed a desire for a smart search capability through the patient

record in order to verify possible diagnoses when viewing an image. Others were

interested in a clinical decision support system that could automatically extract pain
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events from the patient record in order to quickly visualize the progression of pain

after surgery.

3.2 Comparison of Clinical Corpora

The text used in the SemEval 2015 Task, while containing many abbreviations

and non-sentences, was grammatically clean. In fact, discharge summaries and

radiology reports (of which the corpus consisted) have long been used in clinical

text processing research because they are written in a more formal style and have

better grammatical structure than other types of notes [12]. Figure 3.1 shows an

example of the text used in that challenge.

HISTORY OF PRESENT ILLNESS: This is a 61-year-old male with no
significant past medical history who was seen initially in the Emergency
Department on 05-22 after presenting with melena, a syncopal episode, and
dyspnea on exertion.

Figure 3.1: Example of clinical text used in the SemEval 2015 challenge.

The corpus obtained from the Veterans Health Administration is strikingly

different in character from that of the Share corpus. At the VA, clinicians write

their notes while they are in the midst of patient care or after their shift is over.

The focus of their efforts is to get all relevant documentation in the system in

the shortest amount of time. This results in notes that are greatly abbreviated

in a short-hand style that ignores many common grammatical rules. It is filled

with sentence fragments, missing and creative use of punctuation and whitespace,
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and many nonstandard and overloaded abbreviations. The clinical narrative in the

patient history is also interspersed with structured and semi-structured text such as

headers, lab results, and flow sheets that contain no grammatical structure at all.

Figure 3.2 shows a snippet of text from the VA corpus. Written in a grammat-

ically correct way, the free-form text would read: “The subject is a new patient and

has no primary medical doctor. The patient states that in his past health history he

was diagnosed with a ‘mild, arithmic heart’. He broke his right wrist in 1991. He is

a recovering drug addict, and has been clean for twelve years. The patient complains

that he has had fluid on his left knee for one week in which he feels pressure, but no

pain. Also, the patient complains of having blood in his stool for one year, and has

lost twenty pounds in the past year. He has been using Citrocel. His family health

history includes a father with colon cancer.”

LOCAL TITLE: AMBULATORY/OUTPATIENT CARE NOTE
STANDARD TITLE: PRIMARY CARE NOTE

Pt identified by full name and full SS#:XXXXXXX,XXXXXX
Any Allergies:CODEINE
Any new or changed meds:NEW PT
Any hospitalization or surgury since last visit:SEEHX.

S:NEW PT.-HAS NO PMD. PAST HX.-DX. WITH “MILD ARITHIMIC
HEART”, BROKEN RIGHT WRIST 91, RECOVERING DRUG
ADDICTION-CLEAN FOR 12 YRS. C/O FLUID ON LEFT KNEE X 1
WEEK. FEELS PRESSURE,NO PAIN. ALSO, C/O BLOOD IN STOOL X 1
YR . HAS LOST 20 LBS. IN PAST 1 YR . HAS BEEN USING CITROCEL.
HX. COLON CA-FATHER .

Figure 3.2: Example of clinical narrative taken from VHA Hospital VISTA EHR.
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This text snippet was tested on several systems which are built using statis-

tical NLP models and a processing pipeline consisting of sentence segmentation,

tokenization, POS tagging, phrase chunking, and word normalization, with the ad-

dition of concept annotation. The accuracy was poor with respect to all aspects of

the pipeline, although some systems performed better than others.

For example, the clinical Text Analysis and Knowledge Extraction System

(cTAKES) uses a language model trained on clinical texts and automatically extracts

medical concepts from it [6]. It found most of the noun phrases, but only one of

the verbs in the free-form text. It was not able to segment most of the sentences

correctly due to the misuse of periods and missing white space. Many annotations

of the anatomical features and medical concepts were mislabeled.

Another characteristic of the VA text is the use of nursing flow sheets. These

are templated forms that are provided by the EHR to assist nurses in patient care

documentation. They consist of a textual prompt with a fill-in-the-blank or drop-

down-list response area. The text of these forms and the responses are then copied

into the patient record. These templates are extremely institution specific and

difficult to process [12]. Figure 3.2 shows a snippet from a pain assessment. In the

case of a complete pain assessment flow sheet, a single pain event spans roughly

60 lines of text. Attributes of the pain event are recognizable in this text because

they are collocated with other pain attributes — not because of sentence structure.

Notice also, that in the line that begins Pain:, the word pain is just a section header,

not an indication that a pain event has occurred. Its actual occurrence is dependent

on the presence of valid values in the accompanying attributes.
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Pain:
Patient reports pain during shift: Yes
Type of Pain:acute (<3 mos)
LOCATION:RT LOWER FLANK AREA
QUALITY:Aching
SCALE:3
PATIENT’S ACCEPTABLE LEVEL OF PAIN:3
Patient reports pain interfered with ability to perform ADLs:No
Alternative pain relief measures offered:PT’S FLANK AREA SUPPORTED BY
PILLOWS

Figure 3.3: Example of nursing flow sheet from VHA Hospital VISTA EHR.

Only 5% of the text of the clinical notes coming from the VA VistA EHR

is grammatically clean. The other 95% does not respond to the natural language

pipeline or to other statistical techniques due to its lack of grammatical conformity.

However, there are some characteristics of the VA text that make it amenable

to automated extraction. Although the clinical text does not follow formal rules of

grammar, there are patterns and structure surrounding the raw features that relate

to a particular concept. For pain, almost all occurrences of text in the form 8/10

that co-occur with pain are likely to be pain severity scores. Likewise, bigrams such

as denies pain and no pain occur very frequently and completely characterize the

patient’s experience of pain at that point. Other words that describe the quality of

the pain, such as sharp, and that appear in close proximity to the word pain have

a high probability of indicating an actual pain event.

In line with the analysis by Li et al. [29], context is the most discriminative

feature. Although capitalization features are largely lost, the contextual cues in the
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text are retained. Phrasal structure and scope is even more microscopic, creating the

leverage that enables the identification and extraction of medical concepts through

the use of proximity, location, and scope.

3.3 Overview of Conceptual Model

This research addresses the short-comings of clinical text processing systems

discussed in Chapter 2. The overall approach is vertical rather than horizontal.

That is, current systems employ a horizontal process that recognizes every possible

medical concept in the text, regardless of context, and matches it with an entry

in a biomedical nomenclature. They are able to identify general attributes such

as negation and historicity. However, these systems do not address the deeper

semantics of those concepts and their particular attributes, only the fact that they

appear. For example, in the text pain 8/10, these systems can correctly identify

pain as a concept and label it with its correct CUI, but can only recognize 8/10

as a numeric fraction instead of as the severity level of the pain event. To extract

semantically related attributes of particular concepts requires post-processing.

Instead, this research takes a vertical approach in which the semantics of the

medical concept are well defined in advance along with all of its related attributes. In

conjunction with this, local components are built which map from the lexical space to

the semantic space by identifying both the phrasal cues that define the context and

the lexical terms that define the values of the attributes. I am calling this a Lexico-

Semantic approach. The goal, therefore, was to design a modular, composable,
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semantic representation of medical concepts of the class signs and symptoms that

can be used to perform semantic search and concept extraction from clinical records,

that is as fine-grained and precise as possible.

In particular, this research focused on discovering and mapping the lexical and

semantic patterns used in recording pain events in the patient record, and using them

to build a Lexico-Semantic model for pain. Pain was targeted as a proof of concept

because of the physicians’ strong interest in it and because of its prevalence in human

experience. Merriam-Webster defines pain as “a lack of well-being ... that ranges

from mild discomfort ... to unbearable agony...” This results in a very wide variety of

ways in which the concept of pain and its attributes may be expressed. Pain also has

attributes beyond those of other symptoms; namely, the type of pain (gas,cancer-

related,surgical), and its quality (sharp, ache, burning, cramp). Additionally, pain

severity can be noted in the chart using a numeric scale (0-10), or it may be expressed

with terms such as little, annoying, or excruciating which may or may not appear

in any standard medical terminology. These expressions must be normalized to

standardized terms such as mild, moderate, or severe if the data are to have practical

use in analysis.

While the research system focused on pain, the same approach could be applied

to other common symptoms, such as swelling which has similar characteristics. For

example, the terms that express swelling (swell, swelling, swollen, edema, oedema,

turgescence, tumefaction) are all easily added to the lexical database. Likewise,

terms that describe the type of swelling (superficial, local, localized, generalized,

widespread, pitting, heat, cyclical, traumatic, inflammatory, congenital, neoplastic)
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are also easily added. Attributes of severity, location, onset, duration, and time all

apply directly to swelling without modification or extension.

In contrast to other current approaches, this approach focuses on identifying a

particular concept with all of its modifying attributes and returning it in a structured

format that can be consumed by other applications. This is a common use case,

for example, in monitoring particular health conditions in a patient record, patient

cohort identification, disability status determination, interactive search, and clinical

decision support, in which only a small set of concepts are deemed significant.

This approach is summarized by the following:

• Formally define the domain of the desired concept and encode it in a semantic

representation.

• Discover the lexical context and cues surrounding its components.

• Map the lexical context cues to the corresponding components in the semantic

domain.

• Use the mapping to guide the extraction of the concepts from the text.

• Package the components of each extracted event into the structured semantic

representation so that it may be consumed in clinical decision support appli-

cations.

There are three major components needed to accomplish this.

Semantic The first is an ontological component which defines structural semantics and

its relationships to other components. It may also codify domain knowledge.
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For example, a pain severity of 0 is equivalent to a normalized severity level

of None and a certainty of Definite-Negated.

Lexical The second component provides the mapping between the surface forms of the

lexical expressions to their semantic counterparts.

Extraction Engine The third component is an extraction engine that interacts directly with the

text. It uses the mapping component to recognize and translate concepts and

attributes from the lexical domain into its structured representation in the

semantic domain.

These triple-sets form composable building blocks. For instance, onset and

duration can be reused as attributes of many other medical concepts that are of

the type sign and symptom. The upper level mapping ontology defines the main

medical concept of interest. It also imports the subontologies for its constituent

attributes such as body location and severity.

Some mapping components contain a single lexical term such as pain. Other

mappings require a recognition mechanism that employs complex regular expres-

sions. Still other mappings require external sources. In this case, the mapping com-

ponent employs resources such as terminologies, lexicons, and other ontologies. For

example, the anatomical location mapping component contains references to terms

from the Foundational Model of Anatomy (FMA) [15] and SNOMED-CT [35]. Still

other mappings incorporate entirely separate algorithms such as temporal parsers.

Once the extraction is complete, the pertinent information is encoded as an

individual instance in the ontology that contains the semantic representation of the
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medical concept. This includes the reference to the document level information,

normalized concepts identifiers, the original text found, and the line number and

text span in which it was found in the note.

This research required five main thrusts in order to implement this approach.

It included knowledge representation, entity recognition, information extraction,

machine learning, information retrieval, and clinical decision support. Each of these

is discussed in detail in Chapters 4 through 8.
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Chapter 4: Semantic Design

4.1 Knowledge-Based Systems

Knowledge representation and reasoning focuses on methods for providing

high-level descriptions of the world that can be used to build intelligent applica-

tions. In this context, “intelligent” refers to the ability of a system to find implicit

consequences of its explicitly represented knowledge. Such systems are therefore

characterized as knowledge-based systems. [36]

This section describes how knowledge representation and reasoning technolo-

gies were leveraged to produce a semantically rich cognitive search assistant [37] [38].

4.1.1 Knowledge Representation

Knowledge representation (KR) allows a model of the real world to be built

using a set of symbols. By choosing a specific knowledge representation, the model

is bound by the symbols in that system as to how it is able to express itself. This is

called an “ontological commitment”. For this reason ontologies are the heart of every

knowledge representation [39]. They also provide a means to create new knowledge

by manipulating existing knowledge through a process known as reasoning and
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inference [40].

4.1.2 Description Logics

Formal logics represent knowledge that machines can interpret and then per-

form automated inference using sound, tractable reasoning methods. In general,

a description is an expression in a formal language that defines a set of instances

or tuples. A description logic (DL) is a syntax for constructing descriptions and a

semantics that defines the meaning of each description. They are general purpose

languages for knowledge representation and reasoning, and are suited for many appli-

cations. They are especially effective for domains where the knowledge is organized

along a hierarchical structure based on the is-a relationship. This has motivated

their use as a modeling language in the design and maintenance of large, hierarchi-

cally structured bodies of knowledge as well as their adoption as the representation

language for formal ontologies [36]. They have two main components:

• T-box: Terminological box concepts, classes, relations

• A-box: Assertional box individuals, constants

Inference is the process of deriving new information from existing information.

The purpose of properties (relations) in a DL is to enable inference. Table 4.1 shows

the properties of logical inference with examples of their use.

DL languages are a subset of first order logic that are provably complete over a

subsumption hierarchy. However, for tractability and decidability, its expressiveness

must be restricted to subsets of that logic.
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Table 4.1: Logical Inference Properties

Transitive Property

Infers a relationship between two unrelated nodes.

if a < b and b < c, then infer that a < c

Functional Property

Infers that two nodes are the same, because each object instance may
only have one value for that property.

if Bob hasMother Maggie and if Bob hasMother Margaret, then infer
that Maggie is the same individual as Margaret

Inverse Functional Property

Infers that two nodes are the same. As the inverse of functional, each
unique value of the property may belong to only one object.

if Mike hasId 1234 and Michael hasId 1234, then infer that Mike and
Michael are the same individual.

Symmetric Property

Infers an additional relationship between two related nodes.
if Joe isMarriedTo Kathy then infer that Kathy isMarriedTo Joe

Asymmetric Property

Prevents a symmetrical inference.

if a < b then infer that b 6≤ a

Reflexive Property

Infers of an additional relationship of one node back to itself.

Peter knows Peter

Irreflexive Property

Prevents a reflexive inference

infer Bob is NOT the father of Bob, i.e., Bob cannot be his own father

4.1.3 OWL

The Web Ontology Language (OWL) became a World Wide Web Consortium

(W3C) [41] recommendation in February 2004 that implements a description logic.

40



The standardization of OWL sparked the development and/or adaption of a number

of reasoners and ontology editors. OWL is extensively used in the life sciences

community, where it has become a de facto standard for ontology development and

data interchange [42].

4.1.4 Rules

Semantic Web Rule Language (SWRL) [43] is a language that combines OWL

with the Rule Markup Language (RuleML). The rules are of the form of an impli-

cation between an antecedent (body) and consequent (head); when the conditions

in the antecedent hold, then the conditions in the consequent must necessarily hold.

From this, additional relations between objects are inferred.

4.1.5 Reasoners

Reasoning systems take as input a knowledge base (KB) (an ontology) con-

sisting of a conceptual schema (T-box) and a set of individual instances (A-box).

They are then able to answer queries regarding both the concepts (e.g., all concepts

descending from animal such as bird) and the individuals (e.g., all individuals who

possess the properties of a bird). The queries return both knowledge that has been

explicitly stated in the KB, and additional knowledge that has been inferred by the

reasoner [44].

41



4.2 Semantic Structure of Existing Ontologic Resources

There are several clinical nomenclatures including SNOMED-CT [35] and the

National Cancer Institute Thesaurus [45]. Both of these are available in a flattened

form that can be ingested into a relational database, and as a formal OWL-based

ontology. These ontologies have hundreds of terms related to the concept of pain.

However, that great number is a result of the use of pre-coordinated terms that

results from an unnormalized (in the database sense) ontology.

Figure 4.2 shows an example of the taxonomy over the term complaining of

pain in toe (finding). Notice that most of the taxonomy is not related to pain, but

rather it mirrors the anatomical taxonomy of the limb down to the toe even though

these terms are already defined in the antomical portion of the nomenclature. The

ontology has other relations defined that links the pain to its subject (experiencer)

and its location.

Likewise, Figure 4.2 shows the entry for pain from NCI. Notice that all the

direct descendents of the pain concept are made up of combinations of its modify-

ing attributes including location (abdominal), severity (annoying, agonizing), type

breakthrough, quality (ache, crushing) and duration (acute). This is because the

ontology contains only is-a relations.

The use of pre-coordinated terms increases the size of the terminology, but

limits the coverage. For example, SNOMED-CT has a concept defined for chronic

neck pain, but not for acute neck pain. For this reason, SNOMED-CT is now

moving to a post-coordinated structure that a defines relations between concepts

42



semantically rather than lexically. For the same reason, this research implemented

a post-coordinated structure in its representation for the symptom (i.e, finding) of

pain.

Figure 4.1: This entry shows the use of precoordinated terms over the
anatomical taxonomy for toe.

4.3 Pain Ontology

4.3.1 Requirements for Representation and Reasoning

In modeling the domain of pain in the context of the clinical record, the fol-

lowing are required for its representation and reasoning:

Representation:

• Representation of concepts (classes, objects)

For example, the following concepts are needed: patient, clinical note, clinical
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Figure 4.2: This entry shows the use of pre-coordinated terms over all
the modifying attributes of pain.

events, symptom events, pain symptom events, onset, duration, anatomical

location, pain type and pain quality.

• Representation of subsumption hierarchy over the concepts (is-a relations)

For example, a SeverityScoreNumeric is-a SeverityScore is-a Severity. Con-

cepts that are a child of another concept share all the restrictions and relations

defined on their parent.

• Arbitrary relations (non is-a roles) between concepts

Pain events must have arbitrary relations to their modifying attributes. For

example, a PainEvent object hasSeverity relation with a Severity object.

• Arbitrary relations between concepts and literal data values
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Pain severity may consist of either a literal string lexical value (“some”) or a

literal numeric value (3 ).

• Restrictions on classes and equivalence between classes

Equivalence allows the pain concept in this ontology to be tied to an equivalent

pain concept in one or more existing clinical ontologies.

• Representation of individuals instances of concepts, their relations, and data

values

It is not enough to model and represent the structure of the domain. In cogni-

tive search, individual data instances of the pain events must be individually

extracted and transformed into the their semantic representation in the A-Box.

• The representation language must accommodate the dynamic composition of

concept definitions.

Because reasoning in a knowledge-based systems is polynomial in the size

of the ontology [42], and interactive search requires near real-time response,

the representation language most be able accommodate dynamic composition.

This allows for the smallest possible ontology when specific search terms are

specified.

Rules:

• Representation of inference rules over concepts, relations, individuals, and

literal data values above and beyond the OWL axioms.
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Specialized inference needs to occur over numeric severity scores in order to

equate them to normalized severity concepts such as SeverityNormMild. While

this is possible in the language representation, it cannot be handled by the

reasoning engines using normal knowledge representation axioms. Instead, it

can be accomplished using a rule processing inference engine.

Reasoner:

• Reason over concepts (classes), roles (relations), and individuals (instances).

• The reasoning must be sound and complete.

• Represent and reason over data property values (literals).

• The reasoner must support SWRL rules.

• The reasoner should support incremental reasoning.

4.3.2 Implementation Environment

The choice of a knowledge representation language in this research was guided

by the expressiveness needed to represent the concepts in this domain, the represen-

tation languages used in existing biomedical ontology resources, current standards

bodies recommendations, and by the available tools such as editors, query engines,

and reasoners.

After analyzing these requirements, the following tools were chosen for the

implementation:

• OWL/DL as the representation language for the ontologies
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• SWRL as the representation language for the rules

• Pellet [46] as the reasoning system

• Jena [47] Java API framework for semantic web and Linked Data applications

Pellet was able to handle the expressivity requirements, and in particular, the

ability to reason over the A-box with numeric and date literals. In addition, it

was the only classifier that implemented incremental classifications [48] so that the

reasoning process would not have to start from scratch each time new data is added

to the model.

4.3.3 Ontology Implementation Details

A set of ontologies were created to capture the semantics of events, symptom

events, and pain symptom events to enable cognitive search in the clinical record.

Additional ontologies were created to model the attributes of the symptom events.

These ontologies are fully normalized and can be composed dynamically using the

import feature of OWL. This minimizes the footprint to just those symptoms and

attributes that are required by the downstream application in order to keep the

extraction and inference as light and agile as possible. Because of this, higher levels

components are not aware of concepts or relations defined in lower level components.

In order to provide provenance and the ability to drill down, the location

(span) of each extracted value in the text is maintained. Bindings map concepts to

standardized terminologies whenever possible.

Appendix A contains the complete set of ontology definitions.
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Figure 4.3.3 shows the ontologies that were developed and how they connect

together in a graphical structure through their relation definitions. Each bubble is

a separate concept. Data properties, such as hasName are not depicted. Each color

represents a separate ontology component. One or more separate ontologies may

combine into a single ontology using the OWL import feature.

Figure 4.3: The set of ontologies created to model the pain symptom
event. Each bubble is a separate concept. Each color represents a sep-
arate ontology. They are connected together in a graphical structure
through their relation definitions.

4.3.3.1 High-level Concepts:

Patient: In the prototype system, patient attributes were kept to a mini-

mum. In an EHR, this data would be stored in a back-end database. Because the

research corpus has been de-identified according to HIPAA rules, it contains no per-

48



sonal information. Therefore, patient attributes were synthetically generated and

modeled.

Note: The Note concept models a clinical note. Attributes were defined based

on the header information that appeared in each note of the research corpus and

those of the MIMIC II database [49].

4.3.3.2 Events

Semantically, a clinical event covers a broad range. It may be a symptom/finding

event as in this research, as well as a disease/disorder event. However, it may be

other types of events that occur in a clinical context as well; for example, mov-

ing a patient from one floor in the hospital to another. As such, in the clinical

text processing community generally associates two attributes with an event: the

date/time, and the certainty of whether it actually occurred. Other attributes that

are commonly modeled are: historicity (history of ), subject (patient,family mem-

ber,guardian), conditionals (if this happens). As this research did not focus on these

general attributes, they were not included in the model.

Therefore, the two concepts that were modeled are events and certainty status.

The Certainty ontology accommodates concepts of affirmation (Existence, Nega-

tion) and certainty (Definite, Probable). Existence and Negation are disjoint, as are

Definite and Probable. The other four classes (CertaintyDefiniteExistence, Certain-

tyProbableExistence, CertaintyDefiniteNegated, and CertaintyProbableNegated) are

convenience classes that reflect the pre-coordinated categories used in the extended

ConText information extraction algorithm as described in Chapter 5. Figure 4.3.3.2
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shows the graphical structure of these concepts.

Figure 4.4: Events may be associated with their affirmation/negation
and certainty, i.e., definite/probable.

4.3.3.3 Symptoms

As can be seen in Figure 4.3.3, a symptom may be associated with zero or

more attributes: Location, Onset, Duration, and/or Symptom. Location, onset,

and duration have minimal requirements consisting of a single string-valued data

property. For onset and duration, this property may specify a temporal element

(yesterday) or a situational element (during exertion). Location may have one or

more anatomical locations specified (both hands).

Severity has a more complex structure because it must accommodate both

numeric and lexical values. In addition, each of those values must be normalized to a

semantic subclass of: None, Mild, Moderate, Severe. Another important facet is that
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a severity of None is semantically the same thing as having a certainty of negated;

so SeverityNormNone has been declared equivalent to CertaintyDefiniteNegated.

However, there are some symptoms, such as pain, that use a specialized set of

values to indicate severity. One such is the 0 − 10 pain scaled used in this corpus

whose numeric range is strictly defined. Although it is a subclass of Severity, it

is defined in a separate PainSeverity ontology under the design assumption that

higher-level ontologies should not be burdened with concepts that are not needed in

the general case.

Figure 4.3.3.3 shows the PainSeverity ontology. General severity concepts are

visible because the Severity ontology was imported. The additional PainScale 0 to 10

concept is declared as a subclass of SeverityScoreNumeric from the Severity Ontol-

ogy. Notice also, highlighted in blue, the equivalence relation between SeverityNorm-

None and CertaintyDefiniteNegated as described above.

4.3.3.4 Pain Symptoms

Pain is a type of symptom. Therefore, the PainSymptom class is a subclass

of Severity and shares all of its properties and relations. However, pain has two

additional attributes that must be modeled: pain type (cancer-related, surgical) and

pain quality (sharp, ache). Functionally, it ensures that PainType and PainQuality

can only relate to a PainSymptom and not to a general Symptom. PainType and

PainQuality consist only of their relation to PainSymptom and the pain expression

used in the text.
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Figure 4.5: PainScale 0 to 10 in PainSeverity has been declared as a
subclass of SeverityScoreNumeric in the Severity ontology. An equiva-
lence relation between SeverityNormNone and CertaintyDefiniteNegated
is also shown highlighted in blue.

4.3.3.5 Summary

A set of fully normalized ontologies were designed to model pain symptom

events in the clinical notes of a patient record taken from an EHR. These ontologies

are modular and dynamically composable so that only the particular attributes

that are desired in a clinical decision support application are used, allowing for the

footprint to be as small as possible. This has performance implications in both

information extraction and in reasoning.

Chapters 5, 6, and 7 detail how occurrences of pain events in the VA corpus are

extracted in conjunction with the semantic model described here. Chapter 8 shows

how the semantic model coupled with the extracted events can be used within a

reasoning system to provide queries that can drive a clinical decision support system.
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Chapter 5: Information Extraction

5.1 ConText Algorithm

The original ConText algorithm [21] extended its predecessor, NegEx [50], a

stand-alone negation detection system. NegEx was successful, providing a 95% pre-

cision and 78% recall on determining whether medical concepts were negated or not

when tested on 1,000 sentences taken from discharge summaries. The researchers’

conclusion was that, “a simple regular expression algorithm for determining whether

a finding or disease is absent can identify a large portion of the pertinent negatives

from discharge summaries.” It has become the de facto standard for negation de-

tection in clinical text and has been incorporated into cTakes [6] and the National

Library of Medicine’s MetaMap [51]. One particularly important aspect of it in

regard to this research, is that this algorithm did not rely on syntax or conformance

to an underlying grammar in the text.

The ConText algorithm extended NegEx to include three more contextual

attributes: hypthetical (if he develops ...), historical (history of ), and experiencer

(patient, other). It also extended the scoping mechanism. In NegEx, scope was

defined by a hard window of characters around the targeted term. ConText allows

the scope to be defined by semantic/lexical cues, such as the end of a sentence or

the presence of conjunctives in the text (he did not have dyspnea, but did have ...).
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Each phrasal cue is assigned to a semantic category that is defined in the supplied

ConText lexical item database, or may be defined by the application using it.

The ConText algorithm defines two sets of phrasal patterns (i.e., items):

• Targets: patterns that recognize the main medical concepts of interest in the

text.

• Modifiers: patterns that recognize attributes that modify those targets.

Modifiers can look either backward or forward in the sentence for a target

to attach to.

ConText comes with a database of target and modifier items. Each item

contains a regular expression, a semantic category, and a direction in the case of

modifiers. These expressions have been well tested on grammatically clean text.

Figure 5.1 shows two examples of how the algorithm works on a line of text

from the VA corpus. The target term is pain; the scope for all target terms is the

entire line. The mild modifier is defined to look forward. It finds the target pain

within its scope, and the modifier rule is applied that attaches the modifier to the

target. If mild had appeared after pain in the sentence, the rule would not have

applied. The numeric term of 6 works similarly, but looks backward.

As the algorithm finds targets, its attaches modifiers to them by building

a directed graph. As used in this research, each sentence constitutes an entire

document, and a tree is formed in which the sentence is the root. Each target

expression is a child of the sentence, and each modifier is a child of its target. Con-

junctive/terminating expressions are children of the modifier whose scope they are
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ending. However, more generally, this algorithm could be used to build a knowledge

graph of a more complex structure containing notes, sections within notes, etc.

Figure 5.1: Two examples of how the ConText algorithm works on a line
of text from the VA corpus.

Procedure 5.1 shows how the algorithm works, one sentence at a time.

5.1.1 Limitations of ConText Algorithm

The ConText algorithm is limited in the following ways.

1. The algorithm is limited to those cues and concepts which can be specified in

a regular expression.

(a) It is not able to find attributes such as anatomical locations which may

need to rely on an external lexicon or other terminology resource.

(b) It is not able to find attributes that are based on a more complex recog-

nition algorithm such as temporal expressions which require a more so-

phisticated date/time parser.
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Procedure 5.1 ConText Algorithm

for each sentence in note do
for each target pattern do

Save each target occurrence in sentence
end for
for each modifier pattern do

Save each modifier occurrence in sentence
Set scope of that occurrence based on its direction and on the presence of
terminating punctuation or expressions

end for
for each target occurrence do

for each modifier occurrence do
if target occurs within modifier’s scope then

Index and return the target and modifier occurrences
end if

end for
end for
Build bidirectional context graph between occurrences of the targets and their
modifiers

end for

2. The algorithm assumes that all of the modifiers are applicable to all of the

targets. When additional types of semantic categories are added to the pattern

database, it is not able to restrict which semantic target types are allowed to

combine with semantically compatible modifier types; rather, each modifier

can attach to any target based only on scope. For example, it allows an

anatomical target to be attached to a temporal modifier.

3. It only operates within the scope of a single sentence on a single line. If the

sentence is broken into separate lines (as in the VA corpus), it will not consider

any scope beyond the newline character. In the nursing flow sheets in the VA

corpus, target concepts may have modifiers that appear over a span several

lines.
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4. It assumes that all modifiers and targets are defined in advance and read in

when the algorithm starts. For more complex semantic types, modifiers and

targets may need to be created dynamically.

5. The item database of targets and modifiers contain expressions that are use-

ful in grammatically clean text; relatively few of them are appropriate for

expressions used in the VA corpus.

Despite these limitations, the basic algorithm is very flexible and has been

extended in this research to address these limitations and accommodate a much

deeper and richer semantics.

5.2 ConText Algorithm - Extended

The ConText algorithm was extended to accommodate the deep semantics of

pain in the context of grammatically ill-formed clinical notes in order to be used

in a semantically rich cognitive search assistant and for clinical decision support

applications.

The following sections detail the extensions that were made by examining each

of the following semantic components: pain, severity, location, onset, duration, pain

quality, pain type, variability, and time.

5.2.1 Preprocessing of Corpus Text

As all the patients and their notes are contained in a single file in the research

corpus, the text is broken up into its individual notes. This is done by scanning the

text for note headers. This is important because the header contains the date/time
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that the note was created. Many events that are recorded in the note, therefore,

are relative to this time. The header format of these notes is specific to the VA and

is differs based on whether it is a clinical note, a radiology report, or a lab report.

Therefore, it is assumed that this process would be performed separately from the

search and extraction process. Notes from other institutions would need to have

their own header pre-processing code.

Other than breaking up the text into individual notes, the only preprocessing

performed on the text is to convert it to lower case. It was discovered during the

course of this research that punctuation (although grammatically non-conformant)

provides a strong discriminative signal, and so it is kept.

The VA text is strongly line-oriented, and it is processed one line at a time.

In most cases the newline characters have strong semantic meaning. The only case

when this is not true is in narrative text. However, in the case of the short-hand style

narratives, these newline characters provide a backstop for the scoping mechanism

in the algorithm. There are, however, two concessions made in this regard. The

algorithm is allowed to “peek” around the corner by appending two word tokens

from the next line onto the end of the current line. The second concession comes

when it is determined that a modifier on the current line is looking forward to a

target on the next line. In this case, the text containing the modifier expression is

prepended onto the following line.
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5.2.2 Pain

Even though pain is addressed in this research as a single semantic concept, it

incorporates many expressions both in the general sense and as a semantic parent to

more specific pain concepts such as myalgia. In order to provide as much coverage

as possible, terms expressing pain and its characterization were scraped from a wide

variety of sources including SNOMED-CT, NCI Thesaurus, medical dictionaries,

clinical text, and medical web-sites.

Many of these terms fit very well with the existing ConText architecture using

regular expressions. Regular expressions accommodate word morphologies easily.

For example, one term can express pain, painful and painfree using the regular

expression pain(full|free)?.

Notice however, that the occurrence of free in painfree indicates a special case

in which the negation modifier occurs as part of the target term. There are other

special cases as well. Terms that might be regarded by the lay person as synonyms

for pain, such as ache or cramp were annotated by the professional clinicians as

being a pain quality modifier. However, in the text, they are used as synonyms and

thus they are both targets and modifiers at the same time. Another special case

are compound words indicating pain such as headache or backache. In this case,

the location modifier is included as part of the pain/qualifier target term. In the

case of myalgia, the location modifier is implicit in the meaning of the term coming

from its Greek root of mys for muscle and algos for pain. Another issue was the

use of abbreviations. Two of the most common were for chest pain (CP, C/P) and
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headache (HA, H/A).

For these reasons, the ConText algorithm that relied on a predefined set of

regular expressions with clean separation between targets and modifiers proved too

limiting. Because it was non-trivial and computationally complex to automatically

data-mine these terms and their anatomically related values from SNOMED-CT at

runtime, a specialized pain lexicon was developed. Pain terms along with their mor-

phologies, abbreviations, associated anatomical locations, and CUIs were included

in it. These terms are read in during initialization and used to create a dictio-

nary (i.e., hashmap) data structure that is kept in memory for the duration of the

extraction.

When processing a line of clinical text, a regular expression was created from

each term in the specialized lexicon. If that term was found, a target item was

created dynamically and an occurrence of that target was added to the underlying

context graph. In addition, if the pain term had an associated anatomical location, a

modifier item was created dynamically and an occurrence of the modifier was added

to the graph.

Pain terms may occur in the text without actually indicating a pain event in

the patient record. For example, Pain: may occur as a section heading. For this

reason, pain target term occurrences that do not have any modifiers attached are

not included in the results.

In addition to recognizing and extracting appropriate pain terms, other phrasal

patterns involving pain had to be filtered out. There are many different facets

involved in treating a patient with pain, but these are not needed or desired in the
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results. For this reason, an additional category called PseudoPain was created. This

includes expressions such as pain management regimen or instruct patient to report

pain. If a pain target appears within the span of these phrases, it is ignored.

Table 5.1 shows a few of the results from the pain extraction algorithm.

Table 5.1: Pain Extraction Expressions

Pain Terms Text

True Positives

pain patient states he/she does have pain

chest pain denies cough/sob/cp/

headache denies any focal weakness or headache

ha (headache) Denies any f/c, no NS, no ha/sz/dizziness,

dysuria denies cough, diarrhea or dysuria

False Positives

myositis raising the question of a myositis. (hyothetical)

sore explained including but not limited to sore
throat, (hypothetical)

False Negatives

pain dnied any pain (denied is misspelled)

pain pain on right leg raise (leg appears on following
line)

pain -simethicone for gas pain (filtered out as a medi-
cation line)

pain c/o pain7-8/10 . fs=142 @ 6am/124 (missing
white space after the word pain)

5.2.3 Pain Severity

Severity modifiers in general are lexical expressions, although they may also be

numeric. Lexical expressions were scraped from various sources and included: some,

a lot, minor, little, not too bad, agonizing, annoying, crushing, debilitating, excru-
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ciating, heavy, high, high amount, high levels, intense, intractable, mild, minimal,

moderate, negligible, unremittent, same, severe, significant, tolerable, torturing, un-

bearable and unpleasant. These terms were each associated with a normalized value

of: Mild, Moderate or Severe.

In the case of pain severity, there are several different scoring methods in use.

However, the most common one for adults, and the one used in the VA corpus, was

the 0− 10 pain scale.

Numeric quantities are prevalent in clinical text. While it is relatively easy

to find numbers ranging from 0 to 10, it is much more difficult to find those

numbers while filtering numeric values not related to pain severity. Recogniz-

ing this score was accomplished using a regular expression – albeit a complex

one: \b(?<!/x)(\d(\.5)?(?!\.)—10)(?!\))(-(.\.5)?(?![\.)])—10)?(?:/10)(?!/)\b. Nu-

meric pain severities looking backward are slightly different.

Figure 5.2 breaks down the regular expression for pain severity and explains

how it works. Figure 5.3 presents some of the positive and negative results.

Table 5.2: Numeric Pain Severity Regular Expression

Regular Expression Meaning

\b must begin on a word boundary
(?<!/) cannot be preceeded by a forward slash
(\d(\.5)?|10) a single digit, possibly followed by .5 or a

10
(?!/) not followed by another slash
(?:/10) followed by /10
(?!/) but not followed by another / (as a in a

date)
\b ending on a word boundary
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Table 5.3: Pain Severity Expressions

Pain Severity Text

True Positives

little reports very little abdominal pain this am

tolerable abdominal pain beginning abruptly at 630a which
was tolerable

some diarrhea as well as some abdominal pain.

significant no significant pain issues

mild patient is in mild discomfort

7 current pain level:7

0 pain score(scale 0-10): 0

7 scale:7

3 stated pain level is 3/10

3 pain score at discharge: 3

6 how bad is the pain at its worst/most? 6

2 how bad is the pain at its best/least? 2

4 pain:4

0 patient rates their current level of pain at: 0

0 pain score:0 (02/05/2010 08:30)

8.5 s: pain: 8.5/10 b hands, b shoulders

False Positives

2 6) onset (when did the pain start?): 2 days ago
(2 is attaching to pain)

2 mmt: shs 2-/5 (physical therapy strength mea-
sure)

1 alternative pain relief measures offered: 1 tab of
percocet (1 is attaching to pain)

1 location 1: (flow sheet is asking for the first pain
location)

False Negatives

None
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5.2.4 Negation

Negation is closely related to severity. In fact, having a negated occurrence of

an event is equivalent to asserting a severity of None. It is also equivalent to assert-

ing a certainty of CertaintyDefiniteNegated or CertaintyProbableNegated. As this

research did not distinguish between definite or probable, only the actual negation

status was extracted. Negation has the distinction of being the only modifier that

distributes over multiple targets: denies headache/chest pain/shortness of breath.

Figure 5.4 presents some of the positive and negative results.

Table 5.4: Negation Expressions

Negation Text

True Positives

denies pt alert x 4 denies any pain

no pt with no c/o pain at this time. await for ct tech.

denies 19:00 pt denies any pain

no cv: no chest pain

no denies any f/c, no ns, no ha/sz/dizziness

False Negatives

denies pt denies fever, chills, shortness of breath, chest
pain. (denies appears on previous line)

denies he denies pain, only discomfort. (denies is at-
taching to both pain and discomfort)

0, no SCALE:0 no pain (gold standard error)

False Negatives

None
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5.2.5 Anatomical Location

Anatomical locations were the most difficult of all the attributes due to the

large set of terms in the FMA ( 70,000) and the extreme and varied use of abbrevi-

ations. Also, unlike in the SemEval 2015 challenge, one phrase could entail several

locations. Table 5.5 shows a few of the ways in which two different locations, lower

right abdomen and both hands and shoulders, appeared in the VA corpus.

Table 5.5: Variety of Anatomical Location Expressions

lower right abdomen both hands and shoulders

abdominal in the rlq bilateral hands and shoulders
rt lower flank area b shoulder, b hand
RLQ abd b/l hands, shs
rt llq b/l ue
r side hands, shs 2/2

It is obvious from these examples, that a simple dictionary lookup into an

existing anatomical terminology would not suffice. Instead, a further extension to

ConText was built based on that which was used for pain. In this case, a full formal

anatomical ontology was used as the source of terms - the Foundational Model of

Anatomy [15]. By using an ontologic source for the terms, this source could also be

used in the reasoning engine to perform inference over the anatomical terms. For

example, searching for upper extremity pain would return all occurrences of not only

hands and shoulders, but elbows and fingers as well.

Three lexical resources were created. The first created a specialized lexicon of

each individual word that occurred in the FMA. As there were terms in the text

that were not present in FMA, such as both, bilateral, body, side, generalized ; these
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terms were added. The list also had to be expanded to include acquired locations,

such as surgical site, PICC site, site of incision. One interesting note, is that while

the FMA lists terms as nouns (abdomen), the text often uses the adjectival forms

instead (abdominal pain). Fortunately, FMA entries often include “synonyms” that

contain the adjectival forms of the entry. For this reason, words from the synonyms

were included in the specialized lexicon. The lexicon was also extended to include

plural forms as they are largely absent from FMA. For example, there are entries for

left hand and right hand but not hands. Figure 5.2 shows an entry from the FMA.

[Term]
id: FMA:10429
name: Wall of abdomen proper
synonym: ”Abdominal wall” EXACT []
is a: FMA:20357 ! Subdivision of abdomen
relationship: constitutional part of FMA:61680 ! Abdomen proper
relationship: regional part of FMA:259054 ! Wall of abdomen

Figure 5.2: Example of a anatomical entry in FMA.

Next, in order to handle abbreviations, the NLM Specialist Lexicon [52] was

consulted. The Specialist Lexicon contains entries for a wide variety of abbrevia-

tions used in the biomedical community. For example, the entry for pt contains sixty

different expansions of which two are used in the VA corpus: patient and physical

therapy as seen in pt agrees with pt plan. For each abbreviation entry, each one of

its expansions was compared against every term in the FMA to find which abbre-

viations were associated with anatomical locations. For example, the abbreviation
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llq expands to lower limit of quantification and left lower quadrant. In this case,

left lower quadrant matched the Left lower quadrant of abdomen entry in FMA.

Each match was added to the specialized anatomical lexicon. When complete, the

anatomical lexicon contained roughly 10,300 unique tokens.

Figure 5.3 shows the llq entry from the Specialist Lexicon.

base=LLQ
entry=E0690666
cat=noun
variants=metareg
acronym of=lower limit of quantification
acronym of=lower limit of quantitation
acronym of=left lower quadrant—E0699706

Figure 5.3: Example of an abbreviation entry for llq in NLM SPECIAL-
IST Lexicon.

As this resulted in the inclusion of many general terms, such as bed, a stoplist

was created to filter out words that created too many false positives in the location

extraction results. When the FMA word list is read in during initialization, the

stopwords are removed from the list. One additional list was created for words that

were a valid part of an anatomical term, but could not stand on their own. For

example, left arm would be a valid expression, but not left.

Anatomical abbreviations are highly ambiguous in the corpus. However, they

tend to occur in close proximity to target terms. For this reason, a different scoping

mechanism is used consisting of a hard window in the number of tokens around a

target term. However, each multi-word location expression is combined into a single
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token from which the window is calculated. Empirically, a window of 4 had the

best balance between precision and recall results on this corpus. In this case, target

terms may be pain targets (painful) or locations indicators from nursing flow sheets

(Location:).

The location extraction begins by breaking the line into character-based tokens

along with commas and plus signs which have important semantics in this context.

This list of tokens is correlated and indexed to a list of all the target terms that were

found using the normal pattern matching technique. Next, the algorithm iterates

through the list of words to find strings that consist of words that exist in the

specialized anatomical lexicon. The lexicon is expanded with additional connector

words such as and, of, and the. However, some expressions must be filtered out

explicitly, such as, blood pressure, side effects, pressure ulcer, and surgical site. The

strings are trimmed to remove connector words that begin or end the string. Strings

that are made up entirely of terms that cannot stand alone (right, left) are ignored.

After this, the distance (measured in number of tokens), is calculated to the

target terms. If the anatomical expressions occurs within that window, a new mod-

ifier item is created dynamically and an occurrence of that modifier is added to the

underlying context graph.

However, there is a scenario in which the anatomical expression could function

as a target instead of a modifier. In the following text from a physical therapy note,

8/10 both hands, the pain target term is never explicitly stated, it is only implied.

Therefore the algorithm has to accommodate this by allowing the location to act as

a target term for the severity score.
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Because the ConText algorithm is not able to determine which modifiers are

semantically appropriate for a given target, the algorithm must be extended to

accommodate this. For example, in the following text Location of patient prior to

admission: home, the Location target, gets attached to an onset modifier (prior to

admission). In this case, the algorithm is extended to prune modifiers of location

targets from the underlying context graph that are not anatomical terms. Likewise,

when an anatomical term functions as a target, it is only allowed modifiers that are

a severity expression. This pruning mechanism forms a semantic grammar based on

the relations defined in the ontology.

Table 5.6 shows a few of the results from the location extraction algorithm.

5.2.6 Temporal Terms

Like pain and location, temporal terms could not be widely recognized using

regular expression patterns. For this, an external algorithm had to be incorporated

for parsing dates and times. Because the extraction was performed in Python, the

parsedatetime.py module was used [53].

However, this module was not able to read some common date/time expres-

sions used in this corpus. For example, the use of @ before a time expression was

common, as in ONSET: Feb 21,2011@08:00 or no c/o pain or discomfort @0200.

White space in these expressions might also be missing, thereby interupting the pat-

tern. For this reason, parsedatetime.py was also extended to accommodate these

nuances.
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Table 5.6: Location Extraction Expressions

Location Text

True Positives

left lq chief complaint:left lq pain

right lower quadrant abd 1day h/o right lower quadrant abd pain a/w chills

rlq abd episodes of rlq pain which generally last a couple
of hrs

urinary tract denies cough, diarrhea or dysuria (pain on urina-
tion).

throat he denies any dysphagia/odynophagia/no reflux
(pain on swallowing)

chest (pain) Denies cough/SOB/CP/

drainage site pain over drainage site worse this am

rt lower flank area location:rt lower flank area

bilateral posterior head he also has experience new bilateral posterior ha.

drain site right abdomen worsening pain around drain site right abdomen

r side 4) location (point to where it hurts): r side

tip of the penis and rt side soreness in his tip of the penis and rt side,s/p i/d

bilateral hands and shoulders MSK: + joint pain in bilateral hands and shoul-
ders R >L

b hands and shoulders s: pain: 6/10 b hands and shoulders.

shs (shoulders) pt reported pain in shs

shs and hands 7/10 pain in shs and hands

Incomplete True Positives

right lower right lower extemity: pain (extremity misspelled)

abdominal, rlq and right abdominal pain in the rlq and right flank (flank
appears on next line)

False Negatives

fingers fingers fully 2/2 to reports of increased pain (out
of the window)

neck neck: denies pain (unknown reason)
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In addition, parsedatetime.py was able to find textual expressions of times

such as this morning, but not terms used in the corpus such as this am. Likewise, it

finds last night but not overnight. parsedatetime.py also returned false positives

for expressions in the corpus such as interpreting the list number 1a. as 1:00 am,

129/73 blood pressure as 1:29, kangaroo 924 as 9:24, and 1/2 cup as Jan 2. ICD

codes such as (icd-9-cm 719.47) were especially problematic.

As a result, a lexicon approach was implemented for temporal expressions in

addition to using parsedatetime.py. Terms added to the specialized temporal

lexicon include: suddenly, abruptly, slowly, gradually, currently, recently, at, on,

shift, session, arrival, present, since, prior, am, a.m. and overnight.

In order to filter out false positives on numeric expressions that were known not

to be temporal (e.g., ICD codes and severity scores), those expressions were disguised

by replacing them with tildes (˜) before the text was analyzed by parsedatetime.py.

The extraction algorithm for temporal expressions was very similar to that

of location expressions except that temporal expressions were not restricted to a

window. After filtering out known numeric expressions, the text was analyzed by

parsedatetime.py. The results were saved, and the spans of the recognized expres-

sions from its results were disguised to prevent further processing on them in the

remainder of the algorithm. Next, the text was tokenized and a, of, the, in, within,

to, end were added to the temporal lexicon as connector words. Strings of temporal

tokens were identified in the text. Strings consisting only of non-standalone words

were ignored. However, temporal items were not created except in the context of the

onset, duration, and time attributes which are described in the following sections.

71



One important restriction had to be put into place for temporal expressions.

The use of numerics in the corpus was highly ambiguous and created a large number

of false positives. For this reason, temporal terms were only allowed to look back-

ward, not forward. As a results, almost all false negatives in the final results were

due to temporal expressions that occurred to the left of the target term in the text.

Table 5.7 shows a few of the results from the temporal extraction algorithm.

5.2.7 Onset

Onset answers the question: When did the symptom first start?

Recognizing onset expressions in the text relied on both regular expression

items and the temporal expression algorithm. The regular expression items could

catch arbitrary expressions occurring immediately after the trigger terms. For ex-

ample, the regular expression \bprior to .+?\b could recognize expressions such

as prior to admission. Likewise, \b(after|s/p)\b.*(
¯
surgery|procedure(s)?)\b

could catch expressions such as patient has had abdominal pain s/p his proce-

dures.

In the second case, words in the specialized temporal lexicon were labeled as

marking the beginning of a temporal phrase that indicated the onset of the pain.

Words in this set included: onset, began, started, s/p, status post, beginning, until.

During the temporal extraction process, if the extracted temporal expression begins

with one of these words, it is assigned to the semantic category of onset. In this case,

an onset item is created, and that modifier is added to the underlying context graph
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Table 5.7: Temporal Expressions

Temporal Terms Text

True Positives

last 24 hours no pain now and no pain within the last 24 hours

at this time patient states he/she does have pain at this time

last night no c/o abd pain since d/c last night

hrs 7) duration (how long have you had the
pain?)(hrs,day,wks,mos,yrs): hrs

today pain free today

12/16/2010 14:02 pain score:2 (12/16/2010 14:02)

during shift patient reports pain during shift: no

overnight no abdominal pain overnight

on arrival no c/o pain on arrival.

this am temp this am 100.2- pt denies pain

9 pm medicated x1 for pain about 9pm.

False Positives

currently 7/10 right sided abdominal pain, currently 7/10 (7/10
is a pain severity score not a date)

98966 hc pro phone call 5-10 min (98966). (attached
98966 to min as an anatomical term)

2/10 pain now at 2/10 -pt states he is ok for now- (2/10
is a pain severity score)

yesterday patient with h/o of abdominal discomfort, ? ap-
pendicitis based on ct scan done yesterday (yes-
terday should attach to ct scan)

False Negatives

this am this am, reported pain (this am appears before
pain)

current denies any current abdominal pain (current ap-
pears before pain)

where it attaches to a pain target. In nursing flow sheets, onset can also appear as

a target term, such as, Onset: feb 21,2011@08:00. The temporal expression would
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then attach to the onset target term instead.

Table 5.8 shows a few of the results from the onset extraction algorithm.

Table 5.8: Onset Expressions

Onset Expressions Text

True Positives

feb 21,2011@08:00 onset: feb 21,2011@08:00

beginning abruptly at 630a constant abdominal pain beginning abruptly at
630a

2 days ago 6) onset (when did the pain start?): 2 days ago

after surgery 6) onset (when did the pain start?): after surgery

prior to admission denies exertion cp or sob prior to admission

Incomplete

s/p soreness in his rt side,s/p i/d (should include i/d
as the name of a procedure)

False Positives

prior to admission location of patient prior to admission: home

started on no c/o pain.started on clears. (started on applies
to clears not pain)

False Negatives

until recently pt denies any abd pain until recently (until re-
cently appears on the next line)

for years for years he has had a pain in certain positions
(for years appears before pain)

5.2.8 Duration

Duration answers the question: When the symptom is present, how long does

it last?

The extraction of duration is very similar to that of onset. Regular expres-
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sions that were added to the ConText lexical item database included terms that

were mined both from the corpus and from SNOMED-CT. These included: during

exertion, during sleep, during [...] exercise and during [...] motion where ... may

include adjectives such as moderate.

Words added to the specialized temporal lexicon the indicate the beginning

of a duration expression include: for, ongoing, chronic, acute and which. However,

there was disagreement between the annotators whether chronic/acute were terms

that indicated duration or the type of pain.

Once duration modifiers were recognized in the text, they were added to the

graph and attached to the nearest target term. Like onset, duration could also

appear as a target term in the context of a nursing flow sheet, as in, Duration:.

Table 5.9 shows a few of the results from the duration extraction algorithm.

5.2.9 Pain Quality

Pain quality answers the question: What does it feel like? An extensive search

was made through terminologies, clinical text, web sites, and other resources to find

as many of these expressions as possible. The quality of the pain can vary greatly,

and even then there is a long tail. For example, in the VA corpus, a patient describes

his pain as, “beltlike burning sensations around his waist”.

Recognition of pain quality expressions was handled entirely by regular ex-

pression patterns. Items were added to the modifier database for: aching, burning,

colicky, deep, cramping, crushing, cutting, dull, electric, gnawing, gripping, itch-
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Table 5.9: Duration Expressions

Duration Expressions Text

True Positives

hrs 7) duration (how long have you had the
pain?)(hrs,day,wks,mos,yrs): hrs

acute 8) type of pain:surgical, acute (<3 mos)

during active motion s: pt reports pain in his shoulders and hands dur-
ing active motion.

for weeks complains of hand pain, reports for weeks.

chronic additionally, chronic pain in b/l hands,

for several weeks 7/10 b shoulders and hands for ”several weeks
now”.

ongoing his ongoing b/l hand and shoulder pain

chronic //hand/shoulder pain b/l - chronic.

1 weeks duration of complaint: 1 weeks

Incomplete

which generally last a couple of hrs episodes of rlq abd pain which generally last a
couple of hrs to 6hrs (missing whitespace in 6 hrs)

False Positives

chronic gi: no abdominal pain, + chronic constipation
(chronic should attach to constipation)

4 states pain med effective, but doesn’t last. dura-
tion now decreased to q 4 (duration applies to the
length between doses)

1 week + skin lump or papule, worsening, duration longer
than 1 week (algorithm is initially fooled that 1 is
a severity score, and attaches duration to it)

18 minutes 11 seconds encounter duration: 18 minutes 11 seconds nurse
name: (same as above)

False Negatives

5 m progressively increasing over the last 5 m (doesn’t
recognize M as a month)
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ing, killing, prickling, pulling, pulsating, [non]-radiating, sharp, shocking, smarting,

splitting, sore, tenderness, throbbing, tightening along with their morphologies.

However, even though these terms are considered modifiers, some of them are

used as synonyms for pain, and thus act like targets in the text. Therefore, the

following terms were also added to the target database of expressions: discomfort,

cramp, hurt, knot, pang, rack, spasm, tingle. In nursing flow sheets, the following

may also appear as target terms: pain character, quality, quality of pain.

Table 5.10 shows a few of the results from the quality extraction algorithm.

Table 5.10: Pain Quality Expressions

Pain Quality Expressions Text

True Positives

dull, ache 5) quality of pain (what does it feel like?)
dull/ache

throbbing quality:throbbing

aching, cramping quality:aching, cramping

Incomplete

False Positives

tender abd soft non-tender peg tube noted (non-tender)

False Negatives

pressure quality:pressure,

burning a burning sensation in his pelvis (a burning sen-
sation is really a pain quality)

tingling he denies numbness and tingling (tingling is used
as target)
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5.2.10 Pain Type

Pain type answers the question: What is the pain due to? A search through

terminologies, clinical text, web sites, and other resources returned relatively few

terms. These included: cancer-related, malignancy, neoplastic disease, metastases,

breakthrough, gas, heartburn, inflammatory, mechanical, obstetric, labor pains, re-

bound tenderness, referred, superficial, post-operative and any term ending in -omy

as in episiotomy.

These terms responded well to regular expressions patterns. As with the other

attributes, pain type could appear as a target item in nursing flow sheets as Type

of pain: or simply as Type:.

However, it should be noted that while the annotators categorized chronic and

acute as durations, in the nursing flow sheets they appear as a pain type.

Table 5.11 shows a few of the results from the quality extraction algorithm.

Table 5.11: Pain Type Expressions

Pain Type Expressions Text

True Positives

surgical 8) type of pain:surgical, acute (¡3 mos)

gas abdominal discomfort from ”gas”

cancer-related type:cancer-related

False Positives

surgical abd discomfort @ old surgical site (surgical is part
of location)

False Negatives

None
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5.2.11 Variability

Variability answers the question: Is the pain constant, intermittent, getting

better or worse?

This term was coined by the annotators themselves. In the SemEval 2015

challenge, this attribute was called Course but was more restrictive and was used

only in the context of how the disease was progressing.

As with the other attributes, terms were scraped from terminologies and other

resources. These terms reponded well as regular expression items. Terms included:

continue, rare, occasional, constant, increased, constant and intermittent.

Target forms in the nursing flow sheets appear as: If intermittent, how long

does the pain last: and Is the pain constant:.

Table 5.12 shows a few of the results from the quality extraction algorithm.

5.2.12 Time of Occurrence

Extracting the time of the occurrence was challenging. Temporal phrases were

extracted as described above. However, determining when these expressions should

attach to the targets was difficult. If a phrase was not identified as being an onset

or a duration, it was treated as a time attribute. However, because of the large

number of false positives, it was restricted to only looking backwards.

The results are the same as those listed in Section 5.2.6.
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Table 5.12: Variability Expressions

True Positives

intermittent intermittent right flank pain.

continues continues to complain of abdominal pain in the
rlq

increased now with increased abdominal pain surrounding
drain

increasing post perinephric drain placement with increasing
abdominal pain

yes is the pain intermittent:yes

yes is the pain constant:yes

continue his shoulders and hands continue to feel ”sore.”

False Positives

continue continue to trend creatinine/hct pain score: (con-
tinue is attaching to pain score: on the next line)

rare pt without pain, + passing gas, rare bm (should
attach to bm instead)

False Negatives

variable if intermittent, how long does the pain
last(seconds, minutes, hrs, daysvariable (missing
white space and punctuation)

5.2.13 Modified ConText Graph

Figure 5.2.13 shows in textual form the underlying ConText graph after pro-

cessing one line of text. There are two targets: discomfort and chest pain c/p. The

discomfort target is modified a two locations and an onset. The pain type attribute

is incorrect. The c/p target is negated (denies) and has a location generated the by

compound pain term lexicon.
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Figure 5.4: The results of ConText algorithms to identify pain targets
discomfort and c/p with their related attributes.

5.2.14 Limitations

While the algorithm was successful in extracting temporal terms, it did not

attempt to convert those terms into an actual date/time. Given that these expres-

sions are generally given relative to the date/time of the note in which they are

recorded, this should, in fact, be possible. However, the terms can be non-exact, as

in days. A theory for how to handle this would need to be decided.

5.2.15 Discussion

The ConText algorithm was extended to include the following modifying at-

tributes: severity, location, onset, duration, pain quality, pain type, variability, and

event time. While some of these are specific to pain, such as quality and type, the

others are more general. Onset, curation, variability, and event time are applicable

to medical concepts that are diseases/disorders and to symptoms/findings. There-

fore, when coupled with other concept recognition algorithms, they may be useful
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in a much larger context.
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Chapter 6: Information Retrieval

For use in clinical decision support, the extraction algorithm must be not only

accurate but fast, with near real-time performance. For this reason, information

retrieval technologies [54] and other efficiencies were used to speed up basic search

10-fold.

Keyword search, pattern matching rules, and machine learning classifiers are

computationally efficient and are effective at identifying concepts. Ford, et al. [55]

noted that there was no clear difference in case-detection algorithm accuracy between

rule-based and machine learning methods of extraction. One important attribute

of this approach is that keyword search and pattern matching rules also work well

with grammatically unsound text as seen in Chapter 5.

6.1 Increasing Algorithmic Efficiency

The original approach used in [56] applied the ConText algorithm by read-

ing each line of text in the note, finding every target pattern in the line, finding

every modifier pattern in the line, and then determining whether that <target,

modifier> combination belonged together following the rules of proximity, scope,

direction, and semantic relatedness. The algorithmic complexity is O(l∗t∗m) where
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l is the number of lines of text, t is the total number of target patterns, and m is

the total number of modifier patterns.

There were several computational efficiencies that could be pursued at this

point. First, each target and modifier belongs to one semantic category such as

pain severity, negated existence, or probable existence. Because there are hundreds

of modifiers, and some of the target/modifier category combinations are not com-

patible, the algorithm was changed. Initially only target patterns for the medical

concept of interest are considered. Then only those modifiers that are appropriate

for the targets that have been found are loaded and checked.

6.1.1 Clustering

More importantly, large efficiencies can be gained by only processing those

lines of text that contain the concept that you are interested in. In the case of pain,

only 1% of the total lines of text in the corpus refer to this concept. However, the

question remained as to how to determine which lines those were.

Initial investigations experimented with supervised machine learning algo-

rithms. Each line in the text that contained a pain target or modifier was labeled as

positive. An extensive grid search was performed using various combinations of 19

features with the following classifiers: SVM [57] with linear, polynomial, and RBF

kernels, Naive Bayes [58], Logistic Regression [59], and K-Nearest Neighbor [60].

Naive Bayes returned the highest recall at 88% with a precision of 15%. Logistic

regression returned the highest precision at 87% and a recall of 55%. None of the
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Table 6.1: Comparison Of Classifiers For Identifying Lines Of Pain

Classifier Positive Positive F2
Precision Recall

Multinomial Nave Bayes 17% 88% 29%
Linear SVM 80% 64% 70%
SVC-RBF 58% 77% 66%
SVC-POLY 36% 80% 49%
LogReg 76% 62% 68%
K-NN 76% 38% 49%

classifiers returned an F-score above 70%. Table 6.1 shows the classifier results.

Clustering experiments carried out on the corpus revealed that all the desired

target/modifier/values for pain occurred within a very small window around one

or more anchor terms, even when the pain event was spread out over several lines

of text. Experiments were carried out to compare the effect of clustering by lines,

by terms, the optimal window size, and the optimal anchor terms. Priority was

given to finding the clustering approach that would maximize recall and minimize

computation complexity.

The best performing clustering algorithm for both recall and complexity was

based on defining one or more anchor terms and returning a window of lines around

it. Extraction was then carried out only on those lines. For example, if all the lines

in the text are numbered sequentially, and line number x contained the word pain, a

window of x−N lines above and x+N lines below would be included in the result

set. Tables 6.2 and 6.3 show the results of varying the window size around the

anchor term(s). Precision and recall in this case are based on the number of lines

in the corpus that actually contain data concerning pain mentions that should be

processed during the extraction phrase.
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Table 6.2: SINGLE ANCHOR TERM OF PAIN
Window (# of lines) Positive Precision Positive Recall

1 31% 91%
2 30% 95%
3 30% 96%
5 29% 97%
10 27% 97%

Table 6.3: ANCHOR TERMS OF PAIN, LEVEL, QUALITY, SEVERITY, LO-
CATION, SCALE, ONSET

Window (# of lines) Positive Precision Positive Recall

1 25% 98%
2 24% 98%
3 24% 98%
5 23% 98%
10 21% 98%

Table 6.2 uses only a single anchor term of pain. Table 6.3 uses the term

pain as well as the names of the attribute modifiers that will be extracted. The final

set of anchor terms was pain, level, quality, severity, location, scale, onset. These

results indicate that, using these terms, it is only necessary to bring back one line

above and one line below any line that contains at least one of those anchor terms

to get 98% recall in the result set.

6.2 Implementation

To implement this clustering approach, information retrieval techniques were

pursued. A survey of several information retrieval systems were evaluated for per-

formance and flexibility. The system with the widest variety of search parameters

was chosen. In addition, several additional filters were evaluated.
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The description of this implementation begins with a discussion of the Elas-

ticsearch structured information retrieval system that was chosen for this task, its

unique characteristics, and how the clinical documents were ingested into the sys-

tem. Section 6.3 describes how the experiments were set up to determine the recall

and runtime performance characteristics of this approach with the results presented

in Section 6.4.

6.2.1 Elasticsearch

Elasticsearch is an open-source search engine built on top of Apache Lucene

[61], a full-text search-engine library. It is a distributed real-time structured doc-

ument store, capable of generating real-time analytics over very large data sets to

accommodate petabytes of structured and unstructured data. Every individual field

in a document is separately indexed and searchable. A single field may have mul-

tiple indexes by changing tokenizing, stemming, and other text analyzer options.

Multiple fields can be combined into a single index. Each field index generates its

own set of tf-idf [62] statistics and can customize its own relevance scoring algorithm

based on them.

Elasticsearch exposes its API through RESTFul web services using a JSON-

encoded request body. All responses likewise are returned as serialized JSON ob-

jects.

In Elasticsearch, terminology may be confusing. For instance, the word index

takes on different meanings depending on whether the term is being used in the
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Table 6.4: ELASTICSEARCH TERMINOLOGY
Elasticsearch Relational Database

Index Database
Document type Table
Document mapping Table definition
Field Column
Document Row
Index a document Insert a row
Re-index a document Delete a row and re-insert it

context of Lucene, Elasticsearch, or a relational database. For the sake of clarity,

Table 6.4 cross-references a few terms.

6.2.1.1 Indexing the Corpus

The line-oriented nature of this corpus is greatly amenable to leveraging Elas-

ticsearch to filter out unneeded lines of text from the extraction process. Even

though the complexity of the extraction algorithm only differs by a constant, there

is still a significant reduction in the number of lines that need to be processed.

Three indexes were built in Elasticsearch. The emr patient index contains

patient demographic information. In this case the information was generated syn-

thetically since the records were de-identified. It has a single document type: patient.

The emr headers index contains three document types, one for each basic note type

in CPRS: clinical note, radiology report, lab report. These documents types contain

the meta-information about the notes, such as the date, time, title, and signers on

the note. Finally, the emr note lines index treats every line of text as a separate

document. It contains a single document type, note line, which contains references

back to the patient, the note, the line number within the note, as well as the text
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of that line.

The entire corpus was indexed into the Elasticsearch cluster. The documents

were ingested at a rate of 10,000 lines of text per 1.06 seconds (95% C: ±0.093) or

3.48MB of text in less than 11 seconds. For reference, this data was the equivalent

of 2,343 pages of text, single-spaced.

6.3 Experimental Methodology

Experiments were performed with Elasticsearch that were similar to the clus-

tering experiments above. An initial request was made to Elasticsearch with no

filtering which simply returned all the lines in the set and then the extraction algo-

rithm was performed. Next, the extraction was run using different filters detailed

below. The results were evaluated by wall-clock time and by accuracy of the ex-

traction algorithm after filtering. An initial baseline experiment was also run to

determine the performance characteristics when reading in the text directly from

local disk.

The following filters were compared:

• Filter 0: no filter, all lines used

• Filter 1: pain

• Filter 2: pain level discomfort quality severity location scale onset

• Filter 3: pain cp c/p discomfort painful painfree ache cramp hurt pang knot

pressure spasm sore soreness tingle severity scale
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Table 6.5: FILTERS WITH NO STEMMING
Filter Mean (sec) Precision Recall F2

0 80.79 (±1.8) 93% 81% 87%
1 8.17 (±0.31) 97% 72% 82%
2 10.18 (±0.63) 97% 78% 86%
3 12.30 (±0.06) 96% 79% 87%
4 12.47 (±0.16) 96% 80% 87%

Table 6.6: FILTERS USED WITH STEMMING
Filter Mean (sec) Precision Recall F2

0 84.85 (±3.3) 93% 81% 87%
1 8.02 (±0.21) 97% 72% 83%
2 10.44 (±0.55) 97% 78% 86%
3 12.47 (±0.14) 96% 80% 87%
4 12.58 (±0.35) 96% 80% 87%

• Filter 4: pain cp c/p discomfort painful painfree ache aches cramps cramps

cramping hurt hurts hurting pang pangs knot knots knotting pressure

6.4 Results

These experiments were run on a commodity Intel i7 1.8 GHz processor. The

Elasticsearch cluster was made up of a single node running locally.

Remarkably, the mean wall-time difference between retrieving all of the text

directly from a disk file versus retrieving it from Elasticsearch over HTTP on local-

host was insignificant at 0.945 seconds (95% C: ±1.26).

The results in Table 6.5 show the trade-off between speed and accuracy of

the extraction results between the different filters. Table 6.6 shows results on the

same set of filters, but with stemming turned on in Elasticsearch using the Porter

stemmer.
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According to standard definitions, precision, recall and F2 are defined as:

precision = TP/(TP + FP ) (6.1)

recall = TP/(TP + FN) (6.2)

F2 = 2 ∗ precision ∗ recall/(precision+ recall) (6.3)

where TP is true positives, FP is false positives, and FN is false negatives.

These results show that an approximate 10x speedup between Filter 0 (no

filter) and Filter 1 (pain) may be achieved if the application is able to suffer a 9%

reduction in recall. Given an average note length of 198 lines, this algorithm is

able to process notes at a rate of 24.7 notes/second (0.04 seconds per note) in this

configuration. By way of comparison, a subset of notes, consisting of 7670 lines of

text and 55 notes, was analyzed by cTakes. It took 9 mins 13 seconds (using the

same hardware configuration) for a rate of 0.1 notes/second (10 seconds/note). By

extrapolation, it would take over an hour and 15 minutes to process the same corpus

used in the experiments presented here.

There was no significant difference in results for time or accuracy between

stemming and no stemming.

The lower precision of the no filter (93%) configuration compared to the others

is due largely to physical therapy notes. Physical therapists deal largely with three

things: range of motion, strength, and pain. In these notes, pain is implied in

the following text: 7/10 hands, shoulders but not stated directly. Therefore, it is
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bypassed by all the filters. Because this text is also the most difficult to extract from,

the precision is higher in the filtered configurations than in the no filter configuration.

6.5 Summary

In the clinical NLP challenges, the focus is on the accuracy of the identification

and extraction tasks. Teams do not report on runtime performance. However, given

that many use the same NLP pipeline that is used in cTAKES, performance should

be similar to that. The approach shows that for extracting a small set of symptoms,

using information retrieval techniques to filter out large portions of text provides a

significant performance advantage with relatively little loss in recall.
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Chapter 7: Machine Learning

7.1 Overview

While machine learning algorithms were not effective in recognizing medical

concepts in the text, there were important tasks for which they were effective. Fig-

ures 7.1 and 7.2 show portions of lab results and medication lists that appear in

the medical record. While lab results are also stored in a structured format in the

backend database, they are frequently copied and pasted into the note. In the lab

results, there are many terms that appear in the anatomical lexicon. The numeric

entries in the report, therefore, are seen as severity scores by the algorithm. Like-

wise, in the medication list, pain medications contain the word pain along with a

number, such as PO Q4H PRN WHEN NEEDED pain > 4. This combination

results in a large number of false positives for pain. It was not possible to filter

these out using rules and/or regular expressions.

However, the text has marked distributional semantics as can be seen by a

casual visual examination of the text. For this reason, statistical machine learning

algorithms were incorporated to identify and filter out these types of reports. Figure

7.1 and 7.2 show examples of lab results and a medication list.
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Lab results:

CBC: MODIFIED CBC (OUTPUT); BLOOD

Coll. Date: 09/19/08 05:30 09/18/08 10:09

Test Name Result Result Units Range

WBC 6.1 5.0 K/MM3 4.8 - 10.8

RBC 5.10 4.79 M/cmm 4.7 - 6.1

HGB 14.0 13.3 L G/DL 14 - 18

HCT 43.1 40.4 L % 42 - 52

MCV 84.5 84.4 fL 80 - 100

MCH 27.4 27.7 uug 27 - 31

MCHC 32.4 32.8 gm/dL 32 - 37.5

RDW 14.6 H 14.6 H % 11.5 - 14.5

PLT 234 236 K/cmm 140 - 440

MPV 9.1 9.0 fL 7.4 - 10.4

Figure 7.1: Example of a lab results that have been copied and pasted
into the clinical note.

7.2 Training and Test Set Development

A special subset of data taken from the training corpus was created from which

to build and test the machine learning models. First, because the amount of text

with lab results was small in comparison with the rest of the text, all of the lab

results were copied into the subset. Next, the same amount of text from a variety of

notes containing other clinical text and medication lists was also copied in to form

a balanced set of data.
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Active Inpatient Medications (including Supplies):

Active Inpatient Medications Status

===================================================

1) ACETAMINOPHEN ORAL (160mg/5ml) LIQUID 650MG (20ML)

PO Q4H PRN WHEN NEEDED pain > 4

2) CALCITRIOL ORAL (1mcg/ml) SOLN,ORAL 0.25 MCG

(0.25ml) JT DAILY

3) CALCIUM CARBONATE ORAL (1250mg/5ml) 1250MG/5ML PO

TID

4) DOCUSATE SODIUM ORAL (50mg/5ml) 100MG/10ML PO BID

5) HEPARIN INJECTION INJ,SOLN 5000 UNITS/1ML SC Q8H

6) INSULIN REGULAR (HUMAN) INJ SLIDING SCALE SC Q4H FS

q4h. 0-69: call HO; 70-200=0 units; 201-250=2

units; 251-300=4 units; 301-350=6 units; 351-400=8

units,; >400=10 units and call HO

Figure 7.2: Example of a medication list.

7.3 Processing Pipeline

A processing pipeline was set up to preprocess the text and then run a grid

search over a selection of machine learning classifiers using a variety of possible

parameters on each.

The Scikit-Learn [63] Python libraries were used. After the text was converted

to lowercase, the CountVectorizer [64] was used to convert each line of text to a

matrix of token counts. Next, TfidfTransformer [65] to transform the counts to a

normalized term frequency representation [66].

Three-fold cross validation was used for training and testing. The model for

the classifier with the best accuracy was saved.
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7.4 Classifiers

7.4.1 Lab Results Classifier

The following classifiers were examined for the lab results: Naive Bayes [58],

Decision Tree [67], Logistic Regression [59], and Support Vector Classifiers (SVC)

[68] with polynomial and radial basis function (RBF) kernels [69]. A grid search was

performed on each classifier, using whichever parameters it offered. Table 7.1 show

the training parameters and results of four of these classifiers. Of all classifiers, the

Multinomial Naive Bayes performed the best with an accuracy of 99.09%.

7.4.2 Medication List Classifier

The same methodology was used with the medication lists as was used with

lab results. However, as can be seen in Figure 7.2, the strongest signal that the line

containing pain > 4 is a medication line comes from the line above it. Therefore,

this classifier depends on having two lines of text rather that one; samples sent in to

the classifier are two lines concatenated together. For medication lists, Multinomial

Naive Bayes provided the best results at 98.15%. Table 7.2 shows the training

parameters and results of four of these classifiers.

7.5 Implementation

The pain extraction algorithm reads in the classifier model during initializa-

tion. As the algorithm processes one line at a time, each line is classified in each
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of the classifiers. If either one of them returns a positive classification, the line is

skipped.

7.6 Discussion

The results on the train/test set of data seem to be better than on the actual

data, and tends to err with false positives. This had some effect on the final scores

of the extraction results.
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Table 7.1: Comparison Of Classifiers For Identifying Lab Reports

Multinomial Naive Bayes DecisionTree

Best score: 0.9909
Best parameters set:
clf alpha: 0.1
clf class prior: None
clf fit prior: True
tfidf norm: ’l2’
tfidf smooth idf: False
tfidf sublinear tf: False
tfidf use idf: False
vect binary: False
vect max df: 1.0
vect min df: 0.0
vect ngram range: (1, 2)
vect stop words: None
vect token pattern: ’\b\w+\b’

Best score: 0.9853
Best parameters set:
clf criterion: ’gini’
clf max depth: None
clf max features: None
clf min samples leaf: 1
clf min samples split: 2
clf random state: None
tfidf norm: ’l2’
tfidf smooth idf: False
tfidf sublinear tf: False
tfidf use idf: False
vect binary: False
vect max df: 1.0
vect min df: 0.0
vect ngram range: (1, 2)
vect stop words: None

vect token pattern: ’\b\w+\b’

LogisticRegression SVC-POLY
Best score: 0.9894
Best parameters set:
clf C: 10.0
clf class weight: None
clf dual: True
clf fit intercept: True
clf intercept scaling: 0.5
clf penalty: ’l2’
clf tol: 1e-06
tfidf norm: ’l2’
tfidf smooth idf: False
tfidf sublinear tf: False
tfidf use idf: False
vect binary: False
vect max df: 1.0
vect min df: 0.0
vect ngram range: (1, 2)
vect stop words: None
vect token pattern: ’\b\w+\b’

Best score: 0.9498
Best parameters set:
clf C: 1.0
clf cache size: 1000
clf coef0: 0.0
clf degree: 2
clf kernel: ’poly’
clf tol: 0.001
tfidf norm: ’l2’
tfidf smooth idf: False
tfidf sublinear tf: False
tfidf use idf: False
vect binary: False
vect max df: 1.0
vect min df: 0.0
vect ngram range: (1, 2)
vect stop words: None
vect token pattern: ’\b\w+\b’
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Table 7.2: Comparison Of Classifiers For Identifying Medication Lines

Multinomial Naive Bayes DecisionTree

Best score: 0.9815
Best parameters set:
clf alpha: 0.01
clf class prior: None
clf fit prior: True
tfidf norm: ’l2’
tfidf smooth idf: False
tfidf sublinear tf: False
tfidf use idf: False
vect binary: False
vect max df: 1.0
vect min df: 0.0
vect ngram range: (1, 2)
vect stop words: None
vect token pattern: ’\b\w+\b’

Best score: 0.9702
Best parameters set:
clf criterion: ’gini’
clf max depth: None
clf max features: None
clf min samples leaf: 1
clf min samples split: 2
clf random state: None
tfidf norm: ’l2’
tfidf smooth idf: False
tfidf sublinear tf: False
tfidf use idf: False
vect binary: False
vect max df: 1.0
vect min df: 0.0
vect ngram range: (1, 2)
vect stop words: None
vect token pattern: ’\b\w+\b’

LogisticRegression SVC-POLY
Best score: 0.9800
Best parameters set:
clf C: 10.0
clf class weight: balanced
clf dual: True
clf fit intercept: True
clf intercept scaling: 10.0
clf penalty: ’l2’
clf tol: 1e-06
tfidf norm: ’l2’
tfidf smooth idf: False
tfidf sublinear tf: False
tfidf use idf: False
vect binary: False
vect max df: 1.0
vect min df: 0.0
vect ngram range: (1, 2)
vect stop words: None
vect token pattern: ’\b\w+\b’

Best score: 0.8899
Best parameters set:
clf C: 1.0
clf cache size: 1000
clf coef0: 0.0
clf degree: 2
clf kernel: ’poly’
clf tol: 0.001
tfidf norm: ’l2’
tfidf smooth idf: False
tfidf sublinear tf: False
tfidf use idf: False
vect binary: False
vect max df: 1.0
vect min df: 0.0
vect ngram range: (1, 2)
vect stop words: None
vect token pattern: ’\b\w+\b’
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Chapter 8: Clinical Decision Support

8.1 Overview

Once the information has been extracted from the clinical record, and con-

verted into a structured semantic representation, it can be used in clinical decision

support (CDS) applications. This chapter begins by describing how the overall ar-

chitecture of how this semantically rich cognitive search assistant could be used with

a CDS system. The chapter ends with an actual application that was requested by

and created for physicians at the VA to monitor post-surgical pain.

8.1.1 Extraction

The CDS application sends a request to the extraction engine which specifies

which targets and attributes to extract as well as which data source to extract from.

The CDS also specifies what kind of representation the results should be returned

as. Results may be returned as JSON (JavaScript Object Notation) [70] objects, or

as an OWL/XML serialization.

The data is read in, and the required extraction components are activated to

find those occurrences of the targets and attributes that appear in the text. As each
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occurrence is found, it is saved in a data structure in memory.

Once the extraction is complete, results are packaged as specified in the initial

request. The in-memory dictionary data structure that contains the results serialize

easily into a character-based JSON representation. If a semantic representation is

requested, the required ontologies are read in, and the extracted values are mapped

into their semantic representation and serialized as OWL/XML. Results are sent

back to the CDS application as JSON and/or OWL/XML according to the initial

request.

8.1.2 Querying and Inference

If inference is desired, the CDS application sends the OWL/XML data to the

inference system. The inference runs as a separate process that is exposed through

a RESTFul API.

8.1.2.1 Clinference

Clinference is a Java application that takes requests to load ontology resources

and to run queries on the data contained in them. Clinference uses the Jena Frame-

work [47] to wrap the Pellet reasoner [46].

As stated in Section 4.3.2, Pellet was chosen as the best reasoning tool for

this research. Pellet reads in the OWL/XML data which contains both the domain

knowledge defined in the ontologies (T-Box) and the semantically represented result

instances (A-Box, see Section 4.1.2). Pellet uses its inference engine to apply all
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T-Box domain concepts, rules, and relationships, to the A-Box instances in order to

generate any other inferred relations and knowledge. For example, inference is used

to map the lexical and numerical severities to their normalized values; ”minimal”

would be mapped to Mild by inferring the is-a relationship on SeverityNorm-

Mild, while numeric values of ”6” would map to Moderate pain by using the SWRL

rules (see Section 4.1.4) defined in the PainSeverity ontology (see Appendix-A)

to infer an is-a relationship with SeverityNormModerate. If a pain event has a

certainty that is negated (”no pain”), an inference is made that the pain severity

is None because an equivalence between those CertaintyDefiniteNegated and

SeverityNormNone was defined in the Severity ontology. Likewise, a query on

a location of “abdomen” would return all result instances in which the text directly

specified abdomen as well as instances in which any of its subparts such as lower

left quadrant of abdomen were specified.

The results over the inferenced data are retrieved from Pellet via the SPARQL

[71] query that was specified in the request. Results are returned as a set of tuples,

similar to that which would be returned from a query from a relational database

system, but serialized as JSON.

Once the results are received by the CDS application, they can be used as

intended.
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8.1.3 Runtime Efficiency

While the extraction algorithm was capable of handling several modifiers, this

application only required pain, severity, and location. This allows extra efficiencies

for runtime performance. Because the ontologies are designed as components, only

those ontologies needed to represent clinical events, symptoms, pain symptoms, pain

severity, and location are needed. Likewise, the information extraction engine will

bypass processing any attributes that are not requested. In having less ontologic

axioms and less data to reason over, the reasoning performance is also enhanced.

8.2 Visualization of Pain Severity Events in Clinical Records

8.2.1 Background

Physicians at the VA hospital in Baltimore wanted to quickly assess and mon-

itor a patient’s post-surgical pain using a visualization that contained as much per-

tinent information from the unstructured text in the patient chart as possible. A

proof-of-concept software system was built that uses ontology-based semantic search

to extract pain event mentions from a patient chart, store them in a structured se-

mantic representation in a knowledge-base, run and inference engine over them to

infer normalized values from expressions of severity in the text, and then query the

knowledge-base to retrieve data necessary to visualize patient pain severity infor-

mation [72].

103



8.2.2 Visualization

The application begins by defining the parameters of the request which include

the patient id, the targets to extract, and any modifiers. In this case, the patient

has had surgery for appendicitis, therefore the location would be set to abdomen.

The purpose for which the system is built further defines the type of notes to filter

in/out (nursing), which symptom to target (pain, which modifiers to include pain

severity, and whether to send the results of the extraction to the reasoning system

in OWL/XML format. The JSON serialized request is sent to the extraction system

via the RESTFul API. Figure 8.1 shows an example of a request.

request = {”targets”: {”pain”: [”negation”, ”severity”, ”location”] },
”patientId” : ”1”,
”filtered” : ”yes”,
”inferredData”: ”yes”,
”rolledUpData”: ”yes”,
”rawData”: ”yes”,
”patientData”: ”yes”,
”headerData”: ”yes”,
}

Figure 8.1: Example of request sent by CDS system to the extraction engine.

The extraction system reads the parameters, and performs the extractions.

Once the process is complete, the results are encoded into a semantic representation

combined with any ontologic components, and sent to Clinference in an OWL/XML

serialization which the reasoning system is able to consume.
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The application submits a SPARQL query to Clinference which forwards the

request to Pellet. After the query completes, Clinference returns the location, sever-

ity, note type, note time, and both the extracted and normalized value of each pain

severity event ordered by date and time as a JSON structured serialization. The

JSON representation is the consumed by the CDS application which packages it for

the graphics library in order to create the visual representation. Figure 8.2.2 shows

an example of a SPARQL query made by the pain visualization application to the

Clinference inferencing system.

Figure 8.2: The CDS application queries the Clinference system for both
the raw extracted data and the inferred data.

The visualization shows pain severity over time. The horizontal dimension

shows time as the number of hours that have passed since the date and time asso-

ciated with the first note. The vertical dimension is made up of four stacked layers.
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The top layer shows the anatomical location of the pain. In the second layer, pain

severity is represented as a red circle which is centered horizontally over the time of

the event occurrence. In order for the clinicians to ascertain the progression of pain

as quickly as possible, the pain severity is represented in two different visual dimen-

sions: 1) the size of the circle; and 2) the color of the circle. A small green circle

indicates that the note explicitly indicated the absence of pain. If the existence of

the pain event was indicated as being Definite, but the severity was not stated (”Pa-

tient states he does have pain at this time”), a question mark is displayed instead of

the circle. The third layer contains text which gives more specific information about

the context. This includes the actual date and time of the event, and the type of

note it occurred in. The bottom layer is the actual pain value extracted from the

clinical text.
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Location

Severity

Note Type

Note Time

Extracted Value 7 0 2 0 0 8 3 0 6 0 6 0 1 2

Patient: Appendicitis - Events: Pain Severity

Figure 8.3: For each event, the visualization includes the note type,
date/time, actual severity value, normalized severity value, and location.

8.2.3 Discussion

The results in Figure 8.2.2 show the final visualization of the progression of

pain for the appendicitis patient. Initially, the pain resolves and the patient is

discharged. However, the patient is called back after a positive diagnosis of appen-

dicitis for which he receives surgery. The immediate post-surgical pain is severe,

and oscillates between none and moderate due to treatment with pain medication.
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The patient is finally discharged with mild pain.

The two biggest problems in the visualization were 1) the inability to stretch or

scroll the graph and 2) to adjust the visualization to the density of the pain severity

event data. In the future, the use of graphical gaming libraries might address this

and allow the clinician to interact with the image in order to scroll, zoom, or stretch

the image. It might also allow the clinician to hover over a data point in order to

see the actual text with the extracted values highlighted. A more complete user

interface for search would allow the clinician to refine the search results and to

filter on aspects such as date, symptom type, or note type. If multiple symptoms

are displayed, it may also be possible to layer them while allowing the clinician to

selectively overlay them with each other. Other important related data that might

be displayed are medication events that are used to treat the symptoms.
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Chapter 9: Evaluation Method

9.1 Overview

In order to evaluate the effectiveness of the extraction algorithm, a compar-

ison against human domain experts must be made. The human experts recognize

and codify the expressions of pain in the text along with its related attributes.

This provides the baseline against which the algorithm is measured. However, hu-

man judgements themselves are open to error or differences in opinion. Therefore,

the annotated results must be measured against one another to compare accuracy

and/or agreement. This chapter describes the process used to prepared the data

for annotation, the guidelines that were given to the annotators, and the measured

agreement between the annotators. The annotations provide the gold standard from

which the results of the extraction algorithm are measured in the following chapter.

9.2 Corpus Description

The corpus consists of portions of ten deidentified electronic medical records

from patients that were downloaded from the VA’s VistA [73]) electronic health

system (EHS). Each patient has significant health problems involving pain such as

cancer, kidney disease, and appendicitis. There are over forty different note types

contained in the charts including triage, emergency department, surgery, radiology,
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Table 9.1: Corpus Statistics

Patient Number Number Unique Number Note
Chart Lines Tokens Tokens Notes Types

Patient - Appendicitis 7,671 30,591 3,046 55 27
Patient - Syncope 3,095 13,927 2,116 15 12
Patient - Perirenal Abscess 28,424 118,332 4,893 229 48
Patient - Hypercalcemia 24,595 103,890 4,486 191 40
Subtotal 63,785 266,740 490

Patient - Colon cancer 7,504 34,624 3,019 45 24
Patient - Pain 8,500 31,579 3,383 82 34
Patient - Anemia 5,762 24,858 2,593 32 17
Patient - Lung Cancer 7,824 34,255 3,071 52 25
Subtotal 29,590 125,316 211

Total 93,375 392,056 701

laboratory, nursing assessments, and physical therapy. Each patient record spans

from several days to several months and contains 15 to 200 individual clinical notes.

Each line of text contains up to 100 characters, and each line is broken at word

boundaries. If this corpus was printed out single-spaced in a 10-point font with one

inch margins, it would be approximately 1,500 hundreds pages.

There are a total of 93,375 lines of which the first 63,785 lines are being used

in development; and the remaining 29,590 as the test set. For this research, each

line of text is assigned a globally unique line id. Figure 9.1 shows the breakdown of

these patient records.

9.3 Annotating the Data

Two sets of annotations were performed. The first set focused only on pain

severity and its translation into a normalized form None, Mild, Moderate, Severe.

The second set annotated all attributes of pain including severity. The evaluation
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for the extraction is based on the second set of annotations.

The annotation methodology was based on those of SemEval 2015 Challenge

as specified in its annotations guidelines 1. Minor modifications were required due

to differences in the characteristics of the text, especially as regards the nursing flow

sheets in the VA corpus. However, the most significant change was the elimination

of the normalized CUI for the disorder mention. Its lack of inclusion is a product of

the limited resources available for annotations. Even if terms were restricted to the

use of SNOMED-CT instead of the entire UMLS, SNOMED-CT is large and difficult

to navigate for the uninitiated. It was unreasonable to required the annotators in

this research to assume this burden.

9.3.1 Annotator Qualifications

The domain experts consisted of three clinical professionals. The first was

a physician with 30 years experience. The second was a registered nurse with 35

years experience holding a masters degree in nursing and was adjunct faculty at the

University of Maryland School of Nursing. The third was a head surgical nurse with

30 years experience. None of the annotators received any fee. Each annotator took

roughly two hours to perform the annotations.

9.3.2 Preparing the Test Data for Annotation

The test set of data was the equivalent of 650 pages of clinical notes. As

resources for annotation were extremely limited, it was unreasonable to expect the

annotators to read through the entire test corpus. Large sections of the corpus

1blulab.chpc.utah.edu/sites/default/files/ShARe Guidelines CLEF 2013.pdf
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were made up of lab reports or medication lists on which no extraction would be

performed. There were also large portions of text that were duplicates of other

portions. This was caused by clinicians addending previously entered notes. When

a note is addended, the text of the original note is automatically copied into the

addenda. In one case, a note was addended five times - with each addenda containing

the text from all the previous addended notes five levels deep.

After all the extraneous text was removed, there remained 65 pages of notes.

Each line of text was labeled with its unique identifier at the beginning of each line.

The test set of notes was then printed out on paper - one set for each annotator.

9.3.3 Annotator Training

The clinicians had ever done this task before, and the nature of the task was

quite foreign to them. A set of guidelines was drawn up to instruct the annotators

in their task. I read through the guidelines with the annotators, and they were

allowed to ask questions for clarification. Once they felt they understood the task,

I assisted them in annotating the first page and answered any additional questions.

For the remainder of the time, they worked by themselves. The official guidelines

are shown in Appendix B.

9.3.4 Annotation Coding

Each annotator was given a yellow highlighter and pencil. The annotators

highlighted any span of text that indicated pain or one of its attributes. Using

the pencil, they labeled the highlighted span with its attribute type: P (pain), N

(negated), S (severity), L (location), Q (quality), T (type), O (onset), D (duration).
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There was some confusion on how to highlight temporal terms relating to the time

of the occurrence, so there are no annotations for event time.

9.3.5 Inter-Annotator Agreement

The annotations were evaluated using Cohen’s κ coefficient [74] which mea-

sures the agreement between two annotators. Agreement was measured between

two of the annotators with the third annotator providing the tie-breaking value.

When calculating κ, the observed agreement Ao is calculated. This is simply

the percentage of items that the annotators agree on divided by the total number

of items.

Ao =
items agreed on

total items
(9.1)

Next, the expected agreement, Ae, calculates how much the annotators would

agree if they simply made random choices in each separate category. The chance

of annotator a1 agreeing with annotator a2 on nominal value c in category C is

P (a1|c) · P (a2|c). The chance, therefore, of the annotators agreeing on any c is:

Ae =
∑
c∈C

P (a1|c) · P (a2|c) (9.2)

κ is the average of A0 and Ae:

κ =
A0 − Ae

1− Ae

(9.3)

There are several scales used to interpret κ. In this research, the Landis and

Koch [75] interpretation was used; that is: 0.0−0.2 (slight), 0.2−0.4 (fair), 0.4−0.6

(moderate), 0.6− 0.8 (substantial), and 0.8− 1.0 (perfect).
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Results of inter-annotator agreement for each pain attribute are shown in Table

9.2.

Table 9.2: Inter-Annotator Agreement

Attribute A0 Ae κ

Existence 0.685 0.360 0.509
Severity 0.800 0.088 0.781
Location 0.708 0.083 0.681
Onset 0.697 0.170 0.635
Duration 0.651 0.167 0.581
Quality 0.681 0.097 0.647
Type 0.911 0.761 0.628
Variability 0.704 0.169 0.644

9.3.6 Discussion of Annotations

When the annotators agreed on a medical concept, they agreed completely and

marked the same spans and gave them the same label. The difficulty in this task

came in reading through 65 pages of medical notes in one sitting. It was very easy

to simply miss occurrences. This was made obvious in that unmarked occurrences

were very similar to occurrences marked previously by the same annotator. For

example, denied pain was marked in many other instances as an occurrences of pain

negation, but in the following text it was missed by two of the three annotators:

assumed care of patient upon return to floor at 0930hrs. vss. pt denied pain.

As the task went on, the annotators became more fatigued, and missing an-

notations became more pronounced. Near the end, one of the annotators missed

roughly half the annotations that were found by the other two.

Another case of missed annotations was caused by the nursing flow sheets. In

the prompt, 7) Duration (How long have you had the pain?)(hrs,day,wks,mos,yrs):,
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the answer to the prompt appears on the following line. That value for pain duration

was not noticed by any of the annotators. Also in the flow sheets, some values are

repeated more than once. One of the annotators highlighted only one value instead

of highlighting and labeling each mention.

One other cause of missed annotations was the use of abbreviations. In par-

ticular, headache is abbreviated in the notes as ha. When embedded in a narrative

note, such as brain with contrast done given new ha which shows multiple enhancing

lesions, it was easily missed.

There was clinical disagreement over the word tender. It is used to describe

the results of palpation on the abdomen during the physical exam. It appears in the

notes as abdomen: soft, non-tender, without organomegaly or masses. The experts

generally agreed that this did not constitute a negation of pain occurrence. Tender,

however, may also be regarded as a pain occurrence as in Abd distended tender to

right side. It was left up to the experts to determine when tender constituted a pain

occurrence or not. Agreement on this was low.

Using the Landis and Koch scale, the agreement over all the attributes in

this annotation task ranges from moderate to substantial. In research efforts where

more annotation resources are available, an iterative approach is taken wherein the

annotators are allowed to look back over their annotations and check whether an

occurrence was not marked due to clinical judgement or was simply an oversight on

their part. If it was due to oversight, the annotation is changed. This procedure

results in higher inter-annotator agreement scores and would have been beneficial

in this task.
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It was not possible to compare the inter-annotator agreement with the state-

of-the-art SemEval 2015 task as it was not presented in the paper describing the

task [34].

9.4 Summary

Three clinical professionals, with a combined experience of 90 years, annotated

the test dataset by marking the spans and labeling the value of pain events and their

modifying attributes in the medical records of several patients. These annotations

are the ground truth used to evaluate the accuracy of the information extraction

algorithm based on the clinical judgements of these domain experts. The next

chapter discusses how the annotations were codified into a machine-readable gold

standard, and how the information extraction algorithm performed when measured

against it.
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Chapter 10: Results

10.1 Overview

The evaluation of the extraction algorithm was designed to be as similar to that

used by the SemEval 2015 challenge as possible. However, there were necessarily

some modifications based on the differing characteristics of the two corpora; most

notably due to the presence nursing flow sheets and the line oriented nature of the

VA corpus.

10.2 Gold Standard

10.2.1 Creating the Gold Standard from the Annotations

Once the annotators had completed their task, the creation of the gold stan-

dard commenced. The text spans against which the extraction algorithm would

be scored were derived from the highlighted phrases in the text. If the highlighted

phrase was the value of a pain attribute, the label penciled-in next to the highlight

was used to determine which attribute that value belonged to, and the value of that

attribute was coded into the gold standard.

The gold standard consists of the set of pain targets (see Chapter 5) and any of

its related attributes (modifying values). Targets could be references to pain (pain,

painful), or other attributes that appear as targets in nursing flow sheets (severity,
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location, onset, duration, quality, type). Each line could also contain more than one

target (patient denies cp/ha/sob). In this case, there is a gold standard instance

created for each target that share the same line id but have different spans.

Each gold standard instance, then, is made up of the line id and span (be-

ginning and ending character indexes) of the target term along with the values for

any attribute/modifier for that target. The final gold standard consisted of 426

<line id,span> targets. Figure 10.2.1 shows an example of the first few lines of the

gold standard (minus attributes that did not fit on the printed page). Table 10.1

shows the prevalence over the test corpus of non-default values for each of the slot

attributes.

Figure 10.1: The gold standard annotations of several targets and some
of their attributes.

10.3 Overview of Scoring Metrics

The extraction algorithm processes the text and returns a set of predictions.

Each prediction contains the line id of the occurrence, the span identifying the

target text, the existence status, negation status, severity, location, onset, duration,
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Table 10.1: Prevalence of Non-default Slot Attribute Values Over the Test Corpus.

Attribute Count Prevalence

Negation 160 38%
Severity 230 54%
Location 187 44%
Onset 12 3%
Duration 43 10%
Quality 26 6%
Type 19 4%
Variability 15 4%

quality, type, and event time. Each of these predictions is compared against the

gold standard in order to score both the target spans and the attribute values.

In order to compare the results of this research with the state-of-the-art, the

evaluations metrics defined for the SemEval 2015 challenge were used. However,

metrics that involved disorder spans in SevEval 2015 were changed to target spans

in this work. As slots and attributes are largely equivalent between the two, those

two terms are used interchangeably from here on.

10.3.1 Target Recognition Metrics

One difference in scoring methodology involved the disorder mention in Se-

mEval 2015 versus the target concept in this task. This is because the target in this

research may be a disorder mention (pain, painful), or it could be a target term for

one of the attributes (Location:) in a nursing flow sheet.

The target predictions are scored on their own apart from any modifying at-

tributes. The scoring module reads each prediction and checks whether its line id

and span match any in the gold standard. If it does, it is counted as a true positive;

if not it is counted as a false positive. When all predictions have been processed,
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any gold standard targets that have matched with a prediction are counted as false

negatives. From this, precision, recall, and F2 scores are calculated.

Precision = P =
Ttp

Ttp + Tfp
(10.1)

Recall = R =
Ttp

Ttp + Tfn
(10.2)

F2 =
2 ∗ P ∗R
P +R

(10.3)

Where Ttp is the number of true positive, Tfp are the number of false positive,

and Tfn are the number of false negative predictions made for a <line id, span>

combination.

10.3.2 Slot Attribute Metrics

Unweighted Per-Slot Accuracy. Unweighted per-slot accuracy measures

the algorithm’s ability to extract the values of a particular slot. It is defined as the

number of correct values for that slot across all gold standard instances. This is a

modification of the SemEval 2015 metric which only counts values over true positive

predictions. For slot k, the unweighted per-slot accuracy is defined as:

SlotAccuracy Unweightedk =

∑GS
i=1 I(gsk,i, psk,i)

GS
(10.4)

where GS is the number of gold standard instances, gsk,i is the gold-standard value

of slot sk at instance i, and psk,i is the predicted value of slot sk at instance i, and
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I is the identity function: I(x, y) = 1 if x = y and 0 otherwise.

Weighted Per-Slot Accuracy. Weighted accuracy was also calculated for

each slot. Weighted accuracy was useful because some attributes have very few

values specified in the set of gold standard instances. Adding the weight to the cal-

culation gives a better indication of accuracy on an unbalanced set of data. In this

research, the weight calculation based on prevalence was modified from that used

in SemEval 2015 (see Equation 2.4). In SemEval 2015, slot values were normalized

to a small number of terms such as unmarked, slight, moderate, severe. Prevalence

was based on the ratio of each of these normalized terms in that slot. However, in

this research, the task was to extract the actual values specified in the text. For

this reason, prevalence was modified to be based on the number of gold standard in-

stances that contained a non-default (usually empty) value for that slot. Prevalence

for slot k is defined as:

Psk =

∑GS
i=1 I(gsk,i, dsk,i)

GS
(10.5)

where GS is the number of gold standard instances, gsk,i is the gold-standard value

of slot sk at instance i, dsk,i is the default value of slot sk at instance i, and I is the

identity function: I(x, y) = 1 if x = y and 0 otherwise.

The weight for slot k (weight(gsk)) containing the default value is Psk while

the weight for each slot k containing a value other than the default is 1− Psk.

Once the weight was calculated using the modified prevalence, the weighted

accuracy for each slot was the same as that used in SemEval 2015, namely:

120



SlotAccuracy Weightedk =

∑GS
k=1weight(gsk,i) ∗ I(gsk,i, psk,i)∑TP

i=1weight(gsk,i)
(10.6)

where GS is the number of gold standard instances, gsk,i is the gold-standard value

of slot sk at instance i, psk,i is the predicted value of slot sk at instance i, and I is

the identity function: I(x, y) = 1 if x = y and 0 otherwise.

10.3.3 Per-Target Accuracy

Per-target accuracy measures the correctness of slot values in a particular

prediction. Equations 10.7 and 10.8 calculate the accuracy of a single prediction pi.

Per-target unweighted accuracy is defined as:

PerTargetAccuracy Unweightedi =

∑K
k=1 I(gsk,i, psk,i)

K
(10.7)

Per-target weighted accuracy is defined as:

PerTargetAccuracy Weightedi =

∑K
k=1weight(gsk,i) ∗ I(gsk, psk,i)∑K

k=1weight(gsk,i)
(10.8)

where K is the number of slots, gsk,i is the gold-standard value of slot sk,i at instance

i, psk,i is the predicted value of slot sk at instance i, and I is the identity function:

I(x, y) = 1 if x = y and 0 otherwise.

10.3.4 Overall Evaluation Metrics

Overall Per-Target Accuracy: The average of the per-target accuracies is

the same as that used in SemEval 2015. It is calculated over all the true positive

predictions in unweighted and weighted scores.
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Overall Accuracy Unweighted =

∑TP
i=1 PerTargetAccuracy Unweightedi

TP
(10.9)

Overall Accuracy Weighted =

∑TP
i=1 PerTargetAccuracy Weightedi

TP
(10.10)

where TP is the number of true positive predictions.

Final Overall Combined Accuracy: The integration of the overall ac-

curacy with the F2 score of the target span identification gives the final overall

combined accuracy. This is the final measure by which teams participating in the

SemEval2015 challenge were ranked. It is calculated as both an unweighted and

weighted scores. The combined score is defined as:

Combined Overall Accuracy Unweighted = F2 ∗Overall Accuracy Unweighted

(10.11)

Combined Overall Accuracy Weighted = F2 ∗Overall Accuracy Weighted

(10.12)

10.4 Results

10.4.1 Target Recognition Results

Table 10.2 shows the results of the extraction of target terms as defined by

the metrics in Section 10.3.1. Examples of true positive, false positive, and false
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negative extractions of the pain targets can be seen in Section 5.2.2.

Table 10.2: Target Recognition Results

Metric Results

T 401
Ttp 376
Tfp 69
Tfn 25
Precision 84.49%
Recall 93.77%
F2 88.89%

10.4.2 Slot Attribute Results

Table 10.3 shows the results of the information extraction algorithm for the

slot attributes. The results are expressed using the metrics presented in Section

10.3.2. As the weighted metrics are based on the prevalence of non-default values

over the entire corpus (both training and testing), those prevalences are shown in

Table 10.1.

Additionally, because precision, recall, and F2 are more widely used met-

rics, these are also presented in Table 10.4. However, in this case they are only

computed over the set of true positive targets that were found. In each case,

true positive + false positive + false negative = 401, the number of true posi-

tive targets. Examples of true positive, false positive, and false negative extractions

of the slot attributes can be seen in Sections 5.2.3 through 5.2.11.

10.4.3 Overall Evaluation Results

Table 10.5 shows the overall combined accuracy of the extraction algorithm

over all targets and all slot values. Metrics are those defined in Sections 10.3.1 and
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Table 10.3: Slot Attribute Accuracy Results Using SemEval 2015 Metrics

Attribute Overall Unweighted Overall Weighted

Negation 97.01% 96.81%

Severity 95.51% 95.21%

Location 95.76% 96.19%

Quality 98.25% 99.37%

Onset 99.00% 99.71%

Duration 94.76% 98.21%

Variability 99.25% 99.70%

Type 99.00% 99.43%

Table 10.4: Slot Attribute Accuracy Results Using Precision and Recall

Attribute Precision Recall F2

Negation 96.81% (364/376) 100.00% (364/364) 98.38%

Severity 96.50% (358/371) 98.62% (358/363) 97.55%

Location 96.51% (359/372) 98.90% (359/363) 97.69%

Quality 98.40% (369/375) 99.73% (369/370) 99.06%

Onset 99.47% (372/374) 99.47% (372/374) 99.47%

Duration 98.61% (355/360) 95.69% (355/371) 97.13%

Variability 99.73% (373/374) 99.47% (373/375) 99.60%

Type 99.20% (372/375) 99.73% (372/373) 99.47%

10.3.4.

10.5 Discussion

10.5.1 Comparison with the State of the Art

These results compare favorably with the current state-of-the-art in a similar

task carried out as a SemEval 2015 Challenge to identify medical concepts in clinical

text and to extract the values of any modifying attributes. Though similar, there
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Table 10.5: Overall Evaluation Results
Metric Score

Target Precision 84.49%

Target Recall 93.77%

Target F2 88.89%

Overall Unweighted Slot Accuracy 97.14%

Overall Weighted Slot Accuracy 94.01%

Combined Overall Weighted Accuracy 83.56%

were notable differences.

• The VA corpus is characterized by text with very little underlying grammatical

structure while the Share corpus notes are grammatically clean.

• The VA corpus contains 48 different types of notes, while the Share corpus is

made of up 2 types of notes (radiology and discharge notes).

• The SemEval challenge targeted medical concepts of up to 88,000 types, while

this research focused only on pain. However, due to the use of pre-coordinated

terms in the standard terminologies, pain actually constituted hundreds of

those terms.

• The SemEval challenge normalized disease/disorders and anatomical locations

to CUIs; this research did not.

• The SemEval challenge normalized each attribute to a small set of terms. This

research extracted the actual values.

• This research allowed for multiple values in a slot. For example, abd discomfort

@ old surgical site would have two locations: abd and surgical site. Both
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locations would have to be present to count the slot value as a true positive.

SemEval only allowed for a single value.

• This algorithm is able to fill in anatomical locations that are part of compound

terms, abbreviations, and implied by the term itself (mylagia).

• This algorithm was able to fill in pain targets that were not present in the text,

but implied by the presence of its attributes (7/10 hands). SemEval assumed

all targets were explicit.

10.5.2 Sources of Error

Sources of false positives. These were due to the development of the test

set of notes as well as the annotations, and the pain targets of tender and pressure.

1. Many false positives were caused when the negating phrase denies occurred on

the previous line. Therefore, the pain targets on the following line are listed

as affirmed instead of negated.

2. The larger context is not known by the algorithm. For example, The patient’s

goal is to be pain free occurs in the context of an assessment interview. The

algorithm has no concept of a patient’s goals.

3. Certain portions of notes that contained pain occurrences were unknowingly

left out of the test set of notes. Because it was unreasonable to ask the

annotators to process 650 pages of notes, they were greatly abridged (see

Section 9.3.2). Some of the notes were abridged too far.
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4. The annotators themselves missed annotating some occurrences pain events

(see Section 9.3.6).

Sources of false negatives. False negatives were caused by the following:

1. In the case of tender, there was disagreement between clinicians on when the

term constituted a pain event or not. In the initial set of annotations (see

Section 9.3), tender was considered a sign and not symptom. It was left out

of the lexicon as a target term. The second set of annotations, on which the

results were calculated, generally did consider the term to indicate a pain event

and annotated them as such.

2. In the case of pressure, the term was so ambiguous over the entire that it was

removed as a target term. However, it was annotated as a pain target/qualifier

(feels pressure, no pain).

3. In order to filter out the word pain that was not used in the context of a pain

event, the item was pruned from the ConText graph if it had no modifiers.

However, in the Problem List portion of the note, the word Pain stands

alone as a chronic condition. In this case, it should be kept with an implied

modifier of chronic.

10.5.3 Analysis of Results

The conjecture put forth in Chapter 3 that there were phrasal patterns in the

VA Corpus that were strongly discriminative over short distances was correct. Those

short-hand phrasal patterns were discovered and successfully leveraged to identify
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the presence of medical concepts related to pain and to extract their modifying

values.

The specialized lexicons that were built to identify and extract pain target

terms, anatomical locations, and temporal terms were also effective in identifying

individual words as well as phrases. They also were able to be extended to associate

pain terms with their locations, as well as filter out expressions that could not

stand on their own. This had the advantage of not relying on a supervised method

of machine learning, and was relatively easy to do based on existing terminology

systems.

However, this in and of itself was not enough. Underlying the extraction of

concepts is a grammar that mirrors the semantic structure of the pain ontologies. It

is this concept level grammar that constrains the transitions of the phrases, which

phrases are to be included, and how they interact to ensure that the phrases attach

in the correct way.

The nursing flow sheets imposed their own unique grammar that was not well-

suited to the ConText algorithm. In the prompt, Patient states current pain due to

surgical or other invasive procedure: No, the pain targets and attributes are positive

until they are negated as a separate expression at the end. The prompts in the flow

sheets were very specific (although the did vary between VA facilities), and it was

difficult to write patterns that would generalize to other institutions. More research

is needed in this area.

Because the telegraphic style of the short-hand style text is fundamentally

different than clean text, and imposes different algorithmic constraints, it would
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be helpful to create a classifier to determine which style of text is currently being

processed. When the text is clean, it would be safe to combine lines, perform

sentence segmentation, and possibly incorporate other NLP techniques to determine

the scope. It would also be helpful to integrate other attributes for events such as

experiencer (patient,family member), historicity (history of ), and hypotheticals (if

he has ...).

This algorithm also would be more effective if the larger context of the pain

expression were known. For example, knowing whether the type of note was a

nursing note, a surgical note, or a discharge summary may help to determine whether

the pain event is occurring during the period covered by the note or whether it was

historical. Within the note, it would be helpful to know whether the pain term is

occurring as part of the chief complaint, as part of a pain assessment, as part of

a physical exam, as part of a patient assessment interview, or as part of a chronic

problem list.
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Chapter 11: Conclusion

The goal of this research effort was to prove the thesis that an approach that

combines semantic and machine learning techniques can be used to extract medical

concepts from clinical text for use in clinical decision support systems.

As was seen in Chapter 2, the extraction of medical events in the clinical

records is fraught with difficulty. Much of this is due to a large set of formal terms

in the biomedical domain. However, with the availability of formal terminologies

and the use of NLP and machine learning algorithms, much progress has been made.

Current state-of-the-art systems are able to identify occurrence of diseases/disorders

in the text and retrieve related attribute data with an overall cumulative weighted

accuracy of 80.8%.

However, as was seen in Chapter 3, the difficulty of performing this kind of

extraction was magnified in the text of the VA corpus in which a shorthand style

of text is used. This text is heavily abbreviated and tends to ignore the rules of

grammar, punctuation, and white space. In addition, the use of nursing flow sheets

spread the occurrence a single pain event over many lines of text, and requires the

targeting of several different types of phrasal expressions.

This research began at the request of physicians at the VA to find occurrences

of pain events in the textual notes of patient records. Chapter 4 showed that defining
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a formal set of ontologies to model these events, and encoding the extraction results

in a structured semantic representation, allows deductive inferencing technologies to

reason over the data by combining it with existing biomedical ontologies to produce

a semantically rich cognitive search assistant.

Processing the VA corpus to find occurrences of these pain events resulted in

a novel approach to clinical information extraction that is robust to grammatically

deficient text. It relies on techniques that are able to incorporate micro-contexts

by taking into account scope, proximity, and location of multiple interdependent

matched expressions. Chapter 5 described how an existing algorithm was extended

in order to implement this approach.

In order for this extraction capability to be suitable for clinical decision sup-

port, it was necessary that it provide near real-time performance. The algorithm

was refined for runtime efficiency. Also, by experimenting with clusters of terms

related to the medical concept being extracted, Chapter 6 showed how it was able

to leverage these terms in conjunction with the elasticsearch engine to provide a 10x

speedup for a processing rate of 24.7 notes/second (0.04 seconds per note).

Some of the text in corpus, such as lab results and medication lists, needed

to be filtered out. Chapter 7 relates how the positive distributional characteristics

of these types of text are conducive to machine learning algorithms. The chapter

described the train/test dataset that were created from the corpus, and that in both

cases the Multinomial Naive Bayes had the best accuracy at 99% on the lab reports

and 98% on the medication lists.

Chapter 8 established the practical use of this research by presenting a clini-
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cal decision support system requested by the physicians at the VA to monitor the

progression of post-surgical pain. The application specified the patient and the tar-

gets/modifiers, and the algorithm was able to extract the pain events recorded in

the patient chart (180 pages of text), and present a visualization of those events.

The entire process took 7 seconds.

The evaluation and accuracy of the extraction algorithm, laid out in Chapters

9 and 10, established that the overall cumulative weighted accuracy of 85.33% was

greater than current state-of-the-art system for a similar task (80.8%).

As shown by the above, this research validates the thesis that an approach

that combines semantic and machine learning techniques can be used to extract

medical concepts from clinical text for use in clinical decision support systems. The

novel contributions of this research include:

1. A set of formal ontologies to embody a semantic knowledge representation for

medical concepts that is modular and can be extended and shared with other

applications.

2. A novel approach that is robust to grammatically deficient text using tech-

niques that are able to incorporate micro-contexts by taking into account

scope, proximity, and location of multiple interdependent expressions.

3. Information retrieval techniques that can be used in conjunction with the

knowledge representation to extract portions of the clinical narrative contain-

ing the concept. This allowed the extraction algorithm to be highly efficient

and scalable.
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4. An API exposed through the REST interface to make the results available for

clinical decision support systems and for visualization, as well as a framework

for storing and reasoning over the extracted data.

11.1 Limitations

This research does not attempt to normalize precoordinated expressions such

as (severe pain) to UMLS CUIs. However, it is able to recognize CUIs for individual

terms of severed and pain and use them to create a post-coordinated expression.

Because this is the direction that not only SNOMED-CT and ICD-10 are going,

and that the use of precoordinated does not make sense when used in a reasoning

system, there are no future plans to do this.

The Foundational Model of Anatomy (FMA) was the only anatomical ontology

that was able to successfully be converted from its native OWL/XML format into

RDF/XML (or any other format) to ingest into Pellet via the Jena Framework. As

FMA is a very large ontology, it takes roughly 15 minutes to check for consistency

on load. All efforts to convert the smaller anatomical subset of SNOMED-CT to

a format the Jena could read were unsuccessful. This limitation must be overcome

for the system to be useful outside a research lab.

11.2 Future Work

As this research only handled pain and swelling, it could be extended to not

only to other sign/symptoms but diseases/disorders as well. The specialized lexicons

that were built for location may work very well for this also.
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This approach assumed a non-standard grammar. However, consultant notes

are generally much cleaner grammatically. Applying a classifier to determine which

type of text is being processed would make the algorithm better suited to handle

all styles of text by using the appropriate tools for each.

The nursing flow sheets are difficult, but they have their own type of grammar

which is usually of the form: prompt: response. There could be a way to discover

more general semantic patterns that are useful at other institutions.

While the algorithm was successful in extracting temporal terms, it did not

attempt to convert those terms into an actual date/time. Given that these expres-

sions are generally given relative to the date/time of the note in which they are

recorded, this should, in fact, be possible. However, the terms can be non-exact, as

in days. A theory for how to handle this would need to be decided.

Also, the narrative notes may expression a progression of pain events. For

example, in the text Co of midepigastric constant abdominal pain beginning abruptly

at 630a which was tolerable thru the day, but gradual grew worse, there are two pain

events: the first started at 6:30 and was tolerable through the day; and the second

started sometime near the end of the day and was more severe than tolerable (i.e.,

the severity turned from mild to moderate). The algorithm is not able to capture

these sequences

The extraction algorithm may also perform better if it was known what section

of the note the pain mention occurred in. For example, the History of Present

Illness may contain both current, historical, and progressive expressions of pain. The

Physical Exam portion is always current, but also reflect pain that is the result of
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palpations. Pain Assessments are current, but reflect many aspects of pain treatment

as well as current pain status.

While these current limitations are significant, it seems that with more effort

in this area of research, the majority of occurrences can be found and processed

appropriately.

135



Chapter A: Appendix

A.1 Pain Ontology Definitions

Table A.1: Patient Ontology Definition

Concepts

Taxonomy Patient

Relations Domain Range

Object Property

Data Property hasPatientId Patient string
hasPatientFirstName Patient string
hasPatientLastName Patient string
hasPatientDescription Patient string
hasPatientGender Patient string
hasPatientRace Patient string
hasPatientBirthDate Patient xsdDateTime

Table A.2: Note Ontology Definition

Concepts

Taxonomy Note

Relations Domain Range

Object Property hasNote Patient Note

Data Property hasNoteId Note string
hasTitle Note string
hasSubTitle Note string
hasNoteType Note string
hasNoteDateTime Note xsdDateTime
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Table A.3: Event Ontology Definitions

Concepts

Taxonomy Event

Relations Domain Range

Object Property hasEvent Note Event

Data Property hasEventDateTime Event xsdDateTime
hasEventTimeExpression Event string

Table A.4: Certainty Ontology Definitions

Concepts

Taxonomy Certainty
Existence
Negation
Definite
Probable
CertaintyDefiniteExistence
CertaintyProbableExistence
CertaintyDefiniteNegated
CertaintyProbableNegated

Relations Domain Range

Object Property hasCertainty Event Certainty

Data Property None

Table A.5: Onset Ontology Definitions

Concepts

Taxonomy Onset

Relations Domain Range

Object Property hasOnset Symptom Onset

Data Property hasOnsetExpression Onset string
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Table A.6: Duration Ontology Definitions

Concepts

Taxonomy Duration

Relations Domain Range

Object Property hasDuration Symptom Duration

Data Property hasDurationExpression Duration string

Table A.7: Location Ontology Definitions

Concepts

Taxonomy Location

Relations Domain Range

Object Property hasLocation Symptom Location

Data Property hasLocationExpression Location string

Table A.8: Severity Ontology Definitions

Concepts

Taxonomy Severity
SeverityNorm

SeverityNormNone
SeverityNormMild
SeverityNormModerate
SeverityNormSevere

SeverityScore
SeverityScoreLexical
SeverityScoreNumeric

Relations Domain Range

Object Property hasSeverity Symptom Severity
hasSeverityNorm Symptom SeverityNorm

Data Property hasSeverityScoreLexicalValue SeverityNorm string
hasSeverityScoreNumericValue Symptom decimal

Equivalence SeverityNormNone ≡
CertaintyDefiniteNegated

138



Table A.9: PainSeverity Ontology Definitions

Concepts Subclass of

Taxonomy PainScale 0 to 10 SeverityScoreNumeric

Relations Domain Range

Object Property hasPainSeverity PainSymptom PainScale 0 to 10

Data Property hasPainScale 0 to 10 Value PainScale 0 to 10 decimal: [0, 10]

Table A.10: PainSymptom Ontology Definitions

Concepts Subclass of

Taxonomy PainSymptom Symptom

Relations Domain Range

Object Property None

Datat Property None

Table A.11: PainQuality Ontology Definitions

Concepts Subclass of

Taxonomy PainQuality 0 to 10

Relations Domain Range

Object Property hasPainQuality PainSymptom PainQuality

Data Property hasPainQualityExpression PainQuality string

Table A.12: PainType Ontology Definitions

Concepts Subclass of

Taxonomy PainType 0 to 10

Relations Domain Range

Object Property hasPainType PainSymptom PainType

Data Property hasPainTypeExpression PainType string
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Chapter B: Appendix

B.1 Official Annotation Guidelines

High-Lite Any Text In The Note That Indicates Any Of These Aspects
Of A Pain Event in a Patients Record

1. PAIN:

(a) Is it present?

(b) Include medical terms that constitute pain, e.g., myalgia

i. write in the anatomical location that it corresponds to

2. NEGATIONS

(a) Is it specifically negated (eg, denied)

3. SEVERITY

(a) How severe is the pain?

(b) Write in: none, mild, moderate, severe (or 0,3,6,9)

(c) High-lite the terms in the text indicate that severity

(d) What is the range of the pain severity (at its worst, at its best ) ?

(e) If not known - write ”unknown”

4. LOCATION

(a) High-lite text that indicates the location of the pain

(b) Mark with letter L

(c) There may be more than one pain event in one sentence - for different
anatomical locations - mark all of them

(d) If location is abbreviated in the text, write in the correct term

5. QUALITY OF PAIN

(a) High-lite text that indicates the quality of the pain (eg, burning, etc)
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(b) Mark with letter Q

6. TYPE OF PAIN

(a) High-lite text that indicates the quality of the pain (eg, surgical, etc)

(b) Mark with letter T

7. TIME OF EVENT

(a) High-lite text that indicates the time of the pain occurence

(b) Is there an absolute time recorded for that event?

(c) If time of pain just relative to the date/time of the note, high-lite the
time of the note.

8. ONSET

(a) High-lite text that indicates the time of onset of the pain

(b) Mark with letter O

(c) Write down which date(s) on the calendar would that correspond to

9. DURATION

(a) High-lite text that indicates the duration of the pain

(b) Mark with letter D

(c) Write down how many hours/days/weeks would you sat that that corre-
sponds to

(d) Is the pain Chronic / Acute ?

10. VARIABILITY

(a) High-lite text that indicates whether the pain is constant / intermittent

11. WHAT NOT TO ANNOTATE:

(a) How well controlled the pain is - just affirm that pain was present

(b) How well the patient is able to cope with pain

(c) How well the patient is able to verbalize pain (or not)

(d) If pain level is acceptable

(e) What does the pain keep you from doing (ADLs, etc)

12. MISTAKES

(a) Put an X through any highlights that you made but changed your mind
on

13. ABBREVIATIONS
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(a) Write down on this sheet any abbreviations you use in your annotations
along with their non-abbreviated form(s)

14. Pain Scale

(a) On a scale of 0-10, assuming 0 is no pain, what numeric values constitute:

i. Mild:

ii. Moderate:

iii. Severe:
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