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Figure 1: An armadillo demonstrates non-Newtonian behavior similar to a cornstarch solution—resisting large stresses, it
initially bounces on the ground, but when the stress is reduced it flows readily.

Abstract

In this paper we describe a point-based approach for animating elastoplastic materials. Our primary contribution
is a simple method for computing the deformation gradient for each particle in the simulation. The deformation
gradient is computed for each particle by finding the affine transformation that best approximates the motion
of neighboring particles over a single timestep. These transformations are then composed to compute the total
deformation gradient that describes the deformation around a particle over the course of the simulation. Given
the deformation gradient we can apply arbitrary constitutive models and compute the resulting elastic forces. Our
method has two primary advantages: we do not store or compare to an initial rest configuration and we work
directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second
naturally leads to a multiplicative model of deformation appropriate for finite deformations. We demonstrate our

approach on a number of examples that exhibit a wide range of material behaviors.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; 1.6.8 [Simulation and Modeling]: Types of Simulation—Animation.
[point-based simulation, natural phenomena, physics-based animation. |

1. Introduction

Materials that incorporate both plastic and elastic defor-
mations such as chewing gum, toothpaste, shaving cream,
sauces, bread dough, and modeling clay are frequently en-
countered in everyday life and have recently been suc-
cessfully used in special effects such as the honey in Bee
Movie [Rui0O7] and the food in Ratatouille [GRPS07]. In
fact the later work won the Visual Effects Society award for
Outstanding Effects in an Animated Motion Picture. At the
same time, point-based simulation methods have increased
dramatically in popularity and sophistication in recent years.
These methods are capable of modeling a wide range of ma-
terials in a variety of contexts, from real-time fluid simula-
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tions [BMF07] to fracturing solids [PKA*05]. Their versa-
tility makes them especially attractive for computer graphics
applications.

In this paper we describe a point-based approach for an-
imating elastoplastic materials. Our primary contribution is
a simple method for computing the deformation gradient for
each particle in the simulation. The deformation gradient is
computed for each particle by finding the affine transforma-
tion that best approximates the motion of neighboring par-
ticles over a single timestep. This transformation is found
using a least-squares fit to the positions of neighboring par-
ticles at the beginning and end of the timestep. These trans-
formations are then composed to compute the total deforma-
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Figure 2: Three cylinders with different material properties
fall on the ground.

tion gradient that describes the deformation around a particle
over the course of the simulation.

Our approach has two primary advantages. First, we do
not store and compare to an initial rest state. Under large
plastic deformations the mapping from an initial rest state
to the current state becomes numerical ill-conditioned. By
storing only the elastic part of the deformation we avoid
these numerical problems. Second, instead of working with
a strain metric, we work directly with the deformation gra-
dient. By focusing on the deformation gradient our approach
can handle arbitrary constitutive models [ITF04]. More im-
portantly, working with the deformation gradient naturally
leads to a multiplicative formulation of deformation, which
is more suitable to finite deformations than the additive mod-
els from classical plasticity that are often used in graph-
ics [SHO98]. We demonstrate our approach on a number of
examples that exhibit a wide range of material behaviors.

2. Related Work

A complete survey of point-based methods is beyond the
scope of this paper, but we heartily recommend the book by
Gross and Pfister [GP0O7]. We focus our attention on meth-
ods for animating elastoplastic solids and viscoelastic fluids.
Terzopoulos and Fleisher [TF88] introduced inelastic defor-
mations, including viscoelasticity, plasticity, and fracture to
the graphics community. O’Brien and colleagues [OBHO02]
incorporated a similar plasticity model into a finite element
simulation to animate ductile fracture. To avoid problems
with poorly conditioned or tangled elements they demon-
strated only limited amounts of plastic deformation. We also
note that they used an additive model of plasticity. While
such a model is appropriate when considering infinitesimal
deformations, as Irving and colleagues [ITF04] pointed out,
a multiplicative model is more appropriate in the context of
finite plastic deformation. Clavet et al. [CBP05] modeled
viscoelastic fluids with a mass-spring system in which the
springs are dynamically inserted and removed. Their springs
explicitly model viscous and elastic forces and include a
model of plastic flow. Goktekin et al. [GBO04] took an al-
ternative approach and added elastic forces to an Eulerian
fluid simulation. In their approach, a linear strain rate is in-
tegrated through time and undergoes plastic decay. Their ap-

Figure 3: Two different shapes form a pile on the ground.
The right image shows the simulation particles.

proach used a linear model of elastic deformation that is not
invariant to rotations. This shortcoming was addressed by
Losasso and colleagues [LSSF06] who applied a rotation to
the advected elastic strain to account for rotations in the ve-
locity field. However, as noted by Irving [Irv07], because
this model is not based on the deformation gradient it is un-
able to model hyperelastic materials.

Miiller et al. [MKN*04] introduced a point-based method
for animating elastic, plastic, and melting objects. They
broke the possible deformations into two separate regimes.
Deformations that were largely elastic were treated by com-
paring the current configuration of neighboring particles to
a rest configuration, while large plastic deformations were
handled by updating a strain measure in a way similar to
Goktekin et al. [GBOO04]. Their approach to primarily elastic
deformation uses moving least-squares to fit a transforma-
tion that maps neighbors in a reference shape to the current
shape. While we use a very similar moving least-squares fit
to compute the deformation gradient, we fit the deformation
over individual timesteps and compose the deformations to
arrive at the total deformation. While this approach invari-
ably leads to drift in the deformation gradient over time, it
is able to handle changing neighborhoods and large plastic
flow in a unified way. Keiser et al. [KAG*05] also developed
a unified approach by substituting fluid dynamics for the
large plastic deformation regime of Miiller et al. [MKN*04].
Like ours, their approach is able to model a wide variety of
materials in a unified way.

Recently, Solenthaler and colleagues [SSPO7] have re-
placed the moving least-squares approach used by Miiller et
al. [MKN™*04] and Keiser et al. [KAG*05] with an SPH
formulation. Their approach is able to model fluids, elas-
tic, and rigid objects as well as objects that have parts of
different types. Additionally, they include melting and so-
lidification, merging and splitting, and plasticity using the
model of O’Brien et al. [OBHO2]. More recently, Hieber
and Koumoutsakos [HKO8] described a Lagrangian particle
method for simulating linear and nonlinear elastic solids that
does not require a rest configuration. Instead of performing
a least-squares fit to the deformation in every timestep, they
update the deformation gradient by integrating the gradient
of the velocity field. In contrast to these meshless meth-
ods, Bargteil et al. [BWHTO7] introduced a finite element

(© The Eurographics Association 2009.
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Figure 4: An elastoplastic bunny falls on a sphere. An additional example appears in the video.

method for animating large viscoplastic flow. Their approach
relied on a robust remeshing operation to maintain well-
conditioned elements. Wojtan and Turk [WTO8] improved
on this approach by using embedded surface meshes, pro-
ducing highly detailed animations of heavily deformed ob-
jects. By using embedded meshes they were also able to
adopt a fast and simple remeshing procedure. These last two
papers are the only work in graphics that shares both the
main advantages of our approach. However, our approach
has the advantage of being meshless, allowing us to avoid
remeshing and the consequent resampling and smoothing of
simulation variables.

3. Method

In this section we describe our method for computing the
deformation gradient and the consequent elastic forces. We
focus on the modifications we made to the open-source SPH
simulator released by Adams et al. [APKGO7]. For addi-
tional details on SPH simulation we refer the reader to that
paper and its references.

Our goal is to compute elastic forces in a point-based sim-
ulation. In order to do so, we must first compute the deforma-
tion in the vicinity of each particle, p;. We first consider how
to compute the deformation around p; over a single timestep.
Let x; be the position of p; at the beginning of the timestep
and y; be the location of p; at the end of the timestep. If p;
are the neighbors of p;, we seek the transformation matrix F,
such that

[F(x; —xi) = (v; — i) (1)

=

1

J

is minimized. If we let

X:( X|] X2 X3 -+ Xp ) 2)
and

Y=(yi Y2 ¥3 = ¥n), 3)

where the individual x; and y; are column vectors, then if
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the deformation can be represented with an affine transfor-
mation, we have

FX=Y. C))

Taking the transpose of both sides and multiplying both sides
by X we obtain the normal equations,

xx F’ =xy’. 5)

Solving for F, we have

. T
F:((XXT> XYT) . )

This solution gives us the best linear transformation for the
neighborhood around p; in a least-squares sense. However,
we want nearer particles to have greater influence, so we
multiply the columns of X and Y by a weighting kernel. Our
implementation uses the poly6 kernel (the default smoothing
kernel given by Miiller et al. [MCGO3]),

315 { <h2,r2>3
0

_ 0<r<h
~ 64nh®

otherwise.

Wp01y6 (I‘, h) @)

This approach gives us the deformation over a single
timestep. However, this deformation is a linear transforma-
tion and transformations compose through multiplication.
Thus, to compute the deformation over some time interval,
we break the interval into a series of k timesteps, estimate
the deformation over each timestep and compute

F:HFi. (8

We note that only a single F, representing the total elastic
deformation, need be stored for each particle. The individ-
ual F; are computed during the associated timestep, but not
stored.

Once we have the deformation gradient we can apply any
constitutive model we like, compute strain, stress, and elastic
forces and move the simulator forward. In our implementa-
tion we diagonalize F into UkvT using a singular value de-
composition [ITF04] and apply the multiplicative plasticity
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Figure At (ms) Particles Sec/Frame
Fig. 1 0.5 52316 96.4888
Fig.4 0.1 40556 379.065
Fig. 2 (left) 0.1 16770 138.257
Fig. 2 (center) 0.1 16770 137.909
Fig. 2 (right) 0.1 16770 141.591
Fig. 5 (left) 0.1 665 4.76452
Fig. 5 (right) 0.1 665 4.88767
Figure 5: Hyperelastic boxes dropped on the ground. The Fig. 7 (top, left) 0.1 12152 102.545
left cube is quite stiff, the right cube is softer. Fig. 7 (center, left) 0.1 12152 86.9948
Fig. 7 (bottom, left) 0.1 12152 94.4097
Fig. 7 (top, right) 0.1 12152 96.135
model described by Bargteil et al. [BWHTO07] to obtain the Fig. 7 (center, right) 0.1 12152 87.1509
elastic deformation, F.. We then compute the diagonalized Fig. 7 (bottom, right) 0.1 12152 94.3632

stress as in Irving et al. [ITF04],
P =2p.(F,—T)+ATr (F. —T) L )
Following Solenthaler et al. [SSP07] and accounting for
our diagonalized deformation gradient and stress, the elas-
tic force p; exerts on p; is
f;; = —2vyv,UF. PV d;; (10)
where v; and v; are the volumes of particles p; and p; and
dij = VW (v; = yi).h)- (11)

Note that the vector from y; to y; is back projected to the
reference space before applying the weighting kernel. We
use the weighting kernel developed specifically for elastic

forces by Solenthaler et al. [SSPO7],
2h (r+h)7t) 2h <r<
W(r,h):{(c)”cos(zh +tcz 0<r<h

otherwise,

12)

_ T
o (5 -5+ 52)

In order to ensure conservation of momentum, f;; and fj;
are averaged and equal and opposite forces are applied to
the particles. We note that because we have diagonalized F
and P, the forces computed in Equation (10) are rotationally
invariant.

c 13)

4. Results & Discussion

Our implementation adds the elastic forces described in this
paper to the open source SPH simulator by Adams and col-
leagues [APKGO7]. The resulting system may be thought of
as a “unified SPH” simulator and is capable of simulating
liquids and solids as well as materials that demonstrate prop-
erties of both liquids and solids. In fact many of our exam-
ples included SPH pressure forces as well as elastic forces,
as we found that pressure forces provided additional stabil-
ity. We refer the interested reader to the paper by Adams
and colleagues [APKGO7] and the associated source code

Table 1: Timing results for the examples in this paper.

for details such as time integration (symplectic forward Eu-
ler), neighborhood selection (the 30 nearest neighbors within
a given radius), etc.

Figures 1-7 demonstrate our method’s ability to handle a
wide range of materials. Figure 1 shows an example with
a modified version of our plasticity model that divides the
flow rate by the magnitude of the stress, so that the mate-
rial flows more easily under small stresses. Figure 5 demon-
strates a hyper-elastic material where the eigenvalues of F
are squared before computing the stress. Figure 6 compares
one of our simulations with real-world footage of bread
dough and Figure 7 demonstrates the effects of varying our
material parameters. Figure 8 shows a comparison of our
approach with an approach that stores and compares to a
reference shape and then removes plastic deformation be-
fore computing elastic forces and an additive approach that
computes Green’s strain at every timestep and adds it to the
total elastic strain. As is expected, storing the reference con-
figuration works very well for largely elastic bodies, but un-
der large plastic flow the simulation becomes unstable. Con-
versely, an additive model of elastic deformation works well
enough when most of the deformation is plastic, but fails to
return to the rest shape when the deformation is primarily
elastic.

Table 1 summarizes our computation times. All results
were obtained on a single core of a Xeon E5410 (2.33 Ghz),
with 16 GB of memory available. Profiling has shown that
in the example in Figure 4, 14% of the computation time
was spent in our elasticity code. Half of this time was spent
performing eigendecompositions. This total cost is roughly
twice the cost of surface tension forces, which we did not use
in our examples. We note that our examples were run with
very conservative timesteps—some of our examples ran suc-
cessfully with 10x larger timesteps.

Generating visually appealing, time-coherent surfaces
for particle-based simulations remains a difficult problem

(© The Eurographics Association 2009.
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Figure 6: Real-world footage of bread dough shaped like a
star (left) is compared to a simulation (right).

that is beyond the scope of this paper. Our results were
generated with a variation of the method described by
Williams [Wil08].

One of the paramount concerns in any computer graphics
simulator is stability and ours in no exception. One of the
sources of error and instability in our approach is the esti-
mation of the deformation gradient. In particular, if a par-
ticle does not have enough neighbors or the distribution of
particles is degenerate, XX will be ill-conditioned. To ad-
dress this problem, we do not update the deformation gradi-
ent if a particle has less than a set number of neighbors (6
in our implementation), if xx7 is ill-conditioned, or if the
update would cause any of the eigenvalues of F to be less
than or equal to zero. We also note that plastic flow tends to
improve stability by bringing F towards the identity. Conse-
quently, relaxing the constraint that plastic deformation be
volume preserving in cases when F encodes large volume
changes further improves stability. When the method does
fail, it tends to be in areas around sharp features, where a
particle’s neighbors subtend a small solid angle, or in areas
where topological changes are occurring. Addressing these
issues is an important area of future work.

Other interesting areas of future work include implement-
ing an implicit integrator, addressing topological changes in
a physically based manner (currently, topological changes

(© The Eurographics Association 2009.
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Figure 7: We demonstrate the effects of our plastic material
parameters by dropping a box on the ground.

Figure 8: Final frames in a comparison of our method (left)
against a method that uses a rest configuration (middle) and
a method with an additive strain model (right). The top row
is an elastic material, the bottom row is a very plastic mate-
rial. The simulation consists of applying and then releasing
an analytic compression force that increases away from the
center of the object. The lower middle image is the last frame
before the simulation became unstable.

occur when particle neighborhoods change), and methods
for resampling/adaptive sampling. The last direction is par-
ticularly interesting as it may improve stability as well as
provide performance benefits. Additionally, while we have
demonstrated our approach with a particle-based method,
the general approach to computing the deformation gradi-
ent should be applicable in other simulation methods, such
as Eulerian grid-based or finite element techniques.

Our approach is well-suited to simulating materials that
experience large plastic deformations. It is also capable of
simulating rather stiff elastic materials, though some drift
is inevitable. Unfortunately, our approach is not well-suited
to the large elastic deformations exhibited by soft objects. In
such cases the deformation gradient becomes ill-conditioned
and our method breaks down. For simulating such materials
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the invertible finite element approach developed by Irving et
al. [ITFO4] is more appropriate.

We believe our approach has a number of advantages over
competing techniques. In particular, it does not require any
rest configuration, no remeshing is needed, it can handle
elastic and large plastic deformations in a unified framework
and it is simple to implement and inexpensive to compute.
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