
  

A new approach to the identification of distortion modes of 
thin-walled structures based on plate/shell theory 

Lei Zhang1, Weidong  Zhu2, Aimin  Ji1  and Liping  Peng1  
1College of Mechanical and Electrical Engineering, Hohai University, Changzhou 213022, China 
2Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA 

Abstract. In this paper, a new approach to identify cross-section deformation modes is presented and 
utilized in the establishment of a high-order beam model for dynamic analyses of thin-walled 
structures. Towards this end, a systematic procedure to extract cross-section in-plane vibration shapes 
for a thin-walled cross-section is developed based on elastic plate/shell theory. Then the distortion 
shapes are separated from vibration shapes by removing the components of classic modes involved 
with the minimum value problem of 2-norm. Sequentially, curve fitting method is utilized to 
approximate the distortion shape functions along the cross-section midline. It should be noticed that 
these distortion modes are arranged in hierarchy consistent with the order that they are identified and 
the number of distortions to be identified depends on the required model precision. Based on this, 
Hamilton's principle is applied to formulate the dynamic governing equations of the beam by 
constructing its displacement field with the linear superposition of the cross-section mode shapes 
including distortions. Numerical examples are also presented to validate the new approach and to 
demonstrate its efficiency in the reproduction of three-dimensional behaviours of thin-walled 
structures in dynamic analyses.  

1 Introduction 
Thin-walled structures are widely used in civil and 
mechanical engineering. For the simplicity and the ease 
of applying optimization algorithms coupled with 
computational efficiency, one-dimensional theories are 
more preferred than two- and three-dimensional models. 
However, the development of an efficient one-
dimensional theory faces a fundamental challenge: a 
general and easy-to-implement procedure to identify the 
cross-section modes [1]. Ideally, this procedure should 
lead to a hierarchical set of modes, in the sense that only 
the first few modes should be sufficient to describe the 
deformed configuration with an “acceptable precision” 
[2]. In other words, the core issue is to reduce the three-
dimensional continuum elasticity formulation to a beam 
model which is as accurate as possible to include the 
most characteristic structural behaviors with the least 
amount of cross-section modes. 

To support this, several trends of enhancing beam 
theories have been developed in the last decades: 
asymptotical methods, such as variational asymptotical 
sectional analyses by Yu and Hodges [3], expansion of 
the beam displacement field through Taylor  series [4] 
and refinement of the classic thin-walled theories by 
Vlassov (in particular the theory of Kim et al. [5]). In 
engineering, other formulations are deduced considering 
specific structural behaviors, such as the multi-cell 
distortion (Gonçalves et al. [6]) and warping due to shear-

lag effects (Chen et al. [7]). Moreover, some studies are 
focused on physically meaningful section modes [8]. 

Currently, the generalized beam theory is considered 
as one of the most complete theories, which has been 
developed to account for both warping and distortion 
with shear deformation [9] and transverse extension 
included, being also applied to multi-cell closed cross-
sections [10] and composite materials [11]. A comparable 
theory is the method of Generalized Eigenvectors [12], 
whose modes are obtained through a cross-section 
discretization using two-dimensional elements. It is also 
remarkable that Vieira et al. [13, 14] have proposed a 
high order one-dimensional model being an alternative to 
those theories. It is credible that these theories are 
powerful enough to deal with almost any arbitrary thin-
walled cross-sections with an acceptable precision. 
However, the only problem is the solution of nonlinear or 
generalized eigenvalues, which is quite involved in 
uncoupling sectional deformation modes [15]. Actually, a 
practicable method being not so full-featured but with 
high precision is more suitable in some cases. 

A one-dimensional high-order beam model for thin-
walled structures is presented in this paper with a novel 
approach to identify distortion modes. This model is 
thought to consider a projection of the displacement field 
on the beam cross-section through a set of linear 
independent basis functions. For the mathematically 
impaired, basis functions can be considered as the mode 
shape functions of cross-section modes. To obtain a 
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hierarchical set of cross-section modes, the approach is 
first carried out by building a shell/plate model of the 
thin-walled structure for modal analyses with its cross-
section vibration shapes extracted. These vibration shapes 
are deemed as the linear superposition of cross-section 
mode shapes. In this point, a set of cross-section modes 
can be identified from the cross-section vibration shapes 
by uncoupling the foregone cross-section modes. Then 
the residual nodal displacements are employed to define 
new distortion modes with the curve fitting method. In 
this process, the basis functions are approximated over 
the cross-section, guaranteeing the compatibility of the 
displacement field along the cross-section midline, and 
new distortion modes are identified. 

2 One-dimensional formulations 

2.1 Displacement fields 
Consider a prismatic thin-walled member, such as 
depicted in Figure 1. The displacement of a point on the 
midline of the cross-section are defined in terms of the 
axial u, tangential v and normal w components at given z 
and the components are prescribed positive along the 
axial of local coordinate system (n, s, z) adopted in each 
wall, respectively. Also shown is the global coordinate 
system (x, y, z) with its origin located in the centroid of 
the cross-section of the beam end. 
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Fig. 1. Global (x, y, z) and local (s, n, z) coordinate systems of a 
thin-walled structure. 

Employing Kirchhoff’s hypothesis, the displacement 
of an arbitrary point U(n, s, z) is expressed as 
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where the components are approximated independently 
through a set of linear independent basis functions 
defined along the coordinate s as 
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and the generalized displacements χi(z) are to represent 
the axial variation of N1 out-of-plane and N2 in-plane 
amplitude functions (r=N1+N2), with basis functions φi (s), 
ψi (s) and ϕi (s) to describe the cross-section deformation 
of axial, tangential and normal directions, separately. 

Then the three-dimensional displacement U can be 
expressed with a transformation matrix H as 
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The strain and stress field are written as 
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and ν are the material Young’s modulus and Poisson’s 
ratio, respectively. 

2.2 Beam governing equations 

The beam energy components are essential for the 
application of Hamilton Principle, including the strain 
energy, potential energy and kinetic energy. By definition, 
they are separately given by 
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where V, A and L are beam volume, section area and 
length, separately; η is material density; p denotes a 
loading vector assumed to be p = [p, q, r]T with p, q, r as 
external loads in axial, tangential and normal directions. 

The formulation of the dynamic governing equation 
involves the application of Hamilton Principle, reading 
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where H denotes the Hamiltonian, La=T-U-Up is the 
Lagrangian, and t1 and t2 are boundary values of time. 

Substituting Equations (5), (6) and (7) into (8) yields 
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as the dynamic governing equation of thin-walled beams. 

3 Calculation of distortion modes 

3.1 Shell-like deformations 

The calculation of distortion is based on shell/plate theory. 
Here a thin-walled beam is discretized into shell/plate 
elements and then solved for modal analyses. Normally, 
the member is fixed at one end and the other free. 

2
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Through modal analysis, the first few vibration shapes 
are derived with displacements at the free end extracted 
for further study. Here the number of vibration modes 
studied is determined by the number of distortion needed. 
And more distortions are needed to improve the precision 
of the model. In most situations, 4 to 8 modes are 
essential and may be enough for thin-walled structures 
with simple cross-sections. Since only distortions are 
concerned, in-plane components are separated out of the 
vibration shapes (Figure 2 shows the first 4 modes). 

mode 1 mode 2

mode 3 mode 4

 
Fig. 2. The sectional in-plane vibration shapes of the first 4 
modes of the cantilevered thin-walled structure. 

Obviously, those deformed profiles are superposed by 
cross-section rigid translations and deformation modes. 
Therefore, the next procedure is pivotal to uncouple the 
deformation modes by removing rigid translation 
components, which are usually named as classic modes. 

3.2 Identification of distortion modes 

The identification of distortion is mandatory from the 
view of enhancing a competitive beam model. This 
enables the physical perception of the structural 
phenomenon in a more clear way. 

The implementation of this idea requests removing 
the classic modes (three in-plane modes, namely rotation 
about z axis, translations along x and y axes, see Figure 3) 
from the cross-section deformation shapes, with new 
deformation modes (distortion) left. Then the application 
of curve fitting is involved to define the shape functions. 

(a) (b) (c)

 
Fig. 3. Classic in-plane mode shapes: (a) rotation about 
longitudinal z axis; (b) and (c) flexions along x and y axes. 

To remove the classic modes from one cross-section 
vibration shape, one may consider a solution of the form 

2 2
min

i
i i i iR

 


  Θ θ Θ θ                   (10) 

where Θ indicates the vector constructed by the nodal 
displacement of the cross-section in-plane vibration shape 
(Figure 2), while θi represents that of a classic mode 

shape; λi is a coefficient spanning the vector space Ф = 
span {θi(s)} and κi corresponds to the solution which 
shows the participation of classic modes. For the first 
several modes, the cross-section deformation shape 
usually contains one classic and one distortion mode. In 
this point, the residual vector Θ-κiθi can be used to define 
a new distortion mode (Figure 4), expressed as 

   polyfitj i is  Θ θ                    (11) 
where χj (s) constructs the vector x in Equation 2. 

It should be noted that the procedure to remove the 
classic modes is not exclusive. Strictly speaking, 
distortions refer in particular to in-plane tortuosity and 
twisting of a cross-section, just opposite to the rigid 
displacements of the whole cross-section (classic modes). 
Therefore, one may directly get off the rigid displacement 
components from shell-like deformations with manual 
visual method. For example, plainly the cross-section 
flexion along x axis (Figure 3b) participates a lot in the 
deformed profile shown in mode 1 of Figure 2. One may 
easily determine the corresponding κi (in Equation 10) 
according to the displacements of the section corners. 
Then the residual nodal displacements of the shell/plate 
model is used for curve fitting to define a new distortion 
demonstrated as Figure 4a (cubic polynomial fitting). In 
this way, the participation κi of one classic mode is solved 
individually from each section deformed profile. 

(a) (b)

(c) (d)

 
Fig. 4. Distortions of the thin-walled structure: (a) distortion 1; 
(b) distortion 2; (c) distortion 3 and (d) distortion 4. 

4 Illustrative examples 
Numerical studies are carried out on a cantilevered thin-
walled beam with rectangular hollow cross-section 
(Figure 5) to validate the new approach. 

Fixed end

Free end

3 3200GPa, =0.3,  =7.85 10 Kg/mE   

2000mm, 400mm,
=300mm, =10mm

L h
b t
 

Geometry parameters:

Material parameters:

x
y

z
O

x

y

1Oh

b

t

L

 
Fig. 5. A cantilevered thin-walled structure with geometry and 
material parameters as shown. 
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The finite element method is involved with linear 
Lagrange function approximating displacements within 
an element. Table 1 presents the information about the 
first 10 modes, consisting of the values of the natural 
frequencies fi, the relative differences δi and the distortion 
mode participations. The results of present model are 
obtained with 80 equally distributed elements. In ANSYS 
analyses, the beam is discretized into 4480 Shell 181 4-
node elements, distributed as 80 elements along the 
length, 16 along the web height and 12 along the flange 
width. The modal participations are calculated by 

 max max max

max

100%i i i
i

X
u
 




               (12) 

where umax is the maximum displacement of a generic 
point on the free end, while the relative differences are 
derived based on the assumption that the results derived 
from ANSYS shell theory are accurate enough. 

Table 1. Free vibration results about frequencies concerning 
the first 10 vibration modes. 

Mode 
Present 
model 
fi (Hz) 

Ansys 
shell 

fAi (Hz) 
δi 

(%) 

Distortion mode 
participations μi (%) 

8  9  10  11  
1st 85.793 81.477 4.07 12.6 0 0 0 
2nd 106.64 101.77 3.80 0 7.76 0 0 
3rd 134.54 126.34 4.91 0 0 97.3 0 
4th 194.95 190.51 2.33 0 0 0 100 
5th 202.36 202.28 0.04 0 0 0 100 
6th 216.42 225.57 -4.06 0 0 0 100 
7th 243.86 240.80 1.27 0 83.5 0 0 
8th 272.82 260.68 4.66 81.1 0 0 100 
9th 286.84 279.35 2.68 0 94.6 0 0 

10th 310.65 307.93 0.88 0 0 0 100 
The results in Table 1 show that the natural 

frequencies derived from the present model are very close 
to those from ANSYS shell theory. Moreover, the results 
provide the fact that distortion modes play important 
roles even in lower-order vibration modes and big errors 
may emerge if distortions are ignored. 

To further study the dynamic behaviours, Figures 6 
and 7 provide the modal shapes concerning the 1st~10th 
modes. The comparison reconfirms that the present 
model agrees well with ANSYS shell theory and also 
proves that the present model can accurately reproduce 
three-dimensional dynamic behaviours of thin-walled 
structures. 
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Fig. 6. Longitudinal variations of generalized displacements of 
the thin-walled structure in the free vibration analyses 
concerning the first 10 modes. 

Besides, it’s interesting that distortion 4 (χ11) is not to 
appear along with classic modes, quite different from 
other distortions. In this aspect, distortion 4 is more 
similar to classic modes which plays important role in 
conventional beam theory. This phenomenon is worth of 
much attention in the follow-up study. 
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mode 3 mode 4

mode 5 mode 6
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mode 7 mode 8

mode 9 mode 10

 
Fig. 7. Comparison of free vibration mode shapes of the thin-
walled beam between ANSYS shell model (the right) and 
present model (the left) concerning the first 10 modes. 

5 Conclusions 
An approach to identify distortion of thin-walled 
structures has been presented with a one-dimensional 
beam model established for dynamic analyses. In the 
process, the sectional in-plane deformation components 
are first attracted from sectional vibration shapes derived 
in modal analyses of thin-walled structures based on 
shell/plate theory. Then the classic mode is deleted from 
the vibration shapes referring to the minimum value of 2-
norm with residual deformation components left. And the 
method of curve fitting is involved to approximate the 
shape functions of the residual deformation components, 
which is defined as distortion. The newly identified 
distortions are employed in one-dimensional model to 
reproduce three-dimensional behaviours of thin-walled 
structures. It should be noted that the number of shell-like 
vibration modes to be studied is adjustable according to 
the number of distortions in demand. Besides, the 
approach is not only usable to distortion, but also 
applicable to warping with further improvement. 

To verify the validity, numerical examples are 
performed on a rectangular cross-section thin-walled 
structure. Table 1 shows that distortion modes play non 
negligible roles even in lower-order vibration modes and 

the natural frequencies derived from the present model 
are very close to those from ANSYS shell theory with 
relative differences less than 5% for the first 10 modes. 
Figures 6 and 7 reconfirms that the present model agrees 
well with ANSYS shell theory and also proves that it can 
reproduce three-dimensional dynamic behaviours of thin-
walled structures. The authors plan to refine the 
procedure for cross-sections with curved walls next. 
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