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Abstract

An experimental recirculating aquaculture system was constructed under ambient seawater 

conditions to compare microbial community diversity of nitrifying and denitrifying biofilters that 

were derived from a commercial inoculum used for aquarium applications. Next generation 

sequencing revealed distinct and diverse microbial communities in samples analyzed from the 

commercial inoculant and the denitrification and nitrification biofilters. In all samples, 

communities were represented by a few dominant operational taxonomic units (OTUs). Bacteria 

having the capacity to carry out ammonia and nitrite oxidation were more abundant in the 

nitrification biofilter. Similarly, the proportion of the bacterial taxa known to carry out 

heterotrophic and autotrophic denitrification and participate in sulfur cycling were found in the 

denitrification bioreactor, and likely originated from the ambient environmental water source. Our 
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results indicated that environmental seawater can be a favorable enhancement to the bacterial 

consortium of recirculating aquaculture systems biofilters.
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1. Introduction

Development of environmentally sustainable farming of marine and freshwater species using 

recirculating aquaculture systems (RAS) requires a complete understanding of the biological 

components involved in water treatment. These components integrate biofilters comprised of 

microbial communities whose structure, dynamics, and activities are responsible for system 

efficiency. In comparison with other physicochemical factors that affect fish survival, such 

as dissolved oxygen, temperature, salinity, and pH, which can be easily monitored and 

controlled, RAS biofilters are more complicated because their performance critically relies 

on the interactions of microbial communities in dynamic environments (Ruan et al., 2015). 

Molecular tools not only have allowed for evaluating microbial diversity but also have 

contributed insight into their activities and interactions (Schreier et al., 2010). These include 

the application of 16S rRNA gene sequencing that provide a broad representation of biofilter 

communities in different RAS compartments. These analyses should yield information about 

spatial and temporal relationships within and between compartments and help identify 

critical contributors to a particular process or for evaluating the development of biofilter 

communities in start-up systems.

Better understanding of bacterial community structures is certain to provide novel RAS 

biofilter arrangements as well as insight into new processes and tools to enhance and 

monitor these systems. Characterization of the microbial communities in biofilters in RAS is 

of interest not only because it increases our understanding of the system’s microbial 

ecology, but also because it may provide the basis for managing such communities (Kumar 

et al., 2013; Michaud et al., 2014; Rurangwa and Verdegem, 2015), enhancing their function 

and reliability (Huang et al., 2016).

The use of fixed film bioreactors is the most common choice for both nitrification and 

denitrification processes in RAS technology (Pedersen et al., 2015) Management of 

biological filters begins with the acclimation process, which must be inoculated with the 

appropriate nitrifying bacteria. Bacterial biomass and metabolism must then be elevated to 

levels required for removal of the ammonia produced by the cultured fish (Wheaton et al., 

1994). Pond sediment or uncontaminated soils can serve as natural sources of the desired 

bacteria (DeLong and Losordo, 2012). Using water or active media from an already 

operating system will accelerate this process. Alternatively, stocking the system with low 

densities of small fish and providing reduced levels of feed will provide a limited ammonia 

concentration that will establish the filter slowly without harming the fish (Van Gorder, 

2000). After the filter achieves full acclimation, the remainder of the fish can be added and 

feed levels increased (Van Gorder, 2000). The most commonly used, and rapid method of 

Brailo et al. Page 2

Aquaculture. Author manuscript; available in PMC 2019 March 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biofilter pre-acclimation, is through seeding the biofilter with a commercial source of 

nitrifying bacteria followed by the addition of appropriate concentrations of ammonia and 

nitrite.

The aim of this study was to compare the composition of a commercial biofilter inoculant to 

microbial communities established on nitrification and denitrification RAS biofilters that 

were established using the inoculant and developed with influent from an ambient 

environmental marine source. This study revealed that in addition to the community 

provided by the commercial inoculum, a large proportion of bacteria that participate in 

nitrogen and sulfur cycling originated from environmental seawater.

2. Materials and methods

2.1. Marine recirculating aquaculture system design

A RAS of the University of Dubrovnik’s Business and Innovation Centre for Mariculture, 

Croatia was used for this study and a schematic is shown in Fig. 1. The round conical 

bottom main tank (breeding pool) was composed of high density polyethylene with a 

diameter of 1.90 m, average height 1.02 m, and cone slope of 18°. Total tank volume was 

2.89 m3, although a volume of 1 m3 was used throughout the experiment. Solid waste from 

the system was removed by a granular mechanical filter (PolyGeyser Bead Filter DF3; 

Aquaculture Systems Technologies LLC, Jefferson, Louisiana, USA). After filtration and 

UV sterilization (SMART High-Output UV Sterilizer, Emperor Aquatics, Inc., Pottstown, 

Pennsylvania, USA) seawater flowed to biofiltration components, which consisted of aerobic 

nitrification and anaerobic denitrification sections. For the nitrification process a rotating 

biological contactor was used (RBC 1400; Fresh Culture Systems, Breinigsville, 

Pennsylvania, USA). Anaerobic biological filtration was carried out in two cylindrical 

containers filled with mesh stockings that were used for mussel production as a medium for 

the settlement and growth of denitrification bacteria. System temperature was maintained at 

24 °C by an air conditioner (Toshiba RAS-18SKH, Toshiba Corporation, Japan) located in 

the room.

The RAS was filled with local seawater with a salinity of 30 ppt, filtered through a 5 μm 

cartridge. Biofilters were inoculated using a commercially obtainable mixture of bacteria for 

aquaria and biological filtration processes were initially stimulated by the addition of 

nitrogen, and carbon to ensure the optimal environment for nitrification and denitrification 

(Brailo, 2016). Oxygen was provided by an air stream that was used to rotate the RBC and 

ammonia and carbon was provided by the daily addition of NH4Cl and NaHCO3 to the unit. 

The supply of nitrate and carbon was provided by the addition ofNaNO3 and wort, a raw 

material for beer production (Pivovara Medvedgrad d.o.o., Zagreb, Croatia), directly to the 

denitrification filters providing a COD/ N ratio of 2.5/1 (van van Rijn and Barak, 1998).

2.2. DNA Isolation, amplification, and sequencing

Bacterial samples were taken from both biofiltration compartments for DNA extraction three 

months after the biofiltration system was consistently removing nitrogen at a rate of 40 mgL
− 1 per day (Brailo, 2016). Sampling involved the scraping of material from each of the two 
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denitrification filters, which were combined and treated as one. For comparison, DNA was 

also extracted from the initial commercial inoculum. Samples were stored overnight at 4 °C, 

and DNA extraction was done using the DNA Wizard® Genomic DNA Purification Kit 

(Promega Corporation, Madison, Wisconsin, USA) according to the manufacturer’s 

instructions, which included a lysozyme treatment at 37 °C for 30 min. Purified DNA was 

suspended in TE buffer (10 mM Tris-HCl, pH 8, and 0.1 mM EDTA) and stored at − 20 °C 

until further analysis. DNA concentration (mg/mL) and purity (A260/280) was measured 

using a Biophotometer (Eppendorf, Germany) and subsequent purification to remove any 

residual proteins was done using the Wizard® DNA Clean-Up System (Promega 

Corporation, Madison, Wisconsin, USA) according to the manufacturer’s instructions.

The 16S metagenome sequencing libraries were prepared according to the manufacturer’s 

instructions (Illumina, San Diego, CA). Briefly, the V3-V4 region of the 16S rRNA gene 

was amplified using the primer pair evaluated previously (Caporaso et al., 2010): forward 

primer, 5′-

TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′ and 

reverse primer, 5′-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-

3′, using the 2×KAPA HiFi HotStart ReadyMix (Sigma-Aldrich, St. Louis, MO) with the 

following polymerase chain reaction (PCR) program parameters: initial denaturation step of 

3 min. at 95 °C followed by 25 cycles of denaturation for 30 s at 95 °C, annealing for 30 s at 

55 °C, elongation for 30 s at 72 °C, followed by a final elongation for 5 min at 72 °C. index 
PCR was performed using the Nextera XT Index Kit according to the manufacturer’s 

instructions (Illumina, San Diego, CA). PCR products were purified using AMPure XP 

beads (Beckman Coulter, Brea, CA), pooled and sequenced using the Illumina MiSeq 

platform (Illumina, Inc. San Diego, California, USA) (250 bp paired-end reads).

2.3. Community analysis

Raw reads were preprocessed using CLC workbench v8.0 (Qiagen). Reads were quality 

trimmed (qual. Limit =0.05; ambiguous nucleotide max. =2; min. Sequence length = 100 bp) 

prior to merging read pairs (mismatch cost = 2; gap cost = 3; max. Unaligned = 0; min. 

Score = 8). Community analysis was performed using QIIME (DeSantis et al., 2006). Reads 

were binned into operational taxonomic units (OTUs) at 97% identity using the open 

reference OTU picking method with the Greengenes (Greengenes 13_8) reference database 

(minimum OTU cluster size; n = 2). Evaluation of abundance of species richness in bacterial 

samples was carried out by Chao1 index calculated using the formula Sp = So + (a2/2b) 

where Sp is the estimated number of species, So is the observed number of species, a is the 

number of singleton species and b is the number of doubleton species (Chao, 1984). Species 

abundance was determined using Simpson’s evenness index by the formula E = 1/[Σ(n/N)2 × 

S] where E is the Simpson evenness index, n is the total number of individuals of a certain 

species, N is the total number of individuals of all species and S is the number of species 

(Simpson, 1949).

To better visualize trends in community composition across samples, OTU networks were 

generated in QIIME using the make_OTU_network.py script. To reduce the number of OTU 
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nodes in the final network, open reference OTU picking was repeated (as described above) 

with an increased minimum OTU cluster size (n = 10). The resulting network table was 

visualized in Cytoscape (v3.6) using an edge-weighted spring embedded layout (Shannon et 

al., 2003). Sequences used for these analyses were deposited in GenBank accessions nos. 

SAMN08624706 (commercial innoculum), SAMN08624707 (nitrification biofilter), and 

SAMN08624708 (denitrification biofilter).

2.4. Predictive functional profiling of microbial communities

Predictive functional profiling was performed using Phylogenetic Investigation of 

Communities by Reconstruction of Unobserved States (PICRUSt) (Langille et al., 2013). All 

samples were normalized to the sample with lowest number of reads prior to OTU picking. 

OTUs were picked using the closed reference method against gg_13_8 (min. OTU cluster 

size = 2; OTU similarity = 0.94). The resulting BIOM table was normalized for 16S copy 

number prior to predicting functions for metagenomes and were visualized in Rstudio (v 

0.98.1083) using the heatmap.2 function of the gplots package. For this analysis, KEGG 

orthologs (KO) were recorded. KOs were collapsed into pathways (L1–L3) using the 

categorize _by_ function.py script. OTUs that contributed particular functions were 

determined using the metagenome_contributions.py script. Analysis was limited to KEGG 

orthologs K10944 (AmoA), K03385 (NrfA), K00366 (NirA), and K00376 (NosZ), 

representing key enzymes in nitrification, nitrite reduction to ammonium, assimilatory nitrite 

reduction, and denitrification, respectively.

3. Results

OTUs identified in the commercial inoculant (CI), nitrification biofilter (RBC), and 

denitrification biofilter (DBR) and their abundance are shown in Table 1, with the highest 

observed OTU richness obtained in the nitrification reactor and lowest from the commercial 

inoculant. Values for Chao1 index were equal to the number of observed OTUs in all 

samples (Table 1), suggesting that the microbial community was well sampled. In addition, 

the Simpson’s evenness indices were relatively low, with the highest value recorded in the 

CI, most likely reflecting the specificity of the biofilter environments for particular microbial 

lineages.

Bacterial community members identified in samples of CI, RBC, and DBR biofilters 

representing greater than or equal to 1% of the total reads are shown in Table 2 and Fig. 2. In 

general, communities from the CI and both biofilters were highly represented by a few 

dominant OTUs with the most abundant phylum being Proteobacteria, ranging from approx. 

21% in the CI to 58% in the RBC and 78% in the DBRs. Nitrifying bacteria of the 

Nitrospirae phylum accounted for 17.9% in the CI and 3.1% in the RBC but were not 

identified in the DBR. The next important bacterial phylum was Bacteroidetes with nearly 

14% in the commercial mixture, 21% in the RBC, and 9% in the denitrifying population. 

Planctomycetes were abundant in the CI and RBC samples, with little to none identified in 

the DBR denitrifying population. Similarly, representatives of the Chlorobi phylum, which 

were abundant in the commercial inoculum, were greatly reduced in the nitrifying and 

denitrifying communities. An abundant OTU that is classified in the nitrate-reducing 
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Caldithrix phylum was found in the CI sample but not detected in the biofilters. All samples 

contained, on average, 11 phyla that were present with <1% and some unassigned 

sequences.

The filtered seawater used to establish the RAS appeared to be a source for many of the 

major OTUs and bacterial lineages identified in the RBC and DBR (Fig. 2). Of the 1262 

OTUs identified in all samples, only 42% originated from the CI. In addition, the RBC and 

DBR shared more OTUs (181) than either biofilter did with the CI (52 with RBC and 23 

with DBR). The majority of CI OTUs did not flourish in the RAS as only approximately 

23% were detectable in either or both biofilters at the time of sampling. While it is presumed 

that most of the OTUs not identified in the CI originate from the filtered seawater, we 

recognize that the RAS is an open system and subject to contaminating bacteria from the 

environment.

In many cases, bacterial members that were likely to play a role in nitrogen transformation 

activities were only found in the CI exclusively, CI and RBC, or DBR exclusively but not all 

three, as might be expected, since community structure is influenced by differences in 

biofilter environment. For instance, OTUs with high sequence similarity to the nitrite-

oxidizing genus Nitrospira, which dominated the CI (at 17.7%), were not detected in 

communities of either biofilter. However, other Nitrospiraceae OTUs (3.1% in RBC), which 

were present in the CI at <1%, were enriched by the biofilter environment and could account 

for nitrite oxidation in this filter. The nitrate- and nitrite-reducing Candidatus Solibacter 
OTUs were not identified in the RAS even though they represented 1.5% of the CI. The 

genus Planctomyces, a group of bacteria ubiquitous in the marine environment was 

represented in all three samples, with the greatest abundance in the RBC (8.3%) compared to 

the CI (1.7%) and least in the DBRs (0.1%). Only the Saprospiracaea OTUs were identified 

in all three communities at frequencies >1%, with highest frequencies in the CI and RBC 

samples. Members of this family are important in the digestion of complex organic 

compounds and the utilization of wort likely contributed to their enrichment in the biofilters. 

Finally, there were several bacterial groups that were found in the RBC and/or DBR that 

were not identified in the CI, including Pseudoaltermonadacaea, and the genera Vibrio and 

Arcobacter, which was heavily enriched in the DBR (26.4, 16.9%, and 5.3% respectively) 

and are likely contributors to denitrification in this biofilter.

A predictive functional profile of the CI and each biofilter was determined based on their 

microbial community profiles, focusing on nitrogen cycling pathways (Fig. 3). Our analysis 

indicated that the type and number of pathways were not evenly distributed across the three 

microbial communities. While each community possessed functionally distinct, predicted 

profiles, hierarchical cluster analysis showed that the CI and RBC population were most 

similar. Unlike the DBR, both the RBC and CI were predicted to possess the full suite of 

genes necessary for nitrification. However, the predicted abundance of ammonia 

monooxygenase (amoABC) was much higher in the RBC, which is likely due to the 

enrichment conditions found in this biofilter. All three communities possessed membrane 

bound nitrate reductase (nar) in addition to other reductases necessary for denitrification and 

anaerobic nitrate respiration. In contrast to denitrification, only the DBR community 

appeared well-suited for dissimilatory nitrate reduction as it was predicted to have relatively 
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high abundance of all periplasmic (nap) nitrate reductase genes. All three communities 

possessed genes for assimilatory nitrate reduction through both NADH (nasAB) and 

ferrodoxin/ flavodoxin (narB/nirA) dependent pathways. However, within each of these 

pathways, the relative abundance of nitrate and nitrite reductases varied greatly. None of the 

communities appeared well-suited for anaerobic ammonia oxidation (anammox) as many 

essential genes were missing from the predicted metagenome, which is consistent with the 

absence of anammox Planctomycetes OTUs in the community analysis.

The type and number of microorganisms contributing to each of the major nitrogen cycling 

pathways was highly variable (Fig. 4). For this analysis, a representative gene was selected 

from each pathway and the relative contributions of major taxonomic groups was recorded. 

The removal of nitrogen from the system by denitrification was carried out by distinct 

communities in each of the reactors. For the RBC this process appears to be carried out 

almost exclusively by members of the families Flavobacteriaceae and Saprospiraceae 
(phylum Bacteroidetes). The potential denitrifying community in the DBR was more diverse 

and consisted of several families of Bacteroidetes, Proteobacteria, and Chloroflexi. Both 

nosZ-containing denitrifying communities differed from the initial starting inoculum, which 

was comprised primarily of members of the Bacteroidetes and Chloroflexi, as well as several 

uncharacterized species. Similar to denitrification, distinct communities in the RBC and 

DBR were responsible for assimilatory and dissimilatory nitrate reduction, which were 

predicted based on the presence of nirA and nfrA genes, respectively. In the RBC, these 

processes were carried out primarily by members of the Planctomycetes, while in the DBR 

these were Proteobacteria-mediated processes. In both the biofilters as well as the CI, amoA-

directed nitrification was predicted to be carried out exclusively by members of the family 

Nitrosomonadaceae.

4. Discussion

A phylogenetic analysis of the nitrifying and denitrifying microbial populations of a 

simulated RAS was compared to the population of the starting commercial inoculum. 

Identical values were calculated for Chao1 and observed OTUs indicating that microbial 

communities were well-sampled and increased sequencing effort would unlikely 

significantly improve the observed biodiversity. The community in the RBC was richest in 

species and the CI community was the poorest. Differences in species richness of the three 

populations can be explained by the fact that the CI was added to the RAS, which had been 

filled with filtered seawater from the surrounding area. It is likely that additional bacterial 

species from the environment settled in compartments possessing favorable growth 

conditions. This is consistent with the finding that, regardless of start-up period, pioneer 

colonizing bacteria originating from the same body of water responded to their environment 

and were forced to occupy their particular ecologic niche (Michaud, 2007).

Simpson’s evenness indices for all samples were relatively low indicating the populations 

were strongly influenced by a few dominant species. This is supported by the fact that only 

approx. 17% of the OTUs were shared by all samples, which is similar to previous findings 

(Ruan et al., 2015). However, denitrifying and nitrifying bacteria coexisted in all biofilter 

samples, which agrees with findings of others (Okabe et al., 2002; Preena et al., 2017).
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Proteobacteria and Bacteroidetes were most numerous in samples of the nitrifying and 

denitrifying biofilters, finding that agrees with those made by Ruan et al. (2015) and Huang 

et al. (2016) for marine RAS biofilters. Even though present in large amounts in the CI, the 

percentage of bacteria from the Nitrospirae phylum were significantly reduced in the RBC; 

the relatively low abundance of these bacteria in RAS biofilters has been reported previously 

(Ruan et al., 2015; Huang et al., 2016). The Planctomycetes were numerous in the CI and 

RBC and they have been found in different freshwater (Sugita et al., 2005; van Kessel et al., 

2010) and marine (Tal et al., 2003; Michaud, 2007; Interdonato, 2012; Ruan et al., 2015; 

Huang et al., 2016) nitrification filters, marine RAS (Cytryn et al., 2003) and sludge of 

wastewater treatment plants (Shu et al., 2015).

The relative abundance of bacteria at the class level differed significantly among the samples 

in this system; the variation of the microbial composition is expected considering the 

functions of the starting inoculum and the two biofiltration units. Observed communities in 

the nitrification and denitrification reactors are consistent with the findings of Huang et al., 

(2016) for marine biofilters where Alphaproteobacteria, Flavobacteria, and 

Gammaproteobacteria comprised 35–75% of the observed OTUs and the Nitrospira 
comprised approximately 1–18%. Also, the prevalence of Gammaproteobacteria in 

denitrification biofilters is consistent with the finding of Michaud et al. (2014) who showed 

that an increased C/N ratio resulted in reduced bacterial diversity and selected for 

Gammaproteobacteria. The specialization of bacteria in the denitrification population 

compared to the CI and the RBC is also evident from the abundance of bacteria supporting 

this process, which was suggested by their predicted gene contributions (Figs. 3 and 4).

As expected, one of the most numerous taxons of the CI was the genus Nitrospira. Found in 

freshwater and marine aquaculture filters, these bacteria are responsible for oxidizing nitrite 

to nitrate (Hagopian and Riley, 1998; Schreier et al., 2010; Blancheton et al., 2013). As the 

genus Nitrospira was not found in the biological filters of the marine RAS, it is likely that 

those detected in the CI were freshwater species that were not capable of adapting to the 

increased salinity (30 ppt) of the system. It is noted, however, that the small proportion of 

undetermined Nitrospiraceae members identified in the CI that increased in the RBC were 

likely halotolerant species. The relatively low prevalence of these nitrifying bacteria in the 

RBC is consistent with findings for marine biofilters (Ruan et al., 2015; Huang et al., 2016). 

Conditions in the RBC were also favorable for proliferation of members of the family 

Nitrosomonadaceae, which is plausible considering their ammonia-oxidizing activity and the 

fact that they are regularly found in freshwater and marine aquaculture filters (Hagopian and 

Riley, 1998; Schreier et al., 2010; Ruan et al., 2015; Huang et al., 2016). Nitrosomonads 
increased from a very small occurrence of the CI to 11.4% of the RBC population and are 

likely the major ammonia oxidizing clade based on the predicted metagenomic analyses.

Bacteria of the Phyllobacteriaceae family and genera Acinetobacter and Halorhodospira 
were low abundance clades in the CI that significantly increased in the RBC. 

Representatives of the family Phyllobacteriaceae are a group of aerobic bacteria that include 

some rhizobia species capable of using various forms of nitrogen for growth (Mergaert and 

Swings, 2005) and have been identified in a marine filter (Michaud, 2007). Members of 

Acinetobacter genus have showed both heterotrophic nitrification and aerobic denitrification 
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ability (Yang et al., 2015). The anaerobic conditions of the DBRs were not suitable for these 

bacteria but the environment in the RBC promoted their growth. The abundance of nitrate 

and oxygen enabled aerobic denitrification, while the heterotrophic nitrification was 

stimulated by the presence of ammonia and compounds that probably originated from the 

seawater used for filling the RAS. Acenitobacter have also been identified from the 

Mediterranean (Cavallo et al., 2009), sea bass reared in northern Adriatic Sea (Čož-Rakovac 

et al., 2002), coke plant wastewater (Liu et al., 2015), freshwater (Itoi et al., 2007; Schneider 

et al., 2007; Schreier et al., 2010) and marine aquaculture systems (Michaud, 2007). 

Representatives of the genus Halorhodospira perform oxidation of sulfides (Imhoff and 

Süling, 1996) and their relatives have been found in the wastewater treatment systems (Shu 

et al., 2015) and in marine RAS (Interdonato, 2012).

Members of the order Flavobacteriales were a minor group in the CI that were enriched in 

both biofiltration compartments. Some of these bacteria are strictly aerobic organisms and 

others are facultative anaerobic chemoorganotrophs. Most Flavobacteriales grow on 

substrates with organic compounds as carbon and nitrogen source, while some use inorganic 

nitrogen, and many require NaCl or sea water for growth (Bernardet, 2011). It is conceivable 

that the RBC dominating Flavobacteriales were aerobic bacteria that use inorganic nitrogen, 

while the ones inhabiting denitrification reactors were anaerobes able to use organic 

compounds from the wort. This group of bacteria has been found in aeration basin (Preut, 

2014) and anaerobic sludge (Shu et al., 2015) of different full-scale wastewater treatment 

plants as well as the Eastern Mediterranean water column (Techtmann et al., 2015).

It was observed that the percentage of minor groups of bacteria identified in the CI increased 

in the DBR, including bacteria of the Hyphomicrobiaceae family. These bacteria reduce 

nitrate under anaerobic conditions (Garrity et al., 2005) and have been found in a marine 

methanol-fed denitrification reactor (Labbe et al., 2003). In addition to heterotopic 

denitrification bacteria, representatives of bacteria were found that are capable of performing 

autotrophic (sulfide-dependent) denitrification or sulfide oxidation by nitrate. The most 

numerous group was the family Rhodobacteraceae, which have been identified in marine 

recirculation systems (Cytryn et al., 2005a, 2005b; Michaud, 2007; Schreier et al., 2010; 

Blancheton et al., 2013). Furthermore, bacteria of the order Bacteroidales were found as 

well, which are known to be present in marine nitrification aquaculture filters (Michaud, 

2007; Interdonato, 2012), marine denitrification aquaculture filters (Cytryn et al., 2005a), 

and a sludge digestion basin of a zero-discharge mariculture system where sulfate reduction 

takes place (Cytryn et al., 2003).

The DBRs were populated by bacteria that were not detected in the CI suggesting that they 

originated from the environmental seawater used for filling the RAS. The most important of 

these were members of the Gammaproteobacteria, and especially order Vibrionales, which 

are common to marine and estuarine environments and the microbiome of marine animals, 

and Vibrio spp. were found to make up a significant proportion of the DBR population 

(16.8%). These bacteria have been found in both freshwater (Sugita et al., 1981) and marine 

filters (Diaz et al., 2012) as well as in sea bass reared in the northern Adriatic Sea (Čož-

Rakovac et al., 2002) and they have been suggested to play a significant role in 

denitrification in marine RAS (Michaud, 2007; Interdonato, 2012). Bacteria of the order 
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Marinicellales identified in the DBR population have been isolated from the marine 

environment and have aerobic and chemoorganoheterotrophic metabolism (Romanenko et 

al., 2010). They have been found in an aeration basin of full-scale wastewater treatment 

plant (Preut, 2014) and biofilters of marine RAS (Ruan et al., 2015). Similarily, the DBR 

denitrification community included bacteria of the family Colwelliaceae and Thalassospira 
that were not represented in the CI. Colwelliaceae include marine aerobic and facultative 

anaerobic marine members that reduce nitrate to nitrite (Ivanova et al., 2004) and have been 

shown to inhabit industrial saline wastewater (Yoshie et al., 2004; Yoshie et al., 2006) and 

marine RAS denitrification systems (Interdonato, 2012; Martins et al., 2013). Thalassospira 
include members possessing aerobic or facultative anaerobic metabolism that use nitrate as 

electron acceptor (Wiese et al., 2009) and have been identified in denitrification bioreactor 

for saline water with poly butylene succinate as carbon source (Luo et al., 2013) and in the 

Mediterranean Sea (Hütz et al., 2011; Cortés-Lara et al., 2015). Finally, in addition to 

bacteria involved in nitrogen cycling, bacteria capable of sulfur metabolism were identified 

in the DBRs, including a representative of the genus Arcobacter, which oxidizes sulfide to 

sulfur (Vandamme et al., 2005). Arcobacter has been found in both freshwater (Schneider et 

al., 2007) and marine RAS (Welsh et al., 2011).

Potential metabolic capacities of each of the microbial communities was examined using a 

predictive metagenomics analysis. Based on the analysis, it appeared that most of the genes 

for the major nitrogen cycling pathways were present in each the communities. Except for 

those involved in nitrification, the number and types of microorganisms possessing these 

genes varied greatly between the CI and the two biofilters, which is consistent with large 

differences in overall microbial biodiversity. The removal of nitrogen via denitrification in 

the DBR appeared to be carried out by a mixed community of Proteobacteria, Bacteroidetes, 

and Chloroflexi, which are found in high abundance in this and other marine recirculating 

aquaculture systems (Cytryn et al., 2005b).

It should be noted, that the method of metagenonic analysis used here is only predictive and 

does not provide any information about gene expression or metabolic activity. Indeed, based 

on the large differences in community composition and environmental factors (available 

nitrogen/carbon, oxygen, etc.) in each of the biofilters and inoculum, we would expect to see 

large differences in gene expression and enzymatic activity. In addition, the quality of this 

analysis can be limited by the available sequences in the reference database as well as the 

quality of the genome annotations. In well sampled environments such as the human body 

and aquaculture systems the quality and accuracy of these analyses tends to be higher than 

rare or lesser sampled environmental communities.

5. Conclusions

Phylogenetic analysis of microbial populations in a recirculating aquaculture system by next 

generation sequencing showed that there was a significant number of bacteria that oxidize 

ammonia and nitrite in the nitrification biofilter, while in denitrification bioreactors there 

was a large proportion of bacteria that carry out heterotrophic and autotrophic 

denitrification, as well as those that participate in sulfur cycling. Comparing the stable 

microbial populations established on the biofilters for complete nitrogen removal with the 
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composition of the culture contained in the commercial inoculum, it can be concluded that 

environmental seawater used for filling the RAS served as an additional bacterial source, 

especially in denitrification reactors. Considering their role in nitrogen and sulfur cycling, 

this was a favorable enhancement to the commercial inoculum.
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Table 1

Sequence analysis parameters. See Methods for details.

Sample Read count Observed OTUs Chao1 Simpson’s evenness index

CI 4.2 × 105 467 467 0.048

RBC 6.5 × 105 688 688 0.036

DBR 7.4 × 105 533 533 0.021
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