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In this paper, a numerical study is conducted to understand the impact of 
nonuniform freestream on the aerodynamic performance of a flapping foil. 
Specifically, an unsteady flow environment is generated by stationary inline or 
staggered circular cylinder arrays upstream. A 2D NACA0012 airfoil is then placed 
at different locations downstream of the cylinder arrays, and oscillates in the 
nonuniform freestream.  Unsteady flows over the flapping foil are numerically 
simulated by solving the 2D low-Mach-number-preconditioned compressible 
Naiver-Stokes equations on deformable unstructured grids using the high-order 
spectral difference method. The flow fields over a pitching airfoil in unsteady flow 
environments and the corresponding aerodynamic forces are analyzed and 
compared under different flow conditions. It is observed that the nonuniform 
freestream can significantly affect the unsteady vortex dynamics of a flapping foil, 
thus modifying the thrust and lift generation.   

Nomenclature 
A = pitching amplitude  
d = cylinder diameter 
Cp = pressure coefficient 
CL = lift coefficient per unit span 
CL,RMS = root mean square of lift coefficient per unit span 
CT = thrust coefficient per unit span 
CT,RMS = root mean square of thrust coefficient per unit span 
Re =  Reynolds Number 
c = chord 
𝑈! = freestream velocity 
𝜃! = mean angle of attack 
𝜃! = amplitude of the pitching angle 
f = oscillation frequency 
 𝑆! = Strouhal Number 
k = reduced frequency 
T =  time 
Δt = time step 
∅ = phase difference 
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I. Introduction 
The increasing use of micro air vehicles (MAVs) for civilian and military missions has attracted extensive 
attention of researchers to understand the unsteady flapping wing aerodynamics.1 MAVs usually work 
under nonuniform flow conditions and the nonuniformity in flow arises due to the low atmospheric urban 
areas and gusty wind conditions. Nonuniform flow conditions can cause flight stability and control 
problems for MAVs.2,3 Due to the small mass and low speed of the MAVs, the impact of gusty wind and 
unsteady flow environment on their flight performance is significant.3 It has been a challenge for 
designers to design MAVs to overcome the flight instability caused by gusty conditions.4 However, most 
studies for the flapping motion of the birds and insects have neglected the effect of wind gust on the 
stability of the motion. Hence the study of aerodynamics performance of flapping wings under the 
impacts of gusty conditions and sudden change of flight conditions is considered as an important aspect 
for the better design of promising MAVs. 
 Many studies have been performed to study the flight instabilities on MAVs under gusty conditions, 
ground effects and sudden change in flight condition.  Objects in tandem configurations with flapping 
wings placed downstream are usually used in these studies, and sometimes, the gust frequencies are used 
to mimic the gust condition. Shyy et al.5 performed the experimental and numerical study on the rigid and 
flexible airfoils under the effects of gust, and demostrated that the flexible airfoil performs better under 
gust conditions than rigid airfoil  in terms of lift to drag ratio. Wang and Huang6 studied numerically the 
2D flapping wing aerodynamics, and reported that the wind gust can contribute negatively to lift and 
thrust, causing flight insatbility. Prater and Lian7 numerically studied the flight characteristics of 
stationary and flapping single and tandem wing configuration, under uniform flow with sinusoidal 
velocity inflow conditions as a model of gust. Lian and Shyy8 found that gusty flow could produce the 
thrust during deaccelerating stage. Jones and Yamaleev9 numerically studied the performance of flapping 
wings under the influence of different gust conditions, namely, frontal, downward and side gust, and 
demostrated that the flapping wings can effectively recover form gusty wind fluctuations. Lian3 
conducted the numerical study of flapping wings and reported that the gust fluctuations effects can be 
alleviated under different flapping kinematics. Gao and Lu10 reported three differrent  behaviours of force, 
namely, force enhancement, force reduction, and force recovery, closely associated with the evolution of 
vortex structures due to the ground effects in insect normal hovering.  

Chen and Choa11 performed the experimental study on the effect of turbulent wakes on a pitching 
airfoil. In this work, a small thin cylinder was placed upstream at different vertical positions relative to 
the pitching airfoil at Reynolds number 80,000 with low reduced frequencies range of 0.01-0.04. They 
compared the aerodynamic forces and moments with those from the undistrubed freestream case, and 
found that the dynamic stall occurs at larger angle of attacks due to the turbulent wake, and the growth of 
the leading-edge suction peak is sensitive to the vertical position of the cylinder. Wang et al.12 
investigated the effects of turbulence intensity on the aerodynamic forces of NACA0012 at low Reynolds 
numbers experimentally. They concluded that the flow separation point shifts upstream with increasing 
Reynolds numbers but downstream with increasing turbulence intensity. Gharali and Johnson13 conducted 
a 2D numerical study of a pitching airfoil with the nonuniform inflow velocity, showing the contribution 
of unsteady incident velocity on the vortical structure and resultant aerodynamic loads. Merrill and Peet14 
performed numerical study on a pitching airfoil at the Reynolds number 44,000 and reduced frequency 
0.16 in the presence of a turbulent wake produced by an upstream small cylinder. Their study showed the 
significant impacts of the upstream wake on forces and moments acting on the airfoil. They also found 
that the dynamic stall starts at a later time at high angle of attacks due to delayed formation and 
detachment of the dynamic stall vortex. Several other previous researchers15–21 have demostrated that the 
impact of unsteady inflow on aerodynamic loads is also applicable to helicopters and maneuverable wings 
working in the environment with freestream velocity fluctuations. 
 In the current work, the aim is to investigate the aerodynamics performance of flapping wings in a 
highly unsteady flow environment, which is generated by circular cylinders arranged in an inline or 
staggered configuration upstream. As is known, the bioinspired flows such as those similar to the flows 
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induced by the flapping motion of birds, insects and aquatic animals are usually vortex-dominated. High-
order computational fluid dynamics (CFD) methods had been proven more accurate and efficient than the 
convectional first- and second-order methods to capture the complex vortex-dominated flow structures. In 
this study, a high-order spectral difference (SD) method with dynamic mesh deformation22 is used to 
simulate the unsteady flapping-wing aerodynamics in nonuniform freestream.  
 The remainder of the paper is structured as follows. In section II, a brief introduction of the high-order 
spectral difference method is discussed. A problem statement for the numerical simulation is mentioned 
in Section III. In Section IV, the results on the flapping-wing aerodynamics under nonuniform flow 
conditions are presented and discussed. Section V briefly concludes the work and discusses the future 
work plan. 

II. Numerical Methods 

II.1. Governing Equations 
 Unsteady compressible Navier-Stokes equations in conservative form is considered in the 

physical domain (𝑡, 𝑥, 𝑦, 𝑧) as follows: 
𝜕𝑄
𝜕𝑡

+
𝜕𝐹
𝜕𝑥

+
𝜕𝐺
𝜕𝑦

+
𝜕𝐻
𝜕𝑧

= 0 (1)  

where 𝑄 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤,𝐸)! are conservative variables, 𝜌 is the density of fluid, , 𝑢, 𝑣 and 𝑤  are the x, 
y and z components of velocity and  𝐸 is the total energy given by 𝐸 = !

!!!
+ !

!
𝜌(𝑢! + 𝑣! + 𝑤!) for a 

perfect gas law in which p is the pressure and 𝛾 is the constant specific heat capacity ratio. The total 
energy equation closes the solution system. 𝐹,𝐺 and 𝐻 are total flux vectors including the inviscid and 
viscous flux terms, which are expressed as 
 

𝐹 = 𝐹! − 𝐹! =

𝜌𝑢
𝜌𝑢! + 𝑝 − 𝜏!!
𝜌𝑣𝑢 − 𝜏!"
𝜌𝑤𝑢 − 𝜏!"

𝑢 𝐸 + 𝑝 − 𝑢𝜏!! − 𝑣𝜏!" − 𝑤𝜏!" −
𝜇𝐶!
𝑃𝑟

𝑇!

	

𝐺 = 𝐺! − 𝐺! =

𝜌𝑣
𝜌𝑢𝑣 − 𝜏!"

𝜌𝑣! + 𝑝 − 𝜏!!
𝜌𝑤𝑣 − 𝜏!"

𝑣 𝐸 + 𝑝 − 𝑢𝜏!" − 𝑣𝜏!! − 𝑤𝜏!" −
𝜇𝐶!
𝑃𝑟

𝑇!

	

𝐻 = 𝐻! − 𝐻! =

𝜌𝑤
𝜌𝑢𝑤 − 𝜏!"
𝜌𝑣𝑤 − 𝜏!"

𝜌𝑤! + 𝑝 − 𝜏!!

𝑤 𝐸 + 𝑝 − 𝑢𝜏!" − 𝑣𝜏!" − 𝑤𝜏!! −
𝜇𝐶!
𝑃𝑟

𝑇!

, 

(2)  

 
where 𝜇 is the dynamic viscosity, 𝐶! is the specific heat at constant pressure, 𝑃𝑟 is the Prandtl number 
and 𝑇 is the temperature. For the Newtonian fluids, the viscous stresses are given as follows: 
 

𝜏!! = 2𝜇 𝑢! −
𝑢! + 𝑣! + 𝑤!

3
, 𝜏!! = 2𝜇 𝑣! −

𝑢! + 𝑣! + 𝑤!
3

,	 (3)  
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           𝜏!! = 2𝜇 𝑤! −
𝑢! + 𝑣! + 𝑤!

3
,         𝜏!" = 𝜏!" = 𝜇 𝑣! + 𝑢! , 

           𝜏!" = 𝜏!" = 𝜇 𝑤! + 𝑢! ,               𝜏!" = 𝜏!" = 𝜇 𝑤! + 𝑣! .		
	

 (4)  

The governing equation  (1) in the physical domain (𝑡, 𝑥, 𝑦, 𝑧) is transformed to computational domain 
(𝜏, 𝜉, 𝜂, 𝜁) as shown in Eq. (4). In the coordinate transformation, 𝜏 = 𝑡 and (𝜉, 𝜂, 𝜁)  ∈  (−1, 1)×(−1, 1)×
(−1, 1) is standard cubic element in the computational domain. 
 

𝜕𝑄
𝜕𝜏

+
𝜕𝐹
𝜕𝜉

+
𝜕𝐺
𝜕𝜂

+
𝜕𝐻
𝜕𝜁

= 0, (5)  

where  
𝑄 = 𝐽 𝑄

𝐹 = 𝐽 (𝑄𝜉! + 𝐹𝜉! + 𝐺𝜉! + 𝐻𝜉!)
𝐺 = 𝐽 (𝑄𝜂! + 𝐹𝜂! + 𝐺𝜂! + 𝐻𝜂!)
𝐻 = 𝐽 (𝑄𝜁! + 𝐹𝜁! + 𝐺𝜁! + 𝐻𝜁!) 

. (6)  

During the coordinate transformation, the Jacobian matrix can be written as the following form: 
 

𝐽 =
𝜕(𝑥, 𝑦, 𝑧, 𝑡)
𝜕(𝜉, 𝜂, 𝜁, 𝜏)

=

𝑥! 𝑥! 𝑥! 𝑥!
𝑦! 𝑦! 𝑦! 𝑦!
𝑧! 𝑧! 𝑧! 𝑧!
0 0 0 1

. (7)  

The inverse transformation must also exist for a non-singularity transformation, which can be related to 
the Jacobian matrix as Eq. (7): 

𝐽!! =
𝜕(𝜉, 𝜂, 𝜁, 𝜏)
𝜕(𝑥, 𝑦, 𝑧, 𝑡)

=

𝜉! 𝜉! 𝜉! 𝜉!
𝜂! 𝜂! 𝜂! 𝜂!
𝜁! 𝜁! 𝜁! 𝜁!
0 0 0 1

. (8)  

II.2. Space Discretization and Time Integration Methods 
A 3D SD method on dynamic unstructured grids developed in the Ref. 22 is used to solve the 

governing equations. For completeness, the SD formulation in a standard hexahedral element is expressed 
as 

	

𝜕𝑄 𝜉, 𝜂, 𝜁
𝜕𝜏

+ 𝐹!,!,!
!"#,! − 𝐹!,!,!

!"#,! ∙
𝑑
𝑑𝜉
𝑙!"#,! 𝜉 ∙

!

!!!

!

!!!

𝑙!"#,! 𝜂 ∙ 𝑙!"#,! 𝜁
!!!

!!!

	

                    + 𝐺!,!,!
!"#,! − 𝐺!,!,!

!"#,! ∙ 𝑙!"#,! 𝜉 ∙
!

!!!

!!!

!!!

𝑑
𝑑𝜂

𝑙!"#,! 𝜂 ∙ 𝑙!"#,! 𝜁
!

!!!

	

                             + 𝐻!,!,!
!"#,! − 𝐺!,!,!

!"#,! ∙ 𝑙!"!,! 𝜉 ∙
!!!

!!!

!

!!!

𝑙!"#,! 𝜂 ∙
𝑑
𝑑𝜁
𝑙!"#,! 𝜁

!

!!!

= 0.	

(9) 	

Note that two sets of points, namely solution points and flux points, are used in the SD method. In Eq. (8), 
𝑙!"#  stands for the flux-points-based Lagrange polynomial, 𝑙!"#  stands for the solution-points-based 
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Lagrange polynomial, and the superscript ‘I’ indicates that the fluxes are continuous across different 
elements. To ensure the flux continuity on element surfaces, the common inviscid fluxes are reconstructed 
with the AUSM+-up Riemann solver for all speeds24, and the common viscous fluxes are reconstructed 
with the ‘BR1’ approach developed in the Ref. 25. 

The explicit three-stage strong stability preserving (SSP) Runge-Kutta method26 is used for time 
integration. For any ordinary differential equation in the form 𝑑𝑄 𝑑𝑡 = 𝑅 (𝑄), the three-stage SSP 
Runge-Kutta method is given by 

	

𝑄(!) = 𝑄! + ∆𝑡𝑅(𝑄!)

𝑄(!) =
3
4
𝑄! +

1
4
𝑄(!) +

1
4
∆𝑡𝑅(𝑄(!))

𝑄!!! =
1
3
𝑄! +

2
3
𝑄(!) +

2
3
∆𝑡𝑅(𝑄(!))

.	 (10) 	

II.3. Dynamic Grids Deformation 
In the current work, the moving grid deformation algorithm is obtained from the earlier work 22,23 

which used the blending function approach to reconstruct the whole physical domain. The fifth order 
blending function with 𝑟 0 = 0 and 𝑟 1 = 1 is used for dynamic mesh deformation. It is written as 

𝑟! 𝑠 = 10𝑠! − 15𝑠! + 6𝑠!, 𝑠 ∈ 0,1 , 
where s represents the normalized distance between present mesh node and the moving boundaries. If 
𝑟 0 = 0, the mesh node will move with the moving boundary; but if 𝑟 1 = 1, the mesh node will not 
move. The change in the position vector 𝑃 for an arbitrary mesh node can be obtained as follows: 

∆𝑃!"#$#%& = (1 − 𝑟!)∆𝑃!"#"$ 
The new mesh nodes after deformation are calculated by adding ∆𝑃 to 𝑃. 

III. Problem Statement 
 In this study, the NACA0012 airfoil is undergoing a pitching motion, which is expressed as:  

𝜃 𝑡 =  𝜃! + 𝜃! sin 2𝜋𝑓𝑡 + ∅ , 
where 𝜃! is the mean angle of attack, 𝜃! is the amplitude of the pitching angle, ∅ is the initial phase, f is 
the oscillating frequency and t is the dimensional time. The reduced frequency, k and Strouhal number, 𝑆! 
are given as  

𝑘 =
𝜋𝑓𝑐
𝑈!

, 

𝑆! =
2𝑓𝐴
𝑈!

, 

where c is the chord length of airfoil, A is the pitching amplitude and 𝑈! is the freestream velocity.  
 

 
Figure 1. Computational domain of the inline configuration of cylinders with airfoil. 
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 Placing the arrays of cylinders in an inline or staggered configuration upstream as shown in Figure 1 
creates the nonuniform flow conditions. In the same figure, the physical domain and boundary conditions 
for numerical simulation are illustrated as well. Note that the distance between the cylinder arrays and the 
airfoil is set as 𝛽𝑐. In this study, 𝛽 varies from 1 to 5. The meshes near the cylinder arrays and airfoil are 
presented in Figure 2. The Reynolds numbers (Re) based on the diameter of circular cylinders and chord 
length of airfoil are 1,000 and 10,000, respectively. The Mach number is fixed at 0.1 for all cases. The 
airfoil is oscillating sinusoidally around the one-third-chord position 𝑐 3 . The ratio of distance between 
cylinders (L) to the cylinder diameter (d), i.e. 𝐿 𝑑, is 1.5 for both configurations. The third order accuracy 
of space discretization and the time step size of 5×10!! are used for the simulations. 
 

 
(a)  

   
(b)                                                                               (c) 

Figure 2. (a) Computational mesh of the inline configuration of cylinders with airfoil. (b) Close view of 
meshes for the inline configuration of cylinders. (c) Close view of meshes for the staggered configuration 
of cylinders. 

IV. Results and Discussions 

IV.1. Flow Field Visualization 
Firstly, the flow over the pitching airfoil in the uniform free stream is simulated as a baseline. This is 

used to compare the flow phenomena with two different configurations of cylinder arrays, namely inline 
and staggered ones with varying 𝛽𝑐, the distance between array of cylinders and airfoil. Figure 3 shows 
an instantaneous vorticity field for the pitching airfoil with uniform freestream flow. With the reduced 
frequency and Strouhal number 4 and 0.3 respectively, the reverse von Karman vortex streets or thrust 
producing wakes are generated with the vortex row of positive vorticity on the top of the vortex row with 
negative vorticity causing momentum surfeit.  
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Figure 3. An instantaneous vorticity field at k = 4 and St = 0.3 with uniform freestream flow. 

 
In the Inline configuration, three cases are selected with the distance between array of cylinders and 

airfoil, 𝛽𝑐 at 1c, 3c and 5c. Figure 4 (a-c) shows the instantaneous vorticity fields for the airfoil pitching 
in the wakes of inline array of cylinders at 1c, 3c and 5c, respectively. It is clear from Figure 4 that the 
unsteady ambient flow can affect the formation of leading edge vortices (LEVs) as well as trailing edge 
vortices (TEVs). The periodic wake structure of the pitching airfoil in a uniform freestream shows chaotic 
features when interacting with the highly unsteady upstream wakes.  

                                    
(a)                                                                              (d) 

  
(b)                                                                                        (e) 

  
(c)                                                                                       (f) 

Figure 4. Instantaneous vorticity fields for k = 4 and St = 0.3 with upstream cylinders in inline and 
staggered configurations. (a) Inline 1c, (b) Inline 3c, (c) Inline 5c, (d) Staggered 1c, (e) Staggered 3c and 
(f) Staggered 5c. 

In the staggered arrangement, three arrays of cylinders are placed in a staggered configuration, and the 
airfoil is placed at different positions downstream, namely 1c, 3c and 5c. The instantaneous vorticity 
fields for the staggered cylinder cases after eleven pitching cycles are presented in Figure 4 (d-f).  
Compared to the unsteady flow environment generated by the inline configuration, the flow under 
staggered configuration shows stronger flow interference among the cylinders, resulting smaller vortex 
structures. 
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(a)                                                                             (d) 

 
(b)                                                                             (e) 

 
(c)                                                                              (f) 

Figure 5. Instantaneous vorticity and pressure fields for k = 4 and St = 0.3. (a) Vorticity filed with 
uniform freestream, (b) Vorticity filed for inline 1c, (c) Vorticity field for staggered 1c, (d) Pressure filed 
with uniform freestream, (e) Pressure filed for inline 1c and (f) Pressure field for staggered 1c. 
 
 Figure 5 shows the instantaneous vorticity and pressure fields with the staggered and inline upstream 
cylinders positioned at one chord length along with the baseline case corresponding to the high peak value 
of the thrust coefficients seen in Figure 6 (a). The positive vortices form the upstream cylinders interact 
with the pitching airfoil resulting the low pressure and high pressure on upper and lower surface 
respectively on the airfoil. For the inline configuration the vortices interacting with pitching airfoil are 
weaker. The pressure fields values for the inline configuration is similar to the   baseline case shown in 
Figure 5 (d-e). It is clear that the Figure 6 (a) the amplitudes of thrust coefficients are similar for inline 
and baseline cases with small fluctuation.   

IV.2. Aerodynamic Forces Analysis	
 The time averaged aerodynamic coefficients of thrust (𝑪𝑻), lift (𝑪𝑳) and fluctuating lift coefficient 
(𝑪𝑻/𝑳,𝑹𝑴𝑺) are defined as: 

𝐶! = −
2𝐹!
𝜌𝑈!! 𝐴

 

 

𝐶! =
2𝐹!
𝜌𝑈!! 𝐴

 

 

𝐶!/!,!"# =
2𝐹!/!,!"#
𝜌𝑈!! 𝐴

 

where 𝐹! is the thrust force, 𝐹! is the lift force, 𝐹!,!"# is the root mean square of lift force, 𝜌 is the fluid 
density, 𝑈! is the freestream velocity and A is the area. 
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   (a)      (b) 

 
    (c)      (d) 

 
    (e)      (f) 

Figure 6. Thrust and lift coefficients histories for three pitching cycles over airfoil at k = 4 and St = 0.3  
(a-b) upstream cylinders configurations at 1c, (c-d) upstream cylinders configurations at 3c, and (e-f) 
upstream cylinders configurations at 5c. 
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 The histories of thrust and lift coefficients for three pitching cycles acting on airfoil are shown in 
Figure 6. It is observed that the aerodynamic forces acting on the airfoil are quite oscillatory due to the 
wakes produced by the upstream cylinders. The aerodynamic forces acting on the airfoil are more 
fluctuating for staggered configurations cases than inline cases due to the vortex structures are more 
interacting with the pitching airfoil presented in Figure 6. It is obvious from Figure 6 that the peaks of the 
thrust and lift coefficients are higher for the staggered cases when the airfoil is pitching up.  
 

Figure 7. Time averaged aerodynamics forces and their root mean squares.(a) Thrust coefficient, (b) 
Root Mean Square of thrust coefficient, (c) lift coefficient and (d) Root Mean Square of Lift coefficient at 
k = 4 and St = 0.3. 
 
 Figure 7 shows the time averages of the aerodynamic force coefficients on the airfoil for no cylinders, 
inline, and staggered configurations at different distances (𝛽𝑐) between the arrays of cylinders and airfoil. 
The time average was performed for last twenty pitching cycles excluding the first five cycles during the 
simulation for all cases. The thrust coefficient is higher for both inline and staggered configurations 
compared to the thrust coefficient of airfoil with uniform freestream flow presented in Figure 7 (a). It is 
observed that the thrust coefficient remains almost the same at various distances between cylinders array 
and airfoil for the inline configuration. But there is large variation in thrust coefficient values at different 
distances for staggered configurations. These phenomena are closely related to the interaction between the 
airfoil and the unsteady environment generated by the cylinder arrays. The underlying mechanisms are 
still under investigation. 
 The root mean square (RMS) values of thrust and lift coefficients are shown in Figure 7 (c-d). The 
RMS values of thrust and lift coefficients are higher for staggered configuration when the distance 
between the staggered arrays of cylinders positioned at one chord length to airfoil, and decrease as the 
distance increases to three chord length (3c) and 5 chord length (5c). We note that the RMS values of 
thrust for the 3c and 5c cases are smaller than that of the baseline case without cylinders. However, the 
mean thrust for these two cases are higher than that of the baseline one. This indicates that the drag is 
reduced in the 3c and 5c cases. The RMS values of the thrust and lift coefficients fluctuate with the 
distance between the cylinder array and airfoil for the inline configuration. This indicates that there exist 
relatively large vortices in the wake of the inline cylinder array interacting with the pitching airfoil.    

The power spectral density (PSD) analysis of the lift coefficient acting on the airfoil was conducted 
using periodogram power spectral density function in MATLAB as shown in Figure 8. From the PSD 
plots presented in Figure 8 (h-n), it is observed that the Strouhal numbers for the cases with no cylinders, 
inline and staggered configurations are the same. This means that the dominant frequency peak was found 
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almost the same as the pitching frequency of the airfoil for every case. In each PSD plots, the amplitude 
of power is larger for the case of baseline without the cylinders. The peaks for inline and staggered 
configurations have decreased due to the nonlinear interactions from the wakes of upstream array of 
cylinders.  
 

 

 

 
 

Figure 8. Lift coefficient histories (a) No Cylinders, (b) Inline 1C cylinder configuration, (c) Staggered 
1C cylinder configuration, (d) Inline 3C cylinder configuration, (e) Staggered 3C cylinder configuration, 
(f) Inline 5C cylinder configuration and (g) Staggered 5C cylinder configuration. PSD Plots of Lift 
Coefficient on airfoil (h) No Cylinders, (i) Inline 1C cylinder configuration, (j) Staggered 1C cylinder 
configuration, (k) Inline 3C cylinder configuration, (l) Staggered 3C cylinder configuration, (m) Inline 
5C cylinder configuration and (n) Staggered 5C cylinder configuration at k = 4 and St = 0.3. 
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V. Conclusion  
The impact of unsteady flow environments on aerodynamic performance of a pitching NACA0012 

airfoil is studied in this work. The flow unsteadiness is triggered by the interaction of upstream wakes 
produced by cylinder arrays placed in two different configurations, namely inline and staggered.  The 
airfoil is located at three different positions, namely one, three and five chord lengths, downstream of the 
cylinder arrays, and oscillates in the unsteady environment. We observe that the upstream unsteadiness 
can significantly affect the aerodynamic performance of the flapping wing. A direct flow visualization 
tells that the unsteady environment can significantly modify the vortex structures around the pitching 
airfoil, thus affecting aerodynamic forces acting on it. An interesting observation is that in all the tests 
carried out in this study (Re=10,000 based on the airfoil chord length, k=4 and St=0.3), the unsteadiness 
in flow environment can enhance thrust generation. Especially for the staggered configuration, the 
averaged drag on the pitching airfoil decreases when its distance from the cylinder arrays increases. A 
PSD analysis is then conducted for the lift coefficients. We observe that the unsteady environments 
induced by cylinder arrays do no affect the dominant frequency in the flow field. 
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