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Abstract—COVID pandemic management via contact tracing
and vaccine distribution has resulted in a large volume and high
velocity of Health-related data being collected and exchanged
among various healthcare providers, regulatory and government
agencies, and people. This unprecedented sharing of sensitive
health-related Big Data has raised technical challenges of en-
suring robust data exchange while adhering to security and
privacy regulations. We have developed a semantically rich and
trusted Compliance Enforcement Framework for sharing large
velocity Health datasets. This framework, built using Semantic
Web technologies, defines a Trust Score for each participant in
the data exchange process and includes ontologies combined with
policy reasoners that ensure data access complies with health
regulations, like Health Insurance Portability and Accountability
Act (HIPAA). We have validated our framework by applying it to
the Centers for Disease Control and Prevention (CDC) Contact
Tracing Use case by exchanging over 1 million synthetic contact
tracing records. This paper presents our framework in detail,
along with the validation results against Contact Tracing data
exchange. This framework can be used by all entities who need
to exchange high velocity-sensitive data while ensuring real-time
compliance with data regulations.

Index Terms—Trust Management, Secure Data Sharing, Con-
tact Tracing, Semantic Web, Access Control

I. INTRODUCTION

Recently, the rampancy of the COVID-19 pandemic magni-
fied the importance of distributed trust management of sharing
sensitive and high volume and velocity health data. To conduct
collaborative prevention and cope with localized mutation of
the virus, data exchange between the countries, organizations,
and people became indispensable. In this circumstance, trust
between various stakeholders is crucial because the result
depends on the abundance and quality of the data. Also,
it is mandatory to establish a bond of trust that Personally
Identifiable Information (PII) is treated securely during the
data exchange to expedite the health data exchange.

Regulation can contribute to establishing the trusted ecosys-
tem by protecting the privacy of patients. For example, the
Health Insurance Portability and Accountability Act (HIPAA)
regulates the healthcare data exchange to protect patient rights
in the US. To achieve the goal, it identifies Protected Health
Information (PHI) and conditions when stakeholders related to
PHI can share the information. However, regulations are not
perfect, and there is always the possibility of grey areas for
evasion of the law.

There are some obvious cases. First, HIPAA does not
cover metadata or non-health data that can indicate a patient’s

health status. For example, a third-party service can access
the transaction history of buying an inhaler from an online
shop. Second, the definitions of PHI in 45 CFR § 160.103
stated as “Is created or received by a health care provider,
health plan, employer, or health care clearinghouse.” There-
fore, companies that produce health wearables, mobile apps,
fitness trackers, smartwatches, and other analogous products
are outside HIPAA’s scope unless they partner with covered
entities. Consequently, they avoid partnerships with covered
entities for less legal liabilities yet collect and process health-
related data [1].

We have developed a novel decentralized data exchange
framework to enforce healthcare data regulations and evaluate
participants’ trust based on the compliance history. Our frame-
work facilitates sharing large velocity Health datasets, like
vaccination drives or contact tracing, with multiple distributed
stakeholders. Our objective is to reason over data access poli-
cies on behalf of users and maintain distributed trust of users
based on their history in the network. This framework, built
using Semantic Web technologies, defines a Trust Score for
each participant in the data exchange process and then reasons
over policies and regulations combined with the trust scores
to control data access. We have developed and integrated the
detailed ontology of HIPAA health regulation into our system.
We have validated our framework by applying it to the Centers
for Disease Control and Prevention (CDC) Contact Tracing
Use case by exchanging over 1 million synthetic contact
tracing records. This paper will illustrate our results with
COVID-19 contact tracing and organizational data exchange
as use cases. We believe that our research will contribute to
the paradigm change in health data from “needs to know” to
“need to share” and solution to the data blocking issues tossed
by the 21st Century Cures Act [2].

The rest of the paper is organized as follows: Section II dis-
cusses the background and related work. Section III describes
our framework in detail, including the knowledge graphs, Trust
Score measures, and Trust compliance enforcement. Section
IV describes the results of our validation on applying the
framework to the CDC contact tracing use case. Finally, we
conclude the paper in Section V and describe some of our
ongoing work.

II. RELATED WORK

One of the main requirements for our framework is that it
must reason over healthcare regulations, such as HIPAA and
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the 21st Century Cures Act (Cures Act), to achieve trusted
compliance enforcement of healthcare organizations. Also, it
should provide appropriate security measure which considers
the attributes of users who access and share the data. This
section listed the current work done in trust management,
representing knowledge in HIPAA and Semantic Web tech-
nologies.

A. HIPAA Knowledge Representation

A proper health regulation knowledge graph (or ontology)
is a critical element of reasoning to achieve automatic compli-
ance enforcement. It is because a knowledge graph explicitly
specifies concepts of the real world [3]. Reasoners such as
Pellet [4], HermiT [5], and Apache Jena [6] can reason
over the ontology to validate the relationships or determine
the implicit relationships between instances based on the
knowledge graph.

However, there is a lack of research on the HIPAA knowl-
edge graph. In our previous research, we presented a sys-
tematic literature review of the HIPAA knowledge graph for
the compliance automation [7]. It turned out that there is
much research on the HIPAA, but little adopted ontological
approaches to analyze it.

Joshi et al. developed a HIPAA knowledge graph for the
regulation-compliant cloud services [8]. The ontology demon-
strated the three main categories’ hierarchical orders: Privacy
rule, security rule, and stakeholders. Also, it illustrated the
concepts specified in the act in detail to help define security
and privacy measures of the healthcare domain.

In the subsequent research, we expanded the ontology
and illustrated practicable usage example [7]. The expanded
ontology included the Health Information class and in-depth
sub-classes of the existing three fundamental classes. Also,
it introduced object property between the classes to delineate
the relationship between the classes. Therefore, it is possible
to describe more context in health data exchange concerning
HIPAA.

In paper [9], authors developed a knowledge graph to
describe COVID-related security and privacy rules, such as
those specified in HIPAA. This ontology expands in design-
ing a HIPAA ontology for automatically populating HIPAA
guidelines to access patient records [8]. It facilitates to differ-
entiation of healthcare domain-specific security and privacy
measures. HIPAA knowledge graph relates notions required
in the regulation not related to COVID. They state that by
expanding the knowledge graph merged with COVID guide-
lines and incorporating the COVID and HIPAA compliance
regulations, healthcare organizations can promptly verify and
implement HIPAA and COVID privacy requirements. They
illustrate the improved and revised ontology by describing all
the classes. Health center organizations employing COVID-19
patient information can use their knowledge graph to ensure
that privacy policy documents have all the regulations stated
by the HIPAA-COVID agreement. Their semantically rich,
machine-processable knowledge graph describes all the reg-
ulations stated in HIPAA-COVID. They mentioned that their

ontology could also assist in recognizing missing guidelines
in the health organization’s privacy policy, which can then be
included as required. However, their work does not restrict
access to ontology.

B. Trust Management

There have been many studies to address trust management,
especially the quantification of trust. Most of the research fol-
lowed the distributed trust maintained by the recommendation
chain based on Pretty Good Privacy (PGP) [10], [11]. The re-
search proposed trust management and evaluation mechanism
consist of direct trust, recommender trust concepts. The critical
contribution of the research was to cover insufficient direct
trust with a chain of trust, which is discrete trust evaluation
scores from other participants in the network. On the other
hand, Blaze et al. proposed decentralized trust management
based on security policy [12]. The policies consist of simple
language specifying trusted actions and trusted relationships.

Until today, most trust management research in the infor-
mation systems domain follows the general structure of those
distributed and decentralized trust models. Their originality
came from so-called “more precise” trust evaluation methods
based on the recommendation score of trusters on a trustee.
However, in the real world, factors that consist of trust are too
complicated yet subjective. As a result, it is nearly impossible
to unravel all the elements and approximate interplay between
them.

Ray and Chakraborty proposed the trust evaluation method
that considers time factor [13]. The implicit rationale was
Nietzsche’s famous quote, ”The human being is a forgetful
animal.” They claimed that trust also decays over time. Their
approach well reflected the nature of human trust, but they
evaluated trustworthiness based on the experience scores of
each event only. Therefore, the evaluation method could not
reflect the elements of trust.

Zhou et al. claimed that it is possible to solve this prob-
lem with a deep learning method, but they have the same
shortcomings regarding the evasiveness of trust factors [14].
Most importantly, they are black-box, and it is a significant
impediment to credibility in sensitive issues such as trust.

C. Trust Knowledge Graph

Discrete recommendation scores and policies specifying
trusted actions and relationships were not enough to capture
complex dimensions of trust in the real world. Therefore, there
has been much research to explain trust in a knowledge graph
to supplement this shortcoming.

A knowledge graph is an explicit specification of real-world
conceptualization [3]. Generally, it consists of triples, which
consist of subject, predicate, and object in turn. In other words,
a predicate specifies a relationship between subject and object.
The final goal of the knowledge graph is to create a map that
illustrates relationships between real-world concepts. Some
studies on building knowledge graphs for trust include -

• Towards an ontology of trust [15]



Fig. 1. System Architecture includes Query mediator, Knowledge graphs and Audit Log

• An Ontology of Trust – Formal Semantics and Transitiv-
ity [16]

• Trust Networks on the Semantic Web [17]
• Ontology based Approach in Knowledge Sharing Mea-

surement [18]
• A Trust Ontology for Semantic Services [19]

D. Semantic Web

We utilized Semantic Web technologies to develop our
system’s knowledge graph and the reasoning component.
These enable us to build the schema using W3C standardized
languages that support our design requirements, including
interoperability, sound semantics, Web integration, and the
availability of tools and system components. It is possible to
model the classes of data and relationships between them using
semantic web technologies. As a result, the information is
stored in a machine-understandable format, allowing machines
to identify the correct context of data usage or retrieval. Re-
source Description Framework (RDF) [20] and Web Ontology
Language (OWL) [21] are the most popular Semantic Web
data modeling languages. Among them, we adopted OWL for
knowledge graph language.

OWL has well-defined semantics grounded in first-order
logic and model theory, allowing programs to draw inferences
with the assurance that the subsequent interpretation is sound.
Therefore, it was possible to satisfy our most fundamental
requirement - a representation that supports interoperability at
both the syntactic and semantic levels to facilitate easy data
exchange.

Also, OWL is built on basic Web standards and protocols
and is evolving to remain compatible with them. It is possible
to embed RDF and OWL knowledge in HTML pages, and
several search engines (including Google) will find and process
some embedded RDF. Furthermore, it integrates well with
the Web and Cloud, becoming the dominant technology for
today’s digital health systems. In other words, it can pro-
vide standard semantics of service information and policies

enabling all agents who understand essential Semantic Web
technologies to communicate and use each other’s data and
services effectively.

III. TRUSTED COMPLIANCE ENFORCEMENT FRAMEWORK

Our framework consists of two main components: Query
Mediators (QMs) and Audit Log (AL). QM gets user input
queries and sends out a query to other QM in the network to
retrieve healthcare data. During the process, QM reasons over
related regulations, organization policy, target data attributes,
and user attributes to check that the user is compliant with
regulation. Related regulations include, but are not limited
to HIPAA, HITECH, Cares Act, and 21st Century Cures
Act. When it turns out that the user violated one or more
regulations, it halts the data retrieval process and records
violation details in the AL. At the same time, QM evaluates
the trust value of the user based on the updated compliance
history and updates it to AL in real-time.

QM has two components: Access Control Module (ACM)
and Trust Assessment Module (TAM), and it has access to
knowledge graph databases in the same local network. First,
Knowledge graphs are a fundamental part of the system, and
the other two modules refer to the knowledge graphs to accom-
plish their primary purpose. The knowledge graph includes
organization policy, user trust, user information, regulation,
and data ontology. Second, ACM decides whether or not a user
can access specific data based on the regulations, organization
policy, and attributes of the user and target data. To achieve
this, ACM reasons over the knowledge graph of them with a
reasoner. If the user violates the regulation, ACM records the
compliance history and updates it to AL. Third, TAM assesses
the trustworthiness of the user based on the latest compliance
history in real-time and updates it to AL. We assume that QM
always functions correctly and is trusted by every other QMs.

AL stores user compliance history and user trust. The green
box in figure 1 indicates that user compliance history is synced
between a QM and AL and not propagated to other QMs. On



Fig. 2. HIPAA Ontology describes relationships between HIPAA stakeholders COVID-19 related provisions

the other hand, the blue box indicates that user trust is also
propagated to other QMs.

A. Knowledge Graph
The knowledge graph is an essential part of the framework.

It provides the underlying knowledge base when the other
three components of the TM process their duties. We included
HIPAA, CDC contact tracing data elements, and trust ontology
in the knowledge graph in this research. Trust ontology will
be illustrated in the subsection III-B.

1) HIPAA Knowledge Graph: As part of our previous
work [9], we identified the most important words in the
HIPAA COVID-19 regulation. Most of the semantically sim-
ilar key terms associated with regulation must be referred in
an organization’s privacy policy. Therefore, the occurrence
of these terms or words associated with them is a signif-
icant indication of an organization policy’s agreement with
the HIPAA regulations [22]. We assessed the occurrence of
HIPAA key terms and associated terms in a privacy policy
document. We use the vector representation of key terms to
classify semantically similar terms in a privacy policy. We
demonstrated this procedure by assessing the occurrence of
HIPAA key terms in the privacy policy documents of ten health
centers and organizations that deal with COVID-19 patient
data. Also, we showed the occurrence of semantically similar
HIPAA Key Terms in all the organizational privacy policies.
The higher occurrence of HIPAA key terms or semantically
similar phrases in an organization’s privacy policies implies
that the privacy policy is more in compliance with the HIPAA
guidelines.

To develop the HIPAA ontology, we used the extracted key
terms from the HIPAA regulation document. We then extracted
the rules from the HIPAA regulation that addresses COVID-19
rules. The rules were then examined in a bag-of-words model.
First, we removed the stop words from the list of key terms.
We also got rid of certain words modal verbs like ‘should,’

‘can,’ ‘could,’ ‘must’ ‘will,’ ‘shall.’ These modal words were
used to extract guidelines represented in deontic logic from
the organizational policies [23]. Finally, we identified the most
commonly occurring terms from the remaining list of words in
the HIPAA COVID-19 regulation. This list of words is the key
terms in the HIPAA repository related to COVID-19. These
key terms facilitated us in creating the HIPAA knowledge
graph schema as shown in figure 2. Also, these key terms
helped us in checking compliance with organizational privacy
policies.

2) CDC Contact Tracing Knowledge Graph: We designed
a contact tracing knowledge graph based on the Interim
Guidance on Developing a COVID-19 Case Investigation &
Contact Tracing Plan provided by CDC [24]. The primary
purpose of the ontology is to explain patients involved in
COVID-19 cases.

Therefore, as illustrated in the figure 3, seven classes that
represent sub-categories of the information describe a patient.
The seven classes are contact tracing, interview, locating
information, pre-existing conditions, risk factors, SARS-CoV-
2 test, and symptoms and clinical course.

Bulleted lists inside each class are data properties related to
the class. Objects of the data properties follow types and codes
specified in Appendix C - Data Elements for Case Investiga-
tion and Contact Tracing Forms of the CDC document - open
text, date, numeric and categorical value. For example, the data
property “Loss of sense of smell” has categorical values Y, N,
U, and, R which stand for yes, no, unknown, and refused. In
the case of SARS-CoV-2 tests, they can have Pos, Neg, Equi,
or Unk for positive, negative, equivocal, or unknown.

B. Trust Management
1) Definition of Trust: The majority of trust management

theory follows a philosophy that we seldom trust people
completely. The philosophy claim that “A trusts B to do X”
[25] or “A trusts B with valued item C” [26]:



Fig. 3. CDC Contact Tracing Ontology illustrates data elements for case investigation and contact tracing

Definition 1. A trust relationship is not absolute. (Hardin,
Baier)

Grandison & Sloman adopted similar idea to information
system and claimed that [27] trust depends on contexts:

Definition 2. Trust is the firm belief in the competence of
an entity to act dependably, securely, and reliably within a
specified context. (Grandison & Sloman)

For the definition of distrust, Ray & Chakraborty put more
resolute nuance to exclude ambivalence in making a decision
based on the Grandison & Sloman’s definition [13]:

Definition 3. Distrust is defined as the firm belief in the
incompetence of an entity to act dependably, securely, and
reliably within a specific context. (Ray & Chakraborty)

In the previous research of them, the context was the
solution to describe the relativity of trust. They defined context
as a situation, specific action, or service. It was a static envi-
ronmental factor that we could quickly identify and classify.
For example, we can say trust relationships in the context of
data exchange and modification should be different.

Our research follows the abstract idea of past research but

unfolds it from a different point of view. We believe that
genuine trust or distrust is the mixture of themselves. We agree
that the context is the crucial factor to represent relativity of
trust, but in different connotations defined below:

Definition 4. Trustworthiness results from a decision-making
process that involves trust and distrust in an entity considering
various elements that constitute a trust.

Definition 5. For each context of trust, a different combination
of trust elements affects the trust assessment.

2) Trust Representation: This research follows the trust
representation of Ray & Chakraborty [13]. They adopted
vector form to represent trust between truster A and trustee
B in a particular context c:

A
c−→ B (1)

3) Trust Assessment: Let C denote the set of all context that
will be involved in trust assessment. For i ∈ N, ci is distinct
context of trusts in C. Also, let E denote the set of elements
which constitutes trust. For j ∈ N, ei is distinct element of
trust. For each context of trust, different subset of E is taken



into account during the test assessment process. Lastly, let W
denote the set of weights of elements. For i ∈ N, wi will be
the weight of element ei.

C = {ci ∈ R, i ∈ N| − 1 ≤ ci ≤ 1} (2)

E = {j ∈ N|ej = a distinct element of trust}
E ⊃ {i ∈ N|Ei = subset of E}

(3)

W = {wi ∈ R, i ∈ N|0 ≤ wi ≤ 1

n∑
i=1

wi = 1} (4)

Therefore, it is possible to specify Trust Assessment Con-
ditions (TAC) that illustrates which elements of trust is con-
sidered in what context:

TAC = (ci, Ei) (5)

Finally, based on the TAC, there should be a Trust As-
sessment Function (TAF) that assesses A’s trustworthiness
based on the TAC. The f denotes arbitrary formula which a
policymaker will define. It also illustrates the weights of each
trust element.

TAF = f(TAC) = f(Ek) (6)

TAF elucidates interactions of elements during the trust
assessment process. For example, let there be a trust element
“identity trust” regarding the identity of a user in the system.
In a normal situation, people usually refer to the user’s role and
organization to check the user’s identity. In this case, if one
regards the user’s role in what organization is important, it is
possible to represent interactions of identity trust of role (IR)
and organization (IO) as IO×IR. In contrast, if one treats each
role equally regardless of the organization, the interactions of
IR and IO can be IR + IO.

Since this research aims to provide framework and proof of
concepts, we defined the simplest form of TAF in the equation
7, the weighted sum of each trust element score. Therefore,
the maximum trust score is 1.

T (CA,B) = (CA
C−→
E

B) =

n∑
i=1

wiei (7)

T is the trustworthiness of B in the perspective of CA, and
ei and wi are trust elements and their weight. We assumed
that the trust score evaluations of each element are available
in advance. By this equation, CA can set the importance of
each context and assess overall trustworthiness.

4) Trust Ontology: Based on the definition 4, we specified
three contexts of trust, which are identity trust, behavioral
trust, veracity for the proof of concept in figure 4. The
rationale behind the three contexts is that they are the most
basic information that humans seek when identifying the
trustworthiness of others.

Also, we classified which components of the system can be
evaluated by what element of trust. For example, the user class

has behavioral trust because the user is the subject of action
in the system. On the other hand, the organization and role
class have identity trust, and it will affect the overall trust of
the user because every user has a role and organization.

C. Trusted Compliance Enforcement
Suppose we have reviews of organizations’ policy and

scores of the three trust elements, we can enforce compliance
with the user’s trust level. Figure 5 illustrates the access
control module that enforces compliance and limits the access
based on the trustworthiness of the user. First, it takes input
query from the user and injects SPARQL triple that checks if
the user’s organization is compliant to HIPAA based on the
purpose of the query. Then, it injects triples that cover trust
assessment based on the purpose of the query.

For example, a junior physician A in a hospital wants to
query a list of patients whose last result of SARS-CoV-2 is
positive to process PHI:

SELECT DISTINCT ?patient
WHERE {
?patient ctt:hasSARSCoV2Test ?test.
?test ctt:ResultOfLastSARSCoV2Test 'Pos'.}

The compliance checker and trust checker inject triples that
can enforce PHI compliance and trust level policy. Triples for
each purpose are commented on in the SPARQL query below.

SELECT DISTINCT ?patient
WHERE {
# compliance
ctt:A ctt:hasOrganization ?hospital.
?hospital ctt:PHI ?phi_compliance.
# trust
ctt:A ctt:BehavioralTrust ?behavior.
?org ctt:IdentityTrust ?org_identity .
ctt:A ctt:hasRole ?role.
?role ctt:IdentityTrust ?role_identity.

BIND(0.1 * ?behavior + 0.6 * ?org_identity +
0.3 *?role_identity AS ?tscore)

FILTER(?tscore > 0.75)
# input query
?patient ctt:hasSARSCoV2Test ?test.
?test ctt:ResultOfLastSARSCoV2Test 'Pos'.}

Fig. 4. Trust Ontology describes relationships between trust elements and
system components

IV. VALIDATION USING CONTACT TRACING USECASE

To demonstrate the proof of concept of our research, we
created datasets for use cases and applied them against our
framework. We created a large synthetic dataset of 1 million
records based on the CDC Contact tracing, HIPAA, and Trust
ontologies.



Fig. 5. Detailed view of the Access Control Module, which injects policy
queries to an input query

A. Ontology Integration

To reason over user compliance status and trust level during
the query process, we integrated the three ontologies illustrated
earlier in this paper - CDC contact tracing data element,
HIPAA, and trust ontologies as illustrated in figure 6. It
was essential to find the intersection of ontologies, especially
between the HIPAA and trust ontology. It turned out that stake-
holder classes in the HIPAA ontology have characteristics of
organization class in the trust ontology. In most cases, covered
entities and business associates - stakeholders of HIPAA -
are organizations dealing with protected health information.
Therefore, in the integrated ontology, stakeholder has identity
trust.

B. Synthetic Data Generation

We used the Python 3 script with lxml library for synthetic
data generation to create an OWL file in XML format. The data
property values of symptoms, risk factors, and pre-existing
conditions are from the CDC official contact tracing guideline
[24]. In addition, we followed HHS Implementation Guidance
on Data Collection Standards for Race, Ethnicity, Sex, Primary
Language, and Disability Status [28] for the values of race
and ethnicity. Lastly, we used the faker library to generate
other data such as first name, last name, email, phone number,
and address. The script randomly generated each patient’s
data, and it also covered dependency between the data, for
example, gender and pregnancy status. For the efficiency of
data processing, we divided the data into 20 files of 442 MB,
and the overall size of the data was 8.63 GB.

C. Data Ingestion

We uploaded our data to Apache Jena Fuseki server running
in the Docker container. The default 1200 MB of Java heap
size was too small to process the data, so we set the maximum
memory allocation pool as 9 GB. Another reason we set a
massive amount of heap size is the data modification algorithm
of TDB, which is the database that supports the Jena Fuseki
server. TDB uses write-ahead logging, so new data is written
to an on-disk journal and kept in memory. Therefore, in the
worst case, all the data files remain in memory during the data

posting process and consume 8.63 GB of memory space. The
average time taken to upload each file was 117.6309 s.

D. Use Case Scenario

1) Department of Education querying K-12 school student
patients information: The first use case scenario got its
motif from the official CDC document “Considerations for
Case Investigation and Contact Tracing in K-12 Schools and
Institutions of Higher Education (IHEs) [29].” Senior staff
John in the Department of Education wants to query a record
of patients under age 18 whose first SARS-CoV-2 test result
is positive. The purpose of the query is to retrieve the Date
of Birth (DOB) and state of residence and create a report
to decide whether the cancellation of classes or closure of
buildings and facilities is necessary for each state. In this case,
he needs PHI compliance and a trust score threshold for PHI
compliance of 0.8. Weights for behavior, role identity, and
organization trust are 0.1, 0.2, and 0.7.

SELECT DISTINCT ?patient ?dob ?state
WHERE {
# HIPAA PHI Compliance
ctt:John ctt:hasOrganization ?org.
?org ctt:PHI ?phi_compliance.

# Trust policy
ctt:John ctt:BehavioralTrust ?behavior.
ctt:John ctt:hasRole ?role.
?org ctt:IdentityTrust ?org_identity .
?role ctt:IdentityTrust ?role_identity.

BIND(0.1 * ?behavior + 0.2 * ?role_identity
+ 0.7 *?org_identity AS ?tscore)

FILTER(?tscore > 0.8)

# Input query
?patient ctt:hasSARSCoV2Test ?test.
?patient ctt:hasLocatingInformation ?loc.
?test ctt:ResultOfFirstSARSCoV2Test 'Pos'.
?loc ctt:StateOfResidence ?state.
?loc ctt:DOB ?dob.
FILTER (?dob >

"2003-09-04T00:00:00"ˆˆxsd:dateTime)}

2) Insurance company querying potential COVID-19 pa-
tients with pre-existing conditions: In the second scenario,
junior staff Jane who works for B&B Insurance Company
wants pre-existing conditions of patients whose first SARS-
CoV-2 test result is negative. The exact pre-conditions she
wants are patients’ diabetes and chronic lung disease status.
Her primary purpose is to summarize the information and plan
strategic marketing to avoid states with high COVID-19 risks.
Her organization must have media access compliance, and the
trust score threshold is 0.6. Weights for behavior, role identity,
and organization trust are 0.5, 0.2, and 0.3.

SELECT
DISTINCT
?patient ?diabetes ?lung_disease ?state

WHERE {
# HIPAA Media Access Compliance
ctt:Jane ctt:hasOrganization ?org.



Fig. 6. Merged Ontology incorporates HIPAA Ontology, Trust Ontology, and CDC Contact Tracing Ontology

?org ctt:DP_MediaAccess ?media_compliance.

# Trust policy
ctt:Jane ctt:BehavioralTrust ?behavior.
ctt:Jane ctt:hasRole ?role.
?org ctt:IdentityTrust ?org_identity .
?role ctt:IdentityTrust ?role_identity.

BIND(0.5 * ?behavior + 0.2 * ?role_identity
+ 0.3 *?org_identity AS ?tscore)

FILTER(?tscore > 0.6)

# Input query
?patient ctt:hasSARSCoV2Test ?test.
?patient ctt:hasPreExistingConditions ?con.
?patient ctt:hasLocatingInformation ?loc.
?test ctt:ResultOfFirstSARSCoV2Test 'Neg'.
?con ctt:Diabetes ?diabetes.
?con ctt:ChronicLungDisease ?lung_disease.
?loc ctt:StateOfResidence ?state.
FILTER(?diabetes='Y' || ?lung_disease = 'Y')}

V. RESULTS

A. Department of Education querying K-12 school student
patients information

Figure 9 illustrates compliance policy of Department
of Education and trust scores of John. Given weights of
each trust element, John’s trustworthiness is

∑n
i=1 wiei =

0.1 × (behavioral trust) + 0.2 × (role identity trust) + 0.7 ×
(organization identity trust) = 0.82. Since trust score thresh-
old for PHI is 0.8, he satisfies trust policy. Figure 7 demon-

Fig. 7. John’s query result

Fig. 8. Jane’s query result

strates John’s query result. Date of birth and state of residence
data of 9,735 adolescents are retrieved and it took 2.199 s.

The logic for the weight distribution is that organizations’
capability to treat PHI is essential when processing it, such as
workforce training and management, risk mitigation, and data
safeguards. Therefore the weight of the organization identity
trust prevails other elements. John could retrieve the data



TABLE I
ELAPSED TIME COMPARISON WITH/WITHOUT TRUST POLICY

Use Case with Trust Policy without Trust Policy
Elapsed Time No. Results Elapsed Time No. Results

Department of Education 2.199 s 9,735 1.022 s 9,735
Insurance Company 16 ms 0 2.305 s 27,571

because the Department of Education has a high identity trust
score of 0.8.

Fig. 9. John’s trust score

Fig. 10. Jane’s trust score

We set states as a geographic unit of this use case because
previous research reviewed the federal Department of Educa-
tion policy compliance [9]. Hence, if we have state-level data,
it would be possible to query data with smaller geographic
units and help policy decision-making at the states or county
level.

B. Insurance company querying potential COVID-19 patients
with pre-existing conditions

Figure 10 illustrates trust scores of Jane and her com-
pany, B&B Insurance Company. Given weights of each trust
element, Jane’s trustworthiness is 0.5 × (behavioral trust) +
0.2×(role identity trust)+0.3×(organization identity trust) ≈
0.12. She could not pass the trust policy because the trust

threshold is 0.5. Therefore, as demonstrated in the figure 8,
she could not get the result and it took 16 ms.

Behavioral trust has the highest weight in this use case
because how a person treats PHI is vital to prevent disclosure
via written, electronic, oral, or other visual or audio forms
regarding media access compliance. Unfortunately, Jane could
not retrieve the data because her behavioral trust score was -
0.3 and surpassed other trust elements.

This use case aims to show how our framework can prevent
law evasion in the grey area. In ordinary circumstances, when
the organization complies with regulations and an employee
inquires about the information, it is not against the law until
data breaches happen. We can prevent this by considering
the user’s behavioral trust score. For example, the weight
distribution based on this idea prevented Jane from accessing
PHI though the insurance company has a good identity score
of 0.6.

C. Performance Evaluation

Table I describes elapsed time in each Use Case comparing
SPARQL query with/without trust policy. For example, in the
Department of Education use case, a query without trust policy
took one second less. This implies that the processing trust
policy creates some additional loads to the Jena Fuseki server.
However, a query without the trust policy took more time in
the insurance company’s case. This is because the trust policy
did not limit the access, and 27,571 entries are retrieved for
the result.

VI. CONCLUSION AND FUTURE WORK

This paper developed a novel decentralized data exchange
framework to enforce healthcare data regulations and assess
participants’ trustworthiness based on compliance history. We
introduced the trust element concept to add one more layer of
explainability of trust decision-making and fine-tune the data
access policy based on the interaction between the elements
that constitute trustworthiness in a specific context. Also, we
integrated the HIPAA knowledge graph particularly tuned for
COVID-19 data exchange for compliance verification. We
have incorporated the detailed ontology of HIPAA health regu-
lation in our system. This knowledge graph is developed using
Semantic Web technologies and identifies each individual’s
trust score in the data exchange procedure. Reasoners can
reason over the knowledge graphs with graph query languages
that define related rules and trust scores threshold to control
data access. As a proof of concept of our framework, we
generated synthetic data with the size of 1M based on the
CDC contact tracing data element ontology and demonstrated
use case based on the CDC COVID-19 prevention guidelines



for K-12 schools and the user with maleficent purpose. We
demonstrated how our framework could help share large
velocity Health datasets, like vaccination drives or contact
tracing, with multiple distributed stakeholders.

To the best of our knowledge, our research is the first to

1) formally propose the concept of trust elements for real-
time data sharing,

2) explicitly illustrate interactions between trust elements
in a particular context,

3) introduce how to fine-tune the interaction for different
compliance situations,

4) integrate the trust assessment with the compliance veri-
fication.

As part of our ongoing work, we will keep extending this
framework to reflect the nature of trust more precisely and
make it work in a real-world environment. Since trust has been
an interest of philosophy for a long time, we will explore more
on trust from a philosophy perspective to determine more trust
elements. We strive to answer the questions include these, but
not limited to: what are other trust elements to consider during
the data exchange? How can we decide the subset of trust
elements for different contexts? How can we evaluate trust
elements? What should be the appropriate guideline for the
weight assignment for each trust element? Also, we plan to
include other concepts in trust management research such as
delegation, recommendation, trust decay over time, and others
to improve our framework. Finally, from the “need to know” to
the “need to share” paradigm shift, we also plan to consider
other healthcare standards for data interoperability, such as
HL7 FHIR, LOINC, SNOMED CT, and CDS hooks. Our final
goal is to achieve a trusted compliance enforcement system for
health big data exchange that is practical yet supported by a
solid theoretical foundation.
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