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ABSTRACT
Geostationary meteorological satellites provide precipitation estimates with a high spatio- 
temporal resolution, which is important for near real-time precipitation monitoring. This study 
systematically evaluated geostationary orbit (GEO) satellite-based quantitative precipitation esti
mates (QPEs) from Chinese Fengyun-2 G (FY-2 G), Fengyun-4A (FY-4A), and South Korean Geo- 
KOMPSAT-2A (GK-2A) across Northeast Asia in 2020. Compared against ground-based rainfall 
gauges at a 6-hourly scale, FY-2 G provided the highest accuracy in the China region with a high 
correlation coefficient (R = 0.53) and a low bias (−0.26 mm) due to the ground calibration process in 
FY-2 G. Conversely, GK-2A provided more accurate precipitation estimates for South Korea and 
Japan stations. FY-4A QPE generally showed a large positive bias throughout different seasons, 
although it provided satisfactory R and categorical statistics. FY-based QPEs slightly overestimated 
summer precipitation, especially over South Korea and Japan region, while GK-2A tended to 
underestimate summer precipitation. All examined QPEs showed poor accuracy during the winter 
season due to the frozen particles and ice clouds. Intensity analysis revealed that FY-based QPEs 
tended to overestimate the occurrence of no rain and heavy rain cases, whereas GK-2A under
estimated no rain and heavy rain cases and overestimated light rain occurrence. It is also found 
that all examined QPEs captured the temporal variation of precipitation during storm events, while 
FY-based products overestimated heavy precipitation peaks and GK-2A underestimated peak 
precipitation. The findings in the study provided valuable information to further improve current 
infrared precipitation retrieval algorithms.
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1. Introduction

Northeast Asia is one of the regions greatly influ
enced by extreme precipitation (Kusunoki and 
Mizuta 2013; Takahashi and Fujinami 2021). The 
monsoon circulation and southwesterly winds 
during the summer contribute to a large portion 
(~60%) of annual precipitation in this region (Iwao 
and Takahashi 2006). With the increasing trend of 
extreme precipitation associated with climate 
change, Northeast Asia has experienced more fre
quent and severe flood events (Preethi et al. 2017; 
Si et al. 2021). For instance, China suffered the 
most severe flood in 2020 since 1998 and the 
annual mean precipitation in 2020 (694.8 mm) 
was 10.3% more than normal years (Chinese 
Meteorological Administration 2021). In the recent 
seven years, South Korea reported the most pro
longed monsoon period in 2020, with over 

46 days of heavy rainfall. In Japan, within the 
recent 30 years, the annual occurrence of short, 
intense precipitation (i.e. larger than 50 mm/hr) 
was approximately 1.4 times higher (https://www. 
mlit.go.jp/river/bousai/bousai-gensaihonbu/2kai/ 
pdf/siryou01-2.pdf). Therefore, understanding the 
spatio-temporal characteristics of precipitation, 
especially the extreme precipitation, in near real- 
time, are vital for hazard mitigation.

Conventional rain gauge directly measures pre
cipitation with relatively high accuracy and high 
temporal frequency. However, it only provides 
point measurements and demands expensive 
operational and staffing costs (Sun et al. 2018). 
Ground-based radar instruments provide continu
ous spatial coverage of precipitation with a high, 
real-time resolution (Germann et al. 2006) but 
suffer from beam block by terrain and insufficient 
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coverage across the globe (Habib et al. 2012). In 
recent years, different types of satellite-based pre
cipitation products have been increasingly used in 
various fields (Gummadi et al. 2022). Passive 
microwave (PMW) sensors onboard low Earth 
orbit (LEO) can “see” through a cloud and yield 
realistic instantaneous precipitation estimates but 
they are limited by coarse temporal resolution 
(Xu, Adler, and Wang 2013).

Geostationary (GEO) meteorological satellites 
provide quantitative precipitation estimates (QPE) 
by building a relationship between infrared (IR) 
cloud top temperature and the probability and 
intensity of precipitation on the ground 
(Upadhyaya et al. 2020). Cold cloud tops usually 
suggest a larger vertical development in the 
cloud, and thus more precipitation (Sun et al. 
2018). GEO-based QPEs provide large-scale cover
age with high resolution in both space (~2 km) 
and time (5–30 minutes). Therefore, they are 
essential sources to fill the gaps in PMW QPE to 
generate spatially continuous global precipitation 
products with high temporal resolution. However, 
the relationship between cloud top temperature 
and precipitation is indirect and not always cor
rect (Sun et al. 2018).

Two main GEO meteorological satellite series 
focusing on Northeast Asia are the Chinese 
Fengyun (FY) satellites and the South Korean 
Geostationary Korean Multi-Purpose Satellite (GK). 
Despite the valuable information provided by these 
two-satellite series, their QPE products are less 
examined. A limited number of studies (Xu et al. 
2019; Lu et al. 2020; Wu et al. 2021) evaluated and 
compared FY-2 G QPE products with other satellite- 
based precipitation products such as the Integrated 
Multi-satellite Retrievals for Global Precipitation 
Measurement (GPM IMERG; Hou et al. 2014) preci
pitation products over China region. Results 
showed that FY-2 G generally underestimated sum
mer precipitation in China (Xu et al. 2019; Lu et al. 
2020), and FY-2 G detected light rainfall (0.2–5 mm/ 
hr) with higher accuracy than IMERG (Wu et al. 
2021). As for FY-4A, Gao et al. (2020) found that 
FY-4A failed to capture the spatio-temporal charac
teristics of precipitation and severely overestimated 
summer precipitation in southern China. Ren et al. 
(2021) found that FY-4A underestimated hourly 

precipitation over Western China. Even fewer stu
dies evaluated the QPE product from the GK satel
lite series. Baik and Choi (2015) assessed the 
precipitation product from the first-generation GK 
series over the Korean peninsula and found that the 
QPE overestimated and underestimated precipita
tion before and after the monsoon season, 
respectively.

FY and GK satellites provide near-real-time pre
cipitation estimates, which are important tools for 
hazards monitoring. The accuracy of FY and GK 
QPEs is also highly associated with the quality of 
merged global precipitation products. However, as 
stated beforehand, the QPE products from FY and 
GK satellites are seldomly examined with most stu
dies focused on the sub-regional to regional scales 
(Baik and Choi 2015; Xu et al. 2019; Lu et al. 2020; 
Gao et al. 2020; Ren et al. 2021). A systematic eva
luation and comparison of the two main GEO-based 
QPEs across Northeast Asia have not been investi
gated. Therefore, this study evaluated QPEs from 
the Chinese FY-2 G, FY-4A, and the South Korean 
GK-2A at the continental scale. To the best of our 
knowledge, this study is also the first evaluation of 
the GK-2A QPE product since its launch in 2018. 
Moreover, the findings of this study will provide 
valuable information to further improve current 
GEO-based precipitation retrieval algorithms. The 
remaining of this paper is organized as follows: 
Section 2 describes the study area and data sets 
used in this study. Section 3 introduces the statis
tical metrics used to evaluate the QPEs. Section 4 
assesses the performance of FY-2 G, FY-4A, and GK- 
2A QPEs based on seasonality, rainfall intensity, as 
well as during the period of the tropical storms. 
A discussion of results follows in Section 5, and 
Section 6 summarizes the key findings of the study.

2. Study area and datasets

2.1. Study area and ground-based stations

This study selected Northeast Asia, including part of 
China, Japan, and South Korea, as the study domain 
with the geographic boundary of 18°N to 52°N and 
75°E to 147°E. Figure 1 illustrates the elevation over 
the study domain along with the ground-based 
stations used to evaluate the satellite-based 
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precipitation estimates. More than 60% of the study 
domain is classified as the mountainous area with 
the highest elevation of 8,848 m, 3,776 m, and 
1,950 m in China, Japan, and South Korea, respec
tively. Summer precipitation across the study area is 

under the influence of the East Asia summer mon
soon (Si et al. 2021). This rainy season prolongs 
approximately 20–30 days with heavy rainfall and 
tropical storms, and in turn, precipitation during the 
summer accounts for more than half of total annual 

Figure 1. The geographic location of the ground-based rain gauges (black circles) across the study area along with the elevation map.

Figure 2. Spatial distribution of correlation coefficient (R) for 6-hourly precipitation in 2020 between (a) FY-2G and ground-based 
stations, (b) FY-4A and ground-based stations, and (c) GK-2A and ground-based stations.
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precipitation over the study domain (Baik and Choi 
2015; Liu et al. 2021; Yihui and Chan 2005). 
Accordingly, the study area significantly undergoes 
natural hazards such as flood and precipitation- 
induced landslides (Kundzewicz et al. 2019; Ma 
et al. 2021; Lei et al. 2021), which obstacles the 
development of an efficient water management 
plan.

2.2. Satellite-based quantitative precipitation 
estimates (QPE)

Geo-KOMPSAT-2A (GK-2A), a geostationary satellite 
managed by the Korean Meteorological Administration 
(KMA) as a successor of Communication, Ocean, and 
Meteorological Satellite (COMS), was launched in 

December 2018 to continuously monitor the meteoro
logical and oceanic conditions and provide communica
tion services (Kim et al. 2021). GK-2A is operated on the 
geostationary orbit near the equator at a longitude of 
128.2 °E with a mean altitude of 35,686 km and inclina
tion of 0° (Magnes et al. 2020). It onboards the Advanced 
Meteorological Imager (AMI), which is a developed ver
sion of the Meteorological Imager (MI) onboarded the 
COMS. Specifically, COMS MI has five spectral bands (i.e. 
one visible and four infrared bands) while GK-2A AMI is 
composed of 16 spectral bands (i.e. four visible, two 
near-infrared, and 10 infrared spectrums) with a spatial 
resolution ranging from 0.5 km to 2 km (Kim et al. 2021; 
Jee et al. 2020). GK-2A uses brightness temperature (Tb) 
difference from four different bands (i.e. 6.24, 8.59, 11.21, 
and 12.36 μm) and Tb from water vapor band to classify 

Figure 3. Spatial distribution of bias for 6-hourly precipitation in 2020 between (a) FY-2G and ground-based stations, (b) FY-4A and 
ground-based stations, and (c) GK-2A and ground-based stations.
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cloud into five different types (i.e. shallow, tall cold, tall 
colder, taller cold, taller colder cloud) across four long
itude intervals (i.e. 80  S-30 S, 30  S-0 , 0 -30 N, 30 N-80 N). 
Afterward, the classified cloud information from GK-2A 
was used with a prior probability density function from 
GPM dual-frequency precipitation radar (DPR) in 
a Bayesian inversion to estimate the precipitation. 
Then, a cumulative distribution function matching 
method was applied to the estimated precipitation 
from GK-2A using GPM DPR-based precipitation in 
2016 (Shin, Seo, and Kim 2019). GK-2A QPE is available 
since 31 October 2019 from the KMA website (https:// 
data.kma.go.kr/data/rmt/rmtList.do?code=21&pgmNo= 
683). This study used the GK-2A QPE during 2020 with 
the temporal and spatial resolution of 10 min and 4 km 
(full-disk), respectively.

Fengyun 2 Meteorological Satellite Series (FY2) is 
the first generation of GEO meteorological satellites 
developed by China, and FY-2 G is one of the opera
tional GEO satellites launched in December 2014 for 
monitoring the natural disaster (Lu et al. 2020). FY-2 G 
satellite is currently operated on the geosynchronous 
orbit at the 99.2°E (since April 2018) near the equator 
with an altitude of 35,786 km (Xu et al. 2019). The 
Stretched Visible and Infrared Spin Scan Radiometer 
(SVISSR) onboarded FY-2 G has five channels covering 
visible, middle wavelength infrared, and thermal 
infrared spectrums. FY-2 G QPE is post-processed 
with the ground-based stations located in mainland 
China considering the directionality and intensity of 
precipitation in order to bias-correct the FY-2 G QPE 
(Lu et al. 2020). This study utilized FY-2 G level 2 
hourly QPE during 2020 with the spatial resolution 
of 5 km (full-disk), which can be accessed via the 
Chinese Metrological Administration (CMA) National 
Satellite Meteorological Center (NSMC) webpage 
(https://satellite.nsmc.org.cn/portalsite/default.aspx).

Fengyun 4 Meteorological Satellite Series (FY4) is 
the second generation of GEO meteorological satellite 
developed by China, and FY-4A is the first operational 
GEO meteorological satellite in the FY4 series, which 
was launched on 11 December 2016 (Yang et al. 
2017). FY-4A satellite is currently operated on the 
geosynchronous orbit at the longitude of 104.7°E. It 
carries Advanced Geosynchronous Radiation Imager 
(AGRI) with 14 channels covering visible, near- 
infrared, shortwave infrared, middle wavelength infra
red, water vapor, and longwave infrared spectrum 
(Ren et al. 2021; Yang et al. 2017). This study utilized 

level 2 hourly QPEs during the year of 2020 with the 
spatial resolution of 4 km at nadir (full-disk), which 
also can be accessed via the CMA NSMC webpage.

2.3. Ground-based measurements and validation 
procedures

The Integrated Surface Database (ISD) precipitation 
datasets provided by National Oceanic and 
Atmospheric Administration National Center for 
Environmental Information (NOAA NCEI; https:// 
www.ncdc.noaa.gov/isd) were used to evaluate 
GEO-based QPEs in China and Japan. In the case 
of South Korea, Automated Surface Observation 
System (ASOS) precipitation dataset provided by 
the KMA (https://data.kma.go.kr/data/) was used. 
NOAA ISD provides the 6-hourly accumulated pre
cipitation in Universal Time Coordinated (UTC), 
while ASOS provides hourly precipitation at the 
local time zone. Accordingly, the ASOS precipita
tion dataset was converted into a UTC time and 
subsequently aggregated to 6-hourly cumulative 
precipitation to match with the ISD precipitation 
measurements. For quality control, the data quality 
flag provided by ISD datasets was used to assist 
stations selection. Additionally, this study did not 
use stations containing consecutive missing data 
for longer than 3 days in 2020. Afterward, 
a double mass curve analysis was conducted to 
ensure the consistency of precipitation datasets. 
As a result, a total of 304 ground-based stations 
(134, 75, and 95 stations in China, Japan, and 
South Korea, respectively) located within the 
study domain were selected in this study as 
shown in Figure 1.

For validating GEO-based QPEs against ground- 
based measurements, all the examined precipita
tion estimates (i.e. FY-2 G, FY-4A, and GK-2A) were 
temporally aggregated to 6 hours. Afterward, 
a point-to-pixel analysis (Thiemig et al. 2012; 
Logah et al. 2021) was conducted by comparing 
observed precipitation at each rain gauge with 
GEO-based precipitation estimates at the corre
sponding pixel where the rain gauge is located 
in. It is noted that the mismatch of spatial footprint 
between rain gauge and GEO-based precipitation 
estimates may provide uncertainty in statistical 
evaluation. However, spatial interpolation of 
ground-based precipitation also introduces 
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uncertainties and causes the loss of accuracy, espe
cially across orographic areas (Hu et al. 2016; 
Herrera et al. 2019). Considering the complex ter
rain in Northeast Asia as well as the relatively 
sparse station network (304 stations) in this study, 
we chose to conduct the point-to-pixel analysis.

3. Statistical evaluation

This study implemented (1) goodness of fit statistics 
and (2) categorical statistics (e.g. contingency table) 
for the quantitative evaluation of FY-2 G, FY-4A, and 
GK-2A QPEs with ground-based measurements fol
lowing previous studies (Gao et al. 2020; Wu et al. 
2021; Shahid et al. 2021).

3.1 Goodness of fit statistics

GEO-based QPEs collocated with the ground-based 
measurements were analyzed using bias, root mean 
square error (RMSE), and Pearson’s correlation coeffi
cient (R) as follows: 

bias ¼
1
n

Xn

i¼1

Ri � Oið Þ (1) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

Ri � Oið Þ
2

s

(2) 

R ¼
Pn

i¼1 Ri � Ri
� �

Oi � Oi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Ri � Ri
� �2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Oi � Oi
� �2

q (3) 

where Ri and Ri represent the instant and mean of the 
6-hourly satellite-based QPEs (e.g. FY-2 G, FY-4A, and GK- 
2A) and Oi and Oi represent the instant and mean of 
precipitation measured from the ground-based stations, 
respectively. n denotes the sample size utilized to calcu
late the statistics during the entire study period at each 
point.

3.2 Categorical statistics

The contingency table has been extensively utilized in 
hydrologic fields to analyze the hit and miss of the 
simulated dataset compared to the observations. 
However, the usual contingency table statistics such 
as the probability of detection (POD), false alarm ratio 
(FAR), and critical success index (CSI) do not consider 
the actual volume of the target variable in the calcula
tion. Thus, this study implemented the extended con
tingency table introduced by AghaKouchak and 
Mehran, A (2013), which provides an overall measure 
of volumetric performance and has been demon
strated to be helpful for evaluating gridded data 
sets. More specifically, volumetric hit index (VHI), volu
metric false alarm ratio (VFAR), and volumetric critical 
successful index (VCSI) were calculated as follows: 

VHI ¼
Pn

i¼1ðRijRi > t & Oi > tÞ
Pn

i¼1ðRijRi > t & Oi > tÞ þ
Pn

i¼1ðOijRi � t & Oi > tÞ
(4) 

VFAR ¼
Pn

i¼1ðRijRi > t&Oi � tÞ
Pn

i¼1ðRijRi > t&Oi > tÞ þ
Pn

i¼1ðRijRi > t&Oi � tÞ
(5) 

VCSI ¼
Pn

i¼1ðRi Rij it&Oi > tÞ
Pn

i¼1ðRi Rij it&Oi > tÞ þ
Pn

i¼1ðOi Ri � t&Oij itÞ þ
Pn

i¼1ðRi Rij it&Oi � tÞ
(6) 
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VHI ¼
Pn

i¼1ðRijRi > t & Oi > tÞ
Pn

i¼1ðRijRi > t & Oi > tÞ þ
Pn

i¼1ðOijRi � t & Oi > tÞ
(4) 

VFAR ¼
Pn

i¼1ðRijRi > t&Oi � tÞ
Pn

i¼1ðRijRi > t&Oi > tÞ þ
Pn

i¼1ðRijRi > t&Oi � tÞ
(5) 

VCSI ¼
Pn

i¼1ðRi Rij it&Oi > tÞ
Pn

i¼1ðRi Rij it&Oi > tÞ þ
Pn

i¼1ðOi Ri � t&Oij itÞ þ
Pn

i¼1ðRi Rij it&Oi � tÞ
(6) 

where t represents the threshold, which is set as 
0.6 mm for 6-hourly accumulated precipitation (fol
lowing the threshold of 0.1 mm for hourly precipi
tation in Behrangi et al. 2010). Even though all the 
categorical indices range from 0 to 1, they have 
different meanings: VHI and VCSI closer to 1 indi
cates that the volume of simulated precipitation is 
close to that of observed precipitation while VFAR 
closer to 1 indicates that volume of simulation 
precipitation does not match with that of observed 
precipitation.

4. Results and discussion

4.1. Overall performance of satellite-based QPEs 
over Northeast Asia

Six-hourly cumulative precipitation estimates from 
FY-2 G, FY-4A, and GK-2A were evaluated against 
ground-based measurements, and station-averaged 
statistical metrics were summarized in Table 1. FY- 
2 G provided a higher consistency with ground- 
based measurements at most stations with a larger 
station-averaged R value (RFY-2G = 0.46) and a smaller 

magnitude of bias (biasFY-2G = 0.22 mm). FY-4A pro
vided a station-averaged R of 0.38, which is between 
FY-2G and GK-2A (RGK-2A = 0.36), however, it showed 
the largest errors among the three examined QPEs 
(RMSEFY-4A = 10.19 mm). Both FY-2G and FY-4A pro
vided positive bias relative to ground-based measure
ments, while GK-2A yielded a negative station- 
averaged bias (biasGK-2A = −0.27 mm). In terms of 
categorical statistics (Figures S1–S3 in supplemen
tary), FY-based QPEs overall detected the volume of 
precipitation with higher accuracy (VHIFY-2G = 0.71, 
VHIFY-4A = 0.75, and VHIGK-2A = 0.68) and less false 
detection (VFARFY-2G = 0.30, VFARFY-4A = 0.37, and 
VFARGK-2A = 0.51) relative to GK-2A. Additionally, the 
variation of categorical statistics among different sta
tions (i.e. standard deviation) from FY QPEs is slightly 
smaller than GK-2A as shown in Table 1.

Statistical maps (Figures 2–4) showed that the 
performance of FY-2G is highly region-dependent 
with higher R as well as smaller RMSE and bias 
detected in the China region. However, such regio
nal dependent behavior was not witnessed in GK- 
2A. FY-4A did not present significant regional 
dependence in terms of R except that some stations 
in western China showed large R values. 
Nevertheless, FY-4A provided large RMSE and bias 
for stations located in southeastern China, South 
Korea, and Japan, where the annual precipitation 
is relatively larger. Maps of categorical statistics 
(Figures S1-S3 in supplementary) indicated that 
with a threshold of 0.6 mm, FY-2G outperformed 
FY-4A and GK-2A in the China region. Although FY- 
4A yielded a large bias in southeastern China, South 
Korea, and Japan, it still provided high VHI and low 
FAR relative to GK-2A in these regions.

Table 1. Statistical metrics of 6-hourly cumulative precipitation between GEO-based estimates (i.e. FY-2G, FY-4A, and GK-2A) and 
ground-based measurements for the whole domain and each examined country (i.e. China, South Korea, and Japan). Values in front 
are station-averaged statistics, and values in the bracket represent the corresponding standard deviation of examined stations.

R 
[-]

RMSE 
[mm]

Bias 
[mm]

VHI 
[-]

VFAR 
[-]

VCSI 
[-]

All FY-2G 0.46(0.17) 6.66(3.26) 0.22(0.71) 0.71(0.15) 0.30(0.16) 0.54(0.16)
FY-4A 0.38(0.17) 10.19(5.02) 1.14(1.01) 0.75(0.15) 0.37(0.16) 0.52(0.15)
GK-2A 0.36(0.15) 4.99(2.42) −0.27(0.81) 0.68(0.25) 0.51(0.17) 0.39(0.18)

China FY-2G 0.53(0.17) 4.22(2.75) −0.26(0.59) 0.72(0.20) 0.24(0.17) 0.60(0.19)
FY-4A 0.39(0.22) 7.83(6.06) 0.68(1.23) 0.70(0.19) 0.31(0.20) 0.54 (0.20)
GK-2A 0.29(0.12) 4.59(2.96) −0.18(0.95) 0.67(0.24) 0.53(0.22) 0.38(0.21)

South Korea FY-2G 0.46(0.11) 8.07(1.62) 0.50(0.44) 0.72(0.07) 0.33(0.09) 0.53(0.07)
FY-4A 0.41(0.11) 11.54(2.43) 1.33(0.48) 0.79(0.06) 0.39(0.08) 0.52(0.08)
GK-2A 0.48(0.13) 5.37(1.10) −0.25(0.27) 0.72(0.20) 0.45(0.08) 0.44(0.14)

Japan FY-2G 0.33(0.13) 9.24(2.52) 0.72(0.64) 0.67(0.10) 0.39(0.16) 0.47(0.12)
FY-4A 0.31(0.11) 12.69(3.27) 1.70(0.64) 0.77(0.10) 0.43(0.13) 0.49(0.12)
GK-2A 0.34(0.12) 5.22(2.48) −0.43(0.98) 0.65(0.30) 0.54(0.12) 0.34(0.18)
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Noticing the different behaviors of FY-2G for 
stations located inside versus outside of the China 
region, station-averaged statistics for China, South 
Korea, and Japan were computed and summarized 
in Table 1. Results suggested that FY-2G consis
tently yielded better statistics in the China region 
for all examined metrics with higher consistency 
(e.g. RFY-2G_China = 0.53, RFY-2G_Korea = 0.46, and 
RFY-2G_Japan = 0.33) and smaller errors (e.g. 
RMSEFY-2G_China = 4.22 mm, RMSEFY-2G_Korea 

= 8.07 mm, and RMSEFY-2G_Japan = 9.24 mm) when 
compared to ground-based measurements. 
However, in South Korea and Japan, FY-2G pro
vided inferior agreement and larger errors relative 
to GK-2A (e.g. RGK-2A_Korea = 0.48, and 
RMSEGK-2A_Korea = 5.37 mm).

4.2 Seasonal analysis of satellite-based QPEs over 
Northeast Asia

Six-hourly cumulative precipitation averaged for each 
season (hereafter referred to as seasonal average) 
derived from FY-2G, FY-4A, and GK-2A were evaluated 
against ground-based measurements at each station 
location. As only precipitation in 2020 was used in this 
study, 6-hourly precipitation from March to May, June 
to August, September to November were used to com
pute the seasonal average in spring, summer, and 
autumn, respectively. While for the winter season, pre
cipitation estimates in January, February, and 
December of 2020 were used to calculate the average.

The scatter plots of seasonally averaged 6-hourly pre
cipitation in each season between GEO-based QPEs and 
ground-based measurements are shown in Figure 5 and 

Figure 4. Spatial distribution of RMSE for 6-hourly precipitation in 2020 between (a) FY-2G and ground-based stations, (b) FY-4A and 
ground-based stations, and (c) GK-2A and ground-based stations.
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corresponding bias maps are shown in Figure 6. During 
the spring season, FY-2G and GK-2A agreed better with 
ground-based measurements than FY-4A with most sta
tions located along the 1:1 line (Figure 5a). However, GK- 
2A overestimated some stations located in southeastern 
China, where FY-2G exhibited a slight underestimation 
(Figure 6a, b). As for FY-4A, a positive bias was witnessed 
at most stations.

During the summer season, FY-based QPEs exhib
ited opposite behaviors with GK-2A QPE. An overall 
underestimation of summer precipitation was found 
in GK-2A, whereas FY-2G and FY-4A overestimated 
precipitation at most stations, especially in South 
Korea and Japan regions (Figure 6d-f). All QPEs pro
vided underestimated precipitation in the China 
region during the autumn, but FY-based QPEs still 
overestimated precipitation outside of China. All 
examined QPEs (i.e. FY-2G, FY-4A, and GK-2A) yielded 
the worst performance during the winter season, with 
most stations deviating from the 1:1 line (Figure 5d). 

FY-2G and GK-2A both underestimated precipitation 
across most stations, while FY-4A provided largely 
overestimated precipitation in southeastern China, 
South Korea, and Japan (Figures 6j-l).

Temporal statistics of 6-hourly precipitation 
between GEO-based QPEs and ground-based mea
surements at each station location were computed 
during different seasons, and station-averaged statis
tics are listed in Table 2. FY-2G, FY-4A, and GK-2A all 
provided better statistics during the summer season 
when there is more precipitation at most stations with 
relatively larger R values (RFY-2G_summer = 0.49, 
RFY-4A_summer = 0.43, and RGK-2A_summer = 0.41), higher 
hit rate (VHIFY-2G_summer = 0.80, VHIFY-4A_summer = 0.79, 
and VHIGK-2A_summer = 0.75), and lower false alarm 
ratio (VFARFY-2G_summer = 0.26, VFARFY-4A_summer 

= 0.29, and RGK-2A_summer = 0.43) than in other sea
sons. The accuracy of precipitation estimates from FY- 
2G, FY-4A, and GK-2A during the winter is evidently 
inferior relative to other seasons (e.g. RFY-2G_winter 

Figure 5. Scatter plots of seasonally averaged 6-hourly precipitation between satellite-based estimates (black dots for FY-2G, red dots 
for FY-4A, and blue dots for GK-2A) and ground-based measurements at all station locations during (a) spring, (b) summer, (c) autumn, 
and (d) winter seasons.
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= 0.26, RFY-4A_winter = 0.26, and RGK-2A_winter = 0.28). 
The inferior performance of QPEs during the winter 
season is further discussed in Section 5.

Additionally, an intensity analysis was conducted 
for the 6-hourly cumulative precipitation derived from 
ground stations, FY-2G, FY-4A, and GK-2A during 

different seasons and the whole year in 2020 
(Figure 7). FY-2G generally showed more similar dis
tribution of rainfall intensity ranging from 1 to 20 mm 
with ground-based measurements than GK-2A except 
for the winter season. During the winter season, FY- 
2G consistently underestimated the frequency of 
6-hourly cumulative precipitation between 0.1 and 
50 mm (Figure 7d). It is also noted that FY-2G showed 
a slightly higher frequency of no rain (6-hourly cumu
lative precipitation < 0.1 mm) and heavy rainfall (
>50 mm) events relative to ground-based 
measurements throughout different seasons. FY-4A 
satisfactorily represented the frequency of precipita
tion between 1 and 20 mm compared to ground- 
based measurements. However, it largely underesti
mated the frequency of very light rainfall (0.1–1 mm) 
and overestimated the frequency of both moderate 
(20–50 mm) and heavy rainfall (>50 mm), especially 
during the winter season. Opposite to FY-based QPEs, 

Figure 6. Bias map of seasonally averaged 6-hourly precipitation in different seasons in 2020 derived from FY-2G (left column), FY-4A 
(middle column), and GK-2A (right column) against ground-based measurement during spring (first row), summer (second row), 
autumn (third row), and winter (bottom row) seasons, respectively.

Table 2. Statistical metrics of 6-hourly precipitation between 
satellite-based (i.e. FY-2G, FY-4A, and GK-2A) estimates and 
ground-based measurements in different seasons.

R 
[-]

RMSE 
[mm]

Bias 
[mm]

VHI 
[-]

VFAR 
[-]

VCSI 
[-]

Spring FY-2G 0.39 4.24 −0.08 0.55 0.41 0.41
FY-4A 0.29 7.49 0.88 0.65 0.45 0.43
GK-2A 0.30 3.68 0.39 0.65 0.64 0.29

Summer FY-2G 0.49 9.79 1.02 0.80 0.26 0.62
FY-4A 0.43 13.38 1.87 0.79 0.29 0.60
GK-2A 0.41 7.11 −0.96 0.75 0.43 0.47

Autumn FY-2G 0.45 6.14 0.33 0.68 0.36 0.49
FY-4A 0.34 8.51 0.81 0.65 0.43 0.43
GK-2A 0.35 4.24 −0.28 0.60 0.57 0.32

Winter FY-2G 0.26 2.07 −0.43 0.18 0.56 0.16
FY-4A 0.26 6.58 0.98 0.52 0.54 0.33
GK-2A 0.28 2.20 −0.26 0.34 0.59 0.20
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GK-2A tended to provide less no rain and heavy rain
fall cases across different seasons (Figure 7a-d). 
However, it provided more light rainfall cases (0.1– 
5 mm) relative to ground-based measurements, espe
cially during the summer season.

4.3. Analysis of satellite-based QPEs during the 
storm event

As the geostationary satellite provides precipitation 
estimates with relatively high resolution in both space 
and time, a GEO-based QPE is vital for precipitation 
near real-time monitoring, especially during storm 
event periods. This section evaluated the perfor
mance of FY-2G, FY-4A, and GK-2A QPEs during two 
storm events periods in the year 2020: (1) tropical 

storm Mekkhala and Higos (August 9 to 21 over 
Fujian and Guangdong province, China) and (2) tropi
cal storm Bivi, Maysak, and Haishen (August 26 to 
September 8 in South Korea). Statistical evaluation 
was conducted at three different time steps (e.g. 
6-hourly, 12-hourly, and daily) over Fujian and 
Guangdong province, China, while four different 
time steps (e.g. hourly, 6-hourly, 12-hourly, and 
daily) were used over South Korea as KMA provides 
ground-based measurements of hourly precipitation.

4.3.1 Tropical storm Mekkhala and Higos
Figure 8 illustrates the statistical performance of 
three GEO-based QPEs (i.e. FY-2G, FY-4A, and GK- 
2A) at 13 ground-based stations in Fujian and 
Guangdong provinces, China, from 9 August 2020 

Figure 7. The probability distribution of 6-hourly cumulative precipitation intensities from ground-based stations, FY-2G, FY-4A, and 
GK-2A for (a) spring, (b) summer, (c) autumn, (d) winter, and (e) the entire period in 2020.
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to 21 August 2020. FY-2G generally showed the 
highest station-averaged R (ranged from 0.54 to 
0.60) followed by GK-2A (ranged from 0.49 to 
0.52) and FY-4A (ranged from 0.48 to 0.51) 
(Figure 8c). Similarly, FY-2G yielded the smallest 
station-averaged bias followed by GK-2A and FY- 
4A regardless of the different time steps 
(Figure 8a). FY-4A yielded the highest magnitude 
of RMSE (9.29 to 18.9 mm) among three different 
satellite-based QPEs, while RMSE values from FY-2G 
(7.74 to 12.5 mm) were slightly higher than GK-2A 
(5.86 to 8.99 mm) (Figure 8b). Categorical statistical 
indices summarized in Figures 8d-f indicate that 
VCSI and VHI increased and VFAR decreased with 
respect to the increase of time step (i.e. from 6 
hourly to daily) for all three different QPEs. 
Comparing the magnitude of categorical indices 
from different products, GK-2A showed the lowest 
VFAR and highest VHI and VCSI across different 
time steps, suggesting that GK-2A showed the 
best capability to capture the storm event.

Station-averaged time series of 6-hourly precipita
tion estimates from the three GEO-based QPEs were 
compared against ground-based measurements 
within the Fujian and Guangdong provinces during 
the storm period (Figure 9). The result confirmed that 
all examined QPEs generally yielded similar temporal 
variation with the ground-based measurements. In 
terms of magnitude, GK-2A QPE showed constant 
underestimation while FY-2G and FY-4A QPEs were 
overestimated. Especially, FY-2G and FY-4A QPEs 
tended to overestimate peak precipitation during 
18–19 August, which aligned with the occurrence of 
tropical storm Higos over Fujian and Guangdong pro
vinces. Detailed discussions of the individual GEO- 
based QPEs during the storm period are summarized 
in Section 5.

4.3.2 Tropical storm Bivi, Maysak, and Haishen
Figure 10 represents the statistical performance of the 
three GEO-based QPEs at 95 ground-based stations 
located in South Korea from 26 August 2020 to 

Figure 8. Summary of the station-averaged statistics of FY-2G, FY-4A, and GK-2A across the Fujian and Guangdong provinces, China 
during tropical storm Mekkhala and Higos.

Figure 9. Time series of station-averaged 6-hourly precipitation across Fujian and Guangdong provinces during 9–16 August 2020.
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8 September 2020. The range of station-averaged R did 
not show a significant difference among the three QPE 
products (Figure 10c). However, GK-2A QPE showed 
the smallest magnitude of bias and RMSE, followed 
by FY-2G and FY-4A (Figure 10a). More specifically, 
the bias of FY-4A ranged from −2.39 to 27.9 mm, 
while that of GK-2A ranged from −9.4 to 1.57 mm. 
Comparing the bias at different time steps indicated 
that GK-2A QPEs showed positive (negative) bias dur
ing hourly (daily) timestep while opposite behavior was 
revealed for FY-based products. In terms of RMSE, GK- 
2A showed the lowest RMSE (4.91 to 25.4 mm), fol
lowed by FY-2G (7.96 to 44.9 mm) and FY-4A (9.98 to 

70.9 mm) across South Korea (Figure 10b). For catego
rical indices illustrated in Figure 10d-f, all three exam
ined QPEs showed a similar trend that VHI and VCSI 
increased and VFAR decreased when time stamps 
increased except that VHI decreased from hourly to 
6-hourly timescale. Among the examined QPEs, FY-4A 
yielded the lowest VHI and VCSI and highest VFAR, 
suggesting that FY-4A showed the worst performance 
in capturing the storm event over South Korea.

Again, time series of station-averaged hourly and 
6-hourly precipitation estimates from FY-2G, FY-4A, 
and GK-2A were compared against ground-based pre
cipitation measurements (Figure 11). Although all 

Figure 10. Summary of the station-averaged statistics of FY-2G, FY-4A, and GK-2A across South Korea during Tropical storm Bivi, 
Maysak, and Haishen.

Figure 11. Time series of station-averaged (a) hourly and (b) 6-hourly precipitation across Korea during 9–16 August 2020.
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examined QPE products showed the capability to 
capture the temporal variability, the magnitude of 
precipitation showed discrepancies when compared 
against the ground-based measurements. In the case 
of GK-2A, even though station-averaged goodness-of- 
fit statistics showed better performance than FY- 
based products in Figure 10, GK-2A consistently 
underestimated precipitation at both hourly and 
6-hourly time steps (Figure 11). However, FY-2G and 
FY-4A QPEs overestimated the peak precipitation dur
ing 27 August, 2–3 September, and 6– 
7 September 2020, which aligned with the occurrence 
of the storm event across Korea. Additionally, FY- 
based products showed more deviation from ground- 
based measurements when compared against GK-2A, 
and in turn, resulted in slightly larger station- 
averaged bias and RMSE as summarized in Figure 10b.

In addition, diurnal variations of the station-averaged, 
hourly precipitation from satellite-based QPEs were 
assessed against ground-based measurements 
(Figure 12). Similar diurnal variation was witnessed in 
the ground- and satellite-based precipitation in that 
relatively large variation occurred during the late after
noon to evening (e.g. 15–23 in local time). Among the 
three different GEO-based QPEs, FY-2G showed the 
most similar diurnal variation with the ground-based 
measurements followed by GK-2A and FY-4A. GK-2A 
yielded the least variation among the three examined 
QPEs with constant underestimation of precipitation 
intensity that is also depicted in Figures 10a, 11a. Both 
FY-4A and FY-2G overestimated precipitation during the 
late afternoon to evening. Notably, FY-4A QPE showed 

a more fluctuation in diurnal variation larger dynamic 
diurnal variation of precipitation, resulting in the largest 
station-averaged bias and RMSE depicted in Figure 10.

5. Discussion

FY-2G, FY-4A, and GK-2A QPEs generally exhibited 
a similar variation of precipitation when compared 
against ground-based measurements. However, 
errors and uncertainties in the QPEs are not neglect
able, which are mainly associated with the precipita
tion retrieval algorithm. GEO-based QPE is estimated 
based on the relationship assumed between the 
cloud-top infrared brightness temperature and rain
fall intensity (Upadhyaya et al. 2020), which is not 
always correct. For example, it may mistakenly iden
tify nonprecipitating cirrus clouds as precipitating 
clouds due to their low brightness temperature 
(Scofield and Kuligowski 2003), resulting in an over
estimation of precipitation. The accuracy of GEO- 
based QPEs varied in different seasons with the 
worst performance found during the winter season. 
Previous studies (Vicente, Scofield, and Menzel 1998; 
Upadhyaya et al. 2020) demonstrated that the infra
red rainfall estimation technique performed poorly in 
estimating stratiform precipitation such as underesti
mating rainfall rate in warm-top stratiform cloud sys
tems. However, mid-level stratiform clouds are 
prevalent over East Asia in cold seasons (Wu and 
Chen 2021), which may explain the relatively poorer 
performance of the examined QPEs during the winter 
season. Additionally, the increased dust (Kaufman, 

Figure 12. Diurnal variation of station-averaged, hourly precipitation across Korea during 9–16 August 2020.
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Tanré, and Boucher 2002) and the existence of frozen 
particles and ice clouds (Prigent 2010) during the 
winter complicate the physical rainfall process, 
which further causes problems for the established 
cloud top temperature and rainfall intensity relation
ship (Vicente, Scofield, and Menzel 1998).

Previous studies (Zhu et al. 2018; Wu et al. 2021) 
found the good performance of FY-2G over China. 
For instance, Wu et al. (2021) showed that FY-2G 
yielded the best statistics at daily scale (R = 0.73 
and RMSE = 5.80 mm/day) across mainland China 
relative to FY-2 F and two IMERG products (i.e. 
IMERG-Late and IMERG-Final). However, there 
were no studies analyzing the accuracy of FY-2G 
QPE outside of China. This study evaluated the 
performance of FY-2G both inside and outside of 
the China region. Similar good performance of FY- 
2G in the China region was also witnessed in this 
study, whereas FY-2G exhibited inferior perfor
mance in Japan or South Korea (Table 1). The 
regional dependency of FY-2G statistics is asso
ciated with the ground calibration implemented 
to FY-2G QPE in China (Zhu et al. 2018). FY-2G 
QPE includes a fusion strategy to calibrate satellite- 
based precipitation estimates with ground-based 
measurements. The calibration process uses over 
2000 meteorological stations in China with both 
distance and the angle between the target grid 
and stations considered (Xu et al. 2008; Wu et al. 
2021). However, this ground calibration process 
was only conducted in the China region. 
Therefore, FY-2G QPE yielded higher accuracy in 
the China region than in South Korea or Japan. It 
is also noted that ISD stations used for evaluation 
in the China region may be partially included as 
the ground calibration data for FY-2G. 
Furthermore, some ISD stations that are not 
directly utilized in calibration process might still 
lead to optimistic evaluation if they are located 
close to stations used for the calibration.

FY-4A generally yielded inferior accuracy relative to 
FY-2G and GK-2A with larger bias and RMSE values. 
The relatively poor performance of FY-4A found here 
coincides with previous studies (Gao et al. 2020; Ren 
et al. 2021; Qiu et al. 2021). Gao et al. (2020) found that 
FY-4A failed to capture the spatial characteristics of 
summer precipitation in southern China with the low
est R and largest RMSE at daily scale (R = 0.36 and 

RMSE = 27.51 mm/day). Ren et al. (2021) also 
observed the limited capability of FY-4A QPE in repre
senting summer precipitation in western China at an 
hourly scale (R = 0.21 and RMSE = 13.78 mm/hr). They 
found that FY-4A underestimated the summer preci
pitation in Western China with all hourly precipitation 
estimates less than 30 mm. The relatively poor perfor
mance in FY-4A QPE may be related to the lack of 
a ground calibration process (Gao et al. 2020; Wang 
et al. 2021). Additionally, the AGRI onboard FY-4A 
does not load with a high-precision calibration system 
in visible and infrared channels, which can influence 
the radiometric performance and lead to the misclas
sification of the cloud (Zhong et al. 2021). The mis
classification of cloud may degrade FY-4A QPE 
accuracy as cloud products were utilized to estimate 
precipitation (Min et al. 2017).

GK-2A generally provided a consistent perfor
mance across Northeast Asia with satisfactory accu
racy. Instead of ground calibration, GK-2A calibrates 
QPE using the GPM DPR rainfall product. DPR instru
ment uses dual-frequency (Ka-band at 35.5 GHz and 
Ku-band at 13.6 GHz) to obtain the three-dimensional 
structure of precipitation, which improves the profil
ing of rainfall size, shape, and distribution, especially 
for the rainfall event associated with deep convective 
that cannot be explained by single scattering 
(Battaglia et al., 2015). The quality of the GPM DPR 
rainfall product greatly influenced the accuracy of GK- 
2A QPE. It is noted that GK-2A overestimated the 
frequency of light rain frequency and underestimated 
heavy rain frequency in Section 4.2. Gao et al. (2021) 
found that the DPR rain rate product obviously over
estimated the occurrence for rainfall rate between 0.5 
and 1 mm/hr while it underestimated the frequency 
of rainfall rate larger than 1 mm/hr. As the rainfall rate 
distribution of GK-2A QPEs was calibrated by DPR 
rainfall estimates based on a cumulative distribution 
function matching (Shin, Seo, and Kim 2019), GK-2A 
QPE showed similar distribution characteristics as DPR 
rainfall product.

Additionally, the slight underestimation of summer 
precipitation in GK-2A found in Sections 4.2 and 4.3 
may be associated with the short period of the GPM 
DPR rainfall product that was used for calibration. As 
mentioned in Section 2.2, a priori probability distribu
tion function based on the rainfall intensity from GPM 
DPR from March 2016 to February 2017 was used for 
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GK-2A QPE retrieval. However, according to the Korea 
National Typhoon Center, South Korea underwent tro
pical storms with higher intensity at an abnormally 
delayed landing period during late September to 
October due to the strong El Nino during 2015–2016 
(Hu and Fedorov 2017). Therefore, calibration of GK-2A 
relying on the rainfall intensity of GPM DPR observed 
during March 2016 to February 2017 is insufficient to 
reflect the inter-annual precipitation climatology, 
which can increase the uncertainty of GK-2A.

6. Conclusion

Geostationary meteorological satellite-based QPEs 
provide great potential for near-real-time precipita
tion monitoring, which is crucial for mitigating 
hazards associated with extreme precipitation. This 
study evaluated and compared QPEs from FY-2G, FY- 
4A, and GK-2A against ground-based measurements 
at a continental scale over Northeast Asia during 
the year of 2020. Particularly, this study provided the 
first quantitative evaluation of QPE from GK-2A since 
its launch in 2018.

Overall comparison indicated that FY-2G outper
formed FY-4A and GK-2A in China region due to the 
ground calibration included in the FY-2G QPE retrieval 
and the potential dependency between FY-2G and 
the evaluation data. GK-2A calibrated IR-based preci
pitation estimates with GPM DPR rainfall product and 
exhibited a more consistent performance across the 
study area with satisfactory accuracy. FY-4A QPE used 
in the study is raw precipitation estimate without 
calibration, and thus it provided the lowest accuracy 
with large bias. The findings suggested the impor
tance of including a calibration process for IR-based 
precipitation estimates to improve the overall 
accuracy.

The performance of FY-2G, FY-4A, and GK-2A 
QPEs varied along with the seasons and intensities. 
FY-2G largely overestimated summer precipitation 
while GK-2A underestimated summer precipitation 
at most stations. FY-4A tends to overestimate pre
cipitation in all seasons. Furthermore, FY-2G, FY-4A, 
and GK-2A all showed the poorest accuracy during 
the winter season due to the prevalence of strati
form clouds over East Asia and the existence of 
frozen particles and ice. The errors in QPEs are 
mainly attributed to the precipitation retrieval 

algorithm as well as the data quality of calibration 
data products. Intensity analysis revealed that FY- 
based QPE showed better consistency with 
ground-based measurements for the 6-hourly 
cumulative rainfall between 1 and 20 mm. FY- 
based QPEs usually overestimated the frequency 
of no rain (<0.1 mm) or heavy rainfall (>50 mm) 
cases. On the contrary, GK-2A provided more 
6-hourly rainfall cases between 0.1 and 5 mm and 
underestimated the frequency of no rain or heavy 
rainfall events.

Storm events analysis indicated that FY-2G, FY- 
4A, and GK-2A successfully captured the extreme 
rainfall events, but discrepancies in phase and 
magnitude exist. More specifically, all examined 
QPEs showed the largest uncertainties during the 
rainfall peak, which is related to the different 
retrieval algorithms and calibration schemes for 
the different satellite-based QPEs. FY-2G better 
captured the temporal variation of precipitation 
during the storm events (i.e. larger R) while GK- 
2A showed smaller quantitative errors (i.e. bias and 
RMSE). In case of diurnal variation, FY-2G yielded 
more consistent diurnal variation of precipitation in 
storm events with ground-based measurements 
than GK-2A and FY-4A.

As an important tool for near real-time precipi
tation monitoring and a crucial data source to 
generate IR-microwave merged global precipita
tion estimate products, understanding the accu
racy of GEO-based QPEs is indispensable. Results 
from the study indicated the need to further 
improve IR-based precipitation estimates algo
rithms, especially during the winter season. 
Current IR-based precipitation retrieval algorithm 
mainly relies on the relationship between cloud- 
top brightness temperature and rainfall intensity, 
which may not contain adequate information to 
represent the complex precipitation process. An 
additional calibration step can effectively correct 
the bias in QPEs and improve estimation accuracy, 
but only to some extent depending on the accu
racy of calibration data. Using observations from 
multiple bands based on machine learning 
method may be one potential technique to 
further improve IR-based QPEs (Wang et al. 2021; 
Xue et al. 2021). With improved accuracy, QPEs 
from FY-2G, FY-4A, and GK-2A can be used as 
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a crucial meteorological data set for broader 
hydrological applications such as drought moni
toring (e.g. Standardized Precipitation Index and 
Palmer Drought Severity Index) and flash flood 
warning.
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