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Abstract—This paper proposes an energy efficient Convolu-
tional Neural Network based architecture for detecting different
types of artifacts in multi-channel EEG signals. Our method
achieves an average artifact detection accuracy of 74% and
precision of 92% across seven different artifact types which
outperforms existing techniques in terms of classification ac-
curacy as well as the more common ICA based solution in
terms of computational complexity and memory requirements.
We designed a minimal neural network processor whose Verilog
HDL is configurable for implementing 2n processing engines
(PEs). We deployed our CNN on the processor, placed and routed
on Artix-7 FPGA and examined different number of PEs at
different operating frequencies. Our experiments indicate that
utilizing 4 PEs operating at a clock frequency of 11.1 MHz is
the optimal configuration for our hardware to yield the least
classification energy consumption of 32 mJ accomplished in the
maximum allowed prediction time of 1 Sec. We also implemented
our CNN on TX2 NVIDIA Jetson platform and, by tweaking the
CPU and the GPU frequencies, explored the minimum power and
energy configuration. Our FPGA results indicate that the 4-PE
implementation outperforms the low power configuration of TX2
by 65× in terms of power, and the low energy configuration of
TX2 by 2× in terms of energy per classification. Our CNN-based
FPGA implementation method also outperforms the ICA method
by 11× in terms of energy consumption per classification.

I. Introduction

Electroencephalography (EEG) is one of the most popu-
lar neurophisiological recording techniques due to it’s non-
invasiveness, easy of use and relatively low cost. EEG is used
in a wide variety of neuroscience and engineering applications
such as the monitoring of brain disorders, detecting of stress
or fatigue, and in brain-computer interfaces for augmentative
communication [1]. One of the primary drawbacks of EEG
is it’s proneness for accumulating physiological and non
physiological artifacts ranging from muscle activity to power
line electrical noise [2]. These artifacts severely deteriorate
the quality of underlying EEG signals and thus efficient
detection and removal of these artifacts remains a critical
issue for developing practical EEG-based neurotechnologies.
In addition, these neurotechnologies will need to be deployed
on low-power, embedded systems that a user can easily wear,
requiring power efficient EEG processing algorithms.

Over the years there have been several approaches devel-
oped for the detection and isolation of artifacts within EEG,
the most popular of which is Independent Component Analysis
(ICA) [3]. Auto-regressive models have also recently been

applied with linear classification models for artifact detection
[4]. These techniques, however, are not fully automated and
still require an expert person to laboriously label and tag the
EEG artifacts. Recently, Jafari et al proposed an automated
online artifact detection technique based on ICA and multi-
instance learning (MIL) classifier that achieved a 91.2% arti-
fact detection rate for eye brow raising artifacts in 8 seconds
when running on a CPU [5]. ICA-based techniques require
large datasets in addition to manual identification of artifacts.
Additionally, the large computational complexity and memory
requirements for the ICA make it not suited for real-time
applications on embedded hardware [6].

Convolutional neural networks (CNNs), which have primar-
ily been used for image classification, have recently become a
popular technique for processing and classifying EEG signals
[7], [8], [9]. In this paper, we develop an energy efficient CNN
for artifact detection and implement it on embedded hardware.
We propose a CNN-based model which is able to detect
multiple artifacts from multi-channel EEG data, and explore
hardware platforms for an energy efficient implementation.
Specifically, we design a specialized hardware architecture
for neural network inference composed of a main on-chip
memory, that accommodates the neural network model as
well as the associated feature maps, and is reconfigurable for
implementing 2n processing engines (PEs). We also explore
the least number of PEs that meet the a processing time-limit
of 1 Sec with the lowest energy consumption per forward pass.
We compare our CNN-based model with optimal hardware
implementation on an FPGA to a commercial of-the-shelf
(COTS) implementation on an Nvidia TX2 board. The main
contributions of this paper are twofold:

1) An energy efficient CNN architecture for automated EEG
artifact detection with low computational and memory
requirements.

2) A configurable hardware architecture with 2n Processing
Engines (PEs) implemented in Verilog, placed and routed
on Artix-7 FPGA.

II. EEG data and Artifacts

In order to assess and evaluate the accuracy of our tech-
nique, we used a previously recorded EEG dataset where
participants manually performed a series of different occular or
muscular artifacts (i.e. jaw clenching, eye blinking, etc.) EEG
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Fig. 1: Proposed CNN Architecture which consists of 5 layers. 2 convolutional layers, 2 max pool layers and 1 softmax layer.

data were recorded using a 64 channel BioSemi ActiveTwo
system with a sampling rate of 512Hz. Participants were
required to perform a series of noise-inducing body, facial,
head or eye movements, which were gathered as part of a
larger study [10]. It was up to the participants to determine
the precise choreography of each movement and to perform
movements which felt more natural to them. Each movement
was performed as a separate set of 20 repetitions. A screen
was put in place in order to remind the participants of the
movement they should make. A male voice initially counted
down from 3 at a rate of every 2 Sec followed by a tone every
2 Sec. This procedure was done for each set. The participants
would make the movements in time with the vocal commands.
They were advised to perform the tasks in the first second
of the 2 Sec period and to relax in the remaining 1 Sec.
Additionally, each participant performed a baseline recording
session where they were instructed to keep still and look
straight at a blank computer screen for around 8 seconds at
the start of every run. EEG data from this baseline session
was used as "clean" (or artifact-free) data. Artifacts considered
are clenching jaw (CJ), move jaw (MJ), blink eyes (BE),
move eyes leftwards (EL), move eyes rightwards (ER), raise
eyebrows (RE) and rotate head (RH).

III. CNN-based Artifact Detection Architecture

A. EEG Pre-processing

Our CNN operates on the raw EEG data so that it can learn
to extract the relevant features required for artifact detection.
As such, minimal pre-processing of the raw EEG data was
performed aside from removing the DC offset such that the
EEG signals are centered around zero. EEG epochs of size
64×512 were extracted from the artifact and baseline data
creating a total of around 250 trials per subject for each artifact
type.

B. Neural Network Architecture

The input to our CNN is a two dimensional EEG epoch (64
channels × 512 time points). The full network architecture,
shown in Figure 1, consists of two convolutional layers,
two max-pool layers and ends with a softmax layer for
classification. The first 2-d convolution layer consists of 128
kernels of size 64×3. this ensures that the an adequate spatial
filter is learned in the first layer. The second 2-d convolution
layer learns 64 kernels of size 1×3. Each convolution layer is
followed by a max-pooling layer with a pool size of 1×2. All
layers are followed by a rectified linear unit (ReLU) activation
function. The output of the second max pooling layer is then

flattened into a single vector and passed to a softmax layer
consisting of two outputs for binary classification to detecting
whether or not an artifact is present in the EEG data.

All the layers of the network have their weights initialized
from a normal distribution. The network was trained using the
RMSprop optimization method and a learning rate of 0.0001.
Categorical cross-entropy was used as the loss function. In
total, the network has 65280 parameters, and requires 35.4
million operations (either multiplication or addition) in order
to process one input frame. Note, that this is much lower than
CNNs for image classification which usually contain millions
of parameters [11].

IV. Classification Analysis and Results

Our architecture is evaluated for 9 patients for 7 different
artifacts using a transfer learning setting where models are
trained and tested on EEG data from different subjects. This
allows us to test the ability of our CNN model to generalize
across subjects when detecting EEG artifacts, a task that is
difficult for traditional methods. We trained a cross-subject
model using a leave-one-subject-out cross validation procedure
where data from one subject was held out for testing and data
from the remaining subjects were used for training. On average
3790 samples where used for training and 490 samples where
used for testing. We compare our results with previous work
that uses an autoregresive model + SVM classifier for artifact
detection on the same dataset [4].

Results in Table I show that our model detects all 7 artifacts
by average accuracy of 73.6% which ranges between 64.3%
and 84.8%. The raise and lower eyebrows artifact was easiest
to detect with average accuracy of 84.8%, while the moving
jaw had lowest detection accuracy of 64.3%. In Table I the
autoregressive (AR) [4] baseline technique achieved 68.42%
of average accuracy using the leave-one-subject-out cross-
validation technique which ranges between 52% and 95%. Our
CNN model achieves a statistically significant improvement
in detection accuracy on 5 of the 7 EEG artifacts using a
one sample, two-sided t-test with a significance threshold of
p < 0.05.

In the next section we explore the most suitable platform
that is most power/energy efficient for our CNN model. For
this purpose, we implement our model on both an FPGA
and an Nvidia TX2 with various configurations in terms of
number of PEs and/or frequency range in order to find an
implementation that meets the application deadline (<1 Sec
classification window) with the least power and energy con-
sumption budgets.



TABLE I: Detection accuracy and precision for different artifacts averaged for all patients using leave one subject out cross-
validation technique among 9 patients. Results are compared against Auto-Regressive baseline technique [4]. Values in the
parentheses indicate the standard deviation. Asterisks (*) indicate significant accuracy improvement over the AR technique.

Artifact Code CJ MJ BE EL ER RE RH Average
This work: Accuracy 74.1(9.2) 64.3(11.8) 76.1(10.9)* 77.5(9.6)* 72.6(9.1)* 84.8(7.9)* 73.3(14.2)* 73.6(11.8)*

AR: Accuracy [4] 95* 76 74 49 52 75 58 68.42
This work: Precision 94.7(5.1) 91.4(9.8) 94.3(5.6) 94.0(5.6) 92.6(7.8) 99.1(1.1) 92.7(6.1) 92.0(7.3)
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Fig. 2: Block diagram of FPGA hardware used to implement the
proposed CNN model. The hardware architecture includes a top-level
state-machine which controls the convolutionTop, convolution, max-
pooling and Softmax blocks as well as all memory blocks. PE refers
to number of convolutions that can be processed in parallel. Here n
is an integer which ranges from 0 to 3.

V. Hardware Architecture Design

The details of our hardware architecture and implementation
are shown in Figure 2. The hardware consists of one shared
memory and is reconfigurable to have up to 2n processing
engines (PE), where n is an integer ranging from 0 to 3. The
primary operational components of the hardware consist of:
(1) the Convolution block that performs the convolution layer
operations with ReLU activation logic, (2) the Max-Pooling
block that performs max-pooling operations and (3) the Fully-
Connected block that includes a softmax activation function
in the last layer for classification.

As figure 2 shows, the Convolution block consists of one
adder/subtractor, one multiplier, one cache for saving filters,
input feature maps, output feature maps, a multiplexer and a
state machine block. The input EEG data for the hardware
model are converted to 18-bit fixed-point precision. We use
18-bit format because that’s the default data format inside
the block RAMs (BRAMs) for most Xilnix FPGAs. The
model weights, trained offline on a standard machine using
tensorflow, are converted from 32-bit floating point values

to 18-bit fixed-point values. This serves to increase compu-
tational efficiency since floating-point arithmetic is complex
in hardware and requires more resources and execution time.
EEG data is then passed through the Convolution block to be
processed by the convolution and ReLU activation functions.
The output of the ReLU function is truncated to 18-bits and
saved into the feature map memory. This data is then pased
as input to the The Max-Pooling block, which contains a few
registers and a comparator. After max-pooling, the results are
saved into the main feature map memory. Finally, the Fully-
Connected block, which is used only in the last layer of the
neural network in this work, consists of a serial dot product
engine and dynamic sorting logic for the softmax activation
function. After finishing computation for the softmax layer,
the results are saved into the main memory which overwrites
the outdated intermediate data from previous layer.

VI. Hardware Implementation and Results

A. FPGA implementation

The hardware abstraction is implemented using Verilog
HDL, with 1, 2, 4, and 8 number of Processing Engines (PEs),
and each configuration is synthesized, placed and routed on
low power Artix-7-200T FPGA using Xilinx Vivado tools.
The choice of FPGA was such that its on-chip memories
are sufficient to store the neural network model as well as
the intermediate data. We implemented our case study with
different numbers of PEs and decided that 4 is the optimal
amount that not only meets the 1 Sec processing time limit for
this application but also yields the lowest energy consumption
per forward pass through the network.

Table II provides the implementation results for 1PE, 2PE,
4PE and 8PE. The clock frequency for each PE configuration
is set such that the prediction deadline of 1 Sec is met.
The results show that the least amount of power and energy
consumption are obtained from PE4 operating at 11.1 MHz
with the maximum allowed execution process time of 1 Sec.
Figure 3 demonstrates the impact of increasing number of
PEs on power, energy and processing latency using a fixed
clock frequency of 37.7 MHz. Using our CNN-based model
implementation, we show that increasing the number of PEs
leads to an increase in power consumption, a decrease in
processing latency, and a upward concave shape for energy
consumption with the PE4 configuration consuming the least
amount of energy. A power consumption breakdown of post-
place and route implementation for 4PE on the Artix-7 FPGA
was calculated using Vivado power tool. 83% of the power was
consumed by the on-chip BRAM memories of the FPGA.



TABLE II: Implementation results on Xilinx Artix-7 FPGA
with different number of PEs. For each number of PE config.
The frequency is set such that the processing takes near 1
second to detect the artifact and meet the deadline.

Config.1 Config.2 Config.3 Config.4
No. of PEs 1 2 4 8

Frequency (MHz) 37.7 18.5 11.1 5.55
Power (mW) 54 36 32 35
Energy (mJ) 54 36 32 35
No. of Slices 3423 3863 4635 6576

BRAM 107 139 204 334
DSP 32 32 40 95

Fig. 3: Effect of number of used PE on power, latency and energy
consumption. For all configurations in this plot, the clock frequency
is set to 37.7 MHz

B. TX2 implementation

In order to evaluate the energy-latency trade-off on other
COTS products, the trained tensorflow model was deployed on
an Nvidia Jetson TX2 SoC with different frequency selection
for the CPU cores and for the GPU. The TX2 board features
a 256-core Pascal GPU, 8GB of LPDDR4 memory with
a 128-bit interface, and a CPU complex that combines a
dual-core NVIDIA Denver 2 and a quad-core ARM Cortex-
A57. The result of our model implementation of the TX2
board, shown in Table III, indicates that the lowest power
consumption is obtained when both the CPU and GPU are
set to their minimal frequency range, whereas the minimum
energy per classification is obtained when the CPU and GPU
are configured to their highest performance.

VII. Conclusion

In this paper, we proposed an energy efficient CNN-based
architecture for detecting artifacts in EEG that achieved an
average accuracy of 74% across all artifacts and subjects. On
average, our CNN architecture significantly outperformed the
baseline auto-regressive method [4] on the majority of the
tested artifact types. Additionally, our CNN method is a fully
automated technique which doesn’t require manual labeling
of the EEG trials which was required in [4]. We implemented
the CNN processing hardware in Verilog, reconfigurable with

TABLE III: Implementation results of power, energy and
latency on TX2 board with different CPU and GPU frequency
setting. All four combinations of the minimum and maximum
frequency for the CPU and GPU are tested.

Config.1 Config.2 Config.3 Config.4
CPU Freq. (MHz) 346 346 2035 2035
GPU Freq. (MHz) 140 1300 140 1300

Latency (mS) 84.1 68.5 17.9 11.3
Throughput (fps) 11.9 14.6 55.9 88.5

Power (W) 2.1 2.9 6.1 6.8
Energy (mJ) 177 199 110 76

2n number of PEs, and determined that 4 PEs operating at
frequency of 11.1 MHz implemented on Artix-7 FPGA is
the optimal configuration to meet all of our application re-
quirements (power, latency, and energy). We also implemented
our CNN on the TX2 board and examined four frequency
ranges for CPU and GPU. Our optimal implementation on the
FPGA indicates that the 4-PE implementation is 65× more
power efficient and 2× more energy efficient than TX2 when
configured for the minimum power and energy consumption,
respectively. When compared to other related work, [5], the
energy consumption on the FPGA for one classification is 11×
that of ICA method on the same dataset.
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