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Abstract 24 

 25 

Planetary boundary layer height (PBLH) is often used to characterize the structure of the lower 26 

atmosphere. Aerosol lidar, a ground-based remote sensing method, provides the vertical 27 

distribution of aerosol at a high temporal resolution observation data, from which, the PBL 28 

structure and the position of the PBL top can be comprehensively studied. PBLH determination 29 

with lidar data depends primarily on the characteristic turbulent motions in the atmosphere and 30 

the geophysical location. However, lidar determination of PBLH over densely populated 31 

subtropical locations has rarely been discussed; thus, developing retrieval techniques suitable to 32 

these areas is necessary. In this study, four PBLH determination methods (Gradient, δ–threshold, 33 

Haar wavelet transform, and hybrid image processing) are applied to estimate the PBLH from 34 

lidar observations over an urban area in East Asia, and one – the Gradient method – relied on 35 

potential temperature measurements from an unmanned aerial vehicle (UAV) flights to validate 36 

our results. Our results indicate that a combination of the gradient method and δ-threshold 37 

method can provide better results, in terms of diurnal pattern, than using either method 38 

individually. Furthermore, the Haar wavelet and the Hybrid image processing can detect the PBL 39 

development comparably well, but both methods are dependent on their initial conditions and 40 

optimized algorithm settings. In addition, the accompanying UAV observations are conclusively 41 

shown to have a high degree of efficacy for validating the lidar data. This research highlights that 42 

a combination of PBLH determination methods can better describe the PBLH evolution 43 

throughout a day in some cases, while in others less common determination methods are proving 44 

useful, and a suite of retrieval methods should still be explored for precisely mapping the PBL in 45 

densely populated subtropical areas. 46 

 47 

Keywords: micro-pulse lidar (MPL); unmanned aerial vehicle (UAV); planetary boundary layer 48 

(PBL) 49 

 50 

51 
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INTRODUCTION 52 

 53 

The planetary boundary layer (PBL), or atmospheric boundary layer (ABL), is part of the 54 

troposphere directly influenced by surface forcing (Stull, 1988). To investigate the structure of 55 

the PBL, vertically-resolved observations from remote sensing technologies, such as high towers, 56 

balloons, lidar, wind profilers etc., are widely used (Hellmann et al., 1915; Peppler, 1921; 57 

Mildner, 1932; Davis et al., 2000; Lewis et al., 2013). Aerosol lidar is a mainstream technology 58 

which using aerosol as tracer to illustrate PBL structure and further apply to air quality study. 59 

Micro-Pulse Lidar (MPL) is a ground-based, autonomous and compact remote sensing 60 

technology used for aerosol and thin cloud vertical profiling throughout the atmosphere 61 

(Spinhirne, 1993; Welton et al. 2002). MPL is highly sensitive to aerosol scattering and utilizes 62 

dual-polarization elastic-backscatter lidar, based on Rayleigh and Mie scattering theory. MPL 63 

retrieves the aerosol scattering coefficient, translatable to a mass concentration or often to the 64 

normalized relative backscatter (NRB) signal, and illustrates the aerosol distribution clearly at 65 

distinguishable levels up to 25 km under ideal conditions, especially at daytime when the signal-66 

to-noise ratio is the highest (He et al., 2012). MPL also provides volume depolarization ratio data, 67 

a measurement of aerosol symmetry (Flynn et al, 2007). Aerosols within the PBL are usually 68 

capped by an inversion layer, while significantly lower aerosol concentrations are observed in the 69 

free troposphere. Therefore, the intensity of the lidar backscatter signals reduce significantly from 70 



ACCEPTED M
ANUSC

RIP
T

 

 

 4 

the top of the PBL to the free troposphere, and these dramatic changes are used to estimate the 71 

planetary boundary layer height (PBLH) (Gaudio et al., 2015). 72 

MPL data are widely used to determine the PBLH because of its ability to monitor aerosol 73 

backscatter and vertically profile at a high temporal resolution. To this end, several groups have 74 

developed a variety of PBLH retrieval techniques from the lidar NRB/ backscatter signals (Davis 75 

et al., 2000; Lucchese and Mitra, 2001; Brooks, 2003; Müller et al., 2010; Bravo-Aranda et al., 76 

2017; Li et al., 2017), with most of the methods able to capture general trends in the convective 77 

daytime PBL development. Although, lidar is best suited to determine daytime PBLH (i.e. mixing 78 

layer height), certain nighttime conditions are still suitable for this type of analysis, including 79 

stable nocturnal conditions. However, due to residual layers and near-field measurement 80 

limitations, resolving nocturnal PBLH trends still has a high associated uncertainty. For instance, 81 

Li et al. (2007) found that the gradient method and idealized backscatter method, both lidar 82 

methods for PBLH determination, were suitable in high signal-to-noise ratio conditions, but 83 

failed at low signal-to-noise ratio conditions whether in the daytime or nighttime. Thus, there is 84 

significant room to improve the existing algorithms for optimizing daytime determinations and 85 

realizing nighttime determinations. Other retrieval methods include combining WCT (wavelet 86 

covariance transform) (Berkoff et al., 2003; Bravo-Aranda et al., 2017) and basic image analysis 87 

techniques to remove the influence of clouds and residual layers, which has correlated well with 88 
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sounding observations and modelled PBLH from GEOS-5 (The Goddard Earth Observing 89 

System Model, Version 5) (Lewis et al., 2013). However, different forms of wavelet analysis, for 90 

example, Haar wavelet and Mexican Hat wavelet, have been found to be highly dependent on 91 

different initial values or different initial amplitudes. 92 

Determination of PBLH is dependent on retrieval methods affected by geophysical locations, 93 

of which the optimal method is still debated in the literature. Therefore, the objective of this study 94 

is to develop retrieval techniques suitable for PBLH detection in densely populated subtropical 95 

locations. In contrast to previous studies using the NRB for PBLH retrieval, we used the 96 

depolarization ratio (δ) for PBLH retrieval as has been done in a few recent studies. De Tomasi et 97 

al. (2011) used δ to discuss how the PBL differences between a continental area to a coastal area. 98 

Bravo-Aranda et al. (2017) used wavelet analysis to compare with PBLH derived from lidar 99 

depolarization ratio and microwave radiometer data, and found the former was consistently 100 

shallower during the daytime, but at nighttime there was better agreement. The δ is the ratio of 101 

the cross-polarized NRB signals and the total (both cross-polarized and co-polarized) NRB 102 

signals, and its value implies particle shapes or nonsphericity of particles. In addition, using δ to 103 

tracing the PBLH, is a useful parameter to distinguish between aerosol types such as dust, 104 

anthropogenic, and fresh/aged aerosols. Under a well-mixing PBL condition, locally assembled 105 

particles populate within PBL with similar δ values. The MPL measurements provide useful 106 
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information with a high temporal and special resolution which independently confirms the PBLH 107 

estimation. Furthermore, in this study, UAV (unmanned aerial vehicle) is utilized as an 108 

independent PBLH determination method and validation for the lidar methods. PBL development 109 

characteristics are dependent on geophysical location. The purpose of this study is to find 110 

retrieval techniques suitable for PBLH detection in densely populated subtropical locations; this 111 

paper focuses primarily on retrieval methods suitable over urban areas in East Asia. 112 

This article is organized as follows. Descriptions of the experiment and PBLH determination 113 

methods are described in methods section. Results comparing several PBLH determination 114 

methods and validation by UAV observation are presented in results and discussion section. 115 

Finally, conclusions and future prospects are presented in last section. 116 

 117 

METHODS 118 

 119 

Experiment and Instrumentation 120 

We carried out this experiment nearby the Taiwan CWB (Central Weather Bureau) sounding 121 

station in Banqiao, New Taipei City from June 21 – September 19, 2017 (Fig. 1). The total 122 

population of New Taipei City is nearly four million, and Banqiao is the most populous district 123 

(Fig. 1(a)). Banqiao is located on flat terrain near the western boundary of the Taipei basin (Fig. 124 

1(b)), which also includes much of Taipei City, the capital. The southwest monsoon prevails in 125 
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the summer-months, but primarily the weather in New Taipei City is affected by the basin's 126 

topography. Furthermore, the mountains around the Taipei basin lock the hot air mass near the 127 

surface, and therefore the temperature is usually higher than the surrounding area, enhancing the 128 

heat island effect. As a result, the main source of pollution in Banqiao during the summertime is 129 

from local anthropogenic emissions. Days without influence from long-range transport were 130 

chosen in order to test the PBLH retrieval methods under only local influence and compared 131 

across similar conditions. Observational data from MPL and UAV were used in this study, and 132 

aerosol layers at different heights were distinguished through lidar observation profiles. During 133 

the long-range transport or transboundary events, the NRB signal or the depolarization ratio of 134 

this layer will be higher than the surrounding air mass and remain aloft. 135 

Our MPL system was manufactured by Sigma Space Corporation (now Droplet Measurement 136 

Technologies), and the specifications are shown in Table 1. For the experiment, the MPL was 137 

installed at the Banqiao sounding station. We programmed the MPL for a vertical resolution of 75 138 

meters and temporal resolution of 1 minute. Routine maintenance was carried out following the 139 

guidance of MPLNET (The NASA Micro-Pulse Lidar Network), including monthly dark count 140 

and after-pulse calibrations. However, instead of using the operational data provided by 141 

MPLNET, the raw data were processed locally based on Welton et al (2002) and our Level 1 data, 142 
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including NRB and volume depolarization ratio (δ), followed the methods described by the 143 

previous studies (Welton et al., 2002; Flynna et al., 2007; Welton et al., 2018). 144 

In this study, we used MPL observations and UAV measurements to characterize the structure 145 

of the PBL including the location of the PBL top. The UAV measurements were used as a general 146 

validation of the MPL-derived PBLH determination methods over the denoted area. In 147 

summertime, the PBLH can easily reach above 2 km at noon, therefore, we chose the Sky-surfer 148 

X8 (X-UAV) fixed-wing drone with a maximum height of 4 – 5 km, and flight time of 1 – 2 149 

hours with a max payload about 200 g. Throughout the experiment (Ke et al., 2018), the UAV 150 

was equipped with a Windsond system (Sparv Embedded AB Company) to measure 151 

meteorological parameters, including pressure, temperature, and relative humidity (RH), from 152 

which potential temperatures (θ) were calculated to construct the vertical profiles and 153 

characterize the PBL structure. The UAV was flown from a site ~2 km north of the sounding 154 

station.  Before the experiment, quality assessments of the UAV sensors quality assessments were 155 

conducted by intercomaprison with a meteorological standard Vaisala RS41 radiosonde launched 156 

simultaneously from the Banqiao sounding station, as reported in our previous publication (Ke et 157 

al., 2018). We have analyzed the radiosonde data, along with UAV observations in determining 158 

PBL height in a previous publication (Ke et al., 2018). The results showed that the UAV system 159 

successfully delineated the low-level (0-3 km) atmospheric profile with parameters (temperature, 160 
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RH, and pressure) in good agreement with the data observed by meteorological radiosondes and 161 

MPL, especially for the daytime PBL when the discontinuous layer is associated with an 162 

inversion layer easily observed by sounding data. The intercomparison revealed good correlations 163 

of temperature (r > 0.999) and relative humidity (r > 0.95) between the two measurements (Fig. 164 

2). However, a larger difference was observed during the daytime flight suggesting uneven 165 

radiation heating of the sensors. Another comparison was made for UAV with Windsond sensor 166 

versus balloon with Vaisala RS41 was conducted on August 22 and August 25, 2017 during the 167 

measurement period (Fig. 3). To note, the Windsond and Vaisala flight paths were different after 168 

launch in this case. The meteorology parameter profiles include air temperature, dew point 169 

temperature and RH. Although the flight paths diverged, the results again highlight the reliability 170 

of the UAV profile observations, especially for determining the PBLH (~ 920 hPa on August 22, 171 

2017 and ~ 850 hPa on August 25, 2017).  172 

 173 

PBLH determined by Gradient method 174 

The gradient method has been applied to determine PBLH in several studies (Boers et al., 1984; 175 

Senff et al., 1996). We apply the method to both the volume depolarization ratio from MPL 176 

observation and potential temperature from UAV measurements. The gradient method is based 177 

on the following differential Eq. (1) 178 

 179 
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𝑔 𝑧 = −
𝑑[𝐵(𝑧)]

𝑑𝑧
 1 
 

(1) 

 180 

where B(z) is some range-dependent atmospheric variable (e.g. volume depolarization ratio or 181 

potential temperature in this study), dz is the vertical resolution of the atmospheric variable, and 182 

g(z) is the first derivative of B(z). The maximum g(z) is the position at the top of the PBL. 183 

Based on the meteorological conditions in the Taipei basin in summer, we assumed that 184 

aerosols are mostly distributed beneath the PBL top, thus MPL gradient observation data was 185 

used to calculate the PBLH. Considering that the maximum amplitude range of the PBLH should 186 

be less than 210 m when using the gradient method (Noonkester et al., 1974; Flamant et al., 187 

1997), the data were averaged for 5 minutes before the gradient calculation. Also, because of 188 

near-field limitation (Campbell et al., 1982; Berkoff et al., 2003) we removed the data under 225 189 

m agl (above ground level). In addition, we chose cases on relatively clean days without any 190 

long-range transport or transboundary events and with low surface PM2.5 concentrations. On 191 

these days, it is assumed aerosols were only contributed by local emissions and thus, the range of 192 

depolarization ratio could be more easily distinguished. There is usually an inversion layer just 193 

above the PBL, so we monitored this with the potential temperature calculated from UAV 194 

measurements and compared to the MPL observations. 195 

 196 

PBLH determined by δ - threshold method 197 
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Most locally emitted aerosols originate at the surface. When there is less mixing with 198 

transboundary aerosols, PBL aerosols in the Taipei basin are assumed to have similar optical and 199 

microphysical properties throughout the PBLH. Thus, we used the volume depolarization ratio 200 

(δv) to describe diurnal PBLH change. δv is provided by the new type-4 polarized MPL systems 201 

and can be used to describe the aerosol shape (Flynn et al., 2007). The volume depolarization 202 

ratio by MPL is the ratio of the cross-polarized NRB signals and the total (both cross-polarized 203 

and co-polarized) NRB signals. From the measurement principle, MPL cannot determine the 204 

particle depolarization ratio (δp) directly. Other studies have tabulated the relationship between 205 

aerosol types and δp, where urban aerosol is associated with a δp of approximately 0.04, dust with 206 

a δp approximately 0.3, and other polluted air masses (e.g. biomass burning, sea-salt) are 207 

associated with different values (Young, 1982; Müller et al., 2010; Baars et al., 2016), while the 208 

Cabannes line suggests a δp of approximately 0.004 for pure molecular signal (Young, 1982). 209 

According to our measurements in the Taipei basin, δv values between 0.028 and 0.032 were 210 

considered representative of urban aerosol and used in this study, while any value lower was 211 

considered a primary molecular lidar return, thus indicating the free troposphere and delineation 212 

of the PBL top. Different sources of aerosol are associated with different depolarization ratio, 213 

thus, the threshold may change case by case. 214 

 215 
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PBLH determined by Haar Wavelet Covariance Transform 216 

Wavelet covariance transform (WCT) is a general transform process used to study the 217 

characteristics of conditional sampling techniques (Gamage et al., 1993; Senff et al., 1996). WCT 218 

has been applied to many scientific research studies (Davis et al., 2000; Brooks et al., 2003) 219 

because it can emphasize the magnitude in the signal gradient. WCT is based on Eq. (2) 220 

 221 

𝑊𝑓 ∆ℎ, 𝑧𝑚 = ∆ℎ−1  𝑓 𝑧 ℎ  
𝑧−𝑧𝑚

∆ℎ
 𝑑𝑧

𝑧𝑡

𝑧𝑏
  1 

 
(2) 

 222 

where f(z) is the signal (e.g. lidar volume depolarization ratio profile in our study), z is altitude, zt 223 

and zb are the top and bottom of the lidar volume depolarization ratio profile, respectively, and h 224 

is the mother function of Haar wavelet. We used Haar wavelet (h) defined by Eq. (3). The size of 225 

h is determined by zm the position at which is h centered (translation function), and ∆h, the 226 

amplitude or spatial scale. This technique uses different combinations of zm and ∆h to arrive at the 227 

best results. The location of the maximum value of Wf indicates the altitude of the PBLH. 228 

 229 

ℎ  
𝑧 − 𝑧𝑚
∆ℎ

 =

 
 
 

 
 −1,𝑓𝑜𝑟 𝑧𝑚 −

∆ℎ

2
≤ 𝑧 ≤ 𝑧𝑚

1, 𝑓𝑜𝑟 𝑧𝑚 ≤ 𝑧 ≤ 𝑧𝑚 +
∆ℎ

2
 

0, 𝑓𝑜𝑟 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒       

 1 

 

(3) 

 230 
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PBLH determined by Hybrid Image Processing: clustering data by color labeling 231 

Image processing has been used recently in many science and technology applications, 232 

including self-driving automobiles, UAVs, artificial intelligence and machine learning. Also, the 233 

image processing technique has been applied to find PBLH. Lolli et al. (2011) used the 2D-Sobel 234 

algorithm (Sobel et al., 1968) to obtain a gradient image and the PBLH profile by retrieved the 235 

range-corrected backscatter signals profile (Lolli et al., 2011). Lewis et al. (2013) used the Canny 236 

edge detection algorithm (Canny, 1986) to identify the upper and lower bounds of PBL top 237 

features in the Wavelet Covariance Transform (WCT) image (Lewis et al., 2013). Vivone et al. 238 

(2020) applied the Morphological Image Processing Approach (MIPA) which performances more 239 

stable than the other benchmarking methods and shows a fast running time (Vivone et al., 2020). 240 

Our study combines several image processing methods and algorithms into a Hybrid Image 241 

Processing method that can detect PBLH and also reduce the noise within the MPL data.  242 

 The Hybrid Image Processing method enhances the character of the data through clustering 243 

and clearly reveals the diurnal changes.  First, we split the depolarization ratio image (Fig. 4(a)) 244 

into its three RGB channels (R for red, G for green, and B for blue), and then chose two of the 245 

channels to de-saturate and give the best contrast which emphasized the region we need easily (i.e. 246 

the area beneath PBL top). Next, we applied a Gaussian filter (Deng and Cahill, 1993) to smooth 247 
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the color transition and reduce noise. To further decrease noise, we then set up a bi-level 248 

threshold (Lucchese and Mitra, 2001) to create a pure black and white image (Fig. 4(b)). 249 

The final and most important step in our image processing is to use the Image Region 250 

Segmentation method (Ester et al., 1996) and group the color blocks by neighboring distance 251 

relations. In Fig. 4(c), the MPL depolarization ratio profile has been separated into two colors, 252 

green and pink, allowing us to easily omit any outliers, consisting of the green points and some 253 

higher pink points. The green points represent the noise which is removed, and the pink area 254 

represent the aerosols within the PBL. Finally, selected the tip points from the pink area, which 255 

indicate the PBLH (Fig. 4(d), light gray points), and applied them back into the original 256 

depolarization ratio image (e.g. shown by magenta dots in Fig. 7(c)). 257 

 258 

RESULTS AND DISCUSSION 259 

 260 

To emphasize the performance of algorithm testing, it is necessary consider cases without too 261 

many clouds, a residual layer, or transported pollutants. Due to the rare use of lidar for PBLH 262 

determination over subtropical locations, we were seeking to develop the retrieval techniques 263 

suitable to these areas for only the best of conditions. Thus, we chose cases less influenced by 264 

clouds and transportation events, to ensure the algorithm performed well. Cloudy conditions may 265 
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be heavily influenced from transported air masses and not dominated by local atmospheric 266 

thermodynamics convection, also the boundaries of clouds are difficult to clarify clearly, this may 267 

lead unreliable results during PBL detection. Two periods of MPL observations were selected: 268 

June 23 – 26, 2017 (Case 1) and August 29, 2017 (Case 2). The meteorological conditions during 269 

both periods were suitable for us to do the algorithm testing. The average visibility of these two 270 

cases was 20.75 km and 23.07 km, with an average temperature of 30.3 °C and 30.6 °C, and 271 

relative humidity of 71.8 % and 66.2 %, respectively. The air quality was fairly clean for a 272 

populated area, with mean PM2.5 concentrations of 11.0 μg m-3 and 6.9 μg m-3, respectively, 273 

lower than Taiwan’s EPA daily average air quality standard (35.0 μg m-3).  274 

 275 

Combining the Gradient and δ-threshold methods and comparing to the WCT 276 

The PBLH retrieval results for Case 1 are shown in Fig. 5. During noontime, clouds 277 

contaminated the signal as indicated by the high noise level of δ above the PBL. The results of 278 

the Gradient method (Fig. 5(a)) demonstrate that the PBLH estimation was affected by cloud 279 

contaminated signals between 11:00 to 14:00, and resulted in an unstable fluctuation. In contrast 280 

to the Gradient method, the PBLH retrieved by the δ-threshold method (Fig. 5(b)) shows a more 281 

stable daytime pattern than from the Gradient method, indicating the δ-threshold method is less 282 

sensitive to and more reliable during the presence of clouds. The δ-threshold method reduces the 283 

effect from the clouds around noontime. For the nighttime retrievals, the Gradient method yielded 284 
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a lower and smoother PBLH compared to the δ-threshold method, suggesting residual layer 285 

aerosols may cause the overestimation of nighttime PBLH by the δ-threshold method. 286 

Considering the pros and cons of these two methods, we combined them, applying the gradient 287 

method results at nighttime (20:00-07:00) and the δ-threshold method results during daytime 288 

(07:00 to 20:00), and arrived at a more reasonable solution (Fig. 5(c)).  289 

Continuing with the Case 1 analysis, the Haar wavelet transform exhibited a less noisy 290 

retrieval of daytime PBLH (Fig. 6) and was smoother than the results in Fig. 5, but the nighttime 291 

PBLH from the Haar wavelet transform was on average 200 meters higher than in the 292 

combination result (Fig. 5(c)). The higher nighttime PBLH could be due to a more homogenous 293 

aerosol distribution than in daytime, creating difficulties for the Haar wavelet transform method 294 

to detect the maximum change of each signal profile. In conclusion to the Case 1 analysis, the 295 

Gradient method outperformed the other two methods under nighttime conditions, while the δ-296 

threshold and Haar wavelet methods proved more reliable for the daytime.  297 

 298 

Comparison of PBLH evolution from retrievals and UAV measurements 299 

Two-hour routine UAV measurements were only available for Case 2 in this study and thus 300 

were included for PBLH comparison. Both the MPL observations and the all-sky images (not 301 

shown here) indicate clear sky and low aerosol concentrations during Case 2. On August 29th, we 302 

collected seven UAV-profiles performed at local time 06:00, 08:00, 10:00, 12:00, 14:00, 15:30, 303 

and 17:30. The θ profiles (blue lines) from the UAV are shown in Fig. 7(c). The values of the 304 



ACCEPTED M
ANUSC

RIP
T

 

 

 17 

PBLH for each flight were 606 m, 636 m, 1226 m, 1445 m, 1379 m, 983 m, and 830 m, 305 

respectively (Table 2). 306 

Fig. 7 shows the PBLH retrievals by the combination of the Gradient method and δ-threshold 307 

method combination, the Haar wavelet transform, the hybrid image processing, and seven 308 

profiles from UAV observations. The method combination was suitable when the PBL had clear 309 

development and the asymmetric aerosol distribution decreased with increasing height. However, 310 

the δv features show larger variability which might be associated with a turbulent boundary layer 311 

in this case. The performance of the Gradient method during nighttime largely failed, showing 312 

large PBLH variations, while the δ-threshold method showed unreasonably low PBL heights 313 

during the daytime (Fig. 7(a)). In addition, the Haar wavelet transform performed better than the 314 

previous two methods (Fig. 7(b)), capturing not only the nocturnal boundary layer but also the 315 

convective boundary layer during the daytime. The PBLH of each method during the UAV flight 316 

time is reported in Table 2. The UAV-derived PBLH was similar to the hybrid image processing 317 

result most of the time. The largest differences between them were at 06:00 and 12:00, 318 

representing sunrise and local noon, time period and near the peak of active convection. 319 

Table 2 also lists the PBLH difference between each retrieval method and UAV measurements 320 

at each flight time on August 29. It shows that the results from these algorithms underestimated 321 

the UAV-derived PBLH most of the time. Both the Haar wavelet transform and Hybrid image 322 

processing performed well, with the latter was consistently closer to the UAV PBLH results. The 323 

PBLH difference between UAV measurements and the Hybrid image processing were 308 and 324 

128 meters at 06:00 and 12:00, respectively. The UAV-derived PBLH is based on observation 325 

parameters representing the meteorological state of the atmosphere, while MPL observes the 326 

aerosol vertical distribution, thus, the PBLH determinations may not always agree. Uncertainties 327 

in the UAV data may have increased with turbulence and influenced the meteorological 328 
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parameters and thus PBLH estimation. Moreover, the discrepancies between the MPL and UAV 329 

methods may be due to complex vertical mixing which can occur during these transition times. 330 

For example, the significant changes in solar heating and transportation emissions can introduce 331 

variability into the retrievals in the morning hours; at noontime, the boundary between the PBL 332 

top and free atmosphere can be more unstable due to solar heating and cloud thermodynamic 333 

processes. In this case, we found that cloud dissipation happened around 12:00, which indicates 334 

the structure of the inversion layer is breaking up, implying the PBLH retrievals may have greater 335 

uncertainty. 336 

CONCLUSIONS 337 

 338 

In this study, we used three common algorithms (i.e., the Gradient method, the δ-threshold 339 

method, and the Haar wavelet transform), and one new algorithm (the hybrid image processing) 340 

to determine the planetary boundary layer height (PBLH) based on aerosol lidar data and 341 

compared these results to our observations using a UAV. The experiment was carried out in a 342 

subtropical city (New Taipei City, Taiwan) in the summer of 2017. Two cases were selected and 343 

studied to understand the effectiveness of using different PBLH retrieval methods and their 344 

suitability for the subtropical meteorological conditions. 345 

Our results show that combining the Gradient method and the δ-threshold method can produce 346 

better results than using only one of the methods. However, using these two methods may not 347 

always be the optimal choice. In general, the performance of the Haar wavelet transform in both 348 

cases is better than the PBLH detected by the Gradient method or the δ-threshold method. In Case 349 
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2, the Haar wavelet showed a better performance than the combined method on a low pollution 350 

day. For the PBLH comparison, in Case 2, the temperature inversions monitored by the UAV 351 

observation profiles were most consistent with the hybrid image processing method. The vertical 352 

aerosol distribution variability caused PBLH discontinuities on both the Gradient method and δ-353 

threshold method. The result of hybrid image processing is consistent with the position of the 354 

inversion in the UAV observation. In addition, we must acknowledge the limitations of our study. 355 

First of all, our discussions are limited to clean and cloud-free conditions which do not fully 356 

represent the gamut of real cases. Second, cloud boundary needs to be more clearly defined. 357 

Third, different sources of aerosol are associated with different depolarization ratios; thus, the 358 

threshold may change on a case-by-case basis. Finally, at high aerosol concentrations, the 359 

boundary between long-range transport or transboundary aerosol and local emissions becomes 360 

ambiguous. 361 

The Hybrid Image Processing showed good performance of retrieving PBLHs, and UAV 362 

provided a suitable validation technique to verify continuous atmospheric boundary layer 363 

observations. Although the novel hybrid image processing technique proved to be highly 364 

functional in one scenario, other methods still proved useful under other circumstances (e.g. 365 

different times of day, different environmental conditions), and it is suggested that more cases 366 
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covering more conditions should be analyzed with the suite of retrieval techniques described here 367 

and with support of UAV.  368 

 369 

ACKNOWLEDGMENTS 370 

 371 

We would like to thank NASA MPLNET for their great help with the MPL technology. We 372 

would like to thank the Falcon team (falcon.atm.ncu.edu.tw) for their UAV measurement support, 373 

Peaceful Pioneer Technology Co. Ltd for providing the technical instrument support, Banqiao 374 

sounding weather station for the MPL maintenance support during the campaign. We would like 375 

to thank the Ministry of Science and Technology under grant 107-2111-M-008-026. We would 376 

like to thank the National Center for High-performance Computing for computer time and 377 

facilities, and Ms. Hsiao, who is a member of the Color and Illumination technology group at 378 

National Taiwan University of Science and Technology, for providing ideas and discussion on 379 

the image processing. Also, we are thankful for the English editing from Mr. Sebastian Stewart, 380 

and Mr. Pavel Alam Mushi.  381 

 382 

REFERENCES 383 

 384 

Baars, H., T. Kanitz, R. Engelmann, D. Althausen, B. Heese, M. Komppula, J. Preißler, M. 385 

Tesche, A. Ansmann, and U. Wandinger. (2016). An overview of the first decade of Polly NET: 386 

an emerging network of automated Raman-polarization lidars for continuous aerosol profiling. 387 



ACCEPTED M
ANUSC

RIP
T

 

 

 21 

Atmos. Chem. Phys.16(8): 5111-5137. 388 

Berkoff, T., et al. (2003). Investigation of overlap correction techniques for the Micro-Pulse Lidar 389 

NETwork (MPLNET). Geoscience and Remote Sensing Symposium. IGARSS'03. IEEE. 390 

Boers, R., Eloranta, E. W., & Coulter, R. L. (1984). Lidar observations of mixed layer dynamics: 391 

Tests of parameterized entrainment models of mixed layer growth rate. J. Climate Appl. 392 

Meteor. 23(2): 247-266. 393 

Bravo-Aranda, J. A., G. de-Arruda-Moreira, F. Navas-Guzmán, M. Granados-Muñoz, J. 394 

Guerrero-Rascado, D. Pozo-Vázquez, C. Arbizu-Barrena, F. Olmo, M. Mallet, and L. Alados-395 

Arboledas. (2017). A new methodology for PBL height estimations based on lidar 396 

depolarization measurements: analysis and comparison against MWR and WRF model-based 397 

results. Atmos. Chem. Phys. Discuss. 17(11): 6839-6851. 398 

Brooks, I. M. (2003). Finding boundary layer top: Application of a wavelet covariance transform 399 

to lidar backscatter profiles. J. Atmos. Ocean. Tech. 20(8): 1092-1105. 400 

Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. 401 

Scott, and I. H. Hwang. (2002). Full-time, eye-safe cloud and aerosol lidar observation at 402 

Atmospheric Radiation Measurement program sites: Instrument and data processing, J. Atmos. 403 

Oceanic Technol. 19: 431–442. 404 



ACCEPTED M
ANUSC

RIP
T

 

 

 22 

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. 405 

Intell., 8(6): 679-698. 406 

Davis, K. J., N. Gamage, C. Hagelberg, C. Kiemle, D. Lenschow, and P. Sullivan. (2000). An 407 

objective method for deriving atmospheric structure from airborne lidar observations. J. Atmos. 408 

Ocean. Tech. 17(11):  1455-1468. 409 

De Tomasi, F., M. M. Miglietta, and M. R. Perrone. (2011). The growth of the planetary 410 

boundary layer at a coastal site: a case study. Bound.-Lay. Meteorol. 139(3), 521-541. 411 

Deng, G., and L. Cahill. (1993). An adaptive Gaussian filter for noise reduction and edge 412 

detection. paper presented at Nuclear Science Symposium and Medical Imaging Conference. 413 

Ester, M., H.-P. Kriegel, J. Sander, and X. Xu. (1996). A density-based algorithm for discovering 414 

clusters in large spatial databases with noise. paper presented at Kdd.  415 

Flamant, C., J. Pelon, P. H. Flamant, and P. Durand. (1997). Lidar determination of the 416 

entrainment zone thickness at the top of the unstable marine atmospheric boundary layer. 417 

Bound.-Lay. Meteorol., 83(2): 247-284. 418 

Flynna, C. J., A. Mendozaa, Y. Zhengb, and S. Mathurb. (2007). Novel polarization-sensitive 419 

micropulse lidar measurement technique. Opt. express 15(6): 2785-2790. 420 

Gamage, N., and C. Hagelberg. (1993). Detection and analysis of microfronts and associated 421 



ACCEPTED M
ANUSC

RIP
T

 

 

 23 

coherent events using localized transforms, J. Atmos. Sci. 50(5): 750-756. 422 

Gaudio, P., M. Gelfusa, A. Malizia, S. Parracino, M. Richetta, L. De Leo, C. Perrimezzi, and C. 423 

Bellecci. (2015). Detection and monitoring of pollutant sources with Lidar/Dial techniques. J. 424 

Phys. Conf. Ser. 425 

He, T.-Y., S. Stanič, F. Gao, K. Bergant, D. Veberič, X.-Q. Song, and A. Dolžan. (2012). 426 

Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based 427 

measurements. Atmos. Meas. Tech. 5(5): 891-900. 428 

Hellmann, G. (1915). Uber die Bewegung der Luft in den unterste Schichten der Atmosphare. 429 

Meteorol. Z. 34: 273-285. 430 

Ke L.-J., S.-H. Wang*, H.-Y. Huang, Y.-C. Wang, H.-F. Chuang, R.-Y. Hung, Z.-C. You, S.-C. 431 

Chang. (2018). Observations on atmospheric boundary layer structure using an unmanned 432 

aerial system. J. Photogramm. Remote Sensing, 23: 103-113. (in Chinese) 433 

Lewis, J. R., E. J. Welton, A. M. Molod, and E. Joseph. (2013). Improved boundary layer depth 434 

retrievals from MPLNET. J. Geophys. Res. Atmos.118(17): 9870-9879. 435 

Lolli, S., R. Delgado, J. Compton, and R. Hoff. (2011). Planetary boundary layer height retrieval 436 

at UMBC in the frame of NOAA/ARL campaign. Lidar Technologies, Techniques, and 437 

Measurements for Atmospheric Remote Sensing VII, International Society for Optics and 438 



ACCEPTED M
ANUSC

RIP
T

 

 

 24 

Photonics. 439 

Li, H., Y. Yang, X. M. Hu, Z. Huang, G. Wang, B. Zhang, and T. Zhang. (2017). Evaluation of 440 

retrieval methods of daytime convective boundary layer height based on lidar data. J. Geophys. 441 

Res. Atmos. 122(8): 4578-4593. 442 

Lucchese, L., and S. K. Mitra. (2001). Colour image segmentation: a state-of-the-art survey. 443 

Proceedings-Indian National Science Academy Part A 67(2): 207-222. 444 

Mildner, P. (1932). Uber Reibung in einer speziellen Luftmasse. Beitr. Phys. Fr. Atmos. 19: 151-445 

158. 446 

Müller, D., B. Weinzierl, A. Petzold, K. Kandler, A. Ansmann, T. Müller, M. Tesche, V. 447 

Freudenthaler, M. Esselborn, and B. Heese. (2010). Mineral dust observed with AERONET 448 

Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: 449 

Shape‐independent particle properties. J. Geophys. Res. Atmos. 115(D7). 450 

Noonkester, V., D. Jensen, J. Richter, W. Viezee, and R. Collis. (1974). Concurrent FM-CW 451 

radar and lidar observations of the boundary layer. J. Appl. Meteorol. 13(2): 249-256. 452 

Peppler, A. (1921). Windmessungen auf dem Eilveser Funkenturm. Beitr. Phys. Fr. Atmos. 9: 453 

114-129. 454 

Senff, C., J. Bo  ̈senberg, G. Peters, and T. Schaberl. (1996). Remote sensing of turbulent ozone 455 



ACCEPTED M
ANUSC

RIP
T

 

 

 25 

fluxes and the ozone budget in the convective boundary layer with DIAL and Radar-RASS: A 456 

case study. Contrib. Atmos. Phys. 69: 161–176. 457 

Sobel, I., Feldman, G. (1968). A 3 × 3 isotropic gradient operator for image processing. Presented 458 

at a talk at the Stanford Artificial Project. 459 

Spinhirne, J. D. (1993). Micro pulse lidar. IEEE Transactions on Geoscience and Remote Sensing 460 

31(1): 48-55. 461 

Stull, R. B. (1988). An introduction to boundary layer meteorology. Springer Science & Business 462 

Media. 463 

Vivone, G., G. D'Amico, D. Summa, S. Lolli, A. Amodeo, D. Bortoli, and G. Pappalardo. (2020). 464 

Atmospheric Boundary Layer height estimation from aerosol lidar: a new approach based on 465 

morphological image processing techniques. Atmos. Chem. Phys. Discussions, 1-37. 466 

Welton, E. J., K. J. Voss, P. K. Quinn, P. J. Flatau, K. Markowicz, J. R. Campbell, J. D. 467 

Spinhirne, H. R. Gordon, and J. E. Johnson. (2002). Measurements of aerosol vertical profiles 468 

and optical properties during INDOEX 1999 using micropulse lidars. J. Geophys. Res. Atmos 469 

107(D19). 470 

Welton, E. J., and J. R. Campell. (2002). Micro-pulse Lidar Signals: Uncertainty Analysis. J. 471 

Atmos. Oceanic Technol. 19, pp. 2089-2094. 472 



ACCEPTED M
ANUSC

RIP
T

 

 

 26 

Welton, E. J., S. Stewart, J. R. Lewis, L. Belcher, J. R. Campbell, and S. Lolli. (2018). Status of 473 

the NASA Micro Pulse Lidar Network (MPLNET): overview of the network and future plans, 474 

new version 3 data products, and the polarized MPL. EPJ Web of Conferences. 176. 475 

Young A. T. (1982). Rayleigh scattering. Phys. Today. 42–48.  476 



ACCEPTED M
ANUSC

RIP
T

Table 1. The specifications of Type-4 MPL.  

Transmitter 
Laser wavelength 532 nm 

Laser Pulse Frequency 2500 Hz 
Laser Pulse Energy 6 – 8 μJ 

Receiver 
Telescope Type Maksutov Cassegrain 

Focal Length 2400 mm 
Diameter 178 mm 

Field of View 100 μrad 
Data System 

Detector Avalanche APD, photon counting mode 
Range resolution 5/ 15/ 30/ 75 m (programmable) 

Temporal resolution Minimum: 1 s (programmable) 
Maximum range 45 km 

 

Table 2. The PBLH retrievals and differences between each retrieval method and UAV-derived 

result at each flight times on August 29. 

 
Time (LT) 

06:00 08:00 10:00 12:00 14:00 15:30 17:30 
Methods 

(Difference) 
PBLH (meter) 

UAV 606 636 1226 1445 1379 983 830 

Combination 554 
(-52) 

824 
(188) 

861 
(-365) 

388 
(-1057) 

774 
(-605) 

680 
(-303) 

375 
(-455) 

Haar wavelet transform 295 
(-311) 

596 
(-40) 

1054 
(-172) 

1328 
(-117) 

1028 
(-351) 

1143 
(-160) 

459 
(-371) 

Hybrid image processing 
300 

(-306) 
635 
(1) 

1225 
(-1) 

1575 
(130) 

1340 
(-39) 

995 
(12) 

840 
(10) 
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Figure Captions 1 

Fig. 1. (a) Population map of Taiwan; (b) locations of Banqiao sounding / MPL station 2 

(24.99°N, 121.44°E) and UAV flight site (25.02°N, 121.44°E) in the Taipei basin. 3 

Fig. 2. The correlation between the Vaisala RS41 radiosonde and the Windsond system. R 4 

values indicate the correlation coefficients. (a)-(b) November 9, 2017 (08:00 LT); (c)-(d) 5 

November 27, 2017 (20:00 LT). (a) and (c) temperature (°C, blue dots); (b) and (d) relative 6 

humidity (%, green dots). 7 

Fig. 3. Comparison of UAV measurements and Sounding observations on August 22, 2017 8 

(08:00 LT, (a)-(b)) and August 25, 2017 (11:00 LT, (c)-(d)). For the temperature and RH plots, 9 

the blue lines and the brown lines represent the data collected by UAV and Sounding, 10 

respectively. For the dewpoint, the light blue lines and orange lines represent the results 11 

calculated from the data of UAV measurements and Sounding measurements, respectively. 12 

Fig. 4. An example for clustering data by color labeling. (a) The depolarization ratio 13 

measurement by MPL on August 29, 2017 at Banqiao station; (b) Bi-level thresholding; (c) 14 

Image region segmentation; (d) Locating the tip points. 15 

Fig. 5. The retrieval results of Case 1. (a) Gradient method; (b) δ-threshold method; (c) 16 

Combination of Gradient method (purple dot) and δ-threshold method (magenta dot). 17 

Fig. 6. The retrieval result from the Haar wavelet transform of Case 1. The light brown area 18 

represents the region within the PBL. Therefore, the upper edge of this area is the PBL top. 19 

Fig. 7. Comparison of the PBLH by using different methods in Case 2. (a) Combining the 20 

Gradient method (in purple dot), and δ-threshold method (in magenta dot); (b) Haar wavelet 21 

transform; (c) θ profile from UAV measurements; the PBLH calculated from this profile is 22 

shown as short-horizontal blue lines, and the result of hybrid image processing as pink dot. 23 

24 
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 25 
Fig. 1. (a) Population map of Taiwan; (b) locations of Banqiao sounding / MPL station 26 

(24.99°N, 121.44°E) and UAV flight site (25.02°N, 121.44°E) in the Taipei basin. 27 

28 
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 29 

 30 
Fig. 2. The correlation between the Vaisala RS41 radiosonde and the Windsond system. R 31 

values indicate the correlation coefficients. (a)-(b) November 9, 2017 (08:00 LT); (c)-(d) 32 

November 27, 2017 (20:00 LT). (a) and (c) temperature (°C, blue dots); (b) and (d) relative 33 

humidity (%, green dots). 34 

35 
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 36 
Fig. 3. Comparison of UAV measurements and Sounding observations on August 22, 2017 37 

(08:00 LT, (a)-(b)) and August 25, 2017 (11:00 LT, (c)-(d)). For the temperature and RH plots, 38 

the blue lines and the brown lines represent the data collected by UAV and Sounding, 39 

respectively. For the dewpoint, the light blue lines and orange lines represent the results 40 

calculated from the data of UAV measurements and Sounding measurements, respectively. 41 

42 
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43 

44 
Fig. 4. An example for clustering data by color labeling. (a) The depolarization ratio45 

measurement by MPL on August 29, 2017 at Banqiao station; (b) Bi-level thresholding; (c) 46 

Image region segmentation; (d) Locating the tip points.47 

48 
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 49 

 50 
Fig. 5. The retrieval results of Case 1. (a) Gradient method; (b) -threshold method; (c) 51 

Combination of Gradient method (purple dot) and -threshold method (magenta dot). 52 

53 
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 54 

 55 
Fig. 6. The retrieval result from the Haar wavelet transform of Case 1. The light brown area 56 

represents the region within the PBL. Therefore, the upper edge of this area is the PBL top. 57 

58 
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 60 
Fig. 7. Comparison of the PBLH by using different methods in Case 2. (a) Combining the 61 

Gradient method (in purple dot), and δ-threshold method (in magenta dot); (b) Haar wavelet 62 

transform; (c) θ profile from UAV measurements; the PBLH calculated from this profile is 63 

shown as short-horizontal blue lines, and the result of hybrid image processing as pink dot. 64 

 65 
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