
Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback Please support the
ScholarWorks@UMBC repository by emailing
scholarworks-group@umbc.edu and telling us what
having access to this work means to you and why it’s
important to you. Thank you.

mailto:scholarworks-group@umbc.edu

Proceedings of Deep Learning Inside Out (DeeLIO):
The First Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, pages 89–99

Online, November 19, 2020. c©2020 Association for Computational Linguistics

89

On the Complementary Nature of Knowledge Graph Embedding, Fine
Grain Entity Types, and Language Modeling

Rajat Patel and Francis Ferraro
University of Maryland, Baltimore County
{rpatel12, ferraro}@umbc.edu

Abstract
We demonstrate the complementary natures
of neural knowledge graph embedding, fine-
grain entity type prediction, and neural lan-
guage modeling. We show that a language
model-inspired knowledge graph embedding
approach yields both improved knowledge
graph embeddings and fine-grain entity type
representations. Our work also shows that
jointly modeling both structured knowledge tu-
ples and language improves both.

1 Introduction

The surge in large knowledge graphs—e.g., Free-
base (Bollacker et al., 2008), DBpedia (Auer et al.,
2007), YAGO (Suchanek et al., 2007)—has in-
duced knowledge graph-based applications. Prop-
erly making use of this structured knowledge is
a prime challenge. Knowledge graph embedding
[KGE] (Bordes et al., 2013; Socher et al., 2013)
addresses this problem by representing the nodes
(entities) and their edges (relations) in a continuous
vector space. Learning these representations de-
duces new facts from and identifies dubious entries
in the knowledge base. It also improves relation
extraction (Weston et al., 2013), knowledge base
completion (Bordes et al., 2013) and entity resolu-
tion (Nickel et al., 2011).

Entity typing can provide crucial constraints and
information on the knowledge contained in a KG.
While historically this has been modeled as ex-
plicitly structured knowledge, and recent work has
modeled the contextual language in order to make
in-context entity type classifications, we argue that
language modeling techniques provide an effective
approach for modeling both the explicit and im-
plicit constraints found in both structured resources
and free-form contextual language.

Meanwhile, while language modeling [LM] has
historically been a core problem within natural lan-
guage processing (Rosenfeld, 1994), recent deep

Barack
Obama United

States

Washington
DC

Hawaii

Lawyer /person/politician

birthplace
is a typeprofession

lives in

location

Joint-kg-fnet-lm

Barack Obama gave a speech to congress

Barack Obama gave a speech to congress in Washington DC
sentence generation

Figure 1: Our joint learning framework learns the
representation for the entity “Barack Obama’s” in the
same embedding space as that of the given input con-
textual description, “Barack Obama gave a speech to
Congress.” Further, by learning the entity type of ‘/per-
son/politician’, the model provides a better contextual
understanding of the underlying entity.

learning advances have been very successful in con-
vincing the community of the power and flexibility
of language modeling (Peters et al., 2018; Devlin
et al., 2019; Yang et al., 2019, i.a.).

Building off of insights and advances in knowl-
edge graph embedding, entity typing, and language
modeling, we identify and advocate for leveraging
the complementary nature of knowledge graphs,
entity typing, and language modeling. In it, we
introduce a comparatively simple framework that
uses powerful, yet well-known, neural building
blocks to (jointly) learn representations that simul-
taneously capture (1) explicit facts and information
stored in a knowledge base, (2) explicit constraints
on facts (exemplified by entity typing), and (3) im-
plicit knowledge and constraints communicated via
natural language and discourse. Figure 1 provides
an overview of the joint learning framework pro-
posed in this work: an entity (“Barack Obama”)
along with its relations are represented in a continu-
ous vector space. The framework also understands
the underlying type (“/person/politician”) for the
given entity by learning the entity representation
with contextual understanding (“Barack Obama

90

gave a speech to Congress”). By using the type and
the factual information the framework enhances the
comprehension of the focus entity in downstream
applications like language modeling.1

We note that others have explored what KG
facts have already been learned by specific, ad-
vanced/contemporary LMs (Petroni et al., 2019).
That work utilized a pre-trained BERT model and
queried what types of KG facts it contains. In addi-
tion, our primary goal is not broad, state-of-the-art
performance—though we demonstrate that very
strong performance is achievable. Rather, our goal
is to examine what the complementary strengths,
and evident limitations, of language modeling tech-
niques for knowledge and entity type represen-
tation are. In doing so, we show that our joint
framework yields empirical benefits for individual
tasks. Our models leverage context-independent
word embeddings, and we specifically eschew lan-
guage models pre-trained on web-scale data.2 Our
results further suggest that schema-free approaches
to knowledge graph construction/embedding and
fine grained entity typing should be studied in
greater detail, and competitive, if not state-of-the-
art, performance can be obtained with compara-
tively simpler, resource-starved language models.
This has promising implications for low-resource,
few-shot, and/or domain-specific information ex-
traction needs.

Using publicly available data, our work has four
main contributions. (1) It advocates for a language-
modeling based knowledge graph embedding archi-
tecture that achieves state-of-the-art performance
on knowledge graph completion/fact prediction
against comparable methods. (2) It introduces a
neural-based technique based on both knowledge
graph embedding and language modeling to predict
fine-grain entity types, which yields competitive
through state-of-the-art performance against com-
parable methods. (3) It proposes the joint learning
of factual information with the underlying entity
types in a shared embedding space. (4) It demon-
strates that learning a knowledge graph embedding

1Though the entity typing examples here could be inter-
preted as being hierarchical, our method neither assumes nor
requires any type hierarchy.

2We do not deny that current pre-trained language mod-
els can be effective for other language-based tasks beyond
language modeling. However, the reason we do not use trans-
former LMs like BERT or GPT-2 is because the amount of
data they are pre-trained with can make it difficult to (a) fairly
compare to previous work (is it the modeling approach, or the
underlying, large-scale data at work?), and (b) identify and
track the benefits of learning our tasks jointly.

model and language model in a shared embedding
space are symbiotic, yielding strong KGE perfor-
mance and drastic perplexity improvements.3

2 Background

The underlying information in the knowledge bases
is difficult to comprehend and manipulate (Wang
et al., 2014). A vast number of knowledge graph
embeddings techniques have been proposed over
the years to mirror the entities and relations in
the knowledge graphs. RESCAL (Krompaß et al.,
2013) is one of the first semantic-based embedding
technique that captures the latent interaction be-
tween the entities and the relation. A model such
as RESCAL can use graph properties to improve
the underlying entity and relation representations
(Padia et al., 2019; Balazevic et al., 2019; Min-
ervini et al., 2017). A more simplified approach is
defined in DistMult (Yang et al., 2014) by restrict-
ing the relation matrix to a diagonal matrix.

Neural Tensor Network (NTN) (Socher et al.,
2013) is one such technique that combines the re-
lation specific tensors with head and tail vector
representation over non-linear activation function
mapped to hidden layer representation. Transla-
tional methods like TransE (Bordes et al., 2013) use
distanced based models to represent entities and the
relationships in the same vector space Rd. TransH
(Wang et al., 2014) overcomes the shortcomings
of TransE by modeling the vector representation
with relations specific hyperplane. TransR (Lin
et al., 2015), TransD (Ji et al., 2015) model the
representation similar to TransH by having relation
specific spaces and decomposing the relation spe-
cific projection matrix as a product of two vector
representations respectively.

Recognition of entity types into coarse grain
types has been explored by researchers over the
past two decades. Neural approaches have brought
advances in extending the prediction problem from
coarse grain entity types to fine-grain entity types.
Work by Ling and Weld (2012) was one of the first
attempts in predicting the fine-grain entity types.
The work framed the problem as multi-class multi-
label classification. This work also led to an im-
portant contribution of a labeled dataset FIGER,
widely used as a benchmark dataset in measuring
the performance of fine-grain entity type prediction
architectures. Ren et al. (2016a) introduced the

3Our code is available at https://github.com/rajathpatel23/
joint-kge-fnet-lm.

https://github.com/rajathpatel23/joint-kge-fnet-lm
https://github.com/rajathpatel23/joint-kge-fnet-lm

91

method of automatic fine-grain entity typing by us-
ing hierarchical partial label embedding. Shimaoka
et al. (2016) introduced a neural fine-grain entity
type prediction architecture that uses semantic con-
text with self-attention and handcrafted features
to capture semantic context needed for fine-grain
type prediction. Xin et al. (2018b) showed that
analyzing sentences with a pre-trained language
model enhanced prediction performance. Zhang
et al. (2018a) introduced a document level context
and signifies the importance of mention level at-
tention mechanism along with the sentence-level
context in enhancing the performance of fine-grain
entity prediction. Xu and Barbosa (2018) enhanced
neural fine-grain entity typing by penalizing the
cross-entropy loss with hierarchical context loss
for the fine-grain type prediction.

Language modeling has seen great progress in
recent times. Bengio et al. (2000) pioneered the
renewed use of distributed representation for deal-
ing with the dimensionality curse imposed by the
statistical methods. Their language model used
recurrent neural networks for dealing with long se-
quences of text. Mikolov et al. (2010) extended
the idea of building the recurrent neural network-
based language models with an improved feedback
mechanism of backpropagation in time.

We are not the first to examine the intersection
of knowledge graph embedding and language mod-
eling. Ristoski and Paulheim (2016); Cochez et al.
(2017) directly embed RDF graphs using language-
modeling based techniques. Ahn et al. (2017) and
Logan IV et al. (2019) have more recently lever-
aged information from a knowledge base to im-
prove language modeling. However, in addition
to knowledge graphs and language modeling, we
additionally consider fine-grain entity typing.

With the success of contextualized vector repre-
sentations and the availability of large-scale, pre-
trained language models, there have been a number
of efforts aimed at improving the knowledge im-
plicitly contained in word and sentence representa-
tions. For example, Bosselut et al. (2019) introduce
COMET, which describes a framework to learn and
generate rich and diverse common-sense descrip-
tions via language models (e.g., the autoregressive
GPT-2). Similarly, Zhang et al. (2019) and Peters
et al. (2019) provide insights into aspects of LM on
downstream NLP tasks. While we share the overall
goal of improving knowledge representation within
language modeling, the short-term goals are dif-

Word
Emebddings

Final
State

Feed	
Forward	

Architecture

Triplet	(Leon	W	Johnson,	Institution,	California	Institute	of	Technology)

sigmoid

Initial	
State

Plausibility
Prediction

Output	from	
final

time	step

Figure 2: Knowledge Graph Embedding as language
modeling, where triples are “tokenized” into word em-
beddings and the computed, sequential output states are
used to predict triple correctness.

ferent, as we focus on individual facts, rather than
traditional background/commonsense knowledge,
and demonstrating the complementary nature of
KGE, entity typing, and LM.

3 Methodology

This section introduces the framework for jointly
learning knowledge graph embedding (KGE), fine
grain entity types (ET) and language models (LM).
It uses a multi-task learning architecture built over
baseline architectures for all three tasks. We begin
by introducing LM-inspired knowledge graph em-
bedding and fine grain entity typing architectures;
we describe the joint learning architectures in §5.
Fundamentally, our approach relies on appropriate
and select parameter sharing across the KGE, ET,
and LM tasks in order to learn these models jointly.
While joint learning or multi-task learning through
shared parameters have been examined before for a
number of tasks, we argue that this parameter shar-
ing is a very effective way to improve KGE, ET,
and/or LM (for a particular baseline). Its simplicity
is a core benefit.

3.1 Knowledge Graph Embedding as a
Language Model

The architecture in Figure 2 embeds the factual
entities and the relations. Let G be a knowledge
graph (KG) with nodes V and edge E, where V is
a set of entities e1, . . . , e|V | which are connected

92

to each other by edges E. E is a set of K relations
r1, . . . , rk. The architecture learns to embed the
entities and relations into a (traditionally dense)
vector space. Given the head entity ei, relation rk
and tail entity ej , we predict whether a given triplet
xi = (ei, rk, ej) is true (in the KG).

The model is a combination of a bi-
LSTM (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) and a feed-forward
architecture. In the spirit of language modeling,
we represent each triple xi input to the architecture
as a sequence of n tokens (xi1 , xi2 , .., xin). These
tokens are represented in a continuous vector
space by vector vit with dimension d, where
vid ∈ Rd. The bi-LSTM layer produces a learned
representation of each token by maintaining two
hidden states for each word: the forward state

−→
hit

learns representation from left to right (Eq. (1)) and
the backward state

←−
hit learns the representation

from right to left (Eq. (2)):
−→
hit = bi-LSTM(W−→

h
xit + V−→

h

−→
h it−1 + b−→

h
) (1)

←−
hit = bi-LSTM(W←−

h
xit + V←−

h

←−
h it+1 + b←−

h
) (2)

hit = concat[
−→
hit ,
←−
hit]. (3)

The forward and the backward states of the bi-
LSTM layer are concatenated to produce a sequen-
tially encoded representation hi for each time step t
given the input sequence xi. The bi-LSTM weight
matricesW and V and b are learned during training.
In principle the bi-LSTMs can be stacked, though
we found not stacking to be empirically effective.

Though the bi-LSTM produces a sequence of
hidden states, we summarize the information cap-
tured by it in a single, “final” state Cfinal. This state
is then used to represent the information encoded
by the whole sequence for the subsequent classifi-
cation task. We let the rightmost state represent the
“final” state, i.e., Cfinal = hin .

4

The feed-forward architecture is a multi-layer
perceptron with L = 3 rectified linear hidden lay-
ers (ReLU). The input to the feed-forward layer
is a learned final cell state representation Cfinal
from the bi-LSTM sequence encoder. The feed-
forward process captures the information from
the learned sequence encoder and outputs a trans-
formed representation zl from the final output layer:

4In early experiments we tried other approaches, such as
averaging all hidden representation to compute the final state
(Cfinal =

1
n

∑
t hit . These caused neither large improvements

nor decreases in performance. As a result, we advocate here
for the simpler computation of Cfinal = hin .

zl = ReLU(Wlzl−1 + bl), with z0 = Cfinal, and
layer-specific weights Wl and biases bl.

The output representation zL is then used to cal-
culate the semantic matching score for the factual
input xt. This score is calculated by incorporating
the learned representation zL with the sequentially
encoded final sequence step representation ht. The
product is then passed through a sigmoid activa-
tion function, f(xt; θ) = σ(zTl ht), where θ is a
collection of network parameters used for training
the language model-inspired knowledge graph em-
bedding architecture. These parameters are jointly
learned by minimizing a weighted cross-entropy
loss with `2 regularization (Eq. (4)):

J(θ) = − 1

N

N∑
i=0

k · yi · log(f(xt; θ))+

(1− yi) · log(1− f(xt; θ)) + λ||θ||2 (4)

where k is the weight assigned to the positive sam-
ples during the training, yi represents the original
labels, and λ is the regularization parameter.

As a result of our KGE method, we do not pro-
duce or store single, canonical representations of
entities and relations. We argue that the lack of
a canonical entity embedding is a large benefit of
our model. First, it is consistent with the push for
contextualized embeddings. Second, we believe
that, even in a KG, an entity’s precise meaning or
representation should depend on the fact/tuple that
is being considered.5

3.2 Neural-Fine Grain Entity Type
Prediction

Recognizing the type of the given entity has been
an integral part of tasks like knowledge base com-
pletion (Bordes et al., 2013), question answering
and co-reference resolution. Ling and Weld (2012)
extended the problem of entity type prediction to
fine-grain entity types. Given an input vector Vx
for entity x, type embedding matrix θ, the function
g predicts all the possible entity types t for given
entity x as g(Vx; θ) = θTVx. The model learns
the parameters θ by optimizing the hinge loss to
classify a given entity into all the possible types T:

J(θ) =
T∑
t=0

max(0, 1− yt · g(Vx; θ)). (5)

5If a single representation is needed, note that because we
tokenize entity, types, relations, and arguments into words, we
could generate a single representation by combining the, e.g.,
entity’s individual word embeddings according to the LM.

93

In	the	early	1980s	{,	Ray	Brown	met	Diana	Krall	in	a	restaurant	in}		Nanaimo		{,British	Columbia	}

Left	Context Right	Contexttruncated	 Mention

Mention	representation Context
Representatoin

Embed Features

Feed	Forward	
Archicture

Attention	
Layer

Type	Prediction

Pre-trained
Word	

Embeddings

Average	
Mention	
Encoder

sigmoid

Plausibility
Prediction

Feed	
Forward	

Architecture

Output	from	
last	time	Step

Triplet	(Nanaimo	is	located	in	British	Columbia)

Triplet	Input

Figure 3: The joint learning architecture for training
KGE and entity typing takes in both factual triplets and
context information for an entity. Parameters of the ar-
chitecture are trained to learn both the factual informa-
tion as well the corresponding entity types.

An entity is predicted to be of type t if g(x; θ) is
greater than a given threshold value τ (typically,
τ = 0.5, though it can be set empirically).

The architecture in Figure 3 shows different sets
of embedding-based features used to predict the
entity type t. Word-level features and context level
features—word spans to the left and right of the
entity—are taken into consideration. The feature
design used here is similar to the design of the fea-
tures introduced by Shimaoka et al. (2016). We
note that our method neither assumes nor requires
any type hierarchy, though including a type hierar-
chy is an avenue for future exploration.

Mention Encoder We encode a mention repre-
sentation m as the average of word embedding
vectors ui for all words i present in the given entity
e: m = 1

|n|
∑n

i=0 ui.

Context Encoder The contextual representation
for the given mention e is performed by dividing
into left context lc and right context rc, where
the left context is all the words present on the
left of the given entity e, and the right context
contains all the words present to the right of the
given entity e. The left and right context are en-
coded by passing the context through a bi-LSTM
sequence encoder (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997). The sequence
encoder is similar to the one used by Zhang et al.
(2018a). The outputs of the bi-LSTM sequence
encoder are the sequential vector representation
from both forward (left-to-right) and backward pass
(right-to-left), (lf , lb) = BiLSTM(lc, h, ht−1) and
(rf , rb) = BiLSTM(rc, h, ht−1), where (lf , lb) are

the sequential output for the left context from for-
ward and backward passes, (rf , rb) are the se-
quential outputs from the right context from for-
ward and backward passes, h and ht−1 are the
current and the previous hidden states for for-
ward and backward passes respectively. Left out-
puts are concatenated to form a left-looking en-
coding Lc = concat[lf , lb], while right outputs
are concatenated to form a right-looking encoding
Rc = concat[rf , rb]. The complete contextual rep-
resentation C of the context is the concatenation of
the left context and right context representations,
C = concat[Lc, Rc].

Attention We use an attention mechanism to
reweight contextualized token embeddings. The
attention layer, similar to that of Shimaoka et al.
(2016), is a 2 layer feed forward neural ar-
chitecture where the attention weight for each
time step of the context representation is learned
given the parameter matrix Wa and Ws: ai =
softmax(Ws tanh(Ci ·Wa)). The context repre-
sentation is a weighted sum of attention and the
context representation, Crep =

∑t
i=0 ai · Ci.

The attention mechanism used here differs from
Shimaoka et al. (2016) such that in our work the
contextual embeddings share the same attention pa-
rameters. The features extracted from the mention
encoder m and attention weighted context encoder
Cr are concatenated to form a learned representa-
tion V = concat(mi, Crep) that is passed to the
feed-forward architecture for classification.

The feed-forward architecture is a 3-layer neu-
ral architecture with a batch normalization layer
(Ioffe and Szegedy, 2015) present between the first
and the second layers with a ReLU activation (Nair
and Hinton, 2010). The input to the feed-forward
layer is a concatenated representation from the
context and mention encoders. The feed-forward
process captures the information from the learned
features and outputs a transformed representation
ql = max(0, Vl · ql−1 + dl) from the final output
layer to classify the given mention into the corre-
sponding entity types, where Vl, dl are the weights
and bias for the hidden layer unit l respectively. We
initialize q0 = Cr.

3.3 Language Model

The language model predicts the next
possible word based on the previous
inputs, as p(wn|w1, w2, ...wn−1) =∏

i P (wn|wn−k,wn−1). We use a simple

94

Method WN11 FB13 Avg

NTN (Socher et al., 2013) 86.2 90.0 88.1
TransE (Bordes et al., 2013) 75.9 81.5 78.7
TransH (Wang et al., 2014) 78.8 83.3 81.1
TransR (Lin et al., 2015) 85.9 82.5 84.2
TransD (Ji et al., 2015) 86.4 89.1 87.8
TEKE (Wang and Li, 2016) 86.1 84.2 85.2
TransG (Xiao et al., 2016) 87.4 87.3 87.4
TranSparse (Ji et al., 2016) 86.4 88.2 87.4
DistMult (Yang et al., 2014) 87.1 86.2 86.7
DistMult-HRS (Zhang et al., 2018b) 88.9 89.0 89.0
AATE (An et al., 2018) 88.0 87.2 87.6
ConvKB (Nguyen et al., 2017) 87.6 88.8 88.2
DOLORES (Wang et al., 2018) 87.5 89.3 88.4
Proposed method: LM-inspired KGE 88.3 90.21 89.44

Table 1: Comparison of previous approaches with pro-
posed method on triple classification task.

LSTM to learn the sequential structure of the text.

4 Experimental Settings

The input to the joint learning architectures are the
pre-trained GloVe embedding vectors trained on
840 billion words (Pennington et al., 2014). The
parameters of the baseline and the joint learning
architecture are learned with Stochastic Gradient
Descent and Adam (Kingma and Ba, 2014) as a
learning rate optimizer. The training of the joint
learning networks is performed with alternating
optimization. The loss functions of the respec-
tive tasks are optimized at each alternate epoch/
interval. The hyper-parameters for training these
joint architecture are chosen manually for the best-
performing models on validation sets.

Data For a direct comparison of the performance
as possible, we use previously studied datasets. We
evaluate KG triple classification using the standard
datasets of WordNet 11 (WN11) and Freebase 13
(FB13). WN11 (Strapparava and Valitutti, 2004) is
a publicly available lexical graph of synsets (syn-
onyms). Freebase (Bollacker et al., 2008) is a col-
laborative ontology consisting of factual tuples of
entities related to each other through semantic rela-
tion. While recent work has advocated for examin-
ing variants and other derivatives of these datasets
such as FB15k-237 and WN18RR (Toutanova and
Chen, 2015; Dettmers et al., 2018; Padia et al.,
2019, i.a.), there is a relative lack of previous ex-
perimental work on these newer datasets. Given
space limitations, and in order to compare to the
vast majority of previous work, we chose to report
on the more common WN11 and FB13.

We evaluate fine grain entity type prediction on

Methods Strict F1 Loose Micro Loose Macro

Ling and Weld (2012) 52.30 69.30 69.90
Ren et al. (2016b) 49.44 68.75 68.75
Ma et al. (2016). 53.54 66.53 68.06
Ren et al. (2016a) 53.30 66.40 69.30

Shimaoka et al. (2016)
54.53 71.58 74.76

(w/o Hand-Crafted features)
Shimaoka et al. (2016)

59.68 75.36 78.97
(w/ Hand-Crafted features)

Zhang et al. (2018a) 60.05 75.52 78.67
Proposed Method 61.10 75.70 78.95

(w/o Hand-Crafted features)
Proposed Method 62.16 76.12 79.69

(w/ Hand-Crafted features)

Table 2: The performance of the proposed fine grain
entity architecture to previous approaches on FIGER.

the well-studied OntoNotes (Hovy et al., 2006)
and FIGER (Ling and Weld, 2012) datasets. The
OntoNotes dataset used here is a manually curated
dataset by Gillick et al. (2014), consisting of 89
different entity types. FIGER consists of 113 entity
types, occuring in sentences from 780k Wikipedia
articles and 434 news reports. We evaluate the joint
KGE and Entity Typing model on WikiAuto and
WikiMan, both introduced by Xin et al. (2018a).
WikiAuto is curated by distant supervision, with
Freebase entities and types and sentence descrip-
tions from Wikipedia articles. WikiMan is a man-
ually curated dataset from Wikipedia articles with
Freebase entities.

Lastly, we evaluate the joint KGE and LM on
WikiFact (Ahn et al., 2017), built using the facts
from Freebase and Wikipedia descriptions. The
content of the dataset is limited to Film/Actor/ from
Freebase. Further the anchor fact defined in the
text of the dataset are not used for training the joint
model. The description of the entities in the origi-
nal dataset contain both the summary and the body
from Wikipedia. The current study is performed
by using the description from the summary section
defined in the dataset. The joint model is trained
and evaluated with the split of 80/10/10 for train,
validation and test sets, respectively.

Metrics KGE triple classification is evaluated
through accuracy. The entity type model’s perfor-
mance is evaluated based on three common entity
typing metrics—Strict F1, Loose Macro F1 and
Loose Micro F1 (Ling and Weld, 2012)—while
language modeling is measured by perplexity.

Previous Work as Baselines When possible, we
directly compare our model’s performance to that
of previously published work.

95

Methods Strict F1 Macro F1 Micro F1
AFET (Ren et al., 2016a) 20.32 54.51 52.61

KB only (Xin et al., 2018a) 35.12 70.49 63.36
HNM (Dong et al., 2015) 34.88 64.37 68.39

SA (Shimaoka et al., 2016) 42.77 72.40 74.91
MA (KNET) (Xin et al., 2018a) 41.58 72.66 75.72
KA (KNET) (Xin et al., 2018a) 45.49 72.46 76.22

Joint Model-Proposed 46.18 72.78 76.02

Table 3: We compare previous techniques on the WIKI-
AUTO dataset for fine-grain typing. The proposed
method outperforms all previous, comparable tech-
niques. While techniques that utilize disambiguation
to improve the results on the knowledge attention (e.g.,
KA + D (KNET) from Xin et al. (2018a)) can yield
very modest improvements, e.g., to 77 micro F1, due to
the extra information used, those results are not directly
comparable to the proposed model.

Methods Strict F1 Macro F1 Micro F1
AFET (Ren et al., 2016a) 18.00 56.33 56.52

KB only (Xin et al., 2018a) 17.00 63.00 40.52
HNM (Dong et al., 2015) 15.00 64.75 65.30

SA (Shimaoka et al., 2016) 18.00 69.44 70.14
MA (KNET) (Xin et al., 2018a) 26.00 71.19 72.08
KA (KNET) (Xin et al., 2018a) 23.00 71.10 71.67

Joint Model- Proposed 25.00 73.40 74.43

Table 4: We compare previous techniques on Wiki-
MAN dataset for fine-grain entity type classification.

5 Results and Discussion

This section presents the results of our basic KGE,
entity typing models, and the joint learning archi-
tecture and their comparison to previous methods.
The models were trained using either a 16GB V100
or 11GB 2080 TI GPU (single GPU training only).

5.1 The Effectiveness of a LM-inspired KGE

The proposed knowledge graph embedding archi-
tecture (§3.1) is trained for triple classification task:
given an input triple xi, predict whether the fact
it represents is true or not. Table 1 provides an
overview of performance of our architecture in
comparison to previously studies approaches, ob-
tained from the corresponding paper.

Examining the results on WN11 and FB13, we
see that in all but one case our approach improves
upon the state of the art performance on triple clas-
sification task; in that one case (DistMult-HRS on
WN11) our model was very competitive. These
strong results support our hypothesis that language
modeling principles can be an effective knowledge
graph embedding technique. In examining per-
relation performance on both WN11 and FB13, we
observed an increase in the lower bound of accu-
racy results for relationships on both WordNet and

Freebase, compared to Socher et al. (2013). We
see a rise in accuracy from Socher et al. (2013)’s
75.5% to 81% for the (domain region) relation from
WordNet. On Freebase, we see performance for
the institution relation goes from 77.2% to 80.9%
with the current architecture.

Recently, Yao et al. (2019) presented KG-BERT,
which uses a pretrained BERT model to encode and
classify triples. While this approach is empirically
powerful, and surpasses our approach, we note that
due to the limited training context of the current ar-
chitecture, directly comparing those triple classifi-
cation results with ours would be mischaracterizing
the strengths and limitations of both approaches.
Considering the training complexity and costs of
transformer networks, our model presents an ap-
pealing balance between efficacy and efficiency.

5.2 The Effectiveness of Entity Typing with
KGE-Inspired Models

Our novel neural fine grain entity type prediction
techniques is compared with previous approaches
in Table 2. The neural architecture provides an
improvement on FIGER in F1. To have a direct
comparison, whe datasets used for the experiments
are same as used by Shimaoka et al. (2016) and
Zhang et al. (2018a). Our method uses a margin
based loss function to learn entity types, and out-
performs all the previous methods (Abhishek et al.,
2017; Ren et al., 2016a,b) that learn fine grain entity
type prediction through margin base loss functions
and evaluated on the same datasets.

5.3 The Effectiveness of Joint KGE and
Entity Typing

Building on the baseline models, the joint model
(Figure 3) addresses the implicit constraint given
in the knowledge graph. The architecture learns
to correlate the mention entities with the entities
present in the context to addresses the problems
of “context-entity separation” and “text knowledge
separation,” as defined by Xin et al. (2018a). The
joint architecture is evaluated on the WikiAuto and
WikiMan datasets. The model is trained with com-
bination of FB15K dataset and WikiAuto to learn
the both the factual information along with the en-
tity typing structure. Tabs. 3 and 4 provide an
overview of results from current method and it
comparisons with the previous techniques.

We trained and tested the joint model on a com-
bination of datasets for KGE and FNER; see Ta-
ble 5. The results show the complementary nature

96

Dataset KGE Dataset FNER Strict F1 Macro F1 Micro -F1 Accuracy AUROC AUCPR F1 Precision Recall

FB13 (our baseline) - - - 90.21 0.96 0.95 0.9 0.89 0.91
WN11 (our baseline) - - - 88.3 0.94 0.93 0.88 0.85 0.91
FB15K (our baseline) - - - 94.73 0.98 0.97 0.94 0.92 0.97

OntoNotes (our baseline) 53.22 69.36 61.65 - - - - - -

FB15k OntoNotes 53.33 70.47 62.95 93.43 0.97 0.97 0.93 0.9 0.97
WN11 OntoNotes 52.79 69.12 61.62 87.61 0.93 0.94 0.88 0.83 0.94
FB13 OntoNotes 53.34 70.81 63.44 89.79 0.96 0.96 0.9 0.87 0.93

Table 5: We show the changes in performance we observe when training joint fine-grain entity type prediction and
triple classification models (bottom portion) vs. single-objective models (top portion). Joint training can lead to
improvements on both KGE and FNER.

sigmoid

Plausibility
Prediction

Softmax

austen's british tv debut was on the irreverent cult itv puppet show spitting_image (1987–90)

Input Sentence

Final	
forward	
cell	state

Initial	
State

Feed	
Forward	

Architecture

BiLSTM
Block

(Don Austen acted in spitting image)

Triplet Input

Initial
State

Concat

Final	
backward
cell	state

Figure 4: The architecture for joint learning of knowl-
edge graph embedding with language model. We use
an LSTM for the LM component, and a bi-LSTM for
the KGE component. The LM LSTM and the for-
ward portion of the bi-LSTM are the same, allowing
the transfer of knowledge. The architecture takes in
as input the whole sentence and the triplet to learn
the semantic structure and factual information from the
knowledge base.

of learning fine-grain entity types and knowledge
graph embedding jointly with steady performances
on either task with respect to their baselines.

5.4 The Effectiveness of Joint KGE and
Language Modeling

We examine the complementary nature of LM and
KGE on the WikFacts dataset introduced by Ahn
et al. (2017), which contains both sentences and
KGE-style tuples. Figure 4 shows the architec-
ture for jointly learning to embed a KG and model
language. We use a single-layer LSTM (unidirec-
tional: left-to-right) for language modeling, though
the core KGE architecture relies on an bi-LSTM.
We unify these by ensuring that the LM LSTM and
the left-to-right portion of the KGE bi-LSTM use
the same weights. We compare this joint approach
to the same models trained separately and inde-

Model Perplexity (↓) Acc (↑)

LSTM LM (baseline) 440.72 -
bi-LSTM KGE (baseline) - 94.22
Joint LSTM LM + bi-LSTM KGE 299.17 93.73

(a) Performance of jointly learning an LSTM LM and bi-
LSTM KGE.

Model Perplexity (↓) Acc (↑)

LSTM LM (baseline) 437.22 -
LSTM KGE (baseline) - 90.66
Joint LSTM LM + LSTM KGE 353.72 93.6

(b) Performance of jointly learning an LSTM LM and LSTM
KGE.

Table 6: We summarize the results from the joint
KGE+LM experiments, learned from WikiFacts with
a 70k word vocabulary. In 6a we provide results for
the architecture shown in Figure 4 (a bi-LSTM KGE,
whose forward cells are the cells of a unidirectional
LSTM LM). In 6b, we provide results where we replace
the bi-LSTM KGE with LSTM LM.

pendently, without any weight sharing, evaluating
the LMs on perplexity (lower is better) and KG
prediction accuracy (higher is better). We use a
vocabulary of the 70k most frequent words.

As Table 6a shows, while there is a very slight
decrease in KG prediction accuracy, the distinct im-
provement in the performance of language model
over the baseline LM demonstrates that joint learn-
ing is particularly effective for language modeling.
This suggests that even simple joint learning can
be an effective way of using stated knowledge to
improve language modeling.

While joint learning allowed the KG to help the
LM, the reverse was not true. We speculate that this
is in part because, from a language modeling per-
spective, the KGE model is able to consider both
the forward and backward components. To test this,
we replace the KGE bi-LSTM with the same uni-
directional LSTM used by the LM. We show these
results in Table 6b. Similar to the previous results,

97

Sentences

Input sentence

stephen percy steve harris born 12 march 1956 is an english musician and songwriter known as the bassist occasional
keyboardist backing vocalist primary songwriter and founder of the british heavy metal band iron maiden
he is the only member of iron maiden to have remained in the band since their inception in 1975
and along with guitarist dave murray to have appeared on all of their albums

Output (Joint model)
joseph john james unk born 5 april 1949 is an english musician and actor known as the greatest and guitarist
the vocalist guitarist songwriter and guitarist of the band heavy metal band the band he is the founding child of the team
band have been by the band until its death in 2003 and toured with unk unk unk they have appeared in one of

Output (baseline)
peter baron dickie unk born 11 august 1943 is an english singer and best and as the most and and and and
lead songwriter and member of the heavy rock rock band unk side he is the third singer of the band band have been
with the band since its breakup in 1992 while cofounded with with dave tended has have collaborated on hundreds of their films

Table 7: We provide an example of the sentence predicted by the language model jointly learned with knowledge
graph embedding and the independently trained language model. Notice how some implicit constraints, learned
from the KGE, are transferred to the language model.

KGE allowed LM perplexity to decrease signifi-
cantly. However, we also see that the LM yielded
a 3 point absolute improvement in KG prediction,
supporting our hypothesis.

To further demonstrate how our joint learning
method improves the semantic understanding of the
language, we qualitatively examine the generative
capacity of these LMs in Table 7. This provides an
example of how joint training a KG and LM can im-
prove output over a singly-trained LM on the same
language data, and suggests that joint learning al-
lows transfer of some implicit constraints in the
language by learning the underlying relationships
between the entities. While both are over-reliant on
conjunctive structure, notice how the singly-trained
baseline LM starts off alright, but then as the gen-
eration continues, loses coherence. Meanwhile, the
jointly trained model maintains more coherence
for longer. This suggests the KGE training is suc-
cessfully transferring appropriate thematic/factive
knowledge to the LM.

6 Conclusion

This work proposes a joint learning framework for
learning real value representations of words, en-
tities, and relations in a shared embedding space.
Joint learning of factual representation with contex-
tual understanding shows improvement in the learn-
ing of entity types. Learning the language model
with knowledge graph embedding simultaneously
enhances the performance on both modeling tasks.
Our results suggest that language modeling could
accelerate the study of schema-free approaches to
both KGE and FNER, and strong performance can
be obtained with comparatively simpler, resource-
starved language models. This has promising im-
plications for low-resource, and few-shot, and/or
domain-specific information extraction needs.

Acknowledgements We would like to thank members

and affiliates of the UMBC CSEE Department, including

Ankur Padia, Tim Finin, and Karuna Joshi. Some experi-

ments were conducted on the UMBC HPCF. We’d also like

to thank the reviewers for their comments and suggestions.

This material is also based on research that is in part supported

by the Air Force Research Laboratory (AFRL), DARPA, for

the KAIROS program under agreement number FA8750-19-

2-1003. The U.S.Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding

any copyright notation thereon. The views and conclusions

contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or

endorsements, either express or implied, of the Air Force Re-

search Laboratory (AFRL), DARPA, or the U.S. Government.

References
Abhishek, Ashish Anand, and Amit Awekar. 2017.

Fine-grained entity type classification by jointly
learning representations and label embeddings.
ArXiv, abs/1702.06709.

Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and
Yoshua Bengio. 2017. A neural knowledge language
model. ArXiv, abs/1608.00318.

Bo An, Bo Chen, Xianpei Han, and Le Sun. 2018.
Accurate text-enhanced knowledge graph represen-
tation learning. In NAACL-HLT.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary G. Ives.
2007. Dbpedia: A nucleus for a web of open data.
In ISWC/ASWC.

Ivana Balazevic, Carl Allen, and Timothy Hospedales.
2019. Tucker: Tensor factorization for knowledge
graph completion. In EMNLP-IJCNLP, pages 5188–
5197.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2000. A neural probabilistic lan-
guage model. J. Mach. Learn. Res., 3:1137–1155.

98

Kurt D. Bollacker, C. J. Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In SIGMOD Conference.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NIPS.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics. Association for Com-
putational Linguistics.

Michael Cochez, Petar Ristoski, Simone Paolo
Ponzetto, and Heiko Paulheim. 2017. Global rdf
vector space embeddings. In International Seman-
tic Web Conference, pages 190–207. Springer.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph wmbeddings. In AAAI.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification
of entity mentions. In IJCAI.

Daniel Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. ArXiv,
abs/1412.1820.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9:1735–
1780.

Eduard H. Hovy, Mitchell P. Marcus, Martha Palmer,
Lance A. Ramshaw, and Ralph M. Weischedel. 2006.
Ontonotes: The 90% solution. In HLT-NAACL.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. ArXiv,
abs/1502.03167.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun
Zhao. 2015. Knowledge graph embedding via dy-
namic mapping matrix. In ACL.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. 2016.
Knowledge graph completion with adaptive sparse
transfer matrix. In AAAI.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Denis Krompaß, Maximilian Nickel, Xueyan Jiang,
and Volker Tresp. 2013. Non-negative tensor factor-
ization with rescal. In Tensor Methods for Machine
Learning, ECML workshop.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and
Xuan Zhu. 2015. Learning entity and relation em-
beddings for knowledge graph completion. In AAAI.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In AAAI.

Robert L. Logan IV, Nelson F. Liu, Matthew E. Peters,
Matt Gardner, and Sameer Singh. 2019. Barack’s
wife hillary: Using knowledge-graphs for fact-aware
language modeling. In ACL.

Yukun Ma, Erik Cambria, and Sa Gao. 2016. Label
embedding for zero-shot fine-grained named entity
typing. In COLING.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In INTER-
SPEECH.

Pasquale Minervini, Luca Costabello, Emir Muñoz,
Vı́t Novácek, and Pierre-Yves Vandenbussche.
2017. Regularizing knowledge graph embed-
dings via equivalence and inversion axioms. In
ECML/PKDD.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In ICML.

Dai Quoc Nguyen, Tu Dinh Nguyen, Dat Quoc
Nguyen, and Dinh Q. Phung. 2017. A novel embed-
ding model for knowledge base completion based on
convolutional neural network. In NAACL-HLT.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A three-way model for collective
learning on multi-relational data. In ICML.

Ankur Padia, Konstantinos Kalpakis, Francis Ferraro,
and Timothy W. Finin. 2019. Knowledge graph fact
prediction via knowledge-enriched tensor factoriza-
tion. J. Web Semant., 59.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL.

Matthew E. Peters, Mark Neumann, Robert Logan, Roy
Schwartz, Vidur Joshi, Sameer Singh, and Noah A.
Smith. 2019. Knowledge enhanced contextual word
representations. In EMNLP-IJCNLP.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In EMNLP-IJCNLP.

99

Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng
Ji, and Jiawei Han. 2016a. Afet: Automatic fine-
grained entity typing by hierarchical partial-label
embedding. In EMNLP.

Xiang Ren, Wenqi He, Meng Qu, Clare R. Voss, Heng
Ji, and Jiawei Han. 2016b. Label noise reduction in
entity typing by heterogeneous partial-label embed-
ding. ArXiv, abs/1602.05307.

Petar Ristoski and Heiko Paulheim. 2016. RDF2Vec:
RDF graph embeddings for data mining. In Inter-
national Semantic Web Conference, pages 498–514.
Springer.

Ronald Rosenfeld. 1994. Adaptive statistical language
modeling: A maximum entropyapproach. Ph.D. the-
sis, Computer Science Department, Carnegie Mel-
lon University.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Trans. Sig-
nal Processing, 45:2673–2681.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2016. An attentive neural archi-
tecture for fine-grained entity type classification. In
AKBC@NAACL-HLT.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
NIPS.

Carlo Strapparava and Alessandro Valitutti. 2004.
Wordnet affect: an affective extension of wordnet.
In LREC.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowledge.
In WWW ’07.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd Workshop on
Continuous Vector Space Models and their Compo-
sitionality, pages 57–66.

Haoyu Wang, Vivek Kulkarni, and William Yang Wang.
2018. Dolores: Deep contextualized knowledge
graph embeddings. ArXiv, abs/1811.00147.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zhigang
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In AAAI.

Zhigang Wang and Juan-Zi Li. 2016. Text-enhanced
representation learning for knowledge graph. In IJ-
CAI.

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language
and knowledge bases with embedding models for re-
lation extraction. In EMNLP.

Han Xiao, Minlie Huang, and Xiaoyan Zhu. 2016.
Transg : A generative model for knowledge graph
embedding. In ACL.

Ji Xin, Yankai Lin, Zhiyuan Liu, and Maosong Sun.
2018a. Improving neural fine-grained entity typing
with knowledge attention. In AAAI.

Ji Xin, Hao Zhu, Xu Han, Zhiyuan Liu, and Maosong
Sun. 2018b. Put it back: Entity typing with language
model enhancement. In EMNLP.

Peng Xu and Denilson Barbosa. 2018. Neural fine-
grained entity type classification with hierarchy-
aware loss. In NAACL-HLT.

Bishan Yang, Wen tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2014. Embedding entities and
relations for learning and inference in knowledge
bases. CoRR, abs/1412.6575.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In NeurIPS.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Kg-
bert: Bert for knowledge graph completion. ArXiv,
abs/1909.03193.

Sheng Zhang, Kevin Duh, and Benjamin Van Durme.
2018a. Fine-grained entity typing through increased
discourse context and adaptive classification thresh-
olds. In *SEM@NAACL-HLT.

Zhao Zhang, Fuzhen Zhuang, Meng Qu, Fen Lin, and
Qing He. 2018b. Knowledge graph embedding with
hierarchical relation structure. In EMNLP.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: En-
hanced language representation with informative en-
tities. In ACL.

	ScholarWorksCoverSheetNoLicense
	2020.deelio-1.11

