

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

ar
X

iv
:2

00
5.

02
91

1v
2

 [
qu

an
t-

ph
]

 7
 M

ay
 2

02
0

A Quantum Algorithm To Locate Unknown Hashes

For Known N-Grams Within A Large Malware

Corpus

1st Nicholas R. Allgood

Dept. of Computer Science and Electrical Engineering

University of Maryland Baltimore County

Baltimore, Maryland

allgood1@umbc.edu

2nd Charles K. Nicholas

Dept. of Computer Science and Electrical Engineering

University of Maryland Baltimore County

Baltimore, Maryland

nicholas@umbc.edu

Abstract—Quantum computing has evolved quickly in recent
years and is showing significant benefits in a variety of fields.
Malware analysis is one of those fields that could also take
advantage of quantum computing. The combination of software
used to locate the most frequent hashes and n-grams between
benign and malicious software (KiloGram) [1] and a quantum
search algorithm could be beneficial, by loading the table of
hashes and n-grams into a quantum computer, and thereby
speeding up the process of mapping n-grams to their hashes.
The first phase will be to use KiloGram [1] to find the top-k
hashes and n-grams for a large malware corpus. From here,
the resulting hash table is then loaded into a quantum machine.
A quantum search algorithm is then used search among every
permutation of the entangled key and value pairs to find the
desired hash value. This prevents one from having to re-compute
hashes for a set of n-grams, which can take on average O(MN)
time, whereas the quantum algorithm could take O(

√

N) in the
number of table lookups to find the desired hash values.

Index Terms—quantum, malware, quantum computing,
Grover’s algorithm, hashgram, ngram

I. INTRODUCTION

Quantum computing, while still in its infancy, is quickly

evolving and becoming practical. Each day something is being

discovered, making these new concepts applicable across a

variety of domains. In the late 1980’s and early 1990’s,

quantum computing was entirely theoretical and came directly

from the ideas of quantum physics. Many of the early al-

gorithms created then have since provided a foundation on

which to build other quantum algorithms. While many of these

algorithms, such as Simon’s [2] and Grover’s [3], were seen as

proof of concept or ”toy” algorithms, they in fact have more

value on their own merits than simply providing a foundation

for other algorithms. For example, Simon’s algorithm [2]

makes use of a 2-to-1 function and 2-to-1 functions are often

found in the domains of quantum cryptography as well as other

domains of cybersecurity.

Though the situation is improving, one of the current

limitations has to do with availability of quantum computing.

While companies such as IBM [4] and D-Wave [5] are

providing access to their quantum backends at no cost via

cloud platforms, they are still limited in the number of qubits

one can use. For that reason, much of our work is done

using Qrack [6], a quantum simulator. Even simulators have

limitations based on your classical hardware (approximately

30 qubits).

One of the first steps in malware analysis is to search

the suspect binary file for strings that indicate the program’s

purpose, what malware family it might belong to, and indeed

whether it is malicious or not [7]. It is also desirable to

compare the suspect binary with other binaries, malicious or

not, to see if the suspect binary is similar to any of them.

An n-gram is a sequence of n contiguous bytes, for some

small integer n. Files that happen to have many of the same

n-grams, in roughly the same proportions, can be regarded as

similar [8]. Historically, the value of n might be in the range

2-6. But unlike ordinary text, executable binaries use most if

not all of the characters in the range 0x00 to 0xFF. For n
of 4, for example, that results in 2564 or roughly 4 billion

possible n-grams to be tabulated. More recently, as described

below, larger values of n are also of practical value, but in

tabulating n-grams for any n larger than say 3 or 4, a hash

table would be used to keep track of which n-grams have

been seen, and how often. Hash tables are usually sized so

that collisions don’t matter too much in practice. As a file is

ingested, though, a lot of n-grams are seen multiple times,

and the same hash value is computed multiple times. We will

show how to improve n-gram tabulation by calculating an

n-gram’s hash once, storing the result, and using quantum

search to find the desired hash value, without recomputing it,

should that n-gram be seen again. This paper is organized as

follows: in Section II we provide a review of related work.

We present the concept of quantum search as applied to n-

grams in Section III. Our numerical and simulation results are

presented in Sections IV and V. In Section VI we summarize

our results and make suggestions for future work.

II. RELATED WORK

A. n-grams for Malware Analysis

Cybersecurity professionals are constantly under pressure

to identify and neutralize incoming threats. While anti-virus

http://arxiv.org/abs/2005.02911v2

software is essential in current times, it is not always able

to keep up with the threat.Often a new piece of malware is

released and performs some sort of damage before its signature

is identified and updates made in the anti-virus databases.

Leveraging the latest techniques in machine learning, static

analysis of malicious software has become a great tool in the

arsenal against malware. [7] A large variety of malware is

in the form of PE32 executables that target the Microsoft

Windows operating systems. One example use of n-grams

would be to take sequences of bytes from a PE32 executable

to construct features [9]. Once such sequences of bytes are

identified, the feature selection process goes through and

eliminates duplicate or irrelevant pieces of information from

the dataset. Using n-grams as features has proven effective in

malware detection, showing up to a 97% detection rate [9].

There are a number of machine learning techniques used

for malware detection [9]. Using n-grams as features are

what makes it possible to leverage automated and intelligent

classification methods. n-grams can be used for data, but also

to represent a sequence of opcodes, as well as operating system

API calls such as AdjustTokenPrivileges for Win32 and execve

for Linux.

B. KiloGram

KiloGram [1] was released as open source software in

2020.1 KiloGram takes a set of benign and known malicious

software as input data. The output will be a list of the top-

k most frequent n-grams found that are contained within the

malicious software. Benign software is any software that is

considered to not contain any malicious code where malware

is any software that is design to cause harm in some fashion.

We chose the KiloGram approach since it can be used for a

large number of n-grams and large values of n. Of use to us,

the KiloGram algorithm can handle ngrams that are 8-bytes

or larger while keeping 1000 or more of the most frequent

entries.

In the context of malware analysis, n-grams are used to

represent strings that appear in some if not all members of a

set of suspected malware specimens. These n-grams then can

be provided to other algorithms for a variety of uses, such as

classification into malware families. KiloGram was designed

with these uses in mind. Recall that the n in n-gram refers

to some small integer n. For example, if we wish to process

a 4-byte string such as 0xABCD, you would see this called

a 4-gram. Unfortunately one major drawback of an n-gram

based approach for malware detection, is that the shorter the n-

gram, the more likely you will also find the byte sequence also

benign software, making your rate for false positives increase.

Fortunately, KiloGram was also designed to overcome this

limitation by allowing the storing of larger and more specific

n-grams, increasing the likelihood they will be unique within

a variety or family of malware.

1 https://github.com/NeuromorphicComputationResearchProgram/KiloGrams

C. Grover’s Algorithm

Grover’s algorithm [3] was one of the first quantum search-

ing algorithms to be developed. Grover’s has even been

the inspiration for other quantum algorithms such as Shor’s

[10] factoring algorithm. While much attention and research

has been specifically around Shor’s algorithm with regards

to quantum cryptography, Grover’s has been used and even

improved upon in recent years [11].

Grover’s search algorithm implements what is known as

an amplitude amplification algorithm [12] which has been

said to be a generalization of Grover’s algorithm (although

amplitude amplification was first discovered in 1997 by Gilles

Brassard in 1997, and then a year later by Lov Grover). The

fundamental idea is to increase (amplify) the probabilities

of the desired results, and this is accomplished by using a

sequence of reflections.2 What is occurring in the amplitude

amplification is that the reflections are rotated closer to the

desired quantum state along the Bloch Sphere. The target state

is marked as sin2(Θ) so that when the amplitude amplification

algorithm is applied m times, the probability of obtaining the

correct state is sin2((2m+ 1)Θ) In other words, we think of

the target state on the Bloch Sphere [13] and we keep rotating

it until we find the correct result, with each rotation getting

slightly closer.

III. QUANTUM N -GRAM SEARCHING

A. Amplitude Amplification

Referring back to the previous statements, we explain that

instead of looking up a value by key, we do a direct lookup

by value. The reason being is we essentially have to invert

the key/value lookup problem when dealing with quantum en-

tanglement. Grover’s search [3] makes heavy use of quantum

entanglement. What this algorithm will do is when a lookup

table is loaded into a quantum machine, Grover’s algorithm

will entangle all permutations of potential key and value pairs

based upon the input. The next step is to perform what is

known as amplitude amplification to the entangled pieces of

data. Prior to the actual amplitude amplification, the oracle is

queried which places a tag value equal to our search value

As part of amplitude amplification, a tag value that equals the

search value is placed into memory and then the phase (sign)

is flipped.

While amplitude amplification may sound like a phrase

belonging in signal processing, it is heavily used in quantum

mechanics to describe the nature of things, and it happens

that most of those things happen to be analogue. For practical

purposes, in quantum computing amplitude amplification and

phase flipping refer to changing the sign of a value. For

example, say we look at the following matrix and we wish

to locate the value at row 1, column 3:

AB CD EF

12 97 85
2D 3F 9C

2https://docs.microsoft.com/en-us/quantum/libraries/standard/algorithms

https://github.com/NeuromorphicComputationResearchProgram/KiloGrams
https://docs.microsoft.com/en-us/quantum/libraries/standard/algorithms

Once we perform the phase flip, we will get the following

matrix:

AB CD -EF

12 97 85
2D 3F 9C

For our purposes, this tag value is our n-gram we wish to

locate and the key is the hash provided (which is also the

index value). As mentioned, the key and value are entangled

and with each lookup (iteration) of Grover’s search, we can

visualize the Bloch Sphere is rotated closer to the desired n-

gram with each iteration.

B. Quantum Fourier Transform

Anything written about topics such as signal processing and

quantum mechanics would be remiss if it failed to mention

the Fourier Transform.3We are given a function f(x) and the

Fourier Transform breaks down f(x) to its constituent fre-

quencies [14]. The conceptual structure of quantum mechanics

defines the existence of pairs of complementary variables p
and q connected by the Heisenberg uncertainty principle. We

can measure a particle’s quantum mechanical position, but by

doing so we lose information about the particle’s momentum

[14]. Going deeper into quantum mechanics, this gets into

what is known as the wave-particle duality of nature, for which

the physical state of a particle can be described by a wave

function. The wave functions are used to describe the physical

state of a particle and one can use either a function of p or

a function of q, but never both. The real vector space that is

the set of all possible physical states and which contain the

p-axis and q-axis is known as a phase space.

Referring back to phase shifting and amplitude amplification

as part of the algorithm, quantum mechanics choose a specific

polarization of a defined space and picks a subspace containing

half of its dimensions. In contrast to picking all of the points

within this selected space that contains the q-axis, the quantum

Fourier transform takes the set of all complex-valued wave

functions on the axis [14]. We then examine the p-axis which

while also having a valid polarisation, has a set of possible

states of a particle related to the first representation by the

Fourier transform:

Φ(p) =

∫

ψ(q)2πi
pq

h dq (1)

Physical states exist inside what is known as an L2 space,

which is a vector space (specifically a measure space) that

contains all of the squarable integral functions. Due to this

property, an L2 space is also a Hilbert space [15]. According to

Plancherl’s theorem,4 Fourier Transforms also exist inside a L2

space. A Fourier Transform within a L2(Rn) space applied to

itself is unitary, which upholds the requirement for all quantum

computing operations to be unitary.

3https://www.encyclopediaofmath.org/index.php/Fourier transform
4https://link.springer.com/article/10.1007%2FBF03014877

IV. QUANTITATIVE RESULTS

A. Grover’s Circuits

Grover’s algorithm is an oracle based algorithm and in the

majority of the literature that discusses Grover’s algorithm, it’s

typically split into four parts:

1) Initialization

2) Oracle processing

3) Amplitude amplification

4) Measurement

We now describe how a quantum simulator, in particular Qrack

[6], implements both the oracle and amplification components

of Grover’s search.

|0〉 /n H •
Oracle

X H • H
Measure

|0〉 /n H X H Z H

Figure 1. Example Grover’s Circuit

|key〉 /k H •
Oracle

X H
UZ

H
MReg

|value〉 /v H X H H

CM IndexedSBC IndexedADC

Figure 2. Qrack Implementation Grover’s Circuit

Figure 1 describes a quantum circuit for a standard Grover’s

search implementation. Figure 2 shows Qrack’s implementa-

tion of the quantum circuit for Grover’s search over a key and

value pair. A few comments on the notation: /n is shorthand

to state that each of the gates apply to n qubits. In the Qrack

example, we chose /k and /v to represent the number of qubits

used for the key and value. We use a Uz to represent a phase-

flip operation. We chose this over the standard Pauli-Z gate

since we want a single permutation’s phase flipped instead

of flipping the phase on every individual |0〉. In the Qrack

implementation, we are applying the phase-flip to all of the

used qubits simultaneously. That is, we start out with setting

our qubit permutations to |0〉. Next we apply a Hadamard gate

to each of the qubits to place them into superposition where

each qubit now equals 1
√

2
|0〉+|1〉 and 1

√

2
|0〉−|1〉. The second

step of this circuit is to place all qubits through the oracle as

defined in Grover’s algorithm. The next series of gates are

CNOT gates which were previously place in superposition,

the superimposed values of |1〉 will trigger a NOT operation

on the target qubits. The IndexedSBC operation is in reference

to Qrack’s IndexedSBC [16] operator that we will cover later

in section IV. We proceed with the phase-amplification part of

the circuit by applying either an X or NOT gate on all qubits

followed by both a Hadamard gate and a custom unitary phase-

flip gate. Finally, we complete the circuit with another series of

Hadamard gates, followed by IndexedADC which is Qrack’s

IndexedADC [16] operation, and proceed with measurement

of the resulting quantum state.

https://www.encyclopediaofmath.org/index.php/Fourier_transform
https://link.springer.com/article/10.1007%2FBF03014877

|key〉 /k

UZ

|value〉 /v

CM DEC INC

Figure 3. Qrack Implementation Grover’s Oracle

Figure 3 describes a quantum circuit for the Qrack imple-

mentation of an oracle used for Grover’s algorithm. While the

oracle might look small in comparison to the entire Grover’s

circuit, it’s absolutely crucial to the algorithm. In the Qrack

[6] implementation of the oracle, we start by doing a DEC

operation for all qubits. This instruction is what starts the

tag process by subtracting the target value from a start value,

typically 0. For example, if our target value is 100 then we

would have 0 − 100 = −100. From here we do Uz gates on

all qubits, flipping the phases of their respective amplitudes.

Practically, this translates to flipping the sign of the bits so in

the above example, this would make our value +100. Lastly,

the oracle reverts the previous DEC operation with Qrack’s

INC operation to return to the original value, only with the

sign flipped. To finalize our example, we add 0 + (+100)
where + is the phase, with our result being +100.

Theoretically, Grover’s algorithm requires an average of

O(
√
N) lookups to find a match for the specified target.

While we are using a traditional lookup table for Grover’s, the

input time complexity evaluation might not be that obvious.

If we dive into the bare fundamentals of Qrack/VM6502q,

we notice we have a IndexedLDA instruction [16]. This is a

modified LOAD instruction that allows loading a key with a

superimposed index into a quantum register. The IndexedLDA

operation is unitary by design so it will not affect the overall

quantum state as it is loaded into the registers. The writing of

the data with a superimposed index, will actually entangle the

classical memory cache and the index register. Knowing this,

we can say that the IndexedLDA operation takes O(1) to load

data into quantum registers. In addition to the initial loads,

there will be an input time complexity of O
(
√

M

N

)

where

M is the total number of keys in the lookup table and N is

the total number of matches [17]. This yields an overall input

time complexity of O(1) + O
(
√

M

N

)

= O
(
√

M

N

)

.

We use the term lookups but practically we mean iterations

of Grover’s algorithm. To be specific, Qrack uses the following

equation to determine the number of iterations to use [16]:

floor

[

π

4 arcsin2(1
√

2N
)

]

(2)

V. SIMULATED RESULTS

A. Qrack Operations

The Qrack [6] implementation utilizes some specialized

methods for implementing many of the operations in the oracle

and amplitude amplification portions of the algorithm. Here

are some of the most commonly used operations: [16]

IndexedLDA: Set 8 bit register bits by a superposed

index-offset-based read from classical memory.

IndexedADC: Add to entangled 8 bit register state

with a superposed index-offset-based read from clas-

sical memory.

IndexedSBC: Subtracts to entangled 8 bit register

state with a superposed index-offset-based read from

classical memory.

INC: Integer addition without sign.

DEC: Integer subtraction without sign.

H: Hadamard gate implementation.

ZeroPhaseFlip: Controlled Z-gate implementation.

Z: Z-gate implementation, non-controlled.

X: X (NOT) gate implementation.

MReg: Measures the current state of a quantum

register(s).

B. Benign vs. Malicious Datasets

As briefly mentioned in Section II, there are some lim-

itations with quantum simulations, the most obvious being

limited computing resources available for simulation. While

Qrack [6] can take full advantage of a GPU for processing

using OpenCL5, one typically is limited to simulating ap-

proximately 30-qubits. Qrack has some development branches

of code where they are simulating 128-qubits for testing

the quantum supremacy problem released by Google [18],

however, these branches are quite experimental. To better

appreciate why 30 qubits is a limitation for simulation, we

must recall our base formula 2n where n is the number

of qubits we wish to simulate. 2n specifically refers to the

total amount of quantum states we wish to simulate. With 30

qubits, we end up with 230 = 1073741824 or roughly one

billion values. But the amplitudes represented by the quantum

states are complex numbers, so we must include the real and

imaginary parts when factoring in memory requirements. We

use 22 bytes for the real value and 22 bytes for the imaginary

value. This then gives us 22+2 = 16 bytes for each of those

one billion values, or

230+4 = 17179869184 bytes ≈ 16GB (3)

Qubits Real Bytes Imaginary Bytes Total Memory

4 2 2 256 bytes
8 2 2 4 KB
16 2 2 1 MB
24 2 2 ≈ 268MB
28 2 2 ≈ 4GB
30 2 2 ≈ 16GB
32 2 2 ≈ 64GB
40 2 2 ≈ 17TB

Table I
SIMULATION MEMORY ALLOCATION

5https://www.khronos.org/opencl/

https://www.khronos.org/opencl/

For our simulation, we used the following datasets created

and used in the KiloGram project [1]:

Benign Benign Files Malicious Malicious Files

Windows 7 System32 4565 Vxheaven 2015 284151
MAML 691 VirusShare 2018 131072

Table II
BENIGN VS. MALICIOUS SOFTWARE DATASET

Benign Malicious n-gram size Kept n-grams

Windows 7 System32 Vxheaven 2015 3 bytes 64
Windows 7 System32 Vxheaven 2015 2 bytes 16384
Windows 7 System32 Vxheaven 2015 2 bytes 4096
MAML VirusShare 2018 3 bytes 64
MAML VirusShare 2018 2 bytes 2048
MAML VirusShare 2018 2 bytes 1024

Table III
BENIGN VS. MALICIOUS SOFTWARE n-GRAMS

The hardware and software used was a 16-Core Intel Xeon

E5-2630 @ 2.4Ghz with 32GB RAM and two GeForce GTX

1660 video cards. The machine was running 64-bit Ubuntu

Linux 18.04 and OpenCL 1.2. As one can see, due to the

limitations of approximately 30-qubits, we had to select the

number of bits for our key and value size with care. Since

n-grams are typically byte sequences, we were limited to a

maximum of n-grams with n set to 3. Using 3-grams gave

us 24-qbits for our n-gram value with 6-qbits remaining for

our index values. Utilizing a 2-grams gave us a much larger

span of bits to use for our index value (14-qbits). Recall that

the index for this is the hash for a specific n-gram, and since

KiloGram utilizes Rabin-Karp hashing modulo B where B is

the KiloGram bucket size [1].

Number of n-grams Number of Lookups (iterations)

64
√
64 = 8

128
√
128 = 11.31 ≈ 12

256
√
256 = 12

512
√
512 = 22.63 ≈ 23

1024
√
1024 = 32

2048
√
2048 = 45.25 ≈ 46

4096
√
4096 = 64

8192
√
8192 = 90.50 ≈ 91

16384
√
16384 = 128

Table IV
GROVER’S LOOKUPS FOR n-GRAM SIZES

As we can see from Table IV, more n-grams requires more

iterations and the number of iterations increases by a much

smaller amount as we keep a larger number of n-grams. Using

a practical example, below we describe pseudo-code for the

Qrack implementation of Grover’s algorithm in addition to

showing the output for a 2-byte n-gram with a 10-bit index.

We search for a n-gram with the value of 0xF3D7 which has

an unknown hash, which we quickly find to be 0x3a9.

C. Example Hash Retrieval for N -gram: 0xf3d7

Table V is an example where we search for an n-gram with

the value of 0xF3d7 that has a hash value of 0x3a9.

0> chance of match:0.00876619

1> chance of match:0.0242241

2> chance of match:0.0471087

...

22> chance of match:0.98967

23> chance of match:0.998456

24> chance of match:0.999461

After measurement (of value, key, or both):

Chance of match:1

Ngram: f3d7

Hash: 3a9

Total Iterations: 25

Table V
SEARCHING FOR THE HASH OF n-GRAM 0xF3D7

D. Qrack Pseudo-code

In Algorithm 1 we show pseudo-code utilizing Qrack that

is an implementation of both an oracle and amplitude ampli-

fication for Grover’s search.

Algorithm 1 Qrack Grover’s Search Implementation

idxLen = 10

valLen = 16

cryIdx = idxLen+ valLen

ngrams = ngramtable[indexLength]

ngram = 0xf3d7

qReg = CreateQuantumInterface(∗params)

qReg = SetPermutation(0)

qReg = H(valLen, idxLen)

qReg = IndexedLDA(valLen, idxLen, 0, valLen, ngrams)

procedure TAGVALUE(tP erms,qReg, valueSt, valLen)

qReg = DEC(tP erms, valueSt, valLen)

qReg = ZeroPhaseF lip(tP rems,valueSt, valLen)

qReg = INC(tP rems, valueSt, valLen)

end procedure

procedure AMPLITUDEAMPLIFIATION

idxLen = 10

valLen = 16

cryIdx = idxLen+ valLen

ngrams = ngramtable[idxLength]

ngram = 0xf3d7

qReg = CreateQuantumInterface(params)

qReg = SetPermutation(0)

qReg = H(valLen, idxLen)

qReg = IndexedLDA(valLen, idxLen, 0, valLen, ngrams)

end procedure

VI. CONCLUSION

We have shown that combining the results of an efficient

n-gram collection software such as KiloGram with quantum

computing, we can provide a faster way of finding a computed,

but momentarily unknown hash for a known n-gram. We

have compared this solution to the classical approach, and

have shown that for a large number of n-grams, the quantum

based solution outperforms them substantially. When better

quantum hardware is available, these concepts could be applied

to cryptographic hashes, such as SHA-256. We hope that

our work will remain useful when better quantum computers

are available. Quantum computing research is continuing to

grow each day and while it might seem that adequate enough

hardware is far into the future, it is will be upon us before we

realize and cybersecurity professionals will need to be ready.

ACKNOWLEDGMENT

We extend our thanks to our colleagues Sam Lomonaco and

Edward Raff for their comments on an earlier version of this

paper. [19]

REFERENCES

[1] Edward Raff, William Fleming, Richard Zak, Hyrum Anderson, Bill Fin-
layson, Charles K. Nicholas, and Mark Mclean. KiloGrams: Very Large
N-Grams for Malware Classification. In Proceedings of KDD 2019

Workshop on Learning and Mining for Cybersecurity (LEMINCS’19),
2019.

[2] D.R. Simon. On the power of quantum computing. In Foundations

of Computer Science, 1994 Proceedings., 35th Annual Symposium on:

116123, 1994.
[3] Lov K. Grover. A fast quantum mechanical algorithm for database

search. Proceedings of the twenty-eighth annual ACM symposium on

Theory of computing - STOC 96, 1996.
[4] IBM. IBM quantum experience. https://quantum-computing.ibm.com,

2020.
[5] D-Wave. D-wave. https://dwavesys.com, 2020.
[6] Daniel Strano and Benn Bollay. Qrack a comprehensive, gpu accel-

erated framework for developing universal virtual quantum processors.
https://github.com/vm6502q/qrack, 2020.

[7] Michael Sikorski and Andrew Honig. Practical Malware Analysis. no
starch press, 2012.

[8] Marc Damashek. Gauging Similarity with N-Grams. Science,
267(5199):843–848, 1995.

[9] Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and Katrin Franke.
Machine learning aided static malware analysis: A survey and tutorial.
Cyber Threat Intelligence, page 745, 2018.

[10] P.W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. Proceedings 35th Annual Symposium on Foundations of

Computer Science, Santa Fe, NM, pages 124–134, 1994.
[11] Yan Wang. A quantum walk enhanced grover search algorithm for global

optimization, 2017.
[12] Gilles Brassard, Peter Hyer, Michele Mosca, and Alain Tapp. Quantum

amplitude amplification and estimation. Quantum Computation and

Information, page 5374, 2002.
[13] F. Bloch. Nuclear induction. Phys. Rev., 70:460–474, Oct 1946.
[14] D. Coppersmith. An approximate fourier transform useful in quantum

factoring, 2002.
[15] Walter Rudin. Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc.,

USA, 1987.
[16] Daniel Strano and Benn Bollay. Vm6502q and qrack.

https://vm6502q.readthedocs.io/en/latest/index.html, 2020.
[17] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and

Quantum Information. Cambridge University Press, 2000.
[18] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph Bardin,

Rami Barends, Rupak Biswas, Sergio Boixo, Fernando Brandao, David
Buell, Brian Burkett, Yu Chen, Jimmy Chen, Ben Chiaro, Roberto
Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks
Foxen, Austin Fowler, Craig Michael Gidney, Marissa Giustina, Rob
Graff, Keith Guerin, Steve Habegger, Matthew Harrigan, Michael
Hartmann, Alan Ho, Markus Rudolf Hoffmann, Trent Huang, Travis
Humble, Sergei Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyan-
tyn Kechedzhi, Julian Kelly, Paul Klimov, Sergey Knysh, Alexander
Korotkov, Fedor Kostritsa, Dave Landhuis, Mike Lindmark, Erik Lucero,

Dmitry Lyakh, Salvatore Mandr, Jarrod Ryan McClean, Matthew
McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud
Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill,
Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John Platt, Chris
Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas Rubin, Daniel
Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin Jeffery Sung, Matt
Trevithick, Amit Vainsencher, Benjamin Villalonga, Ted White, Z. Jamie
Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John Martinis.
Quantum supremacy using a programmable superconducting processor.
Nature, 574:505510, 2019.

[19] Nicholas R. Allgood. A quantum algorithm to locate unknown hashes
for known n-grams within a large malware corpus. Master’s thesis,
University of Maryland, Baltimore County, 2020.

[20] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms, pages 911–916. MIT Press, second
edition, 1990.

[21] David Deutsch and Richard Jozsa. Rapid Solution of Problems by
Quantum Computation. Proceedings of the Royal Society of London

Series A, 439(1907):553–558, December 1992.
[22] Chao-Yang Pang, Ri-Gui Zhou, Cong-Bao Ding, and Ben-Qiong Hu.

Quantum search algorithm for set operation. Quantum Information

Processing, 12(1):481492, Mar 2012.
[23] Patrick J. Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Ade-

doyin, John Ambrosiano, Petr Anisimov, William Casper, Gopinath
Chennupati, Carleton Coffrin, Hristo Djidjev, David Gunter, Satish
Karra, Nathan Lemons, Shizeng Lin, Andrey Lokhov, Alexander Ma-
lyzhenkov, David Mascarenas, Susan Mniszewski, Balu Nadiga, Dan
O’Malley, Diane Oyen, Lakshman Prasad, Randy Roberts, Phil Romero,
Nandakishore Santhi, Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim
Wendelberger, Boram Yoon, Richard Zamora, and Wei Zhu. Quantum
algorithm implementations for beginners, 2018.

[24] Edward Raff and Charles Nicholas. Hash-grams: Faster n-gram features
for classification and malware detection. In Proceedings of the ACM

Symposium on Document Engineering 2018, DocEng 18, New York,
NY, USA, 2018. Association for Computing Machinery.

[25] Nicolas J. Cerf and Chris Adami. Information theory of quantum
entanglement and measurement. Physica D: Nonlinear Phenomena,
120(1-2):6281, Sep 1998.

[26] G. Brassard and P. Hoyer. An exact quantum polynomial-time algorithm
for simons problem. Proceedings of the Fifth Israeli Symposium on

Theory of Computing and Systems, 1997.
[27] Sachin Jain and Yogesh Kumar Meena. Byte level n–gram analysis

for malware detection. In K. R. Venugopal and L. M. Patnaik, editors,
Computer Networks and Intelligent Computing, pages 51–59, Berlin,
Heidelberg, 2011. Springer Berlin Heidelberg.

[28] Edwin Pednault, John A. Gunnels, Giacomo Nannicini, Lior Horesh,
Thomas Magerlein, Edgar Solomonik, Erik W. Draeger, Eric T. Holland,
and Robert Wisnieff. Breaking the 49-qubit barrier in the simulation of
quantum circuits, 2017.

https://quantum-computing.ibm.com
https://dwavesys.com
https://github.com/vm6502q/qrack
https://vm6502q.readthedocs.io/en/latest/index.html

	ScholarWorksCoverSheetNoLicense
	2005.02911
	I Introduction
	II Related Work
	II-A n-grams for Malware Analysis
	II-B KiloGram
	II-C Grover's Algorithm

	III Quantum N-gram Searching
	III-A Amplitude Amplification
	III-B Quantum Fourier Transform

	IV Quantitative Results
	IV-A Grover's Circuits

	V Simulated Results
	V-A Qrack Operations
	V-B Benign vs. Malicious Datasets
	V-C Example Hash Retrieval for N-gram: 0xf3d7
	V-D Qrack Pseudo-code

	VI Conclusion
	References

