

This work is on a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International (CC BY-NC-ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/.
Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:scholarworks-group@umbc.edu

 Procedia Computer Science 95 (2016) 159 – 167

Available online at www.sciencedirect.com

1877-0509 © 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology
doi: 10.1016/j.procs.2016.09.307

ScienceDirect

Complex Adaptive Systems, Publication 6
Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology
2016 - Los Angeles, CA

Implementing Multilayer Neural Network Behavior Using
Polychronous Wavefront Computation

Fred Highlanda*, Corey Hartb

aUniversity of Maryland Baltimore County, Baltimore, MD, USA
bnNetworx, LLC, Philadelphia, Pennsylvania, USA

Abstract

Polychronous Wavefront Computation (PWC) is an abstraction of spiking neural networks that provides a potentially practical
model for implementing neuromorphic computing systems. While it's has been shown to exhibit some basic computational
capabilities, its use in complex neuro-computational models remains to be explored. The paper presents a model and approach for
configuring PWC transponders to implement multilayer neural network behavior to provide a basis for more complex applications
of the technology. The model uses a set of input transponders representing pattern features to stimulate hidden layer transponders
that combine features and trigger output layer transponders to identify patterns. The input layer transponder geometry is selected
to create wavefront intersections for all relevant feature combinations. Hidden layer transponders are positioned by solving the
intersection of the circles equations defined by sets of input transponders. Output layer transponders are defined to collect complete
sets of features for recognition based on the hidden layer transponder geometry. The approach uses the intersections of three
wavefronts to maximize transponder selectivity and increase information density. The concept is experimentally demonstrated and
analyzed with a 7-segment display digit recognition application which provides a simple but representative example of more
complex pattern recognition problems.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology.

Keywords: polychronous wavefront computation; multilayer perceptrons; spiking neural networks

* Corresponding author. Tel.: +0-301-471-4685.
E-mail address: fred.highland.mobile@gmail.com

© 2016 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of Missouri University of Science and Technology

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.09.307&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.09.307&domain=pdf

160 Fred Highland and Corey Hart / Procedia Computer Science 95 (2016) 159 – 167

1. Introduction

Polychronous Wavefront Computation (PWC)1 was proposed as an abstraction of the spiking neural network
paradigm2 based on temporal and spatial patterns of wavefront activity in a pulse propagating media and their
interaction with transponders. It provides a potentially practical model for implementing neuromorphic computing
systems, that operate on the same principles as the human brain, by eliminating the need for direct connections between
computational units simplifying implementation. Such neuromorphic systems offer the potential for advanced pattern
recognition and computation capabilities that are adaptive and require less power than von Neumann approaches.

Izhikevich and Hoppensteadt1 have defined small configurations of PWC transponders that can perform
computations such as signal analysis and logical operations. The mathematical properties of simple PWC
configurations have been explored in detail and some conceptual sensor configurations suggested3. It has also been
suggested that numerical programming methods could be used to configure PWC transponders4. Although prior work
has defined many fundamental properties of PWC configurations, specific methods and design patterns to construct
multilayer configurations capable of complex pattern recognition have not been developed. Such methods would
support further exploration of complex PWC properties; inform efforts to develop supervised and unsupervised
learning techniques; and provide the basis for researching advanced applications such as deep learning.

The objective of this work is to develop methods to create multilayer PWC configurations that can form the basis
for exploring the application of PWC to more complex problems. The paper presents an approach for configuring
PWC transponders to implement multilayer neural network recognition behavior. The behavior is similar to a
multilayer perceptron model but has the spiking neural network characteristics of PWC. The model features a set of
input transponders to represent feature values, hidden layer transponders that combine features values, and an output
layer of transponders to represent the results. The paper first discusses the strategy for implementing such a
configuration then goes into the details of configuration of the input, hidden and output layers. It then discusses the
application of the approach to a 7-segment display digit recognition problem and the results obtained. It concludes
with a discussion of the characteristics of the proposed method and directions for further research.

2. Design Approach

2.1. Strategy

Recognizing complex patterns from a set of features using a multilayer configuration of transponders (nodes)
requires the definition of a set of input nodes representing the features, hidden nodes that combine subsets of the input
features and output nodes to classify feature sets. Since the relevant set of feature combinations is not known a priori,
the hidden nodes must be capable of representing all possible combinations of the inputs and the output nodes must
be capable of identifying all relevant input combinations. Representing this with PWC raises a number of issues
including node location, efficiently combining the inputs together in hidden nodes and avoiding unwanted node
activations in large scale configurations.

In the simplest case, two PWC nodes can activate a third node representing the combination of the two. Figure 1
shows how two nodes (A and B), activated at different times, trigger a third node (C) at the intersection of two
wavefronts (circles). The possible wavefront intersections over time form a hyperbola defined by the radii of the
wavefronts generated by the two nodes, which in turn are defined by the positions and relative activation times of the
nodes. In this example, node A was activated before node B resulting in a larger diameter wavefront for node A. The
intersection points for the A and B activation are defined by the solid hyperbola. Other possible intersections, defined
by different relative activation times, are shown as dashed hyperbolae.

Applying the two wavefront intersection activation criteria to larger configurations creates an intersection
hyperbola for each pair of activated nodes resulting in (n2-n)/2 hyperbolae for an n node configuration. Each curve
extends to infinity in each direction producing a large number of possibilities for unwanted node activations that can
result in chaotic behavior. This can be controlled by proper spacing and choice of position but the number of
intersection hyperbolae in complex configurations makes this approach difficult to manage.

A better approach, which is analyzed by Thomas5, is to use a criteria based on the intersections of three wavefronts.
The intersection of three wavefronts is defined by the intersection of the intersection hyperbolae of each of the three

161 Fred Highland and Corey Hart / Procedia Computer Science 95 (2016) 159 – 167

node pairs. Although this results in (n3-3n2+2n)/6
intersections for an n node configuration, each intersection
is a single point in space significantly limiting the
possibility of unwanted node activations and increasing the
potential information density of the intersections and the
configuration.

The intersection region of three nodes is roughly the
interior of a triangle formed by the nodes5 suggesting a
circular pattern for input node arrangement. If the nodes
are arranged in a circle with simultaneous activation times,
the intersections are always in the center, which does not
provide the needed discrimination between combinations.
However, if the activation times are offset, the
intersections occur in an approximately circular region of
the interior of the circle defined by the nodes and can
produce unique intersection locations for all possible
combinations of inputs with the right choice of input
positions and time offsets.

The three node intersection approach uniquely defines
hidden node location based on the input node combinations

and activation times. Similarly, combinations of hidden nodes can uniquely define the location of output nodes. The
indirect control over position and time of the hidden nodes may limit flexibility and feasibility of output nodes but if
output nodes can be defined by multiple hidden node combinations, the limitations can be minimized.

Other input configurations may also be possible. Semi-circles are a variant on full circles but their geometry reduces
the interior space of three node triangles packing the intersection points more densely which is undesirable. Thomas5

has suggested a matrix form with input (sensor) points evenly distributed in two dimensions. This has similar
characteristics to the circular pattern but can generate intersection points over input nodes due to linear arrangement
of some combinations. This problem may be solved using time and/or position offsets. Patterns that use greater than
three wavefront intersections could further improve the density of the configurations. However, input geometries that
generate all combinations of higher order intersections have not been identified.

2.2. Input Nodes

As mentioned above, a circular pattern of feature inputs with offset times can produce a geometry that contains all
possible three node intersections. A constant time delay between possible input features can be used to simplify the
computations as discussed below.

In general, each feature must be represented as multiple input nodes to provide all possible values of the feature.
Since the hidden nodes are activated by input node wavefronts, the absence of a value for a feature is not the same as
a default or 0 value. Therefore, a node must be provided for each feature-value combination or relevant partition of
values. At this stage in the research, only binary values have been used. Continuous valued features have not been
explored but there are a number of possible representations (see 4 Discussion).

The size of the input layer circle and the time delay between input signals have a direct impact on the spacing of
the hidden nodes. Roughly, the hidden nodes form in a semicircle in the middle of the input node circle with a
minimum radius approximately equal to the time delay (assuming wavefront propagation of one distance unit per time
unit). The outer position of the hidden nodes is a function of the input node position and delay time but the density of
hidden nodes is higher toward the center of the input node circle. This characteristic can be exploited in positioning
output nodes to minimize conflicts. The distribution of hidden nodes using this pattern is not strictly a circle but rather
a set of closely packed spirals. As a result, large time delays can position hidden nodes significantly outside the input
circle which may not be feasible.

Figure 1 - PWC Two Node/Wavefront Activation

162 Fred Highland and Corey Hart / Procedia Computer Science 95 (2016) 159 – 167

2.3. Hidden Nodes

Hidden nodes are defined to represent each possible combination of three inputs feature values. Given multiple
mutually exclusive values for each feature, the number of hidden nodes for three wavefront intersections is:= = !!()! (1)

Where

f is the number of input features
v the number of values for each feature

The position of each hidden node is determined by the equation of the intersection of two circles6:= + () ± (+) () (2)

= + () (+) () (3)= () +() (4)

Subject to the constraints: + > | | < (5)
Where

xn,yn are the coordinates of the input node in

d is the distance between the input nodes
rn is the radius of the circle (wavefront) from input node in

Figure 2 illustrates the relationship of r to time and distance in determining these intersections. Three nodes (A, B
and C) that are activated at different times (tA, tB and tC respectively), in sequence (i.e., tA < tB < tC) and with wavefront
(shown as circles) radii rA, rB and rC respectively. The dashed lines (actually curves), AB, AC and BC represent the
intersection hyperbolae for the corresponding nodes. The point ABC is the intersection of the three wavefronts. The
relationship of the wavefront radii and activation times in this example is:= + () = + () (6)

This dependence can be exploited by defining rA and
rB in terms of rC (since tA, tB and tC are given) providing
a single variable for optimization.

Thomas5 showed that the location of the intersection
of three wavefronts is the intersection of the intersection
hyperbolae for each of the pairs of nodes. However, the
equations of circle intersection (2 & 3) have two
solutions for each pair of input nodes representing the
branches of the hyperbola on either side of the line
between the nodes. Since there are three node pairs that
define a three wavefront intersection, there are 23 = 8
possible solutions to the intersection point, if it exists, for
positive values of r. Depending on the locations of the
nodes and the values of r, there may be no solutions (i.e.
the constraints of (5) are violated) or the solutions may
be impractical due to extreme distances involved. This
can be a problem for determining the hidden node
locations if the input time delays are too large relative to
the diameter of the circle of inputs.Figure 2 - Relationship of r, distance and time in 3 wave intersections

163 Fred Highland and Corey Hart / Procedia Computer Science 95 (2016) 159 – 167

The feasibility of the triplets of intersection equations depends on the orientation of the input nodes and the timings
involved. An analytic solution for this has not yet been derived but the equations can be easily solved using gradient
decent to find the value for rC (from (6)) that minimizes the distance between pairwise intersections across all possible
solutions.

2.4. Output Nodes

In the general case, output nodes should represent all relevant combinations of input feature values. This can
include all input features or subsets of them as dictated by the recognition problem. The node locations can be defined
using the same approach used for hidden nodes by selecting a set of three hidden nodes, representing the features
required, and finding the intersections of their pairwise intersection hyperbolae. The number of output nodes required
depends on the nature of the problem. In general, it should be the maximum defined by the number of meaningful
feature combinations to allow analysis or training methods to prune unneeded hidden and output nodes as suggested
in 4 Discussion.

For an output node to represent an input feature set, it must be activated from hidden nodes that represent only the
required features. Since the output feature set is formed from the union of the features of the three hidden nodes, each
of which represents three input features, there are multiple possible hidden node combinations representing feature
sets less than or equal to nine. As long as each of the input values is represented, no additional values are included
and the hidden nodes used are unique, any triplet of hidden nodes can be used. Table 1 shows the number of
combinations of three unique hidden nodes available to define output nodes based on the number of input features.
The feasibility of these combinations is limited by the constraints of (5), the positions of the hidden nodes and the
implied values of r (6). Only one combination of hidden nodes that represents the features set and meets constraints
is needed for each output so the number of hidden nodes needed can be significantly less that the number in Table 1.

Using combinations of three feature hidden nodes to define outputs limits feature representation to nine per output.
For problems that require more than nine features, additional hidden node layers can be added to combine the features.
Each additional layer increases the number of features represented by up to a factor of three over the previous layer.
As this also increases the number of hidden nodes and the effort required to compute these nodes exponentially, it is
best to limit the scope of processing for each configuration as is done in deep learning approaches.

The determination of the solutions, with respect to r, for the equations defining output nodes is best accomplished
using gradient descent. A selection criterion should be used to limit the search since there are many possible
combinations of hidden nodes that can define output node locations. Selection of candidates can be pruned by
considering the constraints of (5) along with objectives on the distance between the solution and the center of the input
circle to minimize unwanted node activations.

2.5. Approach Summary

The approach is summarized in the following steps:

1. Define position and timing for input nodes representing each possible input
value. A circular arrangement with fixed offset times between features is
recommended.
2. Define hidden nodes positions for each possible combination of three input
nodes based on the solutions of the equations of circle intersection using gradient
descent.
3. Select output nodes that represent combinations of features from the
intersections of three hidden nodes containing those features. Select the hidden
node triplets that best define the output nodes based on feasibility of solving the
circle intersect equations and the output node location relative to other nodes.

Once the configuration is defined, various methods may be used to optimize the
configuration by removing unneeded nodes as discussed in 3 Results.

Table 1 - Hidden Node
Combinations vs. Input Features.

Input

Features

Hidden Node

Combinations

4 4

5 100

6 480

7 945

8 840

9 280

164 Fred Highland and Corey Hart / Procedia Computer Science 95 (2016) 159 – 167

3. Results

To evaluate the proposed method, a simple 7-segment display digit
recognition problem was implemented. 7-segment display devices have
been used to display decimal digits on electronic devices since about
19107. They are driven by decoders that convert binary numbers to a
decimal representation of seven illuminated segments. The problem used
here is to input the seven segments (the standard notation is shown in
Figure 4) and categorize them into one of ten outputs labeled 0-9. This
problem represents a simple version of a multi-feature classification
problem providing a practical basis for detailed experimentation and
analysis.

The inputs were encoded as seven features of two mutually exclusive
values (segment “on” or “off”). Input nodes were defined evenly distributed around a circle with a radius of 100 units.
The time delay between each input feature’s nodes was defined as 6 units. The “off” value units were positioned
halfway between the “on” value units but activated at the same time as the feature values are mutually exclusive. The
“on” value nodes were activated in a clockwise sequence and the “off” value nodes in a counterclockwise sequence
to better distribute the hidden nodes in the center region of the circle minimizing conflicts.

Output nodes were selected based on: satisfaction of constraints of (5), distance from the center (less than 150% of
the input circle radius), and minimizing interference with hidden nodes (distance to center greater than 25% of the
input circle radius). If unwanted output node activations occurred during training (due to proximity of nodes), alternate
solutions (hidden node combinations) were selected.

A spreadsheet model was created to define the node configuration and analyze the solution. This supported input
node layout, computation of hidden node locations, evaluating output node alternatives and analysis of the problem.

Figure 5 shows the node layout diagram for the resulting configuration. Inputs are shown in the outer circle with
black dots representing on values (labeled with upper case letters per standard label nomenclature) and circled grey

dots representing off values (labeled with lower
case letters). Placement of the hidden nodes is
shown by small red dots (unlabeled). The location
of hidden nodes is defined by the input node and
tend to be concentrated near the center although
some outliers can be seen. The blue diamonds are
the output nodes labeled with the numbers values
they represent. Only correct output labels are
shown for simplicity. Output nodes were selected
from possible alternatives and occur outside
central region of the circle to minimize potential
conflicts with hidden nodes.

The resulting node configuration was run on a
PWC Simulator built on NetLogo8. The simulator
implements PWC transponders in a dynamic
agent-based discrete-event simulation that allows
the wavefront and transponder actions to be
visualized. The simulation uses basic time and
distance equations that do not require the circle
intersection analysis of (3) thru (5) providing an
independent verification of correct behavior. The
simulator also supports Leaky Integrate-then-
Fire9,10 semantics on the nodes allowing the
simulation to be tuned to adjust for node distances.

Figure 3 - Standard Label Nomenclature for a 7-
Segment Display

Figure 4 - 7-Segment Recognition Configuration Layout.

165 Fred Highland and Corey Hart / Procedia Computer Science 95 (2016) 159 – 167

Tests were run with a series of ten patterns representing the digits 0-9 (Positive Training Cases) and twenty
randomly generated invalid (non-digit) patterns (Negative Training Cases). Note that in the standard nomenclature,
there are only ten valid input patterns. Positive Cases were verified to activate only the appropriate digit output nodes
and none of the non-digit output nodes (100% accuracy). Negative Cases were verified not to activate any digit output
nodes (0% errors). If incorrect output activations occurred, alternate hidden/output node combinations were selected
to correct the issues.

Table 2 shows the summary statistics for the positive
training cases for hidden and output nodes. The data is
subcategorized into activated and used nodes. Activated
nodes were activated by the training data. Used nodes are
prerequisites for outputs according to analysis of the node
configuration data and unused nodes are not associated with
any positive output. These two measures are an indication of
possibly unneeded nodes that could be removed to optimize
the configuration. The overall counts match the predictions
of the equations above. Not all hidden nodes are activated
because many combinations of feature-values are not used in
the positive training cases. Also, a large number of hidden
nodes are not used in the definitions of output nodes. Some
of the hidden nodes are activated even though they are not
used in the definition of outputs because their input
combinations are activated.

4. Discussion

The approach is applicable to a wide range of problems but may require significant computing resources to generate
configurations. The computational complexity of transponder definition is dominated by the nature of the outputs but
driven by the number of features. The cost of defining the input layer linear with the number of feature values required
based on the arrangement of input nodes. The hidden layer definition cost is a driven by the combinations of three
features that can be created from the inputs which is given by (1) and is O(f3v3). Each hidden node requires the solution
to multiple intersection equations ((2), (3) and (4)) using gradient descent which is finite because equations 2 and 3
are effectively quadratic but are not computationally trivial and feasibility constraints must be applied. The most
expensive element is the determination of output node positions. In the worst case, outputs must be computed for all
possible input combinations which is O(fv) and there can be as many as 945 combinations to consider based on the
feature value set (see Table 1). Each of these requires a gradient descent solution of intersection equations. Fortunately,
many of these will be infeasible and can be pruned using constraints of (5) and geometric selection criteria (distance
from other nodes, etc.). The computational needs are tractable with modern computer resources but they are not trivial.

The current implementation represents only the equivalent of black and white (binary) light intensity vision similar
to that provided by rod structures in the human eye11. It could be extended to color for other imaging problems by
adding the analog of cone structures which sense three different wavelength ranges (approximating red, green and
blue). Similar approaches could be used to represent more complex features with continuous values. In addition, the
underlying transponder simulation uses a Leaky Integrate-then-Fire model that can also provide some representation
of continuous values by summing inputs over time and adjusting node activation thresholds. Furthermore, PWC
implementations can encode real valued features directly in terms of continuous time delays between different pulses.

The concept of reducing unneeded output nodes (and hidden nodes) suggests a method for learning by pruning the
resulting configuration using methods such as potentiation decay12. By applying an attrition function during training
cases, unused or infrequently used nodes can be suppressed optimizing the structure of the configuration. The statistics
on the 7-segment example suggest this could reduce the number of nodes significantly since more than half of the
nodes (224 of 422) were unactivated in the positive test cases. Those statistics also show that many other hidden nodes
are not associated with outputs and are candidates for elimination. This can be determined by a post-training analysis
of the results and can make a significant further reduction in the hidden node requirements.

Table 2 - Summary Node Statistics for Positive Training Cases

Node
Type

Count Subcategory Count

Input 14
Hidden 280 Activated 174

Unactivated 106
Used by Outputs 76

Unused by Outputs 204
Output 128 Activated 10

Unactivated 118
Total 422 Activated 168

Unactivated 224
Used 100

Unused 322

166 Fred Highland and Corey Hart / Procedia Computer Science 95 (2016) 159 – 167

The configurations generated do not exhibit all characteristics of multilayer perceptrons. Perceptrons use weighted
connections that can define the best fit of a set of features. The spiking nature of this model along with the Leaky-
Integrate-Then-Fire behavior can be provide a similar capability under some conditions but it is not as general as
weighted connections. The multilayer PWC model tends to identify exact patterns based on input features which may
be an advantage for some problems. The model also does not specify how to combine multiple outputs into classes
(e.g., multiple patterns that represent the same digit). This can be done external to the PWC computations, using a
logical OR mechanism within PWC1 or possibly using multiple layers of this model. Methods to address this are
currently being investigated.

One of the keys to the success of this work is the use of a three wavefront intersection criteria for PWC node
activation. The two wavefront criteria results in intersection hyperbola covering a large portion of node space making
the configuration subject to unwanted activations as the number of nodes increases. A three wavefront intersection
criteria defines a point in space that is much less likely to result in unwanted activations as the configuration grows.

5. Summary and Directions for Further Work

A general approach has been presented for defining PWC configurations that exhibit multilayer neural network
behavior. It has been successfully applied to a simple, but representative, pattern classification problem. Analysis of
the results shows that the configurations produced can recognize input patterns and there are opportunities for
optimization through node elimination. It is suggested that the results are applicable to a wide range of problems.

A more general approach to learning useful outputs may be to apply a Spike Timing Dependent Plasticity (STDP)
approach to find output nodes locations9. This would involve randomly placing a sufficiently dense set of candidate
output nodes within the configuration and letting the PWC STDP algorithm determine their optimal positions.

The current work has been focused on feed-forward configurations but the PWC framework is well suited for
implementing recurrent and recursive behaviors. The approach described constrains the placement of transponders in
order to minimize the likelihood of recurrent or reverberating excitation and interference between patterns. This
provides a simplifying constraint but tasks with more computational complexity or temporal components may require
some degree of recurrent excitation and therefore methods for determining placement while avoiding runaway
activations. The use of recurrent configurations12 may also provide an approach to unsupervised training of multilayer
PWC configurations. If output node activation could be used to reactivate the associated hidden nodes, the recursion
could potentiate the active nodes and a form of potentiation decay could be used to suppress the inactive nodes.

This work can provide the basis to explore advanced research topics in the area of PWC configurations including:

Exploration of additional input node configurations
Development of learning approaches to determine output and hidden node locations
Construction of more complex configurations such as recurrent structures and category recognition
Application to other problems such as approximate classification and deep learning approaches.

The objective of this work was to define a starting point for the understanding of multilayer PWC configuration to
support complex pattern recognition. While it requires some intervention to adjust the output nodes for best
performance, it provides a basis for the development of further methods for supervised and unsupervised learning in
these configurations and support further exploration using the PWC framework in complex problems.

References

1. Izhikevich, E.M. and Hoppensteadt, F. Polychronous Wavefront Computations. International Journal of Bifurcation and Chaos; Vol. 19, No.
5:1733-1739. 2009.

2. Izhikevich, E.M. “Polychronization: Computation with spikes.” Neural Computing. 18, 245–282. 2006.
3. Thomas, J. A Mathematical Treatise on Polychronous Wavefront Computation and its Application into Modeling Neurosensory Systems.

ResearchGate; 2014.
https://www.researchgate.net/publication/264044389_A_Mathematical_Treatise_on_Polychronous_Wavefront_Computation_and_its_Applic
ation_into_Modeling_Neurosensory_Systems_Under_Review

4. Hart, C. Towards a Compiler for a Polychronous Wavefront Computer: Programming by Optimization. Complex Adaptive Systems, Procedia
Computer Science; Vol. 36. 2014. http://www.sciencedirect.com/science/article/pii/S1877050914012599

167 Fred Highland and Corey Hart / Procedia Computer Science 95 (2016) 159 – 167

5. Thomas, J. The Geometry of Polychronous Wavefront Computation. ResearchGate; 2015.
https://www.researchgate.net/publication/281156794_The_Geometry_of_Polychronous_Wavefront_Computation

6. Wilson, R. S. Analytic Foundations of Geometry. Sonoma State University; 2010.
http://www.sonoma.edu/users/w/wilsonst/papers/Geometry/default.html

7. Wood, F. W. U.S. Patent 974,943. Patent and Trademark Office; 1910.
8. Wilensky, U. NetLogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL. 1999.

http://ccl.northwestern.edu/netlogo
9. Gerstner, W. and Kistler, W. Spiking Neuron Models. Single Neurons, Populations, Plasticity. Cambridge University Press; 2002.
10. Highland, F. and Hart, C. Adaptation of Spike-Timing-Dependent Plasticity to Unsupervised Learning for Polychronous Wavefront

Computing. Complex Adaptive Systems, Procedia Computer Science; Vol. 61. 2015.
http://www.sciencedirect.com/science/article/pii/S1877050915029762

11. Nave, C.R. Hyperphysics. Georgia State University; 2012. http://hyperphysics.phy-astr.gsu.edu/hbase/vision/rodcone.html
12. Miller, A and Jin, Dezhe Z. Potentiation decay of synapses and length distributions of synfire chains self-organized in recurrent neural

networks. Physical Review E 88, 062716; 2013.

	sheet4
	1-s2.0-S1877050916324802-main

