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ABSTRACT

The multivariate calibration problem deals with inference concerning an unknown value of a covari-

ate vector based on an observation on a response vector. Two distinct scenarios are considered in the

multivariate calibration problem: controlled calibration where the covariates are non-stochastic, and ran-

dom calibration where the covariates are random. Under controlled calibration, a problem of interest

is the computation of a con�dence region for the unknown covariate vector. Under random calibration,

the problem is that of computing a prediction region for the covariate vector. Assuming the standard

multivariate normal linear regression model, rectangular con�dence and prediction regions are derived

using a parametric bootstrap approach. Numerical results show that the regions accurately maintain the

coverage probabilities. The results are illustrated using examples. The regions currently available in the

literature are all ellipsoidal, and this work is the �rst attempt to derive rectangular regions.
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1 Introduction

The multivariate calibration problem has received considerable attention in the literature in the setup

of a multivariate linear regression model, under the multivariate normality assumption. The problem

of interest consists of inference concerning an unknown or unobserved value of the covariate vector

after observing the corresponding response. Two scenarios are considered in the literature: the case of

controlled calibration, where the covariate vectors are treated as �xed, and the case of random calibration

where they are treated as random. Under controlled calibration, it is of interest to compute a con�dence

region for the unknown covariate vector. Under random calibration, the problem of interest is the

computation of a prediction region for the unobserved covariate vector. Some relevant references are

Brown (1982), Fujikoshi and Nishii (1984), Davis and Hayakawa (1987), Brown and Sundberg (1987),

Oman (1988), Mathew and Kasala (1994), Mathew and Zha (1996), Sundberg (1999) Bellio (2003),

Benton, Krishnamoorthy and Mathew (2003), Devijver and Perthame (2018) and Bhaumik and Nordgren

(2019). The articles by Osborne (1991) and Sundberg (1994) and the book by Brown (1993) provide a

review of some of the relevant results.

Whether it is a multivariate con�dence region or a prediction region, the regions available in the

literature are all ellipsoidal. However, the pivot statistic used is such that the ellipsoidal shape is not

always guaranteed. In fact even in the univariate case, the pivot may not yield a �nite interval as the

con�dence interval; we refer to Brown (1982, 1993) for details. Even if we get an ellipsoidal region, such

a region is not appropriate for drawing conclusions on the magnitude of the individual components of the

multivariate parameter vector; this could be especially relevant when the components of the multivariate

vector represent physical quantities measured in di�erent units. This calls for the computation of a

rectangular region. However, the rectangular con�dence region or prediction region has to be derived so

as to satisfy the coverage probability requirement, taking into account the cross-correlations. This article

is an attempt to derive such rectangular regions; we develop a parametric bootstrap algorithm in order

to accomplish this. In terms of maintaining the coverage probability, the rectangular regions we have

derived are quite satisfactory.

Here is the parametric model and the inference problem. Let X1, . . . ,Xn be n response vectors,

where eachXi is p×1, and let w1, . . . ,wn be the corresponding covariate vectors, where each wi is q×1,

i = 1, . . . , n. Write X = [X1,X2, . . . ,Xn] and W = [w1, . . . ,wn] so that X and W are p× n and q × n

matrices, respectively. We assume the standard multivariate regression model:

X = BW +E, (1.1)

where E = [e1, e2, . . . , en] is a p × n matrix of error terms; the eis are p × 1 iid multivariate normal

random vectors with mean vector 0 and unknown covariance matrix Σ, i = 1, . . . , n. Furthermore, B is
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a p× q matrix of unknown parameters. We also assume that rank (W) = q and that n− q > p. The least

squares estimator of B and an unbiased estimator of Σ, denoted by B̂ and Σ̂, respectively, are given by

B̂ = XW′ (WW′)−1 , Σ̂ =
1

n− q
X
[
In −W′ (WW′)−1W]

X′. (1.2)

Now suppose we have another observation X0, independent of the X in (1.1), corresponding to an

unknown q × 1 covariate vector w0, such that given w0 we have the distribution

X0 ∼ Np (Bw0,Σ) . (1.3)

The multivariate calibration problem consists of inference concerning the unknown vector w0.

In the controlled calibration scenario, the columns of the covariate matrix W are treated as �xed,

whereas in the scenario of random calibration, the columns of W are treated as iid realizations of a q× 1

random vector. Thus the vector w0 is a �xed unknown parameter in the former case, and a random vector

in the latter case, having the same distribution as that of the columns of W. When w0 is �xed, we shall

denote it by θ. When it is random, we write it asW 0. For the controlled calibration case, we shall address

the problem of computing a rectangular con�dence region for the parameter vector θ. In the random

calibration case, we take up the problem of computing a rectangular prediction region for W 0. In each

case, a parametric bootstrap approach is developed to get the required regions. The controlled calibration

case is discussed in Section 2, and the random calibration case in Section 3. Numerical results indicate

that the parametric bootstrap-based con�dence regions and prediction regions accurately maintain the

coverage probabilities. The results are illustrated with examples.

We conclude this introduction with the following observations. The pivot statistic we have used

for the computation of a rectangular con�dence region (and also a rectangular prediction region) is a

maximum of several univariate pivot statistics. The distribution of such a maximum is then estimated

using a parametric bootstrap. Such a pivot statistic has been available in the literature for the compu-

tation of simultaneous con�dence bands, and the resulting solution is referred to as a �sup-t con�dence

band". The sup-t approach has been utilized for computing simultaneous con�dence bands and simulta-

neous prediction bands, especially in the context of multivariate time series; see Montiel Olea, Luis and

Plagborg-Moller (2019) for the development of simultaneous con�dence bands, and Wolf and Wunderli

(2015) for the development of simultaneous prediction bands. We refer to these articles for other literature

relevant to sup-t bands. A survey of the relevant literature is available in Lütkepohl, Staszewska-Bystrova

and Winker (2020).
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2 Rectangular con�dence regions under controlled calibration

Recall that the data consist of the p× n matrix X and the p× 1 vector X0 following the models:

X = BW +E, X0 = Bθ + e0, (2.1)

where B is an unknown parameter matrix of dimension p × q, W is the q × n matrix whose columns

are q-dimensional covariate vectors, and θ is a q × 1 unknown parameter. The n columns of the p × n

matrix E, and the p × 1 column vector e0 are independent, each having the distribution Np (0,Σ),

where Σ is an unknown p × p positive de�nite matrix. We note that since B is a p × q matrix, the

identi�ability of θ requires the condition p ≥ q, and we proceed under this assumption. We shall address

the problem of computing a rectangular con�dence region for θ, and numerically assess the performance

of our region based on estimated coverage probabilities. It should be noted that when θ is a scalar, a

parametric bootstrap approach is pursued in Benton, Krishnamoorthy and Mathew (2003) for the interval

estimation of θ.

We �rst note that if B and Σ are known, the generalized least squares estimator of theta, say θ̃, and

its distribution, are given by

θ̃ =
(
B′Σ−1B

)−1
B′Σ−1X0 ∼ Nq

(
θ,
(
B′Σ−1B

)−1)
. (2.2)

Let us now use the following notation: for a vector a, the ith component will be denoted by a(i), and

for a matrix A, the ith diagonal element will be denoted by A(ii). From (2.2) we conclude:

θ̃(i) − θ(i)√(
B′Σ−1B

)−1
(ii)

∼ N (0, 1) (2.3)

for each i = 1, . . . , q. Therefore the quantities in (2.3) are identically distributed and are pivots for

the corresponding θ(i); however, they are not independent. In view of (2.3), a 100(1− α)% rectangular

con�dence region for the θ(i)s can be taken to be of the form θ̃(i) ± κ
√(

B′Σ−1B
)−1
(ii)

, where the factor

κ is the 100(1− α)th percentile of

max
1≤i≤q

∣∣∣∣∣∣ θ̃(i) − θ(i)√(
B′Σ−1B

)−1
(ii)

∣∣∣∣∣∣ . (2.4)

Since B and Σ are unknown, we now replace them by their respective estimates B̂ and Σ̂ given in (1.2).

After replacing B and Σ in (2.4) with B̂ and Σ̂, respectively, we shall compute the 100(1− α)th percentile
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of the resulting quantity using a parametric bootstrap. We shall also appeal to the following results:

vec
(
B̂
)
∼ Npq

(
vec (B) ,

(
WW′)−1 ⊗Σ

)
, Σ̂ ∼W

(
n− q, 1

n− q
Σ

)
,

where B̂ and Σ̂ are also independent. The parametric bootstrap approach for computing a rectangular

con�dence region for θ is summarized in Algorithm 1.

Algorithm 1: Rectangular con�dence region under controlled calibration

1. Compute the estimates B̂ and Σ̂ given in (1.2), and also compute θ̂ =
(
B̂
′
Σ̂
−1
B̂
)−1

B̂
′
Σ̂
−1
X0.

2. For b = 1, . . . , B,

i. Generate vec
(
B̂
∗
b

)
∼ Npq

(
vec
(
B̂
)
,
(
WW′)−1 ⊗ Σ̂

)
,

Σ̂
∗
b ∼W

(
n− q, 1

n−q Σ̂
)
, and X∗0b ∼ Np

(
B̂θ̂, Σ̂

)
.

ii. Compute θ̂
∗
b =

(
B̂
∗′

b Σ̂
∗−1
b B̂

∗
b

)−1
B̂
′∗
b Σ̂
∗−1
b X∗0b

iii. Compute kb = max
1≤i≤q

∣∣∣∣∣∣ θ̂
∗
b(i)−θ̂(i)√(

B̂
∗
b

′
Σ̂
∗−1
b B̂

∗
b

)−1

(ii)

∣∣∣∣∣∣.
3. Compute the (1− α)-quantile of k1, . . . , kB , call this k.

4. The 100(1− α)% rectangular con�dence region for θ is given by

[
θ̂(1) ± k

√(
B̂
′
Σ̂
−1
B̂
)−1
(11)

]
× · · · ×

[
θ̂(q) ± k

√(
B̂
′
Σ̂
−1
B̂
)−1
(qq)

]
.

.

One-sided con�dence regions

To compute one-sided upper con�dence limits for θ, we simply change the de�nition of kb in Step 2 (iii)

of Algorithm 1 to

kb = max
1≤i≤q

θ̂
∗
b(i) − θ̂(i)√(

B̂
∗′
b

(
Σ̂
∗
b

)−1
B̂
∗
b

)−1
(ii)

,

and take k to be the α-quantile of k1, . . . , kB . The resulting 100(1− α)% con�dence region having only

upper limits is given by

(
−∞, θ̂(1) + k

√(
B̂
′
Σ̂
−1
B̂
)−1
(11)

]
× · · · ×

(
−∞, θ̂(q) + k

√(
B̂
′
Σ̂
−1
B̂
)−1
(qq)

]
.
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Similarly, to compute one-sided lower con�dence limits for θ, we use

kb = min
1≤i≤q

θ̂
∗
b(i) − θ̂(i)√(

B̂
∗′
b

(
Σ̂
∗
b

)−1
B̂
∗
b

)−1
(ii)

and take k to be the α-quantile of k1, . . . , kB . The resulting 100(1− α)% con�dence region having only

lower limits is given by

[
θ̂(1) + k

√(
B̂
′
Σ̂
−1
B̂
)−1
(11)

,∞

)
× · · · ×

[
θ̂(q) + k

√(
B̂
′
Σ̂
−1
B̂
)−1
(qq)

,∞

)
.

Inclusion of an intercept term

The methodology outlined in Algorithm 1 assumes that the vector θ is a completely unknown parameter,

which is the case when the multivariate linear regression model does not include an intercept term.

However, in many applications the model will include an intercept term; see Brown (1982) and Brown

and Sundberg (1987). Instead of (2.1), we now have the models

X = a1
′

n +BW +E, X0 = a+Bθ + e0, (2.5)

where a is a (p× 1) intercept vector, and we make the same assumptions as for the model (2.1). For

inference concerning θ, it is possible to have a reduced form of the models in (2.5), where the intercept

term is absent, as noted in Mathew and Kasala (1994). For this, let Z be an n × (n− 1) matrix such

that Q = [(1/
√
n) 1n,Z] is an orthogonal matrix. Now de�ne the �adjusted quantities"

Xa = XZ, Wa = WZ, X0,a =

√
1 +

1

n

(
X0 −

1

n
X1n

)
, and θa =

√
1 +

1

n

(
θ − 1

n
W1n

)
. (2.6)

It is easy to verify that the following models hold for the quantities Xa and X0,a:

Xa = BWa +Ea, X0,a = Bθa + e0,a, (2.7)

where e0,a and the (n− 1) columns of Ea are independent and identically distributed as Np (0,Σ). Thus

we are back to the models in (2.1) with n replaced by n − 1. Algorithm 1 can now be implemented

for computing a rectangular con�dence region for θa (the sample size n appearing in Algorithm 1 has

to be replaced with n − 1). From the de�nition of θa given in (2.6) it should be clear that from the

rectangular con�dence region for θa, we can obtain the corresponding region for θ. Here we also want

to note that even though the choice of the matrix Z is not unique, the estimated con�dence factor k

does not depend on the choice of the matrix Z. In order to see this, we note that the orthogonality of
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Q implies ZZ′ = In − 1
n1n1

′

n. Making use of this property, it can be veri�ed that the estimates B̂ and

Σ̂ computed using the model (2.7) are free of the particular choice of Z. Consequently, the estimated

con�dence factor k is also free of the choice of the matrix Z.

Numerical results

In order to estimate the coverage probabilities of the proposed rectangular con�dence regions, we shall

work with the following canonical form corresponding to (2.1); see Mathew and Zha (1996):

X1 = XW′ (WW′)−1/2 , B1 = B
(
WW′)1/2 , θ1 =

(
WW′)−1/2 θ, (2.8)

along with Σ̂ de�ned in (1.2). Then we have

vec (X1) ∼ Npq (vec (B1) , Iq ⊗Σ) , Σ̂ ∼W
(
n− q, 1

n− q
Σ

)
, X0 ∼ Np (B1θ1,Σ) . (2.9)

The advantage of using the canonical quantities for estimating the coverage probabilities is that we do

not have to specify values for the covariates. We shall use the following true values of the respective

parameters:

B1 =

 1 2 6 2

3 4 7 9

′ , θ1 =
(

0.7 0.9
)′
, Σ = (1− ρ) Ip + ρ1p1

′

p (2.10)

with ρ = 0.9, 0.5, 0.3, −0.3. In addition, we shall consider the sample sizes n = 30, 50, and 100, and a

95% nominal level. The estimated coverage probabilities for the two-sided rectangular con�dence region

for θ1, estimated using 5000 simulated samples, are shown in Table 1. Also included are the expected

values of the factor k and the expected volumes of the con�dence region. We see that at least for the

scenarios considered in the simulations, the coverage probabilities are quite satisfactory even for the small

sample size situation. The correlations do not appear to a�ect the coverage probabilities. However, the

correlations do have an e�ect on the expected values of the factor k and the expected volumes of the

con�dence region; the expected volume decreases with increasing correlation. Furthermore, both of these

quantities are decreasing with the sample size, as expected.

Here we would like to make the following comment on the expected volume. According to a general

result due to Gleser and Hwang (1987), there does not exist a con�dence region having �nite expected

volume and positive con�dence in the controlled calibration setup. However, it should be noted that

the covariates (the entries of the matrix W) represent physical quantities, and will be bounded with
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Table 1: Estimated coverage probabilities along with the expected values of the factor k and the expected
volumes of rectangular two-sided con�dence regions under controlled calibration for the parameter choices
in (2.10); nominal level = 95%
n ρ Coverage E (k) E (Volume) ρ Coverage E (k) E (Volume)

100 0.9526 2.8820 0.1876 0.9502 2.9167 0.5986
50 0.90 0.9492 3.0059 0.1971 0.30 0.9492 3.0310 0.6131
30 0.9536 3.1853 0.2111 0.9568 3.2209 0.6363
100 0.9520 2.9088 0.5296 0.9414 2.8279 0.6294
50 0.50 0.9554 3.0182 0.5453 −0.30 0.9462 2.9640 0.6410
30 0.9510 3.2084 0.5714 0.9492 3.1358 0.6601

known bounds. Consequently, the parameter of interest θ in the controlled calibration problem will be a

bounded quantity, with known bounds for each component. If wij denotes the (ij)th element of W, and

θ(i) denotes the ith component of θ, then it is reasonable to assume that

min
1≤j≤n

wij ≤ θ(i) ≤ max
1≤j≤n

wij ,

i = 1, . . . ., q. This amounts to assuming that θ is �like the columns of W.� In terms of the canonical

form (2.8), we can assume that each component of θ1 is bounded by 0 and 1. Thus, after computing the

rectangular con�dence region for θ1, our recommendation is to intersect each marginal interval with the

interval (0, 1). This will of course result in a �nite expected volume for the rectangular con�dence region.

This is the expected volume reported in Table 1. We also note that the canonical form (2.8) is used only

for the purpose of simulation and cannot be used to derive rectangular con�dence regions for θ, since a

rectangular region for θ1 cannot be translated into a rectangular region for θ.

We shall now illustrate our results using two examples. The �rst example is the paint �nish data

example taken from Brown (1982). This data set has been analyzed in several articles on calibration, and

has become a classic example to illustrate calibration. Our second example is a more recent example,

taken from Atkins et al. (2015) and Bhaumik and Nordgren (2019).

Example 1: Analysis of paint �nish data

We now apply the proposed procedure to compute a rectangular controlled calibration con�dence region

on a data set taken from Brown (1982). This data set has been analyzed in several articles on the

calibration problem. The data came from a paint �nish experimental study where the factors are pigment

level and viscosity. Data were obtained corresponding to three values of the pigment level (0 percent,

0.15 percent, and 0.30 percent) and three values of the viscosity (30, 33, 36 seconds in an e�ux cup).

In our analysis, we shall assume the three values of both the pigment level and viscosity to be 0, 1

and 2, without loss of generality. The e�ects of these factors were assessed using six response variables:

three spectrometer measurements of incident light, integrated re�ectance with normal light, and peak-
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height and band-width on a recording goniophotometer. Based on an initial screening, it turned out

that four of the six response variables could be discarded without incurring any loss of information. The

variables retained were one of the three spectrometer measurements of incident light and the integrated

re�ectance with normal light. Each of the nine factor combinations was replicated four times, resulting

in 36 bivariate observations. The 36 observations are displayed in Brown (1982, Table 2), and the

two responses under consideration are the variables Y1 and Y4 given in Brown (1982, Table 2). Of

the 36 bivariate observations, 9 observations are extracted for calibration; that is, for estimating the

pigmentation and viscosity, assuming them to be unknown. These 9 observations are given in Table 2.

The remaining 27 observations in Brown (1982, Table 2) were used to �t the regression model.

We use the model (2.5) with an intercept, consistent with Brown (1982). Consequently, the region is

computed following the steps explained in the subsection on models with an intercept term. The least

squares estimates of B and Σ are:

B̂ =

 0.0300 −0.1278

1.3694 −1.6922

 Σ̂ =

 0.00543 0.02270

0.02270 0.41690

 .
We shall compute a rectangular con�dence region for the two components of the vector θ corresponding

to the 9 observations given in Table 2. The table also gives the rectangular con�dence regions obtained

by applying Algorithm 1. We recall that the three values of both the pigment level and viscosity, at

which data were obtained, are assumed to be 0, 1 and 2. Since each component of the parameter vector

θ is bounded between 0 and 2, the intervals in Table 2 have been truncated to be between 0 and 2. By

referring to Brown (1982, Table 2), we can verify that all of the resulting con�dence regions contain the

corresponding true values of the pigment level and viscosity. Being of rectangular shape, the con�dence

regions in Table 2 can be used to draw inference concerning the pigment level and viscosity, individually.

Table 2: Controlled calibration 95% rectangular con�dence regions for pigmentation and viscosity at nine
di�erent values of the response vector

Con�dence Con�dence
Response Covariate region Response Covariate region

(1.87, 40.68)
′

Pigmentation 0 to 1.60 (1.52, 35.65)
′

Pigmentation 0 to 1.95
Viscosity 0 to 1.13 Viscosity 1.33 to 2

(1.79, 39.83)
′

Pigmentation 0 to 1.45 (1.92, 38.17)
′

Pigmentation 0.91 to 2
Viscosity 0 to 1.69 Viscosity 0 to 1.17

(1.61, 37.36)
′

Pigmentation 0 to 1.59 (1.85, 37.17)
′

Pigmentation 0.97 to 2
Viscosity 0.62 to 2 Viscosity 0 to 1.71

(1.78, 38.73)
′

Pigmentation 0 to 2 (1.62, 34.16)
′

Pigmentation 0.87 to 2
Viscosity 0 to 1.96 Viscosity 0.98 to 2

(1.68, 38.64)
′

Pigmentation 0 to 1.37
Viscosity 0.05 to 2
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Example 2: The link to learning study

Our second example is based on data from the �Link to Learning Study" reported in Atkins et al.

(2015). The study was focused on children living in high-poverty urban communities, and examined

whether their behavior at school and at home can be improved by community mental health services

that target the empirical predictors of learning. This application and the relevant data analysis are also

reported in Bhaumik and Nordgren (2019); these authors have investigated a prediction problem and a

calibration problem, and have addressed the problem of computing ellipsoidal con�dence regions. We

shall consider the following �ve-dimensional response vector, as given in Bhaumik and Nordgren (2019,

Section 2.4): Curriculum-based measures (CBM), Academic Competence Evaluation Scales (ACES),

Homework Problem Checklist (HPC), Social Skills Rating System: Social Skills rated by parent (SOC)

and Social Skills Rating System: Problem Behaviors rated by parent (PB). The covariates considered

are a parent self-e�cacy score (PSES) and the child's grade. The data analyzed in Bhaumik (2019)

consist of 175 observations. We shall �t the model (2.5) using 172 observations and use the remaining

three for calibration; these three observations are given in Table 3. Assuming an unknown value for the

corresponding covariate vector (PSES, Grade), a rectangular con�dence region will be constructed.

We shall once again use the model (2.5) with an intercept. The least squares estimates of B and Σ

are:

B̂ =



0.5199 0.5247

0.3226 −0.0307

−0.4356 0.0692

0.4412 0.0140

−0.5496 0.0575


Σ̂ =



2.92267 0.51584 −0.20249 −0.06435 0.24461

0.51584 0.70314 −0.10948 −0.21458 0.23672

−0.20249 −0.10948 0.42504 −0.11444 0.39074

−0.06435 −0.21458 −0.11444 1.05164 −0.54653

0.24461 0.23672 0.39074 −0.54653 1.72339


.

We shall compute a rectangular con�dence region for the two components of the vector θ = (PSES,

Grade)′ corresponding to the three observations given in Table 3. The table also gives the rectangular

con�dence regions obtained by applying Algorithm 1.

We would like to make one comment concerning the results reported in Table 3. In the 172 observations

used to �t the model (2.5), the PSES values were between 2.33 and 6, and the Grade values were between

0 and 7. Thus we have assumed that these intervals also provide bounds for the respective parameters.

Consequently, each con�dence interval of the rectangular con�dence regions reported in Table 3 has been

truncated to be within the respective bounds (similar to the previous example). The fact that con�dence
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Table 3: Controlled calibration 95% rectangular con�dence regions for PSES and Grade for three di�erent
values of the response vector

True Con�dence
Response Covariate value region

(5.017, 2.89, 0.15, 5.8, 1.4)
′

PSES 4.71 4.27 to 6
Grade 4 0 to 7

(0.284, 1.72, 0.75, 4.1, 2.0)
′

PSES 4.71 2.33 to 6
Grade 2 0 to 6.17

(0.567, 1.79, 2.35, 4.6, 4.6)
′

PSES 4.57 2.33 to 5.44
Grade 2 0 to 7

regions can be outside the parameter space is a phenomenon encountered in the calibration problem, even

in the univariate case. In this example also, we note that the rectangular con�dence regions include the

true parameter values, which are also given in Table 3.

3 Rectangular prediction regions under random calibration

In the case of random calibration, we shall consider models with an intercept term. Thus let Xi,

i = 1, 2, . . . , n, and X0 be independent p× 1 random vectors following the models

Xi = β0 + β1W i + ei, i = 1, . . . , n

X0 = β0 + β1W 0 + e0, (3.1)

where theW i, i = 1, . . . , n, andW 0 are q×1 covariate vectors, β0 is the p×1 intercept vector (unknown),

β1 is a p× q matrix of unknown parameters, and ei and e0 are p× 1 vectors of error terms. If we express

the above model in matrix form as in (2.1), then B = [β0,β1] is a p × (q + 1) matrix, X is a p × n

matrix of response vectors, and the covariate matrix W becomes a (q + 1)× n matrix whose �rst row is

a vector of ones. We shall ignore this inconsistency in dimension between the model (2.1) considered for

controlled calibration, and the models (3.1) for random calibration. In (3.1), we assume that
[
W
′

i, e
′

i

]′
,

i = 0, 1, . . . , n, are independently distributed as W i

ei

 ∼ Np+q

 µw

0

 ,
 Ψ 0

0 Σ

 , (3.2)

i = 0, 1, . . . , n, where Ψ and Σ are unknown positive de�nite matrices. It follows from (3.1) and (3.2)

that E (Xi) = β0 + β1µw, V (Xi) = β1Ψβ
′
1 + Σ, and Cov (W i,Xi) = Ψβ′1. Hence, W i

Xi

 ∼ Np+q

 µw

β0 + β1µw

 ,
 Ψ Ψβ′1

β1Ψ
′ β1Ψβ

′
1 + Σ

 , (3.3)
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i = 0, 1, . . . , n. The observed data consist of (Xi,W i), i = 1, . . . , n, along with X0. We shall address

the computation of a rectangular prediction region for the q × 1 vector W 0. The unknown parameters

µw, β0, β1, Ψ and Σ are estimated as follows:

µ̂w = W̄ =
1

n

n∑
i=1

W i, B̂ =
[
β̂0, β̂1

]
= XW′ (WW′)−1

Ψ̂ =
1

n− 1

n∑
i=1

(
W i − W̄

) (
W i − W̄

)′
, Σ̂ =

1

n− q − 1
X
[
In −W′ (WW′)−1W]

X′. (3.4)

Recall that W is a (q + 1) × n matrix whose �rst row is a vector of ones. From (3.3), we see that the

conditional distribution of W i given Xi is

W i|Xi ∼ Nq

(
µW |Xi

,ΣW |X

)
, (3.5)

where µW |Xi
= µw + Ψβ′1

(
β1Ψβ

′
1 + Σ

)−1
(Xi − β0 − β1µw)

and ΣW |X = Ψ−Ψβ′1
(
β1Ψβ

′
1 + Σ

)−1
β1Ψ

′. (3.6)

for each i = 0, 1, . . . , n. We have used the notation µW |Xi
to emphasize that the conditional mean

depends on Xi; however, the conditional covariance matrix does not depend on the speci�c Xi and

therefore we have used the notation ΣW |X . Estimates of µW |Xi
and ΣW |X , say µ̂W |Xi

and Σ̂W |X ,

respectively, can be obtained by replacing the unknown parameters by the corresponding estimates given

in (3.4). From (3.5) it follows that,

W 0(j) − µW |X0(j)√(
ΣW |X

)
(jj)

∼ N (0, 1) (3.7)

j = 1, . . . , q, where, as before, for a vector a, a(j) denotes its jth component, and for a matrix A, A(jj)

denotes its jth diagonal element. If the true values of the parameters were known, then the prediction

factor for a two-sided rectangular prediction region forW 0 can be taken to be the 100(1− α)th percentile

of the distribution of

max
1≤j≤q

∣∣∣∣∣∣W 0(j) − µW |X0(j)√(
ΣW |X

)
(jj)

∣∣∣∣∣∣ . (3.8)

However, since the parameters are unknown, we replace them by their corresponding estimates (see (3.4)),

resulting in the quantity

max
1≤j≤q

∣∣∣∣∣∣∣∣
W 0(j) − µ̂W |X0(j)√(

Σ̂W |X

)
(jj)

∣∣∣∣∣∣∣∣ . (3.9)
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The quantity in (3.9) is our pivot statistic for computing a rectangular prediction region for W 0. A

parametric bootstrap approach can now be employed for estimating the required 100(1− α)th percentile,

similar to what was done in the case of controlled calibration; Algorithm 2 summarizes the steps.

Algorithm 2. Rectangular two-sided prediction region under random calibration

1. Compute the estimates µ̂w, β̂0, β̂1, Ψ̂, Σ̂ given in (3.4).

2. For b = 1, . . . , B,

i. Generate W ∗
ib

X∗ib

 ∼ Np+q

 µ̂w

β̂0 + β̂1µ̂x

 ,
 Ψ̂ Ψ̂β̂

′

1

β̂1Ψ̂
′
β̂1Ψ̂β̂1 + Σ̂

 , i = 0, 1, 2, . . . , n.

ii. Compute µ̂∗wb, β̂
∗
0b, β̂

∗
1b, Ψ̂

∗
b , Σ̂

∗
b using (3.4), but using the quantities

 W ∗
ib

X∗ib

, i = 1, 2, . . . , n.

Note that

 W ∗
0b

X∗0b

 is not included in the above computation.

iii. Compute µ̂∗W |X0,b and Σ̂
∗
W |X,b using (3.6) with µ̂∗wb, β̂

∗
0b, β̂

∗
1b, Ψ̂

∗
b , and Σ̂

∗
b replacing the

corresponding parameters and with X∗0b replacing X0.

iv. Compute kb = max
1≤j≤q

∣∣∣∣∣W ∗0b(j)−µ̂∗W |X0,b(j)√
(Σ̂
∗
W |X,b)(jj)

∣∣∣∣∣.
3. Compute the (1− α)-quantile of k1, . . . , kB , call this k.

4. The 100 (1− α)-prediction region for W 0 is given by

[
µ̂W |X0(1) ± k

√(
Σ̂W |X

)
(11)

]
× · · · ×

[
µ̂W |X0(q) ± k

√(
Σ̂W |X

)
(qq)

]

where µ̂W |X0
and Σ̂W |X are computed using the formulas in (3.6) with each parameter replaced

by the corresponding estimate in (3.4).

As in the case of controlled calibration, Algorithm 2 can be modi�ed to obtain one-sided prediction

limits having only upper limits, or only lower limits. In order to get upper limits, we modify the de�nition

of kb in Step 2(iv) to be

kb = max
1≤j≤q

W ∗
0b(j) − µ̂

∗
W |X0,b(j)√(

Σ̂
∗
W |X,b

)
(jj)

,

13



and we take k to be the (1− α)-quantile of k1, . . . , kB . The resulting 100(1− α)% one-sided prediction

region with upper limits only is given by

(
−∞, µ̂W |X0(1) + k

√(
Σ̂W |X

)
(11)

]
× · · · ×

(
−∞, µ̂W |X0(q) + k

√(
Σ̂W |X

)
(qq)

]
.

Similarly, in order to compute lower limits, we use the following expression in Step 2(iv) of Algorithm

2:

kb = min
1≤j≤q

W ∗
0b(j) − µ̂

∗
W |X0,b(j)√(

Σ̂
∗
W |X,b

)
(jj)

.

and then we take k to be the α-quantile of k1, . . . , kB . The resulting 100(1− α)% one-sided prediction

region with lower limits is given by

[
µ̂W |X0(1) + k

√(
Σ̂W |X

)
(11)

,∞
)
× · · · ×

[
µ̂W |X0(q) + k

√(
Σ̂W |X

)
(qq)

,∞
)
.

Numerical results

We now report some numerical results on the coverage probabilities of the proposed prediction regions.

We shall consider the sample sizes n = 30, 50, and 100, and a 95% nominal level. With regard to

dimensions, we have made two choices: p = 1, q = 1 (the univariate case) and p = 4, q = 2. For the

univariate case, we have chosen the parameter values µw = 5, β0 = 1, β1 = 2, Ψ = 0.5, Σ = 0.5, and for

the multivariate case we have chosen

µw =

 5

6

 , β0 =


1

1

1

1

 , β1 =


1 2

1 2

1 2

1 2

 , Ψ =

 2 1

1 2

 , Σ = 0.5I4 + 0.5141
′

4.

The estimated coverage probabilities for the two-sided rectangular prediction region are shown in

Table 4. Also included are the expected values of the factor k and the expected volumes of the prediction

region. We see that at least for the scenarios considered in the simulations, the coverage probabilities are

quite satisfactory even for the small sample size situation. We also note that the expected values of the

factor k, and the expected volumes, are decreasing with the sample size, as expected.

Application: analysis of wheat quality data

The example that we now use to compute a random calibration region is the wheat quality data from

Brown (1982, Table 1). The response vector consists of four (derived) infrared re�ectance response

14



Table 4: Estimated coverage probabilities along with the expected values of the factor k and the expected
volumes of rectangular two-sided prediction regions under random calibration for the parameter choices
in Section 3; nominal level = 95%

Coverage E (k) E (Volume)

n = 100 0.9472 1.9962 1.2576
p = 1, q = 1 n = 50 0.9484 2.0497 1.2840

n = 30 0.9482 2.1185 1.3196
n = 100 0.9458 2.3033 10.4481

p = 4, q = 2 n = 50 0.9460 2.4501 11.3783
n = 30 0.9534 2.6866 12.8865

variables, and the covariates consist of percent water and percent protein. In his paper, Brown (1982)

notes that the covariate vector, namelyW = (% water,% protein)
′
is a random variable. Furthermore, 21

observations are given in Brown (1982, Table 1). The �rst 16 observations are used to build the statistical

model while the last 5 are used for calibration, as done in Brown (1982). Our goal is to compute a 95%

rectangular prediction regions for W = (% water,% protein)
′
.

The parameter estimates obtained from the �rst 16 observations in Brown (1982, Table 1) are as

follows:

µ̂w =

 9.5424

11.2605

 β̂0 =


389.2855

159.4307

334.4639

457.0545

 , β̂1 =


0.4488 −3.0699

−0.3728 −4.5855

−24.2729 −1.8848

−23.8768 0.1460

 ,

Ψ̂ =

 0.2255 0.1820

0.1820 2.1028

 , Σ̂ =


10.1550 4.3372 0.9803 4.1743

4.3372 2.2465 0.6628 1.4670

0.9803 0.6628 1.9769 1.4422

4.1743 1.4670 1.4422 3.1187

 .

Table 5 gives the prediction regions obtained using Algorithm 2, corresponding to the �ve response

vectors given in the table. The rectangular regions that we have obtained all contain their respective true

values of the covariate vector and are reasonably narrow, especially for % water.

4 Discussion

Our work is the �rst attempt at deriving rectangular con�dence regions and prediction regions in the

multivariate calibration problem. As already noted, such regions are necessary if we want to draw inference

concerning the individual components of a parameter vector while taking into account the multivariate

nature of the data; i.e., take into account the correlations. The Bonferroni inequality is often used to
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Table 5: Random calibration prediction regions for % water and % protein at �ve di�erent settings of
infrared re�ectance

Response point Covariate Prediction region

(363, 113, 88, 231)
′

Water 9.37 to 9.60
Protein 8.85 to 9.64

(363, 110, 101, 248)
′

Water 8.72 to 8.94
Protein 9.79 to 10.57

(366, 114, 79, 224)
′

Water 9.72 to 9.95
Protein 8.75 to 9.54

(350, 96, 85, 235)
′

Water 9.17 to 9.40
Protein 12.32 to 13.11

(355, 97, 63, 216)
′

Water 10.08 to 10.31
Protein 12.38 to 13.16

derive such simultaneous con�dence intervals and prediction intervals, resulting in a solution that is known

to be conservative. However, our parametric bootstrap approach has resulted in solutions that appear to

be quite satisfactory in terms of maintaining the coverage probability. In addition, our calibration region

is guaranteed to be rectangular, by construction. We are emphasizing this since the calibration regions

available in the literature, though meant to be ellipsoidal, are not necessarily so.

There are two other scenarios where rectangular con�dence and prediction regions can be of interest

in multivariate calibration, but not addressed in the present article. One of them is the setup where the

covariates enter the model non-linearly (for example, polynomial regression). Ellipsoidal regions in this

case are derived in Oman (1988) and in Mathew and Zha (1996). Yet another scenario calls for the com-

putation of multiple use con�dence regions in controlled calibration for unknown values of the covariate

vector. That is, the same data set is to be used to compute con�dence regions for an unspeci�ed sequence

of values of the covariate vector, corresponding to a sequence of response vectors; see Mathew and Zha

(1996), Mathew, Sharma and Nordström (1998), and Section 10.6 in Krishnamoorthy and Mathew (2009)

for details and additional references. The con�dence regions derived by these authors are ellipsoidal, and

rectangular multiple use con�dence regions are certainly of interest. We hope to address this in a future

communication.
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