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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that 

affects the elderly population. There are two histopathological hallmarks of AD, the 

formation of neurofibrillary tangles, and amyloid plaques.  The primary protein 

component of senile plaques is beta amyloid (A), a 39 to 43 amino acid long 

peptide, which investigators believe plays a causative role in AD. At a molecular 

level, it appears that A impacts complex signaling networks that contain a 

substantial degree of signal integration. To date, most investigators have examined 

the influence of A by investigating one signaling pathway at a time.  



In this work, a systems engineering approach is taken to examine how much 

A influences the stability and sensitivity to change of biological parameters, and 

discuss the possible biological interpretations in a complex reaction network. 

The simplified model did not capture expected trends. Viability and death 

signals were insensitive to the amount of ECM and A, although the output was 

sensitive to the rate constant associated with matrix-integrin interaction. Our more 

complex model did capture expected salient trends with respect to the viability signal. 

Furthermore, the model displayed asymptotic stability at high and low viability signal 

in the absence and presence of Arespectively. Sensitivity to parameter interactions 

associated with A were observed, that could be related to experimental toxicity 

attenuation data.   

The work demonstrates the utility of such tools in analyzing reaction 

networks. The tools can relate model parameters with experimental findings, with 

improved predictions, that help identify therapeutic avenues for altering neurotoxicity 

associated with A. 
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Chapter 1: Biological Background 

Motivation Behind Work and Summary 

Alzheimer’s disease (AD) is a neurodegenerative disease that affects millions across 

the world and no effective treatment has yet been identified for the disease (Shankar 

et al., 2007). However, we do not fully understand the mechanism behind the disease. 

In our work, several proposed biochemical mechanisms, with increasing complexity, 

due to incorporating pertinent metabolites, were proposed and applied tools from 

systems engineering to study the molecular mechanism of cell signaling associated 

this disease. The subject of this research was the beta-amyloid (Aβ) peptide in its 

aggregated form, which is hypothesized to induce a chain of events that lead to 

neurodegeneration in AD.   

We first investigated how Aβ interacted with cells by proposing several biochemical 

mechanisms that included signaling molecules that were found to be relevant by 

previous students in our laboratory.  Key signaling molecules included G-Protein 

Coupled Receptors (GPCRs), Src family kinases, Integrins, and extracellular matrix, 

which were Different students in that laboratory had found each of these to be 

associated with the toxicity of aggregated A (Rymer et al., 2001; 

Venkatasubramanian et al., 2014). Once the biochemical mechanisms were 

developed, systems biology techniques were utilized to examine stability behavior of 

mathematical models. Finally, a sensitivity analysis was conducted on various 

parameters such that we could discriminate model performance among various 

proposed mechanisms, and infer the effect of changes on key model outputs such as 
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viability and death signals.  This work contributes new systems level tools to the 

toolkit that may guide the design of new experiments or assist in the generation of 

new hypotheses that will contribute to our understanding of the role of Ab in cell 

signaling associated with neurotoxicity in Alzheimer’s disease.  Similar tools could 

be used to explore the behavior of many non-linear dynamic systems that have 

relevance in human health, the environment, and many other areas of science that 

impact the quality of life and the health of this planet.  

Introduction to Alzheimer’s disease (AD) and Aβ 

Alzheimer’s disease (AD) is a form of dementia that affects memory, thinking 

and behavior with symptoms that gradually worsens over time (Klafki et al., 2006). 

AD is the most common form of late-life dementia, affecting 4 million Americans 

and over 30 million individuals worldwide (Ferri et al., 2005). Although the 

molecular precipitants of AD are unknown in most patients, extensive research 

indicates that the Amyloid- (A) protein plays a major role in pathogenesis; thus we 

believe there is an opportunity to use systems engineering approaches to explore the 

impact of A on cell signaling that precedes the development of disease (Shankar et 

al., 2007).  

A is generated from the amyloid precursor protein (APP) by enzymatic 

digestion involving  and -secretases (Dickson, 1997; Hardy et al., 2002). Aβ 

molecules can aggregate to form flexible soluble oligomers which may exist in 

several forms. Misfolded oligomers can also propagate misfolding into other Aβ 

oligomers, leading to a cascading reaction; resulting in amyloid plaques that are toxic 
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to nerve cells (Nussbaum et al., 2013). The other protein implicated in Alzheimer's 

disease is tau, a hyper-phosporylated version of which makes up neurofibrillary 

tangles found in diseased patients’ brains.  Tau also forms misfolded oligomers, and 

there is some evidence that misfolded Aβ can induce tau to misfold (Nussbaum et al., 

2013). Although the specific molecular initiators of AD are largely unknown, 

biochemical studies indicate that the severity of cognitive impairment from AD 

correlates more strongly with the cortical levels of soluble amyloid protein (Li et al., 

2010). However, the mechanism by which the peptide causes the neurodegeneration 

and apoptosis of cells observed in the disease is unclear and methods to prevent its 

toxicity are yet to be confirmed (Li et al., 2010).   

Role of Aβ in AD:  learning and memory, and the potential role for abnormal 

phosphorylation 

Learning and memory are the first set of processes that AD affects (Wang et al., 

2002). Additionally, both mental processes are linked directly to long term 

potentiation (LTP), which is a candidate for synaptic mechanism, a strengthening of 

synapses based on recent patterns of activity. These are patterns of synaptic activity 

that produce a long-lasting increase in signal transmission between two neurons 

(Cooke et al., 2006). Its induction and expression is regulated by N-Methyl-D-

aspartate receptor (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptors respectively (Jones et al., 1991). Additionally, 

phosphorylation has been shown to heavily influence LTP and neuronal function 

through the regulation of AMPA and NMDA receptors (Kalia et al., 2004). 

Phosphorylation affects a very large number of intracellular proteins, and is arguably 
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the most widely studied post-translational modification (Kalia et al., 2004). More 

specifically, it is substantiated by previous work which has shown that protein 

tyrosine kinase (PTK) inhibitors can inhibit the induction of LTP, specifically, 

tyrosine kinase Src was shown to regulate NMDA activity, which affects LTP (Kalia 

et al., 2004). Since phosphorylation directly affects LTP, our interests lie in creating a 

mathematical model to better understand how Aβ adversely affects phosphorylation, 

which we infer then alters the function of receptors like AMPA and NMDA.  The 

short term impact of abnormal phosphorylation could be alterations in LTP, 

impacting learning, or alterations in NMDA and AMPA activity, also impacting 

learning, but long term (or acutely), alterations in NMDA activity or AMPA activity 

could lead to loss of calcium homeostasis and neurotoxicity. 

Aβ, tyrosine kinases, G-Proteins, and signal integration 

A number of studies have shown the potential integration of signaling in pathways 

containing Src, other tyrosine kinases, G-Proteins, and A (Ittner et al., 2010). 

Studies have shown that A may lead to activation of a tyrosine kinase in the Src 

family, which results in its phosphorylation to form phosphorylated Src (pSrc), that 

can then  phosphorylate the NR2B subunit of the NMDA receptor (NMDAR) (Ittner 

et al., 2010). Specifically, immune-precipitation of Fyn, a member of the Src family, 

was found to have increased association with focal adhesion kinase (FAK) in its 

phosphorylated (activated) form following treatment with A (Zhang et al., 1996). In 

addition, tyrosine phosphorylation of tau was also found in neurons where there was 

an increase in the tyrosine phosphorylation and activation of FAK; suggesting that 
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FAK/Fyn/PI3-kinase association is upregulated in AD-afflicted neurons (Zhang et al., 

1996). However, little is known about the manner in which Aβ binds to cells and 

mediates Src family kinase phosphorylation pathways.  Nevertheless, it is a 

reasonable assumption that A, by some mechanism, activates a Src family tyrosine 

kinase, leading to subsequent alterations in NMDAR function, thus affecting the 

function of LTP, learning and memory.  

An interaction between Aβ and integrins could provide the link between signaling 

pathways that include Src, especially Fyn (Zhang et al., 1996). Integrins are a group 

of transmembrane cell adhesion proteins that play an important role in mediating cell 

adhesion to the extracellular matrix (ECM) (Hynes et al., 2002). Integrins transmit 

signals bi-directionally through initiate ‘inside-out signaling’; inducing the binding of 

talin and kindlin to the cytoplasmic domains of integrin b subunits, which activates 

ligand binding of integrins (Hynes et al., 2002). Conversely, the interaction between 

integrins and their various ligands induces ‘outside-in’ signals across the membrane, 

inducing cell spreading, retraction, migration, proliferation, and survival (Shen et al., 

2012).  The Aβ peptide has been shown to bind to integrins through its RHD 

sequence, providing another avenue for Aβ induced signaling (Sabo et al., 1999). 

This has been shown from previous work that A interacts with or near the α6 

subunit of integrin receptor, in model cell lines, neurons, and glia.  Others have 

shown how this interaction may be important in signaling associated with NMDAR 

and could have implications for learning and memory in AD (Sabo et al., 1999). 
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Src family kinases play roles beyond the phosphorylation of NMDAR.  Fyn, a 

member of the Src family, can activate other kinases like the Glycogen synthase 

kinase-3 (GSK3) and Cyclin-dependent kinase 5 (cdk5), both kinases known to 

phosphorylate tau at disease-associated epitopes (Zhang et al., 1996). Hence Fyn, has 

been connected to both A and tau, and forms the common thread between two major 

pathological hallmarks of AD.  

G protein-coupled receptors (GPCRs) are GTPases (guanosine triphosphatases) that 

cycle between a GDP-bound form and a GTP-bound form, which are involved in 

numerous key neurotransmitter systems in the brain that are disrupted in AD 

(Thathiah et al., 2011). They are some of the most widely reported membrane 

receptors in the literature because of their widespread involvement in signaling 

pathways associated with health and disease. The GTP-bound G protein is an active 

form that interacts with downstream effectors and transmits signals, during which the 

bound GTP is often hydrolyzed to GDP, and then recycles into the inactive GDP-

bound form. The activity of G proteins is regulated mainly through three classes of 

regulatory proteins: GTPase activating proteins (GAPs), guanine nucleotide-

exchange factors (GEFs), and guanine nucleotide-dissociation inhibitors (GDIs) 

(Shen et al., 2012). 

GPCRs directly influence the amyloid cascade through modulation of the α, β and γ-

secretases, proteolysis of the amyloid precursor protein (APP), and regulation of Aβ 

degradation. Several studies have presented compelling evidence implicating GPCRs 



7 

in the pathogenesis of AD and in multiple stages of the processing of APP. 

Sequential cleavage of APP by the α, β and γ­secretases, which are regulated by 

GPCRs, determines the extent of amyloid­β peptide generation, and amyloid­β can 

directly or indirectly affect GPCR function.  Specifically, Aβ1-42 has been shown to 

activate specific G-protein coupled receptors, thus affecting the phosphorylation of 

GEF and GAP receptors, which are related to a death and viability of neuronal cells 

(Shen et al., 2012).  Inhibition of GTPase activity has been shown to protect cells 

from A induced neurotoxicity (Rymer et al., 2001). 

G proteins are known to be involved in signaling via integrins, and are believed to 

play critical roles in mediating integrin inside-out and outside-in signaling (Shen et 

al., 2012).  The interconnections between these two signaling pathways, the G protein 

coupled receptor pathway and the integrin pathway, is an example of complex signal 

integration that would give rise to non-linear dynamics that might be amenable to a 

systems approach to study.  Certainly, to date, most of the analyses have been of 

single pathways assuming linear relationships, that have only given rise to 

inconsistencies and apparent competing hypotheses in the literature (Rymer et al.).  It 

is our goal, in this work, to develop tools that will help provide clarity to the 

hypothesis that A interaction is the basis alters cell homeostasis, at the survival 

level, when examining complex non-linear pathways in A associated signaling 

(Asthagiri et al., 2000). 



8 

In this work, we will build mechanistic models of A interaction with neurons that 

focus on the key signaling molecules identified here, integrin, GPCR’s, and their 

ligands, Src and pSrc, and other molecules that could reasonably be assumed to be 

downstream of such molecules in a signaling network. A detailed network of how 

integrins, ligands, GPCRs, and Src interact with each other can be seen in Figure 1.1. 

Additionally, we will utilize stability analyses and sensitivity analyses to describe the 

perturbations of such biomolecules in the biological system upon addition of Aβ and 

upon change in model parameters.  These tools will help us explore the relative 

importance of different reactions in the signaling network in model outcome 

(viability signal), and point to new experiments and new hypotheses, as well as 

potentially new insights into therapies that could be developed for A related toxicity 

in disease. 
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(Figure 1.1: G-Protein model showcasing the interaction between integrins, 

ligands, GPCRs and Src kinase with respective effector proteins (GEF and GAP), 

leading to a viability and death signal respectively. (Shen et al., 2012)) 
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Chapter 2: Mathematical Background 

Numerical vs Empirical Modeling 

Modeling biological systems can be categorized loosely into models that are either 

primarily data-driven which are empirical in nature, and mechanism-driven models 

that are depend on a postulated mechanism and experimentally derived rate constants 

and initial concentration. Data-driven models are constructed solely on analyzing 

data itself, without having to make any assumptions about the underlying 

mechanisms. Additionally, they possibly have the advantage of realistically modeling 

of the biological phenomenon; however, one shortcoming of data-driven modeling 

techniques is the limited predictive ability in determining the long term effects of 

cascading biochemical reactions (Steuer, 2007). Data-driven models cannot be used 

reliably outside of the range of values for which the data was originally collected. 

When pertinent information such as initial concentrations, rate constants, and 

mechanistic relationships associated with a signaling cascade is known, as in our 

case, then the signaling cascade can be modeled specifically with ordinary 

differential equations (ODEs) that have more predictive capabilities (Steuer, 2007). 

The mechanistic model also has the advantage of being more easily related to 

biological reactions that can be directly measured and compared to for validation. 

Using a mechanistic model, one can then use a variety of computational and 

numerical tools to examine the effects of perturbations to the system, similar to what 

a student of chemical engineering would do with an exothermic reaction in a CSTR 

to determine if a runaway reaction was possible. Past modeling efforts that study the 
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various signaling cascades in understanding neurotoxicity relevant to AD are scarce. 

We focus our efforts into developing a numerical model and systems engineering 

principles to determine the fate of key biological molecules that affect neuron 

signaling that will impact viability.     

Determining Stability of Dynamic Systems 

Ordinary differential equations (ODEs), linear or non-linear, can be developed to 

simulate the fate of system variables as a function of time time as an Initial Value 

Problem (IVP). Additionally, equilibria points (or steady states in the system) can be 

determined to examine the stability of the system. There are two points to consider 

when performing a stability analysis, defining the equilibrium points of the system 

and the method for determining stability. An equilibrium point of a dynamical system 

generated by an autonomous system of ODEs is a solution that does not change with 

time (Hirsch et al., 2004). An equilibrium point can be considered a steady state of 

the system. In mathematics, stability theory addresses the stability of all possible 

equilibria points of ODEs and their respective trajectories under small perturbations 

of initial conditions. In principle, the linear stability of a system is determined by 

examining the eigenvalues of the system at its equilibria points. For relatively small 

systems, the equilibria points in the system are solved deterministically and 

analytically by setting the system of equations to 0; however, with larger systems (# 

of ODEs > 5), finding equilibria points analytically becomes problematic; equilibria 

points need to be solved numerically via a root solving algorithm such as the 

Newton-Raphson method due to the number of variables involved and non-linearity 
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of the system (Hirsch et al., 2004). Once the equilibria points are found, linear 

stability at the equilibria points can be determined by examining the eigenvalues, 𝜆, 

of the set of ODEs.  

A negative eigenvalue indicates a linearly stable equilibrium point; that is, after a 

small perturbation of the system it will return back to the same stable equilibrium 

point (for chemical reactions, the system will revert to the equilibria concentrations). 

A positive eigenvalue indicates a linearly unstable equilibrium point; upon a small 

perturbation of the system, it will move from the unstable equilibrium point (or 

equilibria concentrations) towards a stable equilibrium point.  

Imaginary eigenvalues indicate that the system will oscillate upon perturbation from 

the equilibrium point.   

If the eigenvalues are complex by nature (𝜆 = a+ bi, where i = ), then the system 

will exhibit oscillatory behavior either moving towards or away from the equilibrium 

point, contingent upon the real part of the eigenvalue (Hirsch et al., 2004). 

Eigenvalues of the system of ODEs are found from the determinant of the Jacobian of 

the system of ODEs. The table below lists the possible combinations of how both the 

real and complex parts of eigenvalues affect the stability of the point of interest in a 

system with two eigenvalues (Hirsch et al., 2004).  
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Table 2.1: (Describes the nature of the eigenvalue and its relationship with respect 

to stability in a two variable system (Hirsch et al., 2004).) 

 

Eigenvalues of the Jacobian 

matrix 
Behavior Stability 

real and both positive 
source / unstable 

node 
unstable 

real and both negative sink / stable node 
asymptotically 

stable 

real and opposite signs saddle unstable 

complex with positive real part spiral source unstable 

complex with negative real part spiral sink 
asymptotically 

stable 

 

To illustrate the method of analysis, we describe a classic stability problem. 
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Stability Analysis Example: Lotka-Volterra Model 

The Lotka–Volterra equations, also known as the predator–prey equations, are a pair 

of first-order, non-linear, differential equations frequently used to describe the 

dynamics of biological systems in which two species interact, one as a predator and 

the other as prey (Shan et al., 2012). The populations change through time according 

to the pair of equations: 

       (2.1) 

- x is the number of prey (for example, rabbits);

- y is the number of some predator (for example, foxes);

- t represents time

- and  represent the growth rates of the two populations over time; 

- α, β, γ, δ are positive real parameters describing the interaction of the two

species.

Additionally, the following assumptions are made about the environment and 

evolution of the predator and prey populations: 

1. The prey population finds ample food at all times.

2. The food supply of the predator population depends entirely on the size of the

prey population.

3. The rate of change of population is proportional to its size.

4. During the process, the environment does not change in favor of one species

and genetic adaptation is inconsequential.

5. Predators have limitless appetite.
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The prey are assumed to have an unlimited food supply, and to reproduce 

exponentially unless subject to predation; the exponential growth is represented by 

the term αx. The rate of predation upon the prey is assumed to be proportional to the 

rate at which the predators and the prey meet; this is represented above by . If 

either x or y is zero, then there can be no predation. In the predator equation,  

represents the growth of the predator population while   represents the loss rate of 

the predators due to either natural death or emigration; it leads to an exponential 

decay in the absence of prey (Shan et al., 2012). 

 

Analytically solving for equilibria points 

Population equilibrium occurs in the model when neither of the population levels is 

changing, i.e. when both of the derivatives with respect to time are equal to 0 (Shan et 

al., 2012). 

 

When solved for x and y, the above system of equations yields 

x y 

0 0 

 
 

 

Determinant of Jacobian: Solving for Eigenvalues 

The stability of the fixed point at the origin can be determined by performing a 

linearization using partial derivatives, while the other fixed point requires a slightly 

more sophisticated method. The Jacobian matrix of the predator-prey model is 
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 =  

When evaluated at the steady state of (0, 0) the Jacobian matrix J becomes: 

 

The associated eigenvalues of the equilibria point (0,0) become:    

 

Where,   . 

In the model α and γ are always greater than zero, and as such the sign of the 

eigenvalues above will always differ. Hence the fixed point at the origin is a saddle 

point. The stability of this fixed point is important since if it were stable, non-zero 

populations might be attracted towards it, and as such the dynamics of the system 

might lead towards the extinction of both species for many cases of initial population 

levels (Shan et al., 2012). However, as the fixed point at the origin is a saddle point, 

and hence unstable, we find that the extinction of both species is difficult in the 

model. In fact, this can only occur if the prey are artificially completely eradicated, 

causing the predators to die of starvation. If the predators are eradicated, the prey 

population grows unbounded (Shan et al., 2012). 
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Likewise, solving the second equilibria point , the eigenvalues are 

. As the eigenvalues are both purely imaginary, the fixed 

point is not hyperbolic, so no conclusions can be drawn from linear analysis. 

However, as illustrated in Figure 2.1(a), the system eventually reaches a dynamic 

equilibrium between the number of foxes and rabbits, denoted by 2
nd

 equilibrium 

point, a green circle. The phase portrait in Figure 2.1(b) exhibits constant orbital 

motion around the 2
nd

 equilibrium point, which signifies that predator/prey population 

levels cycle and oscillate around the point.  We can use tools like phase plots to 

illustrate the stability behavior of more complex non-linear systems as well. 
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(Figure 2.1(a): Fate of rabbits and foxes oscillating with respect to time. Red and 

green circles represent equilibria points. The blue square represents the initial 

number of foxes and rabbits.)  
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(Figure 2.1(b): Phase Portrait of Foxes vs. Rabbits. The phase portrait illustrates 

the equilibria points. Red and green circles represent equilibria points. The blue 

square represents the initial number of foxes and rabbits.) 
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Numerical Based Stability Analysis 

Analytical techniques used in solving for stability analysis of dynamic systems are 

primarily reserved for simplistic linear systems that involve fewer than five ODEs at 

a time (Kelley, 2003). With that said, non-linearity and higher ordered systems force 

one to employ numerical methods where initial concentrations and coefficients such 

as kinetic constants are known beforehand. Similar to employing analytical methods 

for simpler models, the system of differential equations must be set to 0, 

, such that the associated equilibria points are numerically found through 

a root solving algorithm such as the Newton-Raphson method. Once the equilibria 

points are found, the eigenvalues are found through taking the determinant of the 

Jacobian,  

 

 

Numerical Root Solver for Equilibria: Newton-Raphson Method 

In numerical analysis, the Newton-Raphson method is a root finding solver that can 

be applied to a diverse field of equations, which range from solving a singular 

equation to a system of equations that can be linear and nonlinear simultaneously 

(Kelley, 2003). The methodology for a singular equation is as follows: one starts with 

an initial guess which is reasonably close to the true root, then the function is 

approximated by its tangent line, which can be computed by taking the differential of 

the function of interest, and one computes the x-intercept of this tangent line through 
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elementary algebra. Typically, the x-intercept will be a better approximation to the 

function's root than the original guess, and the method can be iterated.  

In short, the derivation of the method summarizes the steps: 

Multivariate Newton-Raphson Method 

Similarly, the Newton-Raphson method can be applied to a multivariate system with 

a slight modification to the original method. The system of equations must be 

differentiated with respect to every variable within the system; as such, an array of 

independent variables,[x1…xn], and associated functions, [f1(x1…xn)…fn(x1…xn)], 

are utilized to compute the Jacobian of the system to iterate for xn+1. The derivation 

of the method summarizes the steps: 

 , such that 

 , where  . 

Even though we have provided examples of how to deterministically solve for 

eigenvalues analytically and numerically, eigenvalues can also be completely 

eschewed, favoring entirely different methods such as probability distributions or 
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topology in predicting the fate of the variables of the system. Largely, this is 

dependent on the complexity of the model, mainly on the number of kinetic 

parameters and variables involved, and how well defined the parameters are. In this 

work, we focus on using classical linear stability methods of higher order models 

using numerical techniques.  It should be noted, when using analytical techniques to 

determine stability of a low ordered system, stability criteria can be determined as a 

function of unspecified parameters, and thus stability as a function of parameter 

growth rate of prey and death rate of predator can be globally evaluated.  However, 

when using numerical methods for stability determination, only a local solution can 

be obtained, dependent upon the actual values of parameters (rate constants, initial 

conditions) used when solving the model.  Thus, stability at one set of parameters 

must be complemented with other methods of analysis, such as sensitivity methods to 

gather a more complete picture of the dynamic behavior of the system. 
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A Hierarchy of Numerical Models: 

Topology to Detailed Kinetic Modeling 

Our goal is to develop a mathematical description of the signaling behavior of A.  

Based on some estimates, there are over 500 possible signaling reactions in a neuron.  

A is likely to impact several different receptors, and thus increase the complexity of 

the signaling network over the “normal” neuron. Generally speaking, including 

numerous signaling pathways limit the amount quantitative interrogation possible for 

numerical models as seen in Figure 2.2. Thus, there is a need both to define the scope 

of the model (how much of the signaling in a neuron to include) and the approach to 

developing the model.   

(Figure 2.2: Spectrum of different types of numerical models. The larger the size of 

the system, the less quantitative capabilities a modeler has (Steuer, 2009)) 
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Topological Modeling 

Due to the inherent limitations of analyzing large-scale kinetic models, topological 

and graph theoretic approaches have attracted considerable interest (Steuer et al., 

2009). In particular, recent advances in genome sequencing and annotation, and thus 

the possibility to reconstruct large ’genome-scale’ metabolic networks for several 

organisms (Steuer et al., 2009), have triggered an extensive interest in the topological 

characteristics of metabolic networks. Additionally, topological network analysis has 

a number of considerable advantages over detailed kinetic modeling, and even 

Monte-Carlo simulations since it does not presuppose any knowledge of kinetic 

parameters, thus allowing for an analysis of less well characterized organisms. It is 

applicable to extensively large systems, consisting of several thousands of nodes, far 

beyond the realm of current kinetic models; this type of capability allows 

investigation for a wide variety of topological properties without undue 

computational effort, such as the degree distribution, average path length, hierarchies 

and modularity, as well as topological robustness, which contributes to better 

understanding the metabolic network architecture of said model (Steuer et al., 2009). 

Nonetheless, an interpretation of metabolic networks solely in topological terms also 

gives rise to several profound disadvantages when compared to detailed kinetic 

models. Topological network analysis fails to incorporate the specifically unique 

properties of a metabolic system such as incorporating initial concentration or rate 

constant, which are important kinetic parameters in describing the uniqueness of the 

system; the lack of specifics illustrates a lack of predictive power in determining how 

biomolecules behave from a time standpoint (Steuer et al., 2009). Despite the 
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superficial similarities between large classes of biological networks, the structure and 

function of metabolic systems is fundamentally different from many other networks 

of cellular interactions.  

Since topological modeling fails to address how biomolecules affect one another 

from a time standpoint, it subsequently fails to provide any meaningful relationships 

between neurotoxicity and A. As a result, we choose to narrow the scope of our 

problem by focusing on a select number of key reactions and utilizing more specific 

modeling techniques such as structured kinetic modeling or detailed kinetic modeling 

to have a more exact problem to solve. 

Structured Kinetic Modeling (SKM) 

To allow for an investigation of the structure and function of metabolic systems we 

have to go beyond merely topological arguments. Structured kinetic modeling (SKM) 

attempts to combine the advantages of topological based schemes as well as detailed 

kinetic modeling in the sense of between stoichiometric analysis and explicit kinetic 

models of metabolism and represents an intermediate step on the way from 

topological analysis to detailed kinetic models of metabolic pathways  The basis of 

Structural Kinetic Modeling consists of constructing an ensemble of models rather 

than a single kinetic model, such that the ensemble is consistent with available 

biological information and additional constraints of interest. From each model, 

eigenvalues are solved and compiled into a statistical distribution. It provides a fairly 

detailed analysis of when stability occurs without needing to inherently understand 
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the kinetics of the system; giving it a distinct advantage over topological modeling 

(Steuer et al., 2006). However, the drawback is that, depending on the model size, 

these methods can take more than a concerted effort in determining the accuracy of 

the eigenvalue distribution. Additionally, the lack of kinetic parameters such as rate 

constants creates ambiguity of understanding how kinetic parameters affect the 

stability for all equilibria points involved (Steuer et al., 2006). Hence, we have 

narrowed the scope of our system to a select number of signaling pathways that we 

believe are responsible for the propagation of the A, and as a result, utilized 

deterministic kinetic modeling to design a significantly simpler system with 

descriptive capabilities (Steuer et al., 2006).   

Detailed Kinetic Modeling 

As a result, we focused our efforts onto detailed kinetic models since they are the 

most straightforward and well-known approach to metabolic modeling via ordinary 

differential equations (ODEs). Similar to other chemical processes, changes in 

metabolite concentrations are described by a mass-balance equation that incorporates 

kinetic details of reaction mechanisms and their associated kinetic parameters. 

Tracing back to the beginning of the last century, detailed kinetic models have 

contributed significantly to our understanding of the principles of metabolic 

regulation.  In contrast to the situation in many chemical systems, kinetic parameters 

in biological systems are often context specific. For example, the catalytic activity of 

enzymes may depend on temperature or pH and other conditions in a complex and 

nonlinear way. The difficulty to obtain reliable estimates of kinetic parameters is 
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certainly one of the main hindrances to construct kinetic models on a cellular or 

compartmental scale (Steuer et al., 2006). Additionally, detailed kinetic models are 

often constricted to smaller scaled systems or even individual biochemical pathways 

due to the inherent difficulty in simultaneously solving coupled non-linear ODE for 

determining eigenvalues and its relationship with their respective equilibria points 

(Steuer et al., 2006).  Nonetheless, the construction of explicit kinetic models allows 

for a detailed and quantitative interrogation of the alleged properties of a metabolic 

network – making their construction an indispensable tool of Systems Biology. With 

a detailed deterministic kinetic model, the stability criterion becomes simpler to 

determine and evaluate.  

We use the same kind of linear stability analysis to address how beta amyloid alters 

the behavior of signaling networks in neurons and discuss the possible biological 

interpretations of the results. In short, the eigenvalues determine stability where it is 

asymptotically stable if all eigenvalues have negative real parts and unstable if at 

least one eigenvalue has positive real part (Hirsch et al., 2004). 

Hence, we describe the development of a deterministic model that describes a subset 

of the neuronal signaling network that includes relevant parts of pathways that 

involve A interactions and signal interactions from multiple inputs. We also 

describe several approaches to examining the stability of the system. 
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Sensitivity Analysis 

A second goal of this work is to examine how the stability of the signaling network in 

the neuron changes as a function of changes of the inputs to the system.  For 

example, does the stability or trajectory of the behavior of the signaling cascade 

change with the introduction of an inhibitor to the integrin receptor?  Does the 

stability and/or trajectory change if there are fewer G protein coupled receptors?  

Does the stability change if the Src kinase is less active?  We ask these questions to 

determine the magnitude of change of kinetic inputs and observe the number of 

effects it can have on the desired output. These changes could provide insight as to 

why there may be biological differences in susceptibility to Alzheimer’s disease, and 

what methods of therapeutic intervention might be impactful for AD. Thus, we use 

sensitivity analysis and vary the initial concentrations of metabolites and rate 

constants, and observe their effects on the rate and magnitude of the terminal values 

for the viability and death signal of neurons (Hamby, 1995). Sensitivity analysis aims 

to describe how much model output values are affected by changes in model input 

values. In turn, sensitivity analysis can help in identifying critical control points, 

prioritizing additional data collection, model validation and verification. 

Furthermore, given the wide magnitude of literature values for kinetic constants and 

initial conditions, sensitivity analysis can be used to help develop a "comfort level" 

with a particular model. If the model response is reasonable, after varying model 

parameters, from an intuitive or theoretical perspective, then the model user may 

have some comfort with the qualitative behavior of the model even if the quantitative 

precision or accuracy is unknown (Hamby, 1995).  
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Different methods are chosen for a variety of reasons, sometimes to attain a quick 

analysis of the parameters at play without investing an exorbitant amount of time. For 

example, one of the simplest and most common approaches is that of changing one-

factor-at-a-time (OAT), to observe the effect it produces on the output. This appears 

as a logical approach as any change observed in the output will unambiguously be 

due to the single variable changed. Furthermore, by changing one variable at a time, 

one can keep all other variables fixed to their central or baseline values. This 

increases the comparability of the results since all effects are computed with 

reference to the same central point in space. Despite its simplicity and ease of use, 

this approach does not fully explore the input space, since it does not take into 

account the simultaneous variation of input variables. This means that the OAT 

approach cannot detect the presence of interactions between input variables (Hamby, 

1995).  

On the other hand, Statistical Design of Experiments (DoE), a difficult, but more 

robust and preferred method can be employed to fully examine the input space that 

affects stability analysis as well as the magnitude of concentrations. When applied to 

numerical modeling and simulation design, numerous runs are conducted to fully 

examine the input space and their respective interactions. A conventional and very 

useful form of DoE is a factorial design, where each factor is assigned a spectrum of 

values ranging from lowest to highest, dictating the number of runs necessary for 

sensitivity analysis. This design has been shown to be not only economical but also 
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effective at revealing interaction effects, and given the non-linearity of biochemical 

modeling, can give great insight of the interaction effects between parameters, 

something that OAT and similar methods that fail to do so (Box et al., 2005). Greater 

detail of the different type of statistical designs is given in Table 2 (Box et al., 2005).  



31 

Chapter 3: Methods 

The goal of the work presented was to examine the role of different biologically 

relevant parameters (for example integrin concentration, extracellular matrix 

concentration, or Src activity) on the behavior of a cell signaling pathway that has 

relevance to toxicity mechanisms in Alzheimer’s using both stability and sensitivity 

analyses.  To accomplish the goal, a mathematical model of the signaling pathway 

had to be created (described in the results section in Chapters 4 and 5). The model 

expressed and solved as a series of ordinary differential equations using mass action 

kinetics, stability determined, phase plots generated to show the relationship between 

independent variables and model output, and sensitivity plots generated to show the 

effect on kinetic parameters and initial conditions on model outputs.  In this Chapter 

we describe the algorithms used to generate the results shown in Chapters 4 and 5 for 

two different signaling model formulations. 

MATLAB Solver 

MATLAB was used to solve the set of ordinary differential equations that described 

each signaling model.  Before executing the differential equation solver, a timespan 

was created with tinitial and tfinal as the starting and ending points. Additionally, initial 

values were chosen to propagate the solution for the proposed mechanism, where 

initial concentrations of receptors, ligands, and unactivated intracellular signaling 

molecule concentrations were set to what was assumed to be reasonable values as 
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estimated from literature data and/or relative abundance estimates, while activated 

intermediate concentrations were initially set to zero.  Values for initial conditions for 

each model are presented in tables in Chapters 4 and 5, when the models are 

presented. Rate constants for all reactions were also estimated from the literature and 

input as parameters in the differential equation solver.  Values for rate constants are 

presented in Chapters 4 and 5.   

To solve the stiff set of coupled ordinary differential equations, a multi-numerical 

solution procedure was developed with the combination of a counting loop that 

iterates through “numSolns” number of elements and ode23s, a MATLAB 

differential equation solver that simultaneously decouples and solves the set of 

coupled ordinary differential equations. Ode23s is based on a modified 2
nd

 order

Rosenbrock formula, which is more efficient than ode45 since it uses cruder 

tolerances and fewer time steps to solve stiff ODE equations. Within the 1
st
 iteration

of the counting loop, assuming that i < numSolns, the initial conditions were passed 

into a function handle “<insert name here>”, which contains the differential and 

linear equations that mathematically describe the proposed mechanism and its 

relative rate laws. Once the initial conditions were passed into the function handle, 

the initial conditions were used to solve for new values at the next time step until 

ode23s successfully solved for all time steps. After the solution was complete, it was 

inputted into a solution matrix, which was then graphed and added into a sheet as part 

of an excel file using the xlswrite command in MATLAB. Finally, the counting loop 

incremented by one to the next iteration of i+1, and increased the initial conditions to 
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create a new set of solutions. Once “i” has reached numSolns, interaction plots are 

created for sensitivity analysis. A flowchart of the process can be seen in Figure 3.1. 

A copy of the m files used by MATLAB is included in an appendix. 

Figure 3.1: (Flowchart of how ODEs are solved via MATLAB, plotted and inputted 

into an excel file.) 
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Parameter Estimation 

Initial conditions were carefully chosen by comparing literature values from 

comparable biochemical models that included concentrations of key metabolites: Src, 

kinases, GPCRs model sets, which ranged from nano- (nM) to micro-molar (μM) 

(Venkatasubramanian, 2014). Given the complex and uncertain nature in 

biomolecular modeling, broad ranges for initial concentrations were given, ranging 

from nanomolar (nM) to micromolar (μM) (Venkatasubramanian, 2014). 

Subsequently, more specific ranges of metabolites were picked from our lab to 

validate previous empirical values, and align with the broad ranges found from 

literature (Venkatasubramanian, 2014). Similarly, kinetic parameters were chosen 

through a combination of literature values, and validated from our lab. For kinetic 

constants that could not be validated from literature, half-lives were empirically 

found (Venkatasubramanin, 2014), and forward kinetic constants were calculated 

assuming mass-action kinetics. Reverse kinetic constants were scaled relative to 

forward kinetic constants. 

 

Stability Criterion 

Stability criterion was analyzed using a program called COPASI (Hoops et al., 2006). 

COPASI is open source software used for creating biochemical models and solving 

those models via various numerical methods. The Simplified and G-Protein model 

w/Adescribed in Chapters 4 and 5, respectively, were entered into the solver with 

two sets of initial conditions with the presence and absence of AOnce the values 
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and mechanism were entered into COPASI, steady-state analysis was chosen in order 

to calculate the eigenvalues using a combination of solvers including the Newton-

Raphson’s method (Kelley, 2003). Once the steady state analysis was run, COPASI 

summarized the results in a report, which contained the number and type of 

eigenvalue as well as whether an equilibrium steady state was found.  

Phase Plots 

Once the solver and stability criterion were established for the models, the solver was 

run in order to generate qualitative trends with respect to time via MATLAB. Phase 

plots were generated by plotting the values of various biomolecules against the 

viability signal of the cells. Three different points were chosen from the viability 

values to denote the starting position (blue circles), unstable equilibrium point (red 

squares), and the ending values that signify as the stable equilibrium point (green 

squares) that were identified from COPASI (stability analysis) output. These plots are 

seen later in Chapters 4 and 5 respectively.  

Sensitivity Analysis 

We determined the sensitivity of the model to two sets of parameters: initial 

concentrations and kinetic constants. With a fully defined parameter space, a 

sensitivity analysis model was designed using a full factorial design via Statistical 

DoE, factorial design involved observing main and interaction effects of initial 

concentrations and rate constants. The factorial design was an n
k
 design, which

represents the total number of combinatorial runs needed to fully assess the parameter 
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space; k is the number of parameters analyzed, and each parameter is assessed for n 

number of levels, ranging from the minimum and ending with the maximum (Box et 

al., 2005). A Yates analysis matrix was generated to assess all possible combinatorial 

scenarios for each parameter and its associated number of levels (Box et al., 2005); 

each row represents a set of varied parameters to be entered into ode23s. With respect 

to initial concentrations, 12 parameters were analyzed at 2 different levels, leading to 

2
12

, or 4096 simulation runs. Likewise, to investigate sensitivity of model output to 

kinetic constants, 9 parameters that were analyzed at 3 different levels, leading to 3
10

, 

or 59049 simulation runs.  Once the matrix has been defined, the varied parameters, 

either the initial conditions or kinetic constants, while the complement set of 

parameters is kept constant, are entered into ode23s to obtain solution curves and 

stability points. Afterwards, interaction plots were created to illustrate the magnitude 

of sensitivity between the stability points for the viability and death signal, and the 

time needed to achieve stability with respect to the varied parameters.   Significance 

of the changes in model output to changes in parameters was not determined due to 

challenges with inputting the DoE output into a statistical package (ANOVA). 

Instead relative importance of a parameter could be inferred from the steepness of the 

slope of the interaction plot. 
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Chapter 4: Simplified Model 

Model Description 

Based on experimental results out of our laboratory (Venkatasubramanian et al., 

2014) and results reported in the literature (Berry et al., 1999; Dhawan et al., 2012; 

Radhakrishnan et al., 2009; Ahn et al., 2010; Ota, 2015), we assumed that there was 

crosstalk between integrin signaling and G protein coupled signaling within cells that 

influence cell survival in the presence and absence of A.  Therefore, we posited the 

simplest model we could envision that demonstrated coupling of these signaling 

networks and influenced unspecified viability (V) or death (D) signals within the cell.  

We used a generic signaling molecule X* as a mechanism to integrate G protein and 

integrin related signaling pathways as opposed to positing a specific set of 

mechanistic reactions that described signal integration between these two pathways.  

The order of reaction and/or formulation of the mechanism of signal integration is 

somewhat arbitrary, but satisfied some constraints around a mass balance for the 

system and our assumptions based on experimental observations 

(Venkatasubramanian et al., 2014) of the non-linearity of the system.   

The Simplified Model includes a ligand- G protein coupled receptor interaction 

forming an activated complex, described in equation (4.1), where L1 is the ligand for 

the G protein coupled receptor (R), and L1R* is the activated receptor-ligand 

complex; and an extracellular matrix ligand (L2) – integrin (I) interaction to form an 

activated integrin-ligand complex (L2I*)described by equation (4.2).  The activated 
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integrin-ligand complex can then catalyze the activation and phosphorylation Src to 

form pSrc, described by equation (4.3). Two pSrc can combine to form a downstream 

activated signal, X* (equation (4.4)).  This step, described in equation (4.4) is totally 

hypothetical, but was consistent with our ideas around the non-linearity of the 

signaling pathway. The presence of Src leads to the generation of a death signal (D), 

described in equation (4.5), while the presence of pSrc in combination with viability 

signals (V) leads to the generation of an additional viability signal, described by 

equation (4.7).  We formulated steps (5) and (7) to be consistent with extracellular 

matrix (ECM)-integrin signaling leading to a viability signal (that we assume in this 

case acts through pSrc), and that the absence of the ECM, Src would remain un-

phosphorylated and a death signal would be generated, consistent with cell death seen 

in the absence of ECM-integrin interactions (Hynes et al., 2002). Finally, the 

activated signal from the pSrc pathway (X*) can interact with the activated G protein 

coupled receptor- ligand complex (L1R*) to lead to additional activation of Src 

(equation (4.6)). 
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Reactions included in the Simplified Model 

L1 + R   L1R* (4.1) 

L2 + I  L2I*  (4.2) 

L2I* + Src  L2 + I + pSrc (4.3) 

2pSrc  X* (4.4) 

V + Src  D (4.5) 

L1R* + X*  L1 + R + 2pSrc (4.6) 

V + pSrc  2V (4.7) 

Rate laws for each reaction were then developed based on the assumption of mass 

action kinetics.  The resultant rate laws are described by equations 4.8-4.14.  From the 

rate laws, a system of ordinary differential equations was developed that were then 

subjected to further analysis. 

Rate Equations: Simplified Model 

r1 = - k1.L1.R + k1r.L1R*  (4.8) 

r2 =  -k2.L2.I + k2r.L2I*    (4.9) 

r3 = -k3.L2I*.Src + k3r.L2.I.pSrc  (4.10) 

r4 = -k4.pSrc
2

 + k4r.X* (4.11) 

r5 = -k5.Src  (4.12) 

r6 = -k6. L1R*.X* + k6r.L1.R.pSrc
2

(4.13) 

r7 = -k7.V.pSrc (4.14) 
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In the presence of A, the reactions change as follows.  We assume that A can 

interact with an integrin on the cell surface (I), to form an activated A-integrin 

complex (A-I*), described by equation (15).  This would lead to competitive 

inhibition of extracellular matrix binding to the integrin receptor, which could be 

expected to lead to generation of a death signal (or loss of a viability signal), 

consistent with findings from our laboratory that A leads to toxicity, and inhibition 

of A integrin binding attenuates toxicity (Venkatasubramanian et al., 2014). 

Simplified Model – Aβ 

Aβ + I  Aβ-I* (4.15) 

The rate law to describe this reaction is as follows: 

r8 = -k8. Aβ.I + k8r.Aβ-I*                                          (4.16) 

A chemical reaction network of the governing equations can be seen in Figure 4.1, 

which illustrates the crosstalk between ligands, integrins, GPCRs and how Aβ 

perturbs the system, leading to an increase of a death signal.  



41 

Figure 4.1: (Chemical Reaction Network (CRN) diagram depicting the interactions 

between key biomolecules, forming activated complexes, and eventually leading to a 

viability or death signal. Reaction nodes (red circle with black outline) with arrows 

represent a reversible or irreversible reaction with the biomolecules involved.)  
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Qualitative Trends 

ECM binding to integrin on the cell surface was proposed to generate a survival 

signal.  In this model, the survival of the biological system was believed to be 

dependent upon the ligand-integrin reaction. G protein coupled receptor (GPCR) - 

ligand interactions were also included as they contribute to cell survival or death, and 

likely intersect with integrin triggered signaling pathways.  The activated ligand-

integrin biomolecules phosphorylate Src, forming pSrc, which is the activated version 

of the biomolecule. Activated pSrc leads to a dynamic equilibrium between cell death 

and cell viability signal, which while depicted simplistically in the model, is likely a 

result of a combination of intracellular signals such as phosphoinositide 3-kinase 

(PI3K) and Atk and other downstream effectors (Zhang et al., 1996).  The graphical 

trends portrayed by the Simplified model are displayed in Figure 4.2(a).  
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Figure 4.2(a): (Concentrations as a function of time in the Simplified Model with 

key metabolites (μM) vs. Time (hr) in the absence of Aβ. Global stability is reached 

quickly and the viability signal is maintained at 1 μM.)  

The trends predicted by the model qualitatively describe some of the expected results. 

The viability signal exceeded the death signal in the control case.  The dynamics of 

the viability signal follow trends observed in the dynamics of the Src and pSrc 

signals.  Neither GPCR Integrin, nor Ligand levels change significantly, which may 

be a result of the parameters chosen for the model, or the mechanism assumed.  Given 

the lack of available dynamic data on signaling molecule concentration available in 

the literature, no more than a qualitative examination of the results are possible and 

their comparison is against expected trends, but not actual experimental data. 
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In Figure 4.2(b) we show model estimates of metabolites when A is present in the 

system.  ECM binding to integrin on the cell surface was proposed to generate a 

survival signal. We hypothesized that A plays a significant role in reducing the cell 

viability signal by competitively inhibited the ECM-integrin interaction.  However, 

inclusion of this step in the model did not yield the expected results. As shown in 

Figure 4.2(b), the viability signal is still high while the death signal is unchanged 

relative to Figure 4.2(a).   

Figure 4.2(b): (Concentrations as a function of time in the Simplified Model with 

key metabolites (μM) vs. Time (hr) in the presence of Aβ. Global stability is reached 

quickly and the viability signal is maintained at 1 μM.)  

In addition, while the addition of A led to a decrease in the integrin in the system 

compared to Figure 4.2(a), the system without A, there was no noticeable change in 
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Src or pSrc levels, the signaling molecules through which viability and death signals 

are generated.  Another somewhat problematic aspect of this simplified model, we 

know from experiment, inhibition of pSrc formation attenuates A toxicity 

(Venkatasubramanian et al., 2014; Rymer et al.), while in this model, pSrc is used to 

generate a viability signal. A concentrations at 0.175 to 1.4 μM were simulated 

using the model and the parameter set given in Table 4.1. Changing the concentration 

of A did not change the qualitative behavior of the model.  The mismatch between 

our expectations of the model could simply be a result of the model parameters 

chosen for the simulation, or could be a result of the structure of the model and the 

reactions and their mechanisms included in the model.   

To further probe the reason for the failure of the model to at least qualitative capture 

expected trends in viability signal, we performed both a stability analysis and a 

sensitivity analysis of the model.  The stability analysis would allow us to address if 

there are qualitative differences in behavior of the model (different stability 

behaviors) in the presence and absence of A, while the sensitivity analysis allows us 

to begin to address if parameters were changed, would the model results have been 

different. 

After performance of the stability analysis on the Simplified Model, we note no 

changes in stability criteria of the model in the presence or absence of A, and that in 

each case, the model was globally stable and asymptotically approached a result of 

high viability signal, low death signal.  This is further support for failure of this 
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simplified model.  However, as noted earlier, the numerical stability analysis is 

dependent upon the parameter values used in the model, thus we sought to ensure that 

even with changes in parameter values, we would still reject this simplified model. 

While the model developed predicts the time dependence of concentrations of 

intercellular signaling molecules, experimentally, we and others generally only report 

endpoint measurements (i.e. after 24 hours of treatment, pSrc levels increased or cells 

died), and not dynamic measurements.  Thus we were interested in analyzing the 

predictions of the endpoint or steady state measurements of the model compared to 

expected trends inferred from our own and literature data.  We were also interested in 

exploring which steps or parameters in the model had the biggest impact on the 

steady state model predictions as a way of exploring the governing behavior in our 

system. As a result, a statistical model, involving a full DoE (Design of Experiment) 

allows us to fully explore the parameter space (initial conditions and kinetic 

constants) at different values, to determine the parameters that had the biggest impact 

onto the steady state values and times to reach steady state.  
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Sensitivity Analysis 

Table 4.1: (Table of Initial conditions and kinetic constants used for stability and 

sensitivity analysis. Values depicted are base values (i.e. lo w values). High values 

(HV) are calculated by multiplying the base value (BV) by 4, i.e. khi = 4(klow)) 

Simplified Model w/ A 

Initial Conditions (µM) k 
L1 (Berry et al., 1999) 0.5 k1 0.23 hr

-1
 (half-lives)

[1]

R (Berry et al., 1999) 0.05 k2 0.7 (µM-hr)
-1 

(Welf et al.)

L2 (Berry et al., 1999) 0.5 k3 0.23 hr
-1 

(half-lives)
[1]

I (Berry et al., 1999) 0.5 k4 1.2 (µM-hr)
-1 

(scaling)
[2]

Src (Dhawan et al., 2012) 0.25 k5 1.7 (µM-hr)
-1

 (half-lives)
[1]

pSrc (Dhawan et al., 2012) 0.25 k6 0.5 µM
-2

hr
-1 

(scaling)
[2]

X* (Radhakrishnan et al., 2009) 0.1 k7 0.5 µM
-2

hr
-1 

(scaling)
[2]

A (Pearson et al., 2006) 0.1 k8 

5.6 (µM-hr)
-1 

(Ahn et al.,

2010) 

L1R* 0 k1r 0.25 hr
-1 

(scaling)
[2]

L2I* 0 k2r 0.25 hr
-1 

(scaling)
[2]

A-I* 0 k3r 0.25 µM
-2

hr
-1 

(scaling)
 [2]

D 0 k4r 0.25 µM
-3

hr
-1 

(scaling)
 [2]

V (scaling) 1 

k6r 0.1(µM-hr)
-1

 (scaling)
[2]

k8r 0.1 hr
-1 

(scaling)
[2]

In Table 4.1, values of initial conditions and kinetic constants are depicted at the base 

value for sensitivity analysis. In the following figures, values of either kinetic 

parameters or initial conditions are varied from their base value (BV) to the high 

value (HV), such that HV = 4BV, while keeping the other set of parameters constant 

at their base values, with the exception of A, which is kept at 0.5 µM in order 

observe if A had noticeable effects onto the viability and death signals as well as 

steady state times.  

[1] Kinetic constant calculated through method of half-lives.

[2] Kinetic constants scaled with respect to forward kinetic constants.
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Figure 4.3(a): (Sensitivity plot of steady state viability signals vs. kinetic constants 

in the presence of Aat 0.50 μM. Sensitivity plot depicts main and interaction 

effects of kinetic constants and their effects onto the viability signal. The steepness 

of the slope determines the magnitude of effect from kinetic parameters. Since the 

viability range is from .9 to .92 μM, kinetic constants are shown to have little 

effect.) 

In Figure 4.3(a) the effect of variation in kinetic constants on steady state viability of 

the model output in the presence of A was shown.  In general, steeper slopes 

indicate a high sensitivity to the rate constant in a given column, while greater 

distance between the different lines in a plot indicate the sensitivity to the rate 

constant in a particular row.  Kinetic constants k1, k4, k6, and k8 had little to no effect 

onto the steady state values for the viability of neurons; while k2, k3, k5 and k7 had a 

noticeable effect.   
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The high sensitivity of model output (steady state viability) to the constants k2, k3, k5 

and k7 is related to the importance of Src and pSrc in this model and their effects on 

the death (D) and viability (V) signal on neurons.  As stated earlier, phosphorylation 

of Src also leads to regulation of several cellular proteins and receptors, specifically 

glutamate, NMDA and AMPA receptors, which are related to regulation of LTP and 

cognitive function. Src and pSrc pathways are also associated with Atk signaling that 

is generally believed to be associated with survival.  Thus, the importance of these 

steps in survival in the model is consistent with expectations. 

On the other hand, k8, the rate constant associated with A interaction with the cell, 

had no impact on model output.  This suggests either model parameters are very 

poorly chosen, or that this mechanism is unsuited to describing the effects of A on 

cell signaling. 

From these results we conclude that the Simplified model might be appropriate for 

describing cell survival reactions associated with integrin and Src/pSrc signaling, but 

it cannot adequately describe A interactions and their effect on cell signaling, at 

least for the range of parameters tested in this work. 
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Figure 4.3(b): (Sensitivity plot of steady state death signals vs. kinetic constants in 

the presence of Aat 0.50 μM. Sensitivity plot depicts main and interaction effects 

of kinetic constants and their effects onto the viability signal. The steepness of the 

slope determines the magnitude of effect from kinetic parameters. Since the death 

range is from .34 to .35 μM, kinetic constants are shown to have little effect.) 

In Figure 4.3(b) we show the results of the sensitive analysis where we examined the 

effect of changing rate constants on the steady state death signals.  Again, the same 

rate constants had the biggest impact on steady state death signals.  The two constants 

that impacted behavior the most, k3 and k5, also show the strongest interaction, 

where at low values of k5, changes in k3 have the largest impact on the steady state 

death signal value.  As in the analysis when the output was the viability signal, the 

interplay between pSrc and generation of the viability signal and the formation of 
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pSrc have the strongest impact on model output.  A and X* have only minimal input 

(if any) on model output. 

Figure 4.4(a): (Sensitivity plot of steady state viability signals vs. key biomolecules. 

Sensitivity plot depicts main and interaction effects of molecules and their effects 

onto the viability signal while kinetic constants are kept at klow. The steepness of the 

slope determines the magnitude of effect from the parameters. Every biomolecule 

has shown to be insensitive except for Src and pSrc. However, all parameters 

effectively have no effect since viability is constant regardless of Aβ’s presence.)   
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Figure 4.4(b): (Sensitivity plot of steady state death signals vs. key biomolecules. 

Sensitivity plot depicts main and interaction effects of molecules and their effects 

onto the death signal while kinetic constants are kept at klow. The steepness of the 

slope determines the magnitude of effect from the parameters. Every biomolecule 

has shown to be insensitive except for Src and pSrc.)   

Figures 4.4(a) and 4.4(b) show the sensitivity analysis when model predictions were 

examined as initial conditions were varied, and output of cell viability and death 

signal, respectively, were observed.  As seen in both figures, only initial conditions of 

Src and pSrc had significant effects on model output, consistent with what was 

observed when examining rate constants. 
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Figure 4.5(a): (Sensitivity plot of steady state times vs. kinetic constants. Sensitivity 

plot depicts main and interaction effects of kinetic constants and their effects onto 

the steady state times. The steepness of the slope determines the magnitude of effect 

from the parameters. Kinetic constants k4 and k7 have the biggest effect and share 

interdependence. However, all parameters effectively have no effect since viability 

is constant regardless of Aβ’s presence.)   
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Figure 4.5(b): (Sensitivity plot of steady state times vs. key biomolecules. Sensitivity 

plot depicts main and interaction effects of the biomolecules and their effects onto 

the steady state times. The steepness of the slope determines the magnitude of effect 

from the parameters. Molecules Src and pSrc have the biggest effect and share 

interdependence. However, all parameters effectively have no effect since viability 

is constant regardless of Aβ’s presence.)   

Figures 4.5(a) and 4.5(b) depict how varying initial kinetic constants and initial 

conditions affect the time needed to reach dynamic equilibrium.  In Figure 4.5(a), 

kinetic constants k4 and k7 have the most profound effect on time to reach steady 

state, while in Figure 4.5(b); pSrc initial conditions are the most impactful.   Both rate 

constants that impact the time to steady state are for reactions that are downstream 

from the rate constants that had the biggest impact on steady state death and survival 

signals. The relevance of pSrc on time to steady state, given its importance both in all 

other sensitivity analysis results and experimental data is not unexpected. 
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Given the lack of difference in model dynamics in the presence of A compared to in 

its absence, the lack of difference in any stability measurements of the two models, 

and the lack of sensitivity of the models to parameters associated with A, there was 

a need to develop a more complex model of A interaction with the cell signaling 

network.  While the basic signaling associated with integrin, Src, and pSrc might be 

appropriate in the absence of A, mechanisms that include A must be altered to both 

capture known literature data and expected trends.  
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Chapter 5:  G-Protein Model 

 

Model Description 

The G-Protein model includes many of the biomolecules and reactions from the 

Simplified Model described in Chapter 4, but replaces the downstream signal, X*, 

with several additional terms for which there is experimental evidence from our 

laboratory of their role in A signaling, Src kinase and ECM (Venkatasubramanian et 

al., 2014), and molecules and reactions for which there is evidence from the literature 

of linkages with pathways in the simplified model. In particular, we added some 

specific G protein reactions as well as a known mechanism of G protein-Src 

interactions that might be a possible mechanism of signal integration associated with 

this system. Equations (5.1) through (5.10) represent this more realistic model of 

signal integration between integrin, Src and G protein pathways. New biomolecules 

added include heterotrimeric G-proteins (Gα-GDP-Gγ) that disassociate upon 

interacting with GPCRs, described in equation (5.4). Additionally, in equations (5.6) 

and (5.7), we included regulatory proteins, GTPase activating protein (GAP) and 

guanine nucleotide exchange factor (GEF), two effector proteins with the competing 

functions of stimulating hydrolysis of GTP when bound to a G protein, and the 

release of GDP and binding of GTP to the G protein, respectively. While GAP and 

GEF are not known to be involved in A signaling, their inclusions was justified 

because the role GAP and GEF play in signaling switches in cell phenotype in other 

systems (spreading versus rounding (Shen et al., 2012)), thus we assumed that they 
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might play analogous roles in phenotype switching (viability signal versus death 

signal) in the A signaling system. 

 

Reactions included in the G-Protein Model 

L1 + R L1R*       (5.1) 

L2 + I   L2I*         (5.2) 

L2I* + Src   pSrc + L2 + I     (5.3) 

L1R* + Gα-GDP-Gγ   L1 + R + Gα-GTP + Gγ   (5.4) 

pSrc + Gα-GDP   Src + Gα-GTP    (5.5) 

Gα-GDP + GEF-GTP + V     Gα-GTP + GEF-GDP + D (5.6) 

Gα-GTP + GAP-GDP + V     Gα-GDP + GAP-GTP + 2V (5.7) 

 

Rate laws for each reaction were then developed based on the assumption of mass 

action kinetics.  The resultant rate laws are described by equations 8-14.  From the 

rate laws, a system of ordinary differential equations was developed that were then 

subjected to further analysis. 
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Rate Equations: G-Protein Model  

r1 = -k1.L1.R + k1r.L1R*                                                                    (5.8) 

r2 = -k2.L2.I + k2r.L2I*                                                              (5.9) 

r3 = -k3.L2I*.Src + k3r. L2.I.pSrc                                                                          (5.10) 

r4 = -k4.L1R*.Gα-GDP-Gγ + k4r.L1.R.Gα-GDP.Gγ                                                  (5.11) 

r5 = -k5.pSrc.Gα-GDP + k5r.Src.Gα-GTP                      (5.12) 

r6 = -k6.Gα-GDP.GEF-GTP.V       (5.13) 

r7 = -k7.Gα-GTP.GAP-GDP.V         (5.14) 

 

In equations (5.15) through (5.17) we include the reactions that describe the 

interactions of A with signaling pathways in a cell.  Upon adding A, we assume 

that it interacts with an integrin on the cell surface (I), and competitively inhibits the 

integrin-natural ligand complex (L2I*) from forming, which was also a feature of the 

simplified model. Additionally, A interacts with the heterogeneous trimeric protein 

to form the GDP bound G protein, causing dissociation of the G and Gsubunits 

(reaction 16).  Finally, as seen in equation (5.17), activated A-integrin complex (A-

I*) phosphorylates Src.  The products of both reaction (5.16) and (5.17) lead to an 

increase of a death signal. 

 

G-Protein Model w/ Aβ (G-Aβ Model) 

Aβ + I  Aβ-I*       (5.15) 

Aβ-I* + Gα-GDP-Gγ    Aβ + I + Gα-GDP + Gγ   (5.16) 

 Aβ-I* + Src  + V  pSrc + Aβ + I + D    (5.17) 
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Equations (5.8) through (5.14) and equations (5.18) through (5.20) represent the rate 

expression derived for the reactions shown in equations (5.1) through (5.7) and 

equations (5.15) through (5.17) assuming the reactions were all elementary and 

governed by mass action kinetics.  At this stage we did not assume any more 

complex kinetics for any given step in the model.  We assume the A-integrin 

complex will interact with Src, to activate and phosphorylate Src, analogous to the 

interaction with the integrin-natural ligand complex (L2I*); however, when A is in 

the complex, not only is Src phosphorylated, but a death signal  (D) is also generated, 

as seen in equation (5.17).  While there are ample examples of biological reactions 

that are more accurately described by more complex kinetics (Lee et al., 2007), we 

have chosen to take the approach that the most simple representation of reactions can 

still generate interesting non-linear behavior to allow for demonstration of the power 

of different approaches to examine model properties.   

 

r8 = -k8.Aβ.I + k8r.Aβ-I*                                                         (5.18) 

r9 = -k9.Aβ-I*.Gα-GDP-Gγ + k9r.Aβ.I.Gα-GDP.Gγ                                                   (5.19) 

r10 = k10.Src.Aβ-I*.V                       (5.20) 

 

A chemical reaction network of the governing equations can be seen in Figure 5.1, 

which illustrates the crosstalk between ligands, integrins, GPCRs and how Aβ 

perturbs the system, leading to an increase of a death signal.  
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Figure 5.1: (Chemical Reaction Network (CRN) diagram depicting the interactions 

between key biomolecules, forming activated complexes, and eventually leading to a 

viability or death signal. Reaction nodes (red circle with black outline) with arrows 

represent a reversible or irreversible reaction with the biomolecules involved.)  

 

 

 

Qualitative Trends 

In Figure 5.2(a) and 5.2(b) we show results of model predictions for the system in 

which A is absent (the normal, healthy cells signaling case), and in which A is 

present (the disease signaling case), respectively.  While the dynamics of the response 

of the different signaling molecules is somewhat challenging to interpret (and we later 

use some other tools that make comparisons of the effects of the model more readily 
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observable), it is clear that in the presence of , there are increases in pSrc and the 

death signal (D) with time.  In addition, there appears to be a large decrease in G-

GDP-Gin the presence of A

 

Figure 5.2(a) (Concentrations as a function of time in the G-Protein Model with 

key metabolites (μM) in the vs. Time (hr) absence of Aβ. Global stability is reached 

quickly and the viability signal is maintained at 1 μM.)  


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Figure 5.2(b) (Concentrations as a function of time in the G-Protein Model with 

key metabolites (μM) in the vs. Time (hr) presence of Aβ. Global stability is reached 

quickly and the viability signal depletes quickly as time progresses.)  

 

 

 

ECM binding to integrin on the cell surface was proposed to generate a survival 

signal, which would be consistent with literature observations (Hynes et al., 2002). In 

Figures 5.2(a) and  5.2(b), the survival of the biological system was believed to be 

dependent upon the ligand- G protein coupled receptor reaction, ECM ligand-integrin 

reaction, and the downstream G protein and Src-pSrc reactions.  There are some 

differences in ligand-G protein coupled receptor and ECM-integrin reactions in the 

presence and absence of A, seen in Figures 5.2(a) and 5.2(b) , but the impact of 
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those differences are difficult to see in just a plot of the concentrations as a function 

of time.  The model was also formulated to provide a more realistic picture of the 

GPCR & G-Protein interaction among neurons while incorporating Src 

phosphorylation, which is integral for regulation of cell viability (Shen et al., 2012; 

Ittner et al., 2010). Again, it is difficult to observe the differences in the various G 

proteins and their effectors, however there are differences in levels of GGTP 

between simulations in the presence of absence of A.  This could be consistent with 

observations that A activated a GTPase, and that its inhibition attenuated A 

toxicity (Rymer et al., 2000).  As in other simulations, the lack of A is analogous to 

a control experiment of examining the survival signal of neurons without any 

neurodegenerative factors present.  

 

There is virtually no data to compare against in determining the validity of 

predictions of the model.  However, we expect under the “control” condition, without 

A, shown in Figure 5.2(a) that the cells generally survive, and the interaction with 

ECM should promote survival.  When we examine model predictions in the presence 

of A, again, there is a lack of experimental data against which to compare the 

model.  Nevertheless, we can examine the qualitative trends in the model compared 

to some general observations about the impact of certain inhibitors on A toxicity.  

These observations include that toxicity is attenuated when pSrc formation is 

blocked, when GTPase activity is blocked, and under some circumstances when A 

binding to integrin is blocked (Venkatasubramanian et al., 2014; Ittner et al., 2010; 

Zhang et al., 1996). Consistent with the experimental observations, levels of pSrc and 
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activated integrin-ligand complex are seen in Figure 5.2(b) compared to 5.2(a), at the 

same time that more death signal is generated. 

 

We performed a stability analysis of the model to examine the relationship between 

metabolite or signaling molecule concentrations and viability in the absence and 

presence of A.  Unlike simple systems such as the Lotka-Volterra, in which an 

analytical stability analysis can be performed, and the nature of the equilibrium states 

as a function of all rate constants can be determined, in this model, a numerical 

stability analysis had to be performed.  Thus, the solution presented is a function of 

the parameterization of the model (both rate constants and initial conditions).   

 

Stability Analysis 

Phase plots of the viability signal versus various metabolite concentrations are shown 

in Figure 5.3(a) and 5.3(b) in the absence and presence of A, respectively.  The 

phase plots include a stability well which depicts the global stability between the 

viability signal within the G-Protein cycle and with other metabolites when A is 

included. The legend includes the major metabolites that are believed to be 

responsible for affecting the steady state viability signal. The dependent axis 

represents the viability signal strength and the independent axis represents the 

concentrations of species that affect the viability signal. Table 5.1 summarizes the 

stability criteria for the model. 
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Figure 5.3(a) (Stability well of Viability versus key biomolecules. Each line 

represents an individual phase plot between a key biomolecule and the viability 

signal. Each square represents an equilibrium point, where  such 

that is a key biomolecule. The red squares represent an unstable equilibrium 

point while the green squares represent a stable equilibrium point.   Blue circles 

represent the initial condition (shown in Figure 5.3(a), in the absence of A.) 
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Figure 5.3(b) (Stability well of Viability versus key biomolecules. Each line 

represents an individual phase plot between a key biomolecule and the viability 

signal. Each square represents an equilibrium point, where , such 

that is a key biomolecule. The red squares represent an unstable equilibrium 

point while the green squares represent a stable equilibrium point.   Blue circles 

represent the initial condition (shown in Figure 5.3(b), in the presence of A.) 
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Table 5.1. (Summary of Stability Criteria for Full Model in the absence and 

presence of AReal and negative eigenvalues indicate global asymptotic stability.)  

 

Overall Stability of System 
No  w/  

Asymptotically stable Asymptotically stable 

Eigenvalue characteristics   

purely real 10 10 

Complex 0 0 

equal to zero 0 0 

positive real part 0 0 

negative real part 10 10 

 

In the absence of A, the steady state of the system as described by the G-protein 

model (equations 5.1-5.20) represents a global stability; the system behavior tends 

asymptotically toward one stable state, in this case leading to full viability signal 

(Figure 5.3(a)). However, with the inclusion of A, the steady state of the system also 

represents a global stability; but the system behavior tends toward zero viability. In 

both cases, as seen in the much simpler stability analysis shown in Chapter 2, a 

system with all real, negative eigenvalues is a locally stable at each equilibrium point.  

As seen in Figure 5.3(b), all of the stable equilibrium points, while at different 

concentrations of signaling species, all occur at zero viability signal.  

 As seen in the much simpler stability analysis shown in Chapter 3, a system with all 

real, negative eigenvalues is a locally stable at each equilibrium point.  As seen in 

Figure 5.3(b), all of the stable equilibrium points, while at different concentrations of 

signaling species, all occur at zero viability signal. We speculate that this tendency to 

asymptotically approach zero viability signal (or death) in the presence and of A is 

due to the inherent instability of the system during disease (everything always dies).  

The non-zero viability signal in the absence of A represents a different state of the 

system – a “healthy state”.  It is important to emphasize that this result is highly 
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dependent upon the parameterization of the models, and that there may be a set of 

parameters in which different local or global stability are observed in the two cases.   

Given the dependence of both the dynamic trends predicted by the model and the 

stability analysis on model parameterization, we performed a sensitivity analysis to 

determine how modifying rate constants, equilibrium constants, and initial conditions 

affected model outcome.  We included A in the model in the analysis.  We focused 

on 4 model outcomes, the value of the viability and death signals at some time not 

close to equilibrium (as at equilibrium since everything tends towards zero viability 

signal the results are uninformative), and the time to achieve the steady state values of 

the viability and death signals.  For each parameter, we varied its value by a factor of 

4, and interrogated the effect on model output.  We varied parameters two at a time 

such that interaction effects could be seen.  If only a single line is observed in the 

matrix, then the model is insensitive to that parameter.  If horizontal lines are seen in 

the matrix, then the two parameters probed do not display interaction effects at the 

ranges of parameters chosen.  If, however, multiple diagonal lines are observed, then 

the model is sensitive to the parameter, and there is an interaction between the two 

parameters interrogated. Base values for the statistical DoE used for sensitivity 

analysis can be seen in Table 5.2.  
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Table 5.2: (Table of Initial conditions and kinetic constants used for stability and 

sensitivity analysis. Values depicted are base values (i.e. lo w values). High values 

(HV) are calculated by multiplying the base value (BV) by 4, i.e. khi = 4(klow)) 

 

G-Protein Model w/ A 

Initial Conditions (µM) K 
L1 (Berry et al., 1999) 0.5 k1 0.23 hr

-1
 (half lives)

[1]
 

R (Berry et al., 1999) 0.05 k2 0.7 (µM-hr)
-1 

(Welf et al.) 

L2 (Berry et al., 1999) 0.5 k3 0.23 hr
-1 

(half lives)
[1]

 

I (Berry et al., 1999) 0.5 k4 0.5 (µM-hr)
-1 

(half lives)
[1]

 

Src (Dhawan et al., 2012) 0.25 k5 0.5 (µM-hr)
-1

 (scaling)
[2]

 

pSrc (Dhawan et al., 2012) 0.25 k6 0.5 µM
-2

hr
-1 

(scaling)
[2]

 

Gα-GDP-Gγ (Radhakrishnan et al., 

2009) 
0.1 k7 0.5 µM

-2
hr

-1 
(scaling)

[2]
 

Gα-GTP (Ota, 2015) 0.1 k8 
5.6 (µM-hr)

-1 
(Ahn et al., 

2010) 

Gα-GDP (Ota, 2015) 0.1 k9 1.2 (µM-hr)
-1 

(scaling)
[2]

 

GEF-GTP (Radhakrishnan et al., 

2009) 
0.1 k10 1.2 µM

-2
hr

-1 
(scaling)

[2]
 

GAP-GDP (Radhakrishnan et al., 

2009) 
0.1 k1r 0.25 hr

-1 
(scaling)

[2]
 

A (Pearson, 2006) 0.2 k2r 0.25 hr
-1 

(scaling)
[2]

 

L1R* 0 k3r 0.25 µM
-2

hr
-1 

(scaling)
[2]

 

L2I* 0 k4r 0.25 µM
-3

hr
-1 

(scaling)
[2]

 

Gγ 0 
k5r 0.1(µM-hr)

-1
 (scaling)

[2]
 

A-I* 0 

D 0 
k8r 0.1 hr

-1 
(scaling)

[2]
 

GEF-GDP 0 

GAP-GTP 0 k9r 0.1 µM
-3

hr
-1 

(scaling)
[2]

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
[1] Kinetic constant calculated through method of half-lives. 

[2] Kinetic constants scaled with respect to forward kinetic constants.  
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Sensitivity Analysis  

Figure 5.4(a): (Sensitivity plot of viability signal values vs. kinetic constants at t = 

10 hrs. Sensitivity plot depicts main and interaction effects of kinetic constants and 

its effects onto the viability signal. The steepness of the slope determines the 

magnitude of effect from the parameters. Kinetic constants k2, k3 and k10 have the 

biggest effect and share interdependence. Due to Aβ’s presence, viability signal 

rapidly depletes such that steady state values are effectively 0 µM.)  
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Figure 5.4(b): (Sensitivity plot of death signal values vs. kinetic constants at t = 10 

hrs. Sensitivity plot depicts main and interaction effects of kinetic constants and its 

effects onto the viability signal. The steepness of the slope determines the 

magnitude of effect from the parameters. Kinetic constants k2, k3, and k10 have the 

biggest effect and share interdependence. Due to Aβ’s presence, death signal 

rapidly accumulates such that steady state values are effectively 1 µM.)  

 

 
 

Figures 5.4(a) and 5.4(b) depict the sensitivity analysis; the impact of changes in 

kinetic constants on the viability and death signals, respectively. Forward rate 

constants k2, k3, k5, k8, and k10 had the most noticeable effects on both the viability 

and death signal.  In addition, k7 had a noticeable effect solely on the death signal.  

 

The high sensitivity of the constants k2, k3, k8, and k10 on model output (viability and 

death signals) points to the relative importance of the integrin and src pathways in the 

model.  The results also point to the relative insensitivity of the model output to the G 
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protein coupled receptor pathway.  This differs from the sensitivity analysis of the 

simplified model described in Chapter 2, where forward rate constant, k2, involving 

L2 (ECM), had little effect in mitigating the effects of A.  The sensitivity of the 

model to k2 is consistent with data from our laboratory showing that blocking the A 

– integrin interaction attenuated A toxicity (Venkatasubramanian et al., 2014), and 

work by others showing the viability inducing effects of interaction with ECM and 

3D culture (Gilmore et al., 2000). Similarly, viability and death signal increase and 

decrease respectively as k3 increases. Once the ECM-integrin complex is formed, it 

activates Src via phosphorylation, forming pSrc.  In the absence of , pSrc acts via 

a GAP reaction to produce a viability signal. Additionally, phosphorylation of Src 

helps disassociate the ECM-integrin complex, forming free ECM and integrin to 

further competitively inhibit Afrom forming an activated complex. However, both 

viability and death signal decrease and increase respectively when kinetic constants, 

k8 and k10 increase. Increased magnitudes of k8 lead to increased conversion of A 

into its activated form, A-I*. The activated form has been known to compete with 

the ECM-Integrin reaction, preventing the GTP-bound form G-protein and GAP 

reaction, effectively decreasing the viability signal. Additionally, increased values of 

k10 leads to increased phosphorylation of Src due to activated A-I*, which we 

propose is responsible for the cell death signal.   Experimentally, we have shown that 

inhibition of A induced pSrc formation attenuates A induced toxicity 

(Venkatasubramanian et al., 2014), consistent with the role of k10 in determining cell 

fate (viability or death).  Finally, the viability increased and death signal decreased as 

k5 increased, though to a lesser extent than the aforementioned kinetic constants. The 
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reaction involving k5 plays a dual role into forming the GTP-bound G protein, which 

is we propose is responsible for cell viability; however, the reaction also de-

phosphorylates pSrc, creating Src, which is able to be phosphorylated again by the 

more promiscuous A. 

As previous literature has shown, integrin adhesion to extracellular matrix is required 

for survival of most normal cells (Gilmore et al., 2000) and the survival signal is 

generated via kinase activity, the first step being phosphorylation of a focal adhesion 

kinase.  Cell adhesion generates an essential anti-apoptotic signal (or a viability 

signal) (Gilmore et al., 2000).  Activation of Src family kinases downstream of 

integrin signaling is common in many cell types (Huveneers et al., 2010 though the 

outcome of the Src family kinase signaling differs depending upon the cell type and 

the particular member of the kinase family (src, fyn, yes, fgr, lck, hck blk, lyn and 

frk).  Thus the importance of kinetic constants associated with reactions including 

these signaling molecules in our model is consistent with existing literature data.   

 

The sensitivity analysis allowed us to examine how changes in two parameters 

interacted.  Horizontal lines in Figures 5.4(a) and 5.4(b) would imply little interaction 

of the two parameters while diagonal or curved lines imply a significant interaction.  

From Figures 5.4(a) and 5.4(b), the most significant interaction between parameter 

appears to be between k10 and k2 and k3, the rate constant associated with the 

interaction of AI* and Src, and the reactions with integrin-ECM and Src. As these 

represent competing steps in the model, that their rate constants would demonstrate 

this interdependence is somewhat expected.    
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Figure 5.5(a): (Sensitivity plot of viability signal values vs. biomolecules at t = 10 

hrs. Sensitivity plot depicts main and interaction effects of biomolecules and its 

effects onto the viability signal. The steepness of the slope determines the 

magnitude of effect from the parameters. Biomolecules I, Src, pSrc, GAP-GDP and 

Aβ have the biggest effect and share interdependence. Due to Aβ’s presence, 

viability signal rapidly depletes such that steady state values are effectively 0 µM.)  
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Figure 5.5(b): (Sensitivity plot of death signal values vs. biomolecules at t = 10 hrs. 

Sensitivity plot depicts main and interaction effects of biomolecules and its effects 

onto the viability signal. The steepness of the slope determines the magnitude of 

effect from the parameters. Biomolecules I, Src, pSrc, GAP-GDP and Aβ have the 

biggest effect and share interdependence. Due to Aβ’s presence, death signal 

rapidly accumulates such that steady state values are effectively 1 µM.)  

 

 
 

 

Figures 5.5(a) and 5.5(b) depict the sensitivity analysis showing the impact of the 

model initial conditions on the viability and death signals, respectively. In both 

figures, parameters, integrin (I), Src, pSrc, G-Proteins had the most noticeable effects 

onto both the viability and death signal while the GDP bound protein solely had an 

effect onto the death signal. Of course, A affected viability and death signals, with 

increased A associated with lower viability signals and higher death signals.  As 

concentrations of integrin increase, the viability signal increased and death signal 

decreased. Under normal conditions, free integrin binds with free ECM (L2) to 
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promote cell proliferation.  At low levels of integrin, greater levels of ECM (L2) lead 

to an increase in the viability signal, consistent with what is known about ECM-

integrin interactions and viability, however, at high initial conditions of integrin, 

ECM initial conditions have little effect on viability or death signals.  At low levels 

of , high levels of ECM lead to a reduction in the death signal, a trend not seen at 

high levels of A.  We explain these findings as follows: when A is involved, 

integrin plays a dual role in cell proliferation and neurodegeneration; free integrin is 

more readily combined with A, which is related to neurodegeneration. Unlike the 

simplified model, high concentrations of A greatly affect the signaling of Src and 

pSrc, where higher levels of pSrc and Src are associated with lower levels of 

viability, as seen in figures 5.5(a) and 5.5(b).  

As expected in figure 5.5(a), viability signal increases with GAP, which is related to 

cell spreading in other systems (Shen et al., 2012). However, in figure 5.5(b), higher 

values GAP-GDP are related with a higher death signal due to stripping a phosphor 

group from Gα-GTP, converting it into Gα-GDP, which reacts with GEF-GTP and 

increases cell death signal. Additionally, the conversion to Gα-GDP dephosphorylates 

pSrc, leading to a Src molecule that is free to react with an activated A-integrin 

complex, A-I*, causing neurodegeneration and increasing the death signal. The 

model is fairly insensitive to other forms of G protein (GEF,,GaGDP, GaGTP, 

GGDPG), which while not anticipated, is consistent with the relative insensitivity 

of the model to the initial concentrations of L1 and R, the ligand and G protein 

coupled receptor, respectively. 
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Figure 5.6(a): (Sensitivity plot of steady state times vs. kinetic constants. Sensitivity 

plot depicts main and interaction effects of kinetic constants and its effects onto the 

steady state time. The steepness of the slope determines the magnitude of effect 

from the parameters. Kinetic constants k2, k3, k5, k8, k9 and k10 have the most 

profound effect on time have the biggest effect and share interdependence.)  
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Figure 5.6(b): (Sensitivity plot of steady state times vs. key biomolecules. Sensitivity 

plot depicts main and interaction effects of the biomolecules and its effects onto the 

steady state time. The steepness of the slope determines the magnitude of effect 

from the parameters. Biomolecules, L2, I, Src, several G-Proteins along with A 

have the biggest effect.)  

 

 

Figures 5.6(a) and 5.6(b) depict how varying initial kinetic constants and initial 

conditions affect the time needed to reach dynamic equilibrium. Generally, steeper 

slopes among the plots imply higher sensitivity of steady state times with respect to 

the inputs.  In Figure 5.6(a), kinetic constants k2, k3, k5, k8, k9 and k10 have the most 

profound effect on time to reach steady state, with k5 and k10 potentially the most 

impactful. Parameters that display the highest sensitivities are correlated with reactions 

that have the lowest kinetic constants and comprise of reactants and products that are 

coupled with other reactions. Such reactions are considered as the rate limiting steps, 
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which are considered to have the biggest effect onto attaining steady state times for 

viability and death signals alike. 

Similar trends can be seen within Figure 5.6(b) as well. Initial concentrations of Src 

and A have the biggest impact on equilibrium times.  ECM (L2) increases the amount 

of time taken to reach equilibrium due to its competition with A. Higher 

concentrations of Integrin (I) also shortens the amount time needed for equilibrium, 

but has a lesser effect due to the competition between  A and L2
 
for free active sites.  

Finally, GAP-GDP and GEF-GTP increase and decrease the time needed to reach 

steady state since these are part of the G-protein cycle for cell spreading and retraction, 

albeit to a lesser extent.  

In Figure 5.6(a), it is intuitive to think that these kinetic constants have the biggest 

effect on the steady state times since these are the reactions that have the slowest 

reactions times, but also directly impact the viability and death signals. Thus, the 

higher the rate constant, the quicker the system would reach equilibrium  

 

 

Model Comparison: Simplified vs G-Protein Model 

 

Within the previous chapters, we have analyzed in depth the simplified and G-Protein 

model using a combination of stability and sensitivity analysis to understand the 

dynamics and magnitude of sensitivity between cell survival and death signals, Src 

signaling, G-protein and integrin interactions. We compared both models to previous 

work and discarded the A interactions in the simplified model, as those results were 

not consistent with experimental data.  We examined which of the new reactions in 
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the G- Protein model appear to have the greatest impact on model output, and those 

most correlated with what we consider to be experimentally consistent predictions.  

The model output does not appear to be sensitive to the new G protein coupled 

reactions and G protein effector reactions, but appears very sensitive to the reactions 

associated with the activated A-integrin complex (reaction 5.17 in particular).  Thus, 

while we and others have observed experimentally that inhibition of GTPase activity 

somewhere in the A signaling pathway can attenuate A toxicity, it is not clear that 

we have captured the most salient G-protein signaling within the models. 
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Chapter 6:  Conclusions, Limitations  

& Future Work 
 

In this thesis, we addressed contrasting theories regarding Aβ’s role in AD as reported 

in literature, previous lab work and other laboratories that have addressed the 

problem. This led to our hypothesis that the Aβ peptide, in its activated form, disrupts 

cellular mechanisms linked to learning, memory and cell death, and we proposed that 

analyzing this interaction and the aberrant cell behavior at the signaling would 

pinpoint key modes of Aβ interactions that precede cell death. The results also 

highlight noteworthy pathways, in great detail, of how Aβ’s involvement with 

signaling  affect the cell viability signal, which in turn, can be used as a tool to 

propose future experiments in preventing the disease. 

Our work has been classified into two areas, namely, the development of several 

kinetic models and its stability criteria to describe the behavior of activated Aβ and its 

effects onto neurons, and sensitivity analysis to explore the impact of kinetic 

parameters as well as to prove the self-consistency of the models. All the studies 

reaffirmed that the Aβ peptide in its aggregated form does indeed play a role in AD 

by altering the cells’ natural state especially in the realm of learning, memory and cell 

survival (Klafki et al., 2006). 

We now summarize and present our findings one by one classified by subject, and 

discuss possible future work that would enhance our current findings and lead to new 

discoveries in the realm of AD. 
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Qualitative Trends, Stability & Sensitivity Analysis 

Upon interacting with the cellular surface, we hypothesized that the Aβ alters cell 

homeostasis at the survival level. From the proposed models, we have seen disparate 

results between the Simplified and G-Protein model. While both models incorporated 

competitive inhibition from Aβ onto the ligand-integrin interaction, increased 

concentrations of Aβ, in the Simplified model, failed affecting the cell viability signal 

due to the lack of interaction with key G-Protein molecules.  

In addition to qualitative trends, stability and sensitivity analysis of the Simplified 

model further reinforced its failure to substantiate claims of complex signaling of Aβ 

and other key molecules.  Within the model, as we have shown, stability and 

sensitivity analysis was conducted with differing concentrations of Aβ to see its 

effects onto the viability and death signal. Global asymptotic stability was seen, in the 

presence and absence of Aβ, from the stability analysis of the Simplified model. 

However, the sensitivity analysis has shown, regardless of how much Aβ is changed, 

the viability signal remains insensitive to the change, which is not consistent with 

previous work (Venkatasubramanian et al., 2014; Rymer et al.). Additionally, 

increased levels of Aβ have shown to have little effect onto the amount Src 

phosphorylation seen, which also contradicts previous results of a high correlation 

between increased levels of Src signaling with increased levels of Aβ. Though the 

model was simple and intuitive, it did not prove to be self-consistent and was 

rejected.  
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Since the Simplified model did not prove to be self-consistent, a more robust 

mechanism was proposed and developed. Within the G-Protein model, increased 

values of Aβ have shown to have deleterious effects on the viability signal, as well 

inducing phosphorylation of Src kinases; affirming that some complex signal 

integration occurs upon Aβ interaction with cells, leading to viability or 

neurodegeneration. 

 Likewise, stability and sensitivity analysis was conducted on this model to prove its 

self-consistency. From the stability analysis, we have evaluated the system with the 

presence and absence of Aβ, and like the Simplified model, in both cases, global 

stability is seen, but with very different results. In the absence of Aβ, viability signal 

is shown to be 1 with a negligible death signal while viability signal is close to 0, 

indicating cell death in the presence of Aβ. The sensitivity model further substantiates 

the stability analysis in illustrating the interdependence of cell viability and death 

signals with respect to the following molecules: Aβ, Src, pSrc, I and L2 and 

GDP/GTP bound G-proteins and their respective reactions. Since k5 and k10 have 

shown to have the biggest effect onto the signals, we can conclude that there is 

interdependence between the two reactions due to the inclusion of pSrc and Src 

within both reactions. The inclusion of these molecules indicate that with increased 

levels of these molecules, more of the activated form of Aβ, Aβ-I* is formed, leading 

to an increase in cell death and cell viability signals respectively.  Likewise, the 

increase of L2 (ECM) mitigates the increase in the death signal since higher 

concentrations of ECM provide higher potential for the GTP-bound G-protein to 

form, and react with GAP-GDP, the promoting protein, which is synonymous with a 



 

 84 

 

cell viability signal. Given that the inclusion of Aβ and the interdependence of several 

key reactions, we have shown self-consistency within the model, and that Aβ has a 

non-linear effect on cell survival, further affirming that some complex signal 

integration occurs upon Aβ interaction with cells that can lead to health or 

neurodegeneration. 

These studies led us to deduce possible modes of interaction of the peptide with the 

integrin receptor and receptors near the cell membrane neurons. The studies also 

pinpointed multiple modes of binding of Aβ with cells, involving both biological as 

well as physico-chemical interactions that can lead to neurodegeneration. The studies 

further highlighted the role of Src kinase and its role in the presence and absence of 

Aβ, providing understanding for future researchers in preventing the toxicity of the 

Aβ peptide. 

 

Limitations 

With our proposed models, detailed kinetic models have contributed significantly to 

our understanding of the principles of metabolic regulation, providing quantitative 

and qualitative findings to the crosstalk of biomolecules. However, despite their 

general applicability, the construction of large kinetic models faces a number of 

significant difficulties.  

In contrast to chemical systems, kinetic parameters in biological systems are often 

context specific. For example, the catalytic activity of enzymes may depend on 

multiple factors such as temperature, pH, and multiple other conditions in a nonlinear 

fashion. As a result, it becomes exceedingly difficult to obtain reliable estimates of 
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kinetic parameters, forcing us to use literature values with wide ranges, depending on 

the procedure and operating conditions to obtain the constants.  

Additionally, literature values were not readily or easily attainable for a number of 

biochemical interactions for both mechanisms. Thus, educated estimates, for both 

unknown forward and reversible rates, were scaled with respect to known kinetic 

constants to have a working model. Given the general uncertainty of the kinetic 

constants, concentration profiles, stability and sensitivity analyses could significantly 

change.  

Furthermore, both mechanisms solely focused onto the kinetic aspects of Aβ 

aggregation and its effects on the G-Protein system. As mentioned in Chapter 1, 

crosstalk interactions among biomolecules are intra- and intercellular, indicating 

possible mass transfer limitations, which are not taken into account in either model. 

Rate limiting steps would have to be experimentally determined to obtain accurate 

scaling of kinetic constants, and mass transfer equations would have to be 

numerically calculated alongside kinetic expressions, forcing the use of a partial 

differential equation (PDE) solver, further complicating the model.  

Finally, detailed kinetic models are computationally intensive, even for a relatively 

small number of reactions. Computationally intensive models limit the scope of the 

parameter space for sensitivity analysis, perpetuating oversight of possible regions of 

interest when compared to modeling schemes that allow more flexibility.  
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Future Directions 

The role of Aβ-induced signaling pathways can be investigated further to generate a 

more complete picture of the pathways that it affects. However, as previously 

mentioned, detailed kinetic modeling will prove to be too cumbersome to handle the 

increase in the number of parameters and variables evaluate (Steuer, 2009). Hence, a 

combination of structured kinetic modeling with elements of stochastic modeling can 

be incorporated to further evaluate the parameter space, and non-linear stability 

analysis can be used in conjunction to answer the stability criterion more completely 

(Steuer, 2009). Understanding the role of the different parameters in determining the 

stability of the system, and how changes in parameters would lead to differences in 

stability could point to sensitive areas of the signaling network in determining cell 

fate, or for exploring therapeutic interventions. Finally, a sum of the square residuals 

can be calculated to select a set of kinetic parameters to more accurately capture 

experimental trends (Steuer, 2009).  

 

Concluding Summary 

This thesis highlighted the crucial aspects of Aβ’s role in cellular mechanisms, 

illustrated key points of Aβ’s interaction with the cell membrane and its mediated 

alteration of signaling pathways, and provided a foundation for extensive future 

research into using systems engineering tools (stability and sensitivity analysis) to 

qualitatively trend, characterize and predict key behavior changes of in cells upon 

exposure to Aβ. The system engineering tools also help us quickly isolate which 

additional reactions contributed to the improved model predictions.  Finally, the 
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analysis enables us to relate model parameters with experimental findings in a manner 

that could help us to identify future experiments or therapeutic avenues to change the 

outcome of the signaling network, and more specifically, to alter neurotoxicity 

associated with Aβ. 
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Appendices 
 

FullFactorial_FullModelAB 
function fullfactorial_FullModelAB 
    % for initial conditions variable  
    numlevels = 2; % number of levels for each variable  
    numEqns = 20; 
   FullFactorialKCs(numlevels,numEqns); 
   %FullFactorialICs(numlevels,numEqns); 
end 

  
function FullFactorialKCs(numlevels,numEqns) 
    numparam = 10; % number of variables changing for DoE  
    ff = numlevels*ones(1,numparam);  
    kdff = fullfact(ff);  
    numRuns = numlevels^numparam; 
    %Grouping variables with numlevels number of levels 
    kVar = zeros(numparam,numlevels);  

     
    kC=zeros(numRuns,numparam); 
    k1low = .23;   k1hi = 4*k1low; 
    k2low = .7;    k2hi = 4*k1hi; 
    k3low = .23;   k3hi = 4*k3low; 
    k4low = .50;   k4hi = 4*k4low;    %Aru thesis 
    k5low = .50;   k5hi = 4*k5low; 
    k6low = .50;   k6hi = 4*k6low; 
    k7low = .50;   k7hi = 4*k7low;    
    k8low = 5.6;   k8hi = 4*k8low; 
    k9low = 1.2;   k9hi = 4*k9low;    %Aru thesis 
    k10low = 1.2;  k10hi = 4*k10low;  %Aru thesis 

  
    kVar(1,:) = linspace(k1low,k1hi,numlevels); 
    kVar(2,:) = linspace(k2low,k2hi,numlevels); 
    kVar(3,:) = linspace(k3low,k3hi,numlevels); 
    kVar(4,:) = linspace(k4low,k4hi,numlevels); 
    kVar(5,:) = linspace(k5low,k5hi,numlevels); 
    kVar(6,:) = linspace(k6low,k6hi,numlevels); 
    kVar(7,:) = linspace(k7low,k7hi,numlevels); 
    kVar(8,:) = linspace(k8low,k8hi,numlevels); 
    kVar(9,:) = linspace(k9low,k9hi,numlevels); 
    kVar(10,:) = linspace(k10low,k10hi,numlevels); 

     
    % Set value of n for levels in factorial 
    for i = 1:numRuns 
        for j = 1:numparam 
            if kdff(i,j) == 1 
                kC(i,j) = kVar(j,1); 
            elseif kdff(i,j) == 2 
                kC(i,j) = kVar(j,2); 
            elseif kdff(i,j) == 3 
                kC(i,j) = kVar(j,3); 
            elseif kdff(i,j) == 4 
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                kC(i,j) = kVar(j,4); 
            elseif kdff(i,j) == 5 
                kC(i,j) = kVar(j,5); 
            end 
        end 
    end 
    kC = kC'; % transposing matrix 

   
    numConst = 7; 
    kConst = zeros(numConst,numRuns); 
    kConst(1,:) = .25;     %k1r 
    kConst(2,:) = .25;     %k2r 
    kConst(3,:) = .25;     %k3r 
    kConst(4,:) = .25;     %k4r 
    kConst(5,:) = .1;      %k5r 
    kConst(6,:) = .1;      %k8r 
    kConst(7,:) = .1;      %k9r 

        
    %%Initial Conditions 
    %Modify ligand/receptors and integrin 
    %Only for the first array within IC. 
    %IC(1):L1              IC(2):R                   IC(3):L1R*     
    %IC(4):L2              IC(5):I                   IC(6):L2I*   
    %IC(7):SRC             IC(8):pSRC                IC(9):Ga-GDP-

Gby  
    %IC(10):Ga-GTP         IC(11):Gby                IC(12):Ga-GDP                            
    %IC(13):GEF-GTP        IC(14):V                  IC(15):GEF-GDP                 
    %IC(16):D              IC(17):GAP-GDP            IC(18):GAP-GTP    
    %IC(19):AB             IC(20):AB-I*     

     
    iC=zeros(numEqns,numRuns); 
    %iC(1,2,4,5,7,8,13) = uM 
    %iC(1,2,4,5) = (1,.1,1,1) 
    iC(1,:) = .5;    iC(2,:) = .05;   iC(3,:) = 0;      iC(4,:) = 

.5;        
    iC(5,:) = .5;    iC(6,:) = 0;     iC(7,:) = .25;    iC(8,:) = 

.25;  
    iC(9,:) = .1;    iC(10,:) = .1;   iC(11,:) = 0;     iC(12,:) = 

.1; 
    iC(13,:) = .1;   iC(14,:) = 1;    iC(15,:) = 0;     iC(16,:) = 

0;       
    iC(17,:) = .1;   iC(18,:) = 0;    iC(19,:) = 0;    iC(20,:) = 0;       
    %iC(19,:) = 0.5; 
    IC = iC; 

  
    save('narf_iC','iC') 
    save('narfIC','IC') 
    save('narf_kC','kC') 
    save('narf_kConst','kConst') 
    save('narf_numruns','numRuns') 
end 

  
function FullFactorialICs(numlevels,numEqns) 

     
    numparam = 12; % number of variables changing for DoE  
    ff = numlevels*ones(1,numparam); 
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    dff = fullfact(ff); %length(dff) = total number of runs 
    numRuns = numlevels^numparam; 

         
    %for initial conditions variable  
    %Initial Conditions 
    %Only for the first array within IC. 
    %IC(1):L1              IC(2):R                   IC(3):L1R*(0)     
    %IC(4):L2              IC(5):I                   IC(6):L2I* (0)   
    %IC(7):SRC             IC(8):pSRC                IC(9):Ga-GDP-

Gby  
    %IC(10):Ga-GTP         IC(11):Gby(0)             IC(12):Ga-GDP                            
    %IC(13):GEF-GTP        IC(14):V                  IC(15):GEF-GDP 

(No IC)                
    %IC(16):D(0)           IC(17):GAP-GDP            IC(18):GAP-GTP 

(No IC)   
    %IC(19):AB             IC(20):AB-I*(0)     

     
    IC1low = .50;   IC1hi = 4*IC1low;    
    IC2low = .05;   IC2hi = 4*IC2low; 
    IC4low = .50;   IC4hi = 4*IC4low;    %Aru thesis 
    IC5low = .50;   IC5hi = 4*IC5low;    
    IC7low = .25;   IC7hi = 4*IC7low;     
    IC8low = .25;   IC8hi = 4*IC8low; 
    IC9low = .10;   IC9hi = 4*IC9low;    
    IC10low = .10;  IC10hi = 4*IC10low;  %Aru thesis 
    IC12low = .10;  IC12hi = 4*IC12low;  %Aru thesis 
    IC13low = .10;  IC13hi = 4*IC13low;  %Aru thesis 
    IC17low = .10;  IC17hi = 4*IC17low;  %Aru thesis 
    IC19low = .20;  IC19hi = 4*IC19low;  %Aru thesis 
    %IC19low = 0;   IC19hi = 4*IC19low;  %Aru thesis 

    
    IVar = zeros(numparam,numlevels);  

  
    IVar(1,:) = linspace(IC1low,IC1hi,numlevels); 
    IVar(2,:) = linspace(IC2low,IC2hi,numlevels); 
    IVar(3,:) = linspace(IC4low,IC4hi,numlevels); 
    IVar(4,:) = linspace(IC5low,IC5hi,numlevels); 
    IVar(5,:) = linspace(IC7low,IC7hi,numlevels); 
    IVar(6,:) = linspace(IC8low,IC8hi,numlevels); 
    IVar(7,:) = linspace(IC9low,IC9hi,numlevels); 
    IVar(8,:) = linspace(IC10low,IC10hi,numlevels);     
    IVar(9,:) = linspace(IC12low,IC12hi,numlevels); 
    IVar(10,:) = linspace(IC13low,IC13hi,numlevels);     
    IVar(11,:) = linspace(IC17low,IC17hi,numlevels);     
    IVar(12,:) = linspace(IC19low,IC19hi,numlevels);     
    save('narf_var','IVar') 

  
    % Set value of n for levels in factorial 
    for i = 1:numRuns 
        for j = 1:numparam 
            if dff(i,j) == 1 
                iC(i,j) = IVar(j,1); 
            elseif dff(i,j) == 2 
                iC(i,j) = IVar(j,2); 
            elseif dff(i,j) == 3 
                iC(i,j) = IVar(j,3); 



 

 91 

 

            elseif dff(i,j) == 4 
                iC(i,j) = IVar(j,4); 
            elseif dff(i,j) == 5 
                iC(i,j) = IVar(j,5); 
            end 
        end 
    end 
    iC = iC'; %transposed matrix 
    save('narf_iC','iC') 

  
    IC = zeros(numEqns,numRuns); % Set of Initial Condition matrix 
    %IC(3,6,11,16,20) = 0; 
    IC(1,:) = iC(1,:);     IC(2,:) = iC(2,:);    IC(4,:) = iC(3,:); 
    IC(5,:) = iC(4,:);     IC(7,:) = iC(5,:);    IC(8,:) = iC(6,:); 
    IC(9,:) = iC(7,:);     IC(10,:) = iC(8,:);   IC(12,:) = iC(9,:); 
    IC(13,:) = iC(10,:);   IC(17,:) = iC(11,:);  IC(19,:) = 

iC(12,:);      
    IC(14,:) = 1;          IC(15,:) = .1;        IC(18,:) = .1;         

     

     
    kC=zeros(10,numRuns); 
    k1low = .23;   %k1hi = 4*k1low; 
    k2low = .7;    %k2hi = 4*k1hi; 
    k3low = .23;   %k3hi = 4*k3low; 
    k4low = .50;   %k4hi = 4*k4low;    %Aru thesis 
    k5low = .50;   %k5hi = 4*k5low; 
    k6low = .50;   %k6hi = 4*k6low; 
    k7low = .50;   %k7hi = 4*k7low;    
    k8low = 5.6;   %k8hi = 4*k8low; 
    k9low = 1.21;  %k9hi = 4*k9low;    %Aru thesis 
    k10low = 1.21; %k10hi = 4*k10low;  %Aru thesis 

     
    kC(1,:) = k1low;    kC(2,:) = k2low;    kC(3,:) = k3low; 
    kC(4,:) = k4low;    kC(5,:) = k5low;    kC(6,:) = k6low; 
    kC(7,:) = k7low;    kC(8,:) = k8low;    kC(9,:) = k9low; 
    kC(10,:) = k10low; 

     
    kConst = zeros(7,1); 
    kConst(1,:) = .25;     %k1r 
    kConst(2,:) = .25;     %k2r 
    kConst(3,:) = .25;     %k3r 
    kConst(4,:) = .25;     %k4r 
    kConst(5,:) = .1;      %k5r 
    kConst(6,:) = .1;      %k8r 
    kConst(7,:) = .1;      %k9r 

     
    save('narf_iC','iC') 
    save('narfIC','IC') 
    save('narf_kC','kC') 
    save('narf_kConst','kConst') 
    save('narf_numruns','numRuns') 
end 
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FullModelABFact_151210 
function FullModelABfact_151210 
%%Preliminary 

Setup%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% number of equations to solve for. 
global numEqns numRuns;    
numEqns = 20; 
load('narf_iC','iC') 
load('narfIC','IC') 
load('narf_kC','kC') 
load('narf_kConst','kConst') 
load('narf_numruns','numRuns') %number of set of ICs for respective 

soln. 
k = kC; % Rate Constants  
%%Multiple ODE Solution 

Solver%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%       
t_initial = 0; 
t_sens = 10; % for sensitivity plots 
t_final = 200; 
tspan = [t_initial,t_final]; 
options = odeset('RelTol',1e-6,'AbsTol',1e-6); 
SSValues_V = zeros(numRuns,1); 
SSValues_D = SSValues_V; 
SSTime = zeros(numRuns,1); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%% 
%Loops for through set of Initial Conditions to obtain soln 

(numSolns) 
for i = 1:numRuns 
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    [t,y] = ode23s(@(t,y) FullModelFunc(t,y,k(:,i),kConst),... 
                   tspan,IC(:,i),options); 
    A = [t,y];  % matrix of interest for all variables of interest 
    %save('ODERuns','A','-ascii','-append')  
    PlotODE(i,t,y,k,IC,numEqns); 
    %PutODEIntoExcel(i,A,IC,numRuns); 
    sensi_array = find(t>=t_sens); 
    sensi_elem = sensi_array(1); 
    SSValues_V(i) = y(sensi_elem,14); %last element of V := steady 

state value 
    SSValues_D(i) = y(sensi_elem,16); %last element of D := steady 

state value 
    SSTimePoint = FindSStime_ODE(i,t,y); 
    SSTime(i) = t(SSTimePoint); 
    display(i); 
end 
k = k'; % Match up dimensions 
iC = iC'; 
PlotInteractions(SSValues_V,SSValues_D,SSTime,k,iC); 
function dydt = FullModelFunc(~,y,k,kConst) 
    %Rate Laws%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    %Previous Values for calculating next iteration 
    %y(1):L1              y(2):R                   y(3):L1R*     
    %y(4):L2              y(5):I                   y(6):L2I*   
    %y(7):SRC             y(8):pSRC                y(9):Ga-GDP-Gby  
    %y(10):Ga-GTP         y(11):Gby                y(12):Ga-GDP                            
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    %y(13):GEF-GTP        y(14):V                  y(15):GEF-GDP                 
    %y(16):D              y(17):GAP-GDP            y(18):GAP-GTP    
    %y(19):AB             y(20):AB-I*       

     
    k1r = kConst(1);    k2r = kConst(2);    k3r = kConst(3);     
    k4r = kConst(4);    k5r = kConst(5);    k8r = kConst(6); 
    k9r = kConst(7);    

     
    r1 = -k(1)*y(1)*y(2) + k1r*y(3); %check!  
    r2 = -k(2)*y(4)*y(5) + k2r*y(6); %check! 
    r3 = -k(3)*y(6)*y(7) + k3r*y(4)*y(5)*y(8); %check!   
    r4 = -k(4)*y(9)*y(3) + k4r*y(1)*y(2)*y(10)*y(11); %check!  
    r5 = -k(5)*y(8)*y(12)+ k5r*y(7)*y(10); %check! 

  
    r6 = -k(6)*y(12)*y(13)*y(14); %check!   
    r7 = -k(7)*y(10)*y(17)*y(14); %check! 
    r8 = -k(8)*y(19)*y(5) + k8r*y(20); %check!  
    r9 = -k(9)*y(20)*y(9) + k9r*y(19)*y(5)*y(12)*y(11); 
    r10 = -k(10)*y(20)*y(7)*y(14); %check 

  
    %ODES%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    % dydt represents an ode solved for an individual variable 
    dydt=zeros(numEqns,1); 
    dydt(1) = r1 - r4; %L1 check! 
    dydt(2) = r1 - r4; %R check! 
    dydt(3) = -(r1 - r4); %L1R* check!  
    dydt(4) = r2 - r3; %L2 check! 
    dydt(5) = r2 - r3 + r8 - r9 - r10; %I check!  
    dydt(6) = -(r2 - r3); %L2I* check! 
    dydt(7) = r3 - r5 + r10;  %Src check!   
    dydt(8) = -(r3 - r5 + r10); %pSrc check!  
    dydt(9) = r4 + r9;  %GaGDPGby check!     
    dydt(10) = -r4 - r5 - r6 + r7; %GaGTP check!  

  
    dydt(11) = -r4 - r9; %Gby check!  
    dydt(12) = r5 + r6 - r7 - r9; %GaGDP check! 

     
    dydt(13) = r6; %GEF-GTP check! 
    dydt(14) = r6 - r7 + r10; %V check! 
    dydt(15) = -r6; %GEF-GDP check! 

  
    dydt(16) = -r6 - r10; %D check!  
    dydt(17) = r7; %GAP-GDP check!   
    dydt(18) = -r7; %GAP-GTP check!  
    dydt(19) = r8 - r9 - r10; %AB check! 
    dydt(20) = -(r8 - r9 - r10); %AB-I* check! 
end 

  
function PutODEIntoExcel(i,A,IC,numRuns) 
    %For excel file matrix 
    %Adds a "time" element to ICset array (set @ 0) 
    %ICset' is transposed to match dimensions of IC 
    % To prepare the header for the excel file. 
    ICtimefill = zeros(1,numRuns);  
    ICset = [ICtimefill;IC]'; 



 

 94 

 

    header = {'t','L1','R','L1-R*','L2','I','L2-

I*','Src','pSrc','Ga-GDP-Gby',... 
         'Ga-GDP','Gby','Ga-GTP','GEF-GTP','V','GEF-GDP','D','GAP-

GDP',... 
         'GAP-GTP','AB','AB-I*'};     

      
    %xlswrite file of data of interest 
     Solnmat = [ICset(i,:);A]; %Solnmat = Solution Matrix       
     xlswrite('1',Solnmat,i); 
     xlswrite('1',header,i); 
end 

  

  
function SSTimePoint = FindSStime_ODE(i,t,y) 

     
    

%https://www.mathworks.com/help/matlab/matlab_prog/vectorization.htm

l 
    %ICtimefill = zeros(1,numRuns);  
    %ICset = [ICtimefill;IC]'; 
    %header = {'t','L1','R','L1-R*','L2','I','L2-

I*','Src','pSrc','AB',... 
    %          'AB-I*','D','X*','V'}; 
    %header1 = {'dL1','dR','dL1-R*','dL2','dI','dL2-

I*','dSrc','dpSrc','dAB',... 
    %          'dAB-I*','dD','dX*','dV'}; 
    tol = .01; 
    diffA = diffxy(t,y); 

  
    L = logical(diffA < tol); 
    B = all(L == 1, 2); 
    indexarray = find(B); 
    SSTimePoint = indexarray(1); %Finds first occurence of reaching 

SS 
end 
end 
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PlotODE 

function PlotODE(i,t,y,k,IC,numEqns) 
    %%Color Scheme for plotting 
    cb1 = [255 0 255];   cb2 =  [0 0 0];     cb3 =  [0 255 255]; 
    cr1 = [255 0 0];     cr2 = [0 0 255];    cr3 = [0 255 0]; 
    cgr1 = [11 141 255]; cgr2 =  [155 3 31]; cgr3 = [243 91 57]; 
    c1 = [253 10 120];   c2 = [156 168 26];  c3 = [178 138 117]; 
    cc = [cb1;cr1;cgr1;c1;cb2;cr2;cgr2;c2;cb3;cr3;cgr3;c3]./255; 

     
    plotsymbol = {'-','--','-.'};  %array of plotting symbols 

  
    %%legend string array     
    legendstr = {'L1','R','L2','I','Src','pSrc','G\alpha-GTP',... 
                 'G\alpha-GDP','V','D','A\beta'}; 

   
    phasestr = {'L1','R','L2','I','Src','pSrc','G\alpha-GTP',... 
                 'G\alpha-GDP','A\beta'}; 

  
    PlotODE_ICs(i,t,y,cc,IC,legendstr,numEqns); 
    %PlotODE_kCs(i,y,k,cc,legendstr,numEqns) 
    %PlotODE_ICs_VD(i,y) 
    %PlotODE_kCs_VD(i,y) 
    PhasePlots(i,y,cc,plotsymbol,phasestr); 
function PlotODE_ICs(i,t,y,cc,IC,legendstr,numEqns)     
    %%Plot Color & Symbol Scheme 
    PoNI = 9; %plots of no interest          
    plotsymbol = {'-','--','-.'};  %array of plotting symbols 
    numplots = numEqns-PoNI;  %11 plots of interest. 

     
    isym = 1:numplots; %to ensure repeating color/symbol combo 

doesn't occur. 
    %sorts element 1,1,2,2,3,etc... 
    symbol = sort(mod(isym,length(plotsymbol))+1);  
    %unsorted element: 1,2,3,4,5,6,7,8,9,1,2,etc... 
    col = mod(isym,length(cc))+1;  

     
    %%Plotting%%%%%%%%%%%%%%%%%%%%%%%% 
    %IC(1):L1              IC(2):R                   IC(3):L1R*     
    %IC(4):L2              IC(5):I                   IC(6):L2I*   
    %IC(7):SRC             IC(8):pSRC                IC(9):Ga-GDP-

Gby  
    %IC(10):Ga-GTP         IC(11):Gby                IC(12):Ga-GDP                            
    %IC(13):GEF-GTP        IC(14):V                  IC(15):GEF-GDP                 
    %IC(16):D              IC(17):GAP-GDP            IC(18):GAP-GTP    
    %IC(19):AB             IC(20):AB-I*     
    %Plotting array for all variables of interest 
     plotarray = zeros(length(t),numplots); 
     plotarray(:,1) = y(:,1);     plotarray(:,7) = y(:,10); 
     plotarray(:,2) = y(:,2);     plotarray(:,8) = y(:,12); 
     plotarray(:,3) = y(:,4);     plotarray(:,9) = y(:,14); 
     plotarray(:,4) = y(:,5);     plotarray(:,10) = y(:,16); 
     plotarray(:,5) = y(:,7);     plotarray(:,11) = y(:,19); 
     plotarray(:,6) = y(:,8);      
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   %  n = 1:numplots; 
   %      plotarray(:,n) = y(:,n); 
     set(gcf,'Visible','off')              % turns current figure 

"off" 
     set(0,'DefaultFigureVisible','off');  % all subsequent figures 

"off" 
     f = figure; 
     for j = 1:numplots; 
         plot(t,plotarray(:,j),plotsymbol{symbol(j)},... 
         'color',cc(col(j),:),'LineWidth',1.5); 
         hold on 
     end 
     %axis([0 200 0 1.1]) 
     %ax = gca; 
     %set(ax,'YTick',[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1]) 

  
     ylab = ylabel('Metabolite Concentrations ( \muM)'); 
     titlab = title('Metabolite Concetrations vs. Time'); 
     leglab = legend(legendstr); 

  
      %%%%%%Setting up time label for plot 
      label_time = sprintf('Time (hr) \n'); 
      str1 = sprintf(... 
      'L_{10} = %g, R_0 = %g, L_{20} = %g, I_0 = %g',...  
      IC(1,i),IC(2,i),IC(4,i),IC(5,i)); 
      str2 = sprintf(... 
      'Src_0= %g, pSrc_0= %g , G\\alpha-GTP_0 = %g, G\\alpha-GDP_0 = 

%g',...  
      IC(7,i),IC(8,i),IC(10,i),IC(12,i)); 
      str3 = sprintf(... 
      'GEF-GTP_0= %g, GAP-GDP_0 = %g, A\\beta_0 = %g, V_0 = %g',...  
      IC(13,i),IC(17,i),IC(19,i),IC(14,i)); 
      str4 = sprintf('G\\alpha-GDPG\\beta\\gamma_0= %g',IC(9,i)); 
      format compact 
      xlab = xlabel({label_time;str1;str2;str3;str4}); 
      format compact 
      %%%%end comment 

       
      set(ylab,'FontSize',18); 
      set(titlab,'FontSize',18); 
      set(leglab,'location','bestoutside','FontSize',14); 
      set(xlab,'FontSize',16); 
      format compact 
      print(f,'-dpng', num2str(i));  % Prints graph to png file, i 

as fn. 
end 
function PlotODE_kCs(i,y,k,cc,legendstr,numEqns) 
    %%Plot Color & Symbol Scheme 
    PoNI = 2; %plots of no interest          
    plotsymbol = {'-','--','-.'};  %array of plotting symbols 
    numplots = numEqns-PoNI;  %11 plots of interest. 

     
    isym = 1:numplots; %to ensure repeating color/symbol combo 

doesn't occur. 
    %sorts element 1,1,2,2,3,etc... 
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    symbol = sort(mod(isym,length(plotsymbol))+1);  
    %unsorted element: 1,2,3,4,5,6,7,8,9,1,2,etc... 
    col = mod(isym,length(cc))+1;  

     
     %Plotting array for all variables of interest 
     plotarray = zeros(length(t),numplots); 
     plotarray(:,1) = y(:,1);     plotarray(:,8) = y(:,10); 
     plotarray(:,2) = y(:,1);     plotarray(:,9) = y(:,12); 
     plotarray(:,3) = y(:,4);     plotarray(:,10) = y(:,13); 
     plotarray(:,4) = y(:,5);     plotarray(:,11) = y(:,14); 
     plotarray(:,5) = y(:,7);     plotarray(:,12) = y(:,16); 
     plotarray(:,6) = y(:,8);     plotarray(:,13) = y(:,17); 
     plotarray(:,7) = y(:,9);     plotarray(:,14) = y(:,19);  

     
    %plotarray = zeros(length(t),numplots); 
    % n = 1:10; 
    %     plotarray(:,n) = y(:,n); 
    % plotarray(:,11) = y(:,12); 
     set(gcf,'Visible','off')              % turns current figure 

"off" 
     set(0,'DefaultFigureVisible','off');  % all subsequent figures 

"off" 
     f = figure; 
     for j = 1:numplots; 
         plot(t,plotarray(:,j),plotsymbol{symbol(j)},... 
         'color',cc(col(j),:),'LineWidth',1.5); 
         hold on 
      end 
      axis tight 
      ylab = ylabel('Metabolite Concentrations'); 
      titlab = title('Metabolite Concetrations vs. Time'); 
      leglab = legend(legendstr); 
      %%%%%%Setting up time label for plot 
      label_time = sprintf('Time \n'); 
      str1 = sprintf(... 
      'k_1= %g, k_2 = %g, k_3 = %g, k_4 = %g, k_5 = %g',...  
      k(1,i),k(2,i),k(3,i),k(4,i),k(5,i)); 
      str2 = sprintf(... 
      'k_6= %g, k_7 = %g, k_8 = %g, k_9 = 

%g',k(6,i),k(7,i),k(8,i),k(9,i)); 
      xlab = xlabel({label_time;str1;str2}); 
      %%%%end comment 

       
      set(ylab,'FontSize',18); 
      set(titlab,'FontSize',18); 
      set(leglab,'location','bestoutside','FontSize',18); 
      set(xlab,'FontSize',15); 
      format compact 
      print(f,'-dpng', num2str(i));  % Prints graph to png file, i 

as fn. 

       

       
      g = figure; 
      plot(t,y(:,11),t,y(:,13),'LineWidth',1.5) 
      xlabel('Time') 
      ylabel('Metabolite Concentrations') 
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      title('Metabolite Concentrations vs Time') 
      legend('D','V'); 
      print(g,'-dpng', num2str(512+i));  % Prints graph to png file, 

i as fn. 

       
end 
function PlotODE_ICs_VD(i,y) 
      set(gcf,'Visible','off')              % turns current figure 

"off" 
      set(0,'DefaultFigureVisible','off');  % all subsequent figures 

"off" 
      g = figure; 
      label_time = sprintf('Time \n'); 
      plot(t,y(:,13),t,y(:,11),t,y(:,7),t,y(:,8),'LineWidth',1.5); 
      xmin = 0; xmax = 15; ymin = 0; ymax = 1.4; 
      axis([xmin xmax ymin ymax]) 
      str1 = sprintf(... 
      'L_{10}= %g, R_0 = %g, L_{20} = %g, I_0 = %g, Src_0 = %g, 

pSrc_0 = %g',...  
      IC(1,i),IC(2,i),IC(4,i),IC(5,i),IC(7,i),IC(8,i)); 
      str2 = sprintf(... 
      'G_{aby}-GDP_0 = %g, G_aGTP_0 = %g, G_aGDP_0 = %g',...  
      IC(9,i),IC(10,i),IC(12,i)); 
      str3 = sprintf(... 
      'GEF-GTP_0 = %g, GAP-GDP_0 = %g, AB_0 = %g', 

IC(13,i),IC(17,i),IC(19,i)); 

       
      xlab = xlabel({label_time;str1;str2;str3}); 
      y_label = sprintf('Metabolite Concentrations');  
      leglab = legend('V','D','Src','pSrc'); 
      titlab = title('Metabolite Concetrations vs. Time'); 
      xlab = xlabel({label_time;str1;str2;str3}); 
      ylab = ylabel({y_label}); 

      
      set(xlab,'FontSize',14); 
      set(ylab,'FontSize',18); 
      set(leglab,'FontSize',18) 
      set(titlab,'FontSize',18); 
      print(g,'-dpng', num2str(i));  % Prints graph to png file, i 

as fn. 
end 
function PlotODE_kCs_VD(i,y) 
      set(gcf,'Visible','off')              % turns current figure 

"off" 
      set(0,'DefaultFigureVisible','off');  % all subsequent figures 

"off" 
      g = figure; 
      label_time = sprintf('Time \n'); 
      plot(t,y(:,13),t,y(:,11),t,y(:,7),t,y(:,8),'LineWidth',1.5); 
      xmin = 0; xmax = 15; ymin = 0; ymax = 1.4; 
      axis([xmin xmax ymin ymax]) 
      str1 = sprintf(... 
      'k_1= %g, k_2 = %g, k_3 = %g, k_4 = %g, k_5 = %g',...  
      k(1,i),k(2,i),k(3,i),k(4,i),k(5,i)); 
      str2 = sprintf(... 
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      'k_6= %g, k_7 = %g, k_8 = %g, k_9 = 

%g',k(6,i),k(7,i),k(8,i),k(9,i)); 
      xlab = xlabel({label_time;str1;str2}); 
      set(xlab,'FontSize',15); 
      ylabel('Metabolite Concentrations') 
      title('Metabolite Concentrations  vs Time') 
      legend('V','D','Src','pSrc') 
      print(g,'-dpng', num2str(i));  % Prints graph to png file, i 

as fn. 
end 
function PhasePlots(i,y,cc,plotsymbol,phasestr) 
    numplots = 9; %plots of interest 
    plotarray = zeros(length(t),numplots); 
    k = 1:numplots; %to ensure repeating color/symbol combo doesn't 

occur. 
    symbol = sort(mod(k,length(plotsymbol))+1); %sorts element 

1,1,2,2,3,etc... 
    col = mod(k,length(cc))+1; %unsorted element: 

1,2,3,4,5,6,7,8,9,1,2,etc... 

     
    plotarray(:,1) = y(:,1);     plotarray(:,7) = y(:,10); 
    plotarray(:,2) = y(:,2);     plotarray(:,8) = y(:,12); 
    plotarray(:,3) = y(:,4);     plotarray(:,9) = y(:,19);  
    plotarray(:,4) = y(:,5);      
    plotarray(:,5) = y(:,7);     plotarray(:,10) = y(:,14); %V 
    plotarray(:,6) = y(:,8);      

  
    ind = find(plotarray(:,10)== max(plotarray(:,10))); 

       
    set(gcf,'Visible','off')              % turns current figure 

"off" 
    set(0,'DefaultFigureVisible','off');  % all subsequent figures 

"off" 

     
    g = figure; 
    for j = 1:numplots; 
        

plot(plotarray(:,j),plotarray(:,10),plotsymbol{symbol(j)},... 
       'color',cc(col(j),:),'LineWidth',1.10); 
        hold on 
    end 
    legend(phasestr,'location','bestoutside','FontSize',16); 
    for j = 1:numplots; 
       plot(plotarray(1,j),plotarray(1,10),'o','LineWidth',... 
             

1.25,'MarkerEdgeColor','k','MarkerFaceColor',cc(col(2),:),... 
             'MarkerSize',12); 
       plot(plotarray(ind,j),plotarray(ind,10),'s','LineWidth',... 
             

1.25,'MarkerEdgeColor','k','MarkerFaceColor',cc(col(1),:),... 
             'MarkerSize',12); 
       plot(plotarray(end,j),plotarray(end,10),'s','LineWidth',... 
             

1.25,'MarkerEdgeColor','k','MarkerFaceColor',cc(col(7),:),... 
             'MarkerSize',12); 
    end 
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    %axis([0 .50 0 1.01]) 
    %ax = gca; 
    %set(ax,'YTick',[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1]) 
    %axis 'auto x'  
    %axis image 

     
    ylab1 = ylabel('Viability'); 
    set(ylab1,'FontSize',16); 
    label_conc = sprintf('Metabolite Concentrations \n'); 
    str1 = sprintf(... 
   'L_{10} = %g, R_0 = %g, L_{20} = %g, I_0 = %g',...  
    IC(1,i),IC(2,i),IC(4,i),IC(5,i)); 
    str2 = sprintf(... 
   'Src_0= %g, pSrc_0= %g , G\\alpha-GTP_0 = %g, G\\alpha-GDP_0 = 

%g',...  
    IC(7,i),IC(8,i),IC(10,i),IC(12,i)); 
    str3 = sprintf(... 
   'GEF-GTP_0= %g, GAP-GDP_0 = %g, A\\beta_0 = %g, V_0 = %g',...  
    IC(13,i),IC(17,i),IC(19,i),IC(14,i)); 
    str4 = sprintf('G\\alpha-GDPG\\beta\\gamma_0= %g',IC(9,i)); 

  
    format compact 
    xlab1 = xlabel({label_conc;str1;str2;str3;str4});format compact 
    set(xlab1,'FontSize',16); 
    titlab1 = title('Viability vs. Metabolite Concetrations (G-

Protein w/o A\beta)'); 
    set(titlab1,'FontSize',18); 
    print(g,'-dpng', num2str(i+100000)); 

     
end 
end 
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PlotInteractions 

function PlotInteractions(SSValues_V,SSValues_D,SSTime,k,iC) 
    PlotInteractions_kCs(SSValues_V,SSValues_D,SSTime,k); 
    %PlotInteractions_ICs(SSValues_V,SSValues_D,SSTime,iC); 
end 
 function PlotInteractions_kCs(SSValues_V,SSValues_D,SSTime,k) 
    interactionstr = {'k_1','k_2','k_3','k_4','k_5','k_6','k_7',... 
                      'k_8','k_9','k_{10}'};  
    set(gcf,'Visible','off')              % turns current figure 

"off" 
    set(0,'DefaultFigureVisible','off');  % all subsequent figures 

"off" 
    e = figure; 
    %interactionplot(SSValues_V,k,'varnames',{'k_3','k_4'}) 
    interactionplots(SSValues_V,k,'varnames',interactionstr) 

     
    f = figure; 
    interactionplots(SSValues_D,k,'varnames',interactionstr) 

     
    g = figure; 
    interactionplots(SSTime,k,'varnames',interactionstr) 

  
    print(e,'-dpng', num2str(901));  % Prints graph to png file, i 

as fn. 
    print(f,'-dpng', num2str(902));  % Prints graph to png file, i 

as fn. 
    print(g,'-dpng', num2str(903));  % Prints graph to png file, i 

as fn. 

  
end 
function PlotInteractions_ICs(SSValues_V,SSValues_D,SSTime,iC) 
   interactionstr = {'L_1','R','L_2','I','Src','pSrc','G_{aby}-

GDP',... 
                     'G_aGTP','G_aGDP','GEF-GTP','GAP-GDP','AB'}; 

                  
    set(gcf,'Visible','off')              % turns current figure 

"off" 
    set(0,'DefaultFigureVisible','off');  % all subsequent figures 

"off" 
    e = figure; 
    interactionplots(SSValues_V,iC,'varnames',interactionstr) 
    f = figure; 
    interactionplots(SSValues_D,iC,'varnames',interactionstr) 
    g = figure; 
    interactionplots(SSTime,iC,'varnames',interactionstr) 

  
    print(e,'-dpng', num2str(1001));  % Prints graph to png file, i 

as fn. 
    print(f,'-dpng', num2str(1002));  % Prints graph to png file, i 

as fn. 
    print(g,'-dpng', num2str(1003));  % Prints graph to png file, i 

as fn. 

  
end 
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InteractionPlots 

function  [H, ax, BigAx]  = interactionplots(y,group,varargin) 
%INTERACTIONPLOT Interaction plot for grouped data 
%   INTERACTIONPLOT(Y,GROUP) displays the two-factor interaction 

plot for  
%   the group means of matrix Y with groups defined by entries in 

the cell  
%   array GROUP.  Y is a numeric matrix or vector.  If Y is a 

matrix, the  
%   rows represent different observations and the columns represent  
%   replications of each observation.  If Y is a vector, the rows 

give the  
%   means of each entry in the cell array GROUP.  Each cell of GROUP 

must  
%   contain a grouping variable that can be a categorical variable, 

numeric 
%   vector, character matrix, or single-column cell array of 

strings. 
%   GROUP can also be a matrix whose columns represent different 

grouping 
%   variables.  Each grouping variable must have the same number of 

rows as 
%   Y.  The number of grouping variables must be greater than 1. 
% 
%   The interaction plot is a matrix plot, with the number of rows 

and  
%   columns both equal to the number of grouping variables. The 

grouping  
%   variable names are printed on the diagonal of the plot matrix. 

The  
%   plot at off-diagonal position (i,j) is the interaction of the 

two  
%   variables whose names are given at row diagonal (i,i) and column  
%   diagonal (j,j), respectively. 
% 
%   INTERACTIONPLOT (...,'PARAM1',val1,'PARAM2',val2,...) specifies 

one or 
%   more of the following parameter name/value pairs: 
% 
%       Parameter    Value 
%       'varnames'   Grouping variables names in a character matrix 

or 
%                    a cell array of strings, one per grouping 

variable 
%                    (default names are 'X1', 'X2', ...) 
%       'full'       A logic value true (default) or false. When 

full is 
%                    true, the matrix plot includes interaction 

plots for 
%                    AB and BA where A and B are any two factors in 

GROUP. 
%                    When full is false, only interaction plot for 

AB is 
%                    plotted. 
% 
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%   [H,AX,BIGAX] = INTERACTIONPLOT(...) returns a handle H to the 

figure 
%   window, a matrix AX of handles to the subplot axes, and a handle 
%   BIGAX to the big (invisible) axes framing the subplots. 
% 
%   Example: 
%     Display interaction plots for data with four 3-level factors 

named 
%     'A', 'B','C', and 'D'. 
%        y = randn(1000,1); %response 
%        group = ceil(3*rand(1000,4)); %four 3-level factors 
%        interactionplot(y,group,'varnames',{'A','B','C','D'}) 
% 
%   See also MAINEFFECTSPLOT, MULTIVARICHART 

  
% Copyright 2006-2011 The MathWorks, Inc. 

  
if nargin <2 
    error(message('stats:interactionplot:FewInput')) 
end 

  
% transpose y if it is row vector 
if size(y,1) ==1 
    y = y(:); 
end; 

  
% parse parameter/value pairs 
args =   {'varnames','full'}; 
defaults = {'',true}; 
[varnames,full] =  

internal.stats.parseArgs(args,defaults,varargin{:}); 

  
if ~iscell(varnames) && ~ischar(varnames) 
    error(message('stats:interactionplot:BadVarnames')) 
end 
if (~(ischar(varnames) || iscellstr(varnames))) 
      error(message('stats:interactionplot:BadVarnames')); 
end 

  
% determine whether we need default group variable names 
needvarnames = isempty(varnames); 

  
% convert the  numerical GROUP to cell arrays 
if  isnumeric(group) 
    group = num2cell(group,1); 
end 

  
group = group(:); 
ng = length(group); % number of grouping factors 

  
% You cannot have only one factor 
if ng<2 
    error(message('stats:interactionplot:TooFewFactors')) 
end 
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% Convert numerical cells or char cells to string cells 
for i = 1:ng 
    if ischar(group{i}) 
        group{i} = cellstr(group{i}); 
    end 
end 
% Group variable should have the same number of items as y. 
if  any(cellfun(@length,group)~=size(y,1)) 
    error(message('stats:interactionplot:BadGroup')) 
end; 

  
% Convert all grouping variables to integers, and remember 

separately their 
% original names 
levelnames = cell(1,ng); 
for i = 1:ng 
    if isnumeric(group{i}) 
        if ~isvector(group{i}) 
           error(message('stats:multivarichart:BadGroup')) 
        end 
    end; 
    [group{i},levelnames{i}] = grp2idx(group{i}); 
end 

  
if  needvarnames 
    % generate default varnames 
    varnames = strcat({'X'},num2str((1:ng)','%d')); 
end; 

  
% Convert character matrix to cell array 
if ischar(varnames) 
    varnames = cellstr(varnames); 
end; 

  
% the length of varnames should be the same as the number of 

grouping factors 
if ng ~= length(varnames) 
    error(message('stats:interactionplot:MismatchVarnameGroup')) 
end; 

  
% get means across replications 
ybar = nanmean(y,2); 

  
% plotting starts here 
clf; 
BigAx = newplot; 
hold_state = ishold; 
set(BigAx,'Visible','off','color','none') 

  
% Create and plot into axes 
if full % full matrix form 
    % full plot is an ng by ng matrix plot. 
    rows = ng; 
    cols = ng; 
    ax = zeros(rows,cols); 
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    pos = get(BigAx,'Position'); 
    % width and height for each individual axes 
    width = pos(3)/(cols+1); 
    height = pos(4)/rows; 
    space = .15; % 2 percent space between axes 
    %space = .02; % 2 percent space between axes 
    % the position of the big axes is adjusted 
    pos(1:2) = pos(1:2) - .05*[ng*width/2 height]; 
    ylim = nan(rows,cols,2); 
    % this is the x coordinate for the legends 
    if ng == 2 
        legx = pos(1) + pos(3) - 1.6*width/ng; 
    else 
        legx = pos(1) + pos(3) - 2*width/ng; 
    end 
    for i=rows:-1:1, 
        for j=cols:-1:1, 
            axPos = [pos(1)+(j-1)*width pos(2)+(rows-i)*height ... 
                width*(1-space) height*(1-space)];    % position of 

each panel axes 
            ax(i,j) = axes('Position',axPos, 'visible', 'on', 

'Box','on'); 
            if  i~=j   % off- diagonal are filled with interaction 

plots 
                

plotaninteraction(ybar,group{j},group{i},varnames{j},varnames{i},... 
                    levelnames{j},levelnames{i}); 
                ylim(i,j,:) = get(gca, 'ylim'); 
            else 
                % make an invisible interaction plot so that I can 

make a 
                % legend on the diagonal. 
                idx = i;          % factor to be legend 
                anotheridx = mod(j,ng)+1;  % just another factor 
                handles = 

plotaninteraction(ybar,group{anotheridx},group{idx},... 
                    varnames{anotheridx},varnames{idx},... 
                    levelnames{anotheridx},levelnames{idx}); 
                set(handles,'visible','off') 
                set(gca,'xticklabel','','yticklabel','', ... 
                    'xtick',[],'ytick',[]) 
                % make legend texts 
                levels = levelnames{idx}; 
                left = [varnames{idx}, '= ']; 
                lentext = strcat({left},levels); 
                % make the legend 
                %legh = 

legend(lentext,'FontSize',6,'location','northeast'); 
                legh = 

legend(lentext,'FontSize',6,'location','south'); 
                % place the legend to the very right 
                legpos = get(legh, 'position'); 
                legpos(1) = legx; 
                set(legh, 'position',legpos) 
            end 
        end 
    end 
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    % find the best ylim 
    ylimmin = min(min(ylim(:,:,1),[],2)); 
    ylimmax = max(max(ylim(:,:,2),[],2)); 

  
    % put the xticklabel to top in the top-row axes 
    set(ax(1,:),'XAxisLocation','top'); 

  
    % put the yticklabel to top in the most right axes 
    set(ax(:,cols),'YAxisLocation','right') 

  
    % Ticks and labels on outer plots only 
    set(ax(2:rows-1,:),'xticklabel','') 
    set(ax(:,2:cols-1),'yticklabel','') 
    

set(BigAx,'XTick',get(ax(rows,1),'xtick'),'YTick',get(ax(rows,1),'yt

ick'), ... 
        'userdata',ax) 
else % compact matrix form 
    % figure out how many rows and cols are needed. 
    if mod(ng,2)==0 
        rows = ng/2; 
        cols = ng -1; 
    else 
        cols = ng; 
        rows = (ng -1)/2; 
    end; 
    ax = zeros(rows,cols); 
    pos = get(BigAx,'Position'); 
    width = pos(3)/cols; 
    height = pos(4)/rows; 
    % try to work out spaces between axes 
    switch ng 
        case 2 
            space = 0;   % no space is needed if there is only a 

single plot 
        case 3 
            space = [0.02 0];  % no vertical space is needed if 

there is only one row 
        otherwise 
            space = [.02 .15]; % 2 percent space between x axes and 

15 percent between y axes 
            pos(1:2) = pos(1:2) + space.*[width height/2]; 
    end; 
    ylim = nan(ng*(ng-1)/2,2); 
    plotind = 0; 
    for i = 1:ng-1 
        for j = i+1:ng 
            plotind = plotind + 1;          % plot sequence number 
            rowid  = ceil(plotind/cols);    % row number 
            colid = mod(plotind-1, cols)+1; % col number 
            axPos = [pos(1)+(colid-1)*width pos(2)+(rows-

rowid)*height ... 
                [width height].*(1-space)];    % position of each 

panel axes 
            ax(rowid, colid) = axes('Position',axPos, 'visible', 

'on', 'Box','on'); 



 

 107 

 

            

plotaninteraction(ybar,group{i},group{j},varnames{i},varnames{j},lev

elnames{i},levelnames{j}); 
            xlab = xlabel(varnames{i}); 
            set(xlab,'FontSize',10); 
            ylim(plotind,:) = get(gca, 'ylim'); 
            levels = levelnames{j}; 
            left = [varnames{j}, ' = ']; 
            lentext = strcat({left},levels); 
            if ng == 2 
                legend(lentext,'FontSize',8,'location','best'); % 

special treatment for single plot 
            else 
                

legend(lentext,'FontSize',8,'location','southoutside'); 
            end; 
        end 
    end; 
    ylimmin = min(ylim(:,1)); 
    ylimmax = max(ylim(:,2)); 
    set(ax(:,2:cols),'yticklabel','') 
end; 

  
set(ax, 'xgrid','off', 'ygrid','off') % set axes grids off 

  
% Set all the limits to be the same and leave 
% just a 5% gap between data and axes. 
inset = .05; 
dy = (ylimmax - ylimmin)*inset; 
set(ax,'ylim',[ylimmin-dy ylimmax+dy]) 

  
if full 
    % place the variable names on the diagonal of the matrix 
    for j=1:cols 
        set(gcf,'CurrentAx',ax(j,j)); 
        xlims = get(gca,'xlim'); 
        ylims = get(gca,'ylim'); 
        h = text(mean(xlims), mean(ylims), ... 
            varnames{j}, 

'HorizontalAlignment','center','VerticalAlignment','middle'); 
        set(h, 'fontsize',12) 
    end 
end 

  
% Make BigAx the CurrentAxes 
set(gcf,'CurrentAx',BigAx) 
if ~hold_state, 
    set(gcf,'NextPlot','replace') 
end 

  
% Also set Title and X/YLabel visibility to on and strings to empty 
set([get(BigAx,'Title'); get(BigAx,'XLabel'); get(BigAx,'YLabel')], 

... 
    'String','','Visible','on') 

  
% Return the figure handle if it is asked. 
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if nargout>0 
    H = gcf; 
end; 

  

  
%----------------------------------- 
function   handle = 

plotaninteraction(y,factor1,factor2,varname1,varname2,levels1,levels

2) 
% plot an single interaction plot between two factors 
% factor1 is for x axis 
% factor2 is for y axis 
[interact,num] = grpstats(y,{factor1,factor2}, {'mean','numel'});  % 

group means w.r.t the two factors 

  
%number of levels in each factor 
num1 = length(levels1); 
num2 = length(levels2); 

  
if  length(num) < num1*num2 
    error(message('stats:interactionplot:UnequalLevels')) 
end 

  
% the means are reshaped as a matrix for the convenience of plot and 

legend 
matrixdata = reshape(interact,num2,num1); 

  
% plot this matrix data 
%linetype = {'-',':','-.','--'};  % all line types 
linetype = {'-','-','-','-'};  % all line types 

  
colors = [0     0     1          % all colors 
          0    .5     0 
          1     0     0 
          0    .75   .75 
         .75    0    .75 
         .75   .75    0 
         .25   .25   .25]; 
nlinetype = length(linetype); 
ncolors = size(colors,1); 
hold on 
handle = zeros(num2,1); 
for i = 1:num2 
    idxline = mod(i-1,nlinetype)+1;  %  cycle through line types 
    idxcolor = mod(i-1,ncolors)+1;   %  cycle through line colors 
    linespec = linetype{idxline}; 
    handle(i) = 

plot(1:num1,matrixdata(i,:),linespec,'color',colors(idxcolor,:),'Lin

eWidth',1.5); 
    set(gca,'FontSize',8); % Setting the font for x-label tick 

marks. 
end; 
hold off 
axis tight 
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% Set the x axis limit 
xlim = get(gca,'xlim'); 
%inset = .2; 
inset = .35; 
df = diff(xlim)*inset; 
set(gca,'xtick',1:num1, 'xticklabel',levels1,'xlim',[xlim(1)-df, 

xlim(2)+df]); 
box on 
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