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Abstract
This paper presents Atmospheric Infra-Red Sounder (AIRS) surface skin temperature anomalies for
the period 2003 through 2017, and compares them to station-based analyses of surface air temperature
anomalies (principally theGoddard Institute for Space Studies Surface Temperature Analysis
(GISTEMP)). TheAIRS instrument flies on EOSAqua, whichwas launched in 2002 and became stable
in September 2002. AIRS surface temperatures are completely satellite-based and are totally
independent of any surface-basedmeasurements.We show in this paper that satellite-based surface
temperatures can serve as an important validation of surface-based estimates and help to improve
surface-based data sets in away that can be extended backmany decades to further scientific research.
AIRS surface temperatures have better spatial coverage than those of GISTEMP, though at the global
annual scale the two data sets are highly coherent. As in the surface-based analyses, 2016was the
warmest year yet.

1. Introduction

Surface temperature change and variability is a critical
component of the Earth’s climate. Instrumental weather
station data and ocean sea surface measurements are
available back to the 19th century with reasonable global
coverage, allowing for well-constrained estimates of
global and regional surface temperature change since then
(Hansen et al 2010, Morice et al 2012, Vose et al 2012,
Rohde et al 2013). Despite the overall trends being
‘unequivocal’ (IPCC 2013) there has been intense interest
in the details of how these estimates are constructed and
how known imperfections in the raw data (due to station
moves, gaps, instrument andpractice changes, urbanheat
island effects etc) are handled (see Karl et al 2015). This
paper does not attempt to address the reasons why global
mean surface temperatures have been warming lately.
Rather, the purpose is to demonstrate that this previously
reported result of recent global warming as depicted
in many ground based data sets is confirmed in the
totally independent satellite-based Atmospheric Infra-
RedSounder (AIRS)data set.

While intensive studies are still needed to estimate
the uncertainties of satellite observations in global scale,

systematic observations with consistent temporal and
spatial coverage from satellites still can be a crucial com-
plement to the surface-based estimates to better assess
surface temperature changes (Merchant et al 2013, Veal
et al 2013, Merchant et al 2017). Number of algorithms
are developed to retrieve surface temperatures from an
Along Track Scanning Radiometer 2(ATSR-2) infra-red
(IR) channels, but no single algorithm is valid to produce
surface temperature over different surfaces (Sobrino et al
2004 and reference therein). The temperature sounding
microwave (MW) radiometers, microwave sounding
unit (MSU) and advanced MSU (AMSU) have provided
additional related measures of climate change (Mears
and Wentz 2017, Spencer et al 2017), but reflect lower-
to-mid tropospheric bulk temperatures and so have not
served as a direct validation of the in situ surface temper-
ature data set products. Satellite-based temperaturemea-
surements from multiple platforms also required
significant efforts for a number of adjustments to
account for calibration and drift of local measurement
time, to be assembled into a single long-termdata record
(Mears and Wentz 2017 and references therein). MW
imagers such as AMSR-E (Gentemann 2014) and
AMSR-2 (Gentemann and Hilburn 2015) that have
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polarized channels near 7, 11, 19, and 37 GHz allow
retrievals of SST, emissivity, and atmospheric emission.
MW imagers are primarily sensitive to the surface skin
temperature and surface emissivity, and are less sensi-
tive to changes in clouds and water vapor than are IR
instruments such as Moderate Resolution Imaging
Spectroradiometer (MODIS), and especially AIRS
because AIRS determines surface temperature and
emissivity in the 3.7 μm region. The observations from
MW channels are more suitable than from IR observa-
tions over ocean because they do not have the inherent
sampling biases from cloud contamination. However,
MW detection of surface temperatures are less useful
than over ocean because of uncertainties in surface
emissivity.

The IR MODIS generated surface skin temperature
data sets, but used separate algorithms over land (Hulley
andHook 2017), ice (Hall et al 2004), and ocean (Brown
andMinnett 1999). These limitations donot apply to the
AIRS surface temperature data record which uses iden-
tical methodology to determine surface skin tempera-
tures and surface emissivity over all surfaces. AIRS data
covers pole to pole (90°S–90°N) on a 1° latitude by 1°
longitude spatial grid with no spatial gaps, with daily
observations from ascending and descending orbits, as
described in the following section.

2.Data andmethods

2.1.Data
2.1.1. AIRS surface skin temperature
AIRS is a high spectral resolution IR sounder that was
launched on Earth Observing System (EOS) Aqua in
2002. The AIRS Science Team Version-6 ‘AIRS Only
(AO)’ data set is the current official AIRS Science Team
data set (Susskind et al 2014). The AIRS data set begins
in September 2002, when theAIRS instrument became
thermally stable, and, at the time of this writing,
extends through November 2018. There have been no
changes made to the data used to generate AIRS data
products, nor to the scientific methodology used to
analyze the data. The AIRS data set contains many
monthly mean geophysical parameters in addition to
surface skin temperature. More details about AIRS
and howquality controlled geophysical parameters are
determined from AIRS observations are given in
appendix.

AIRS monthly mean products are generated glob-
ally on a 1° latitude by 1° longitude spatial grid with no
spatial gaps. Separatemonthlymean products are gen-
erated for EOS Aqua ascending orbits AIRSPM (nom-
inally at 1:30 PM local time) and for descending orbits
AIRSAM (nominally at 1:30 AM local time). The results
shown in this paper use the average of the AIRSPM and
AIRSAM data sets. The EOS Aqua orbit is stabilized by
periodic orbit adjustments and consequently there has
been no drift in the EOS Aqua orbit over the time per-
iod under study.

2.1.2. In-situ and reanalysis-based surface temperature
products
There are a number of official analyses of surface
temperature anomalies from Goddard Institute for
Space Studies Surface Temperature Analysis (GISTEMP)
(Hansen et al 2010), NOAA NCEI (Vose et al 2012), the
Hadley Centre/Climatic Research Unit (Morice et al
2012), and the JapaneseMeteorological Agency (Ishihara
2006). Additionally, at least two institutionally indepen-
dent efforts have recently emerged that apply new
methodologies and/or use expanded data sets (Rohde
et al2013,CowtanandWay2014a).

GISTEMP is a well-used example of these products
andmakes use of in situ surfacemeasurements over land,
assembled from publicly available surface air temper-
ature data acquired by about 6300 meteorological
stations around the world, an analysis of ship- and
buoy-based sea surface temperatures (Huang et al 2017),
and Antarctic weather stations. The spatial distribution
of stations is sufficient from 1880 onwards to produce a
reasonable estimate of the global anomalies, although
coverage is sparse in some areas, especially over the Arc-
tic and Antarctic, as well as parts of Africa and South
America. The GISTEMP analysis uses anomaly data
sampled on an equal area grid and reports anomalies for
each month from a 1951–1980 climatology. Monthly
data are presented on a 2° latitude by 2° longitude spatial
grid. The other analyses of surface station data differ in
the treatment of urban heating effects, interpolation
across datapoor areas, homogenization treatments of the
data to removenon-climatic artifacts, and ocean temper-
ature products but are very similar in terms of trends and
annual anomalies (Sańchez-Lugo et al 2018). Notably,
theHadCRUT4 andNCEI analyses do not extrapolate to
data poor areas (such as the Arctic). Cowtan and Way’s
analysis uses the same base data as HadCRUT4 but uses
kriging to extend the data to be spatially complete
(CowtanandWay2014a) andweuse this in comparisons
below. Coverage biases, particularly in the earlier dec-
ades, may contribute to an overall underestimate of the
long-term trends (Richardson et al 2016). Output data
fromre-analyses canbeused to independently character-
ize the surface temperature changes once inhomogene-
ities in data processing and inputs have been corrected
for. We use a product based on the European Centre for
Medium-Range Weather Forecasts (ECMWF) Interim
Analysis. In all of these records, most of the Earth’s
warming since 1880 occurred in the past 35 years, with
16 of the 17 warmest years on record occurring since
2001 (NASA Public Affairs 2018). Recently Way et al
(2017) suggested that warming in Northern Canada is
underestimated in surface-based data sets due to a sys-
tematic cold bias originating from the automated homo-
genization algorithm of the station data processing.
Cowtan and Way (2014a, 2014b) also suggested that
in situmeasured surface temperature data may result in
anunderestimationof recentArcticwarming.

The AIRS data reflects skin temperature at the very
surface (top mm) of the ocean, land, and snow/ice
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covered regions (Susskind et al 2003, 2006, 2011). The
surface-based products are a blend of 2 m surface air
data anomalies over land, and bulk sea surface temper-
ature anomalies in the ocean (top 5 m). The mean
values from each class of product are therefore not
expected to match. For anomaly data, comparisons
with climate model output suggest that there is a small
bias (∼0.02 °C/decade) between this form of blended
product and the ‘true’ global mean surface air temper-
ature anomaly (Cowtan et al 2015). The products also
differ in spatial coverage. AIRS retrievals are almost
complete, producing data up to both poles (though
gaps and uncertainties increase in areas of high cloud
cover). GISTEMP, and the Cowtan and Way (C&W)
products use different methods to fill in data near the
poles and in other data sparse regions, while the Had-
ley Center/Climatic Research Unit (HadCRUT4),
NOAANCEI, and the JMA publish averages only over
the directly sampled regions. Comparisons with rea-
nalysis products suggest that the surface-based pro-
ducts that do extrapolate across the pole have less bias
with respect to the true global mean (Simmons et al
2016).

We constructed monthly grid point climatologies
for each calendarmonth and for each product by aver-
aging the monthly values over the 15-year period 2003
through 2017, with anomalies for a given month, in a
given year, defined as the difference of the grid point
value for thatmonth from itsmonthly climatology.

3. Results

3.1.Monthlymean anomalies and spatial trends
Figure 1 shows monthly global mean anomalies for
each month from January 2003 through December

2017 from AIRS, GISTEMP and three other selected
products. Also shown in figure 1 are the slopes of the
linear least squares fits of the AIRS and GISTEMP
anomaly time series. The agreement of the global
mean monthly anomalies of the AIRS and GISTEMP
time series is very good, with a temporal correlation of
0.92, excluding November 2003 during which AIRS
was shut down for a substantial part of the month.
AIRS data show a slightly greater short term warming
trend than found in GISTEMP or the other products
(table 1).

The trend lines shown in figure 1 are representa-
tive of changes in area-weighted temperatures aver-
aged over the whole globe. However, the warming is
not spatially homogeneous. Figure 2 shows 15-year
zonal mean trends as a function of latitude for AIRS
and GISTEMP. Both AIRS and GISTEMP show con-
siderable latitudinal structure in zonal mean trends.
Both show considerable warming over the last 15 years
poleward of 65°N, and also warming, through less so,
poleward of 80°S. GISTEMP shows less warming than
AIRS at high latitudes in the Northern Hemisphere.
The latitudinal region between 68°S and 58°S has
actually cooled over this time period, and GISTEMP
shows less cooling than AIRS there. Most of the rest of
the globe has been marked by more modest warming
trends. As in figure 1, the AIRS global mean short term
trend is slightly more positive than that of GISTEMP.
This is primarily a result of GISTEMP having weaker
Northern Hemispheric polar warming trends than
does AIRS.

Figures 3(a) and (b) show spatial plots of 15-year
trends of AIRS and GISTEMP surface temperature
anomalies. The area-weighted globalmean 15 year trends
are 0.24 °C/decade and 0.22 °C/decade respectively.

Figure 1.Globalmean anomalies for the AIRS andGISTEMPdata sets for January 2003 throughDecember 2017 alongwith three
other selected in situ data products (HadCRUT4, Cowtan andWay, and ECMWF). Dashed lines are the ordinary least squares trends
of the anomaly time series for AIRS andGISTEMPover this time period.
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Temperature trends have considerable longitudinal
structure at a given latitude. The spatial distributions of
AIRS and GISTEMP trends are very similar, except that
the AIRS features are sharper and larger than those of
GISTEMPas a result of bothhigher spatial resolution and
better spatial coverage. The area-weighted spatial correla-
tion of figures 3(a) and (b) at the GISTEMP resolution
is 0.74.

While temperatures poleward of 60°N have
warmed considerably, both data sets show Greenland,
as well as the ocean south of it, have cooled over the last
15 years. This cooling over Greenland is a relatively
recent phenomenon, however. McGrath et al (2013)
showed that previous in situmeasurements at Summit,
Greenland suggest that Greenland’s annual mean near-
surface air temperature increased by 0.9 °C±0.1 °C/
decade during 1982–2011, and that the local increase
over Greenland was six times larger than the warming
rate of the global mean temperature during that time
period. Both AIRS and GISTEMP show that there has

also been cooling in the Southern Oceans during the
last 15 years.

AIRS surface temperature trends indicate that the
greatest warming in the last 15 years occurred over the
Barents and Kara Seas with trends larger than 2.5 °C/
decade. The positive AIRS Arctic warming trend pole-
ward of 60°N is consistent with Cullather et al (2016),
who showed that the MERRA-2 reanalysis surface
temperature recorded the warmest winter season over
the Arctic in the observational record during the win-
ter of 2016 (December 2015–February 2016). The
temperature trends shown in figures 3(a) and (b)
should not be necessarily taken to be indicative of the
true long-term changes. For example, AIRS shows a
short term ‘El Niño trend’ over the 15-year time per-
iod under study, and GISTEMP show a similar, but
broader and weaker pattern. This is mainly a result of
an El Niño event which took place off the west coast of
South America in 2015 and 2016. Predictions of long-
term warming in the El Niño region are quite

Table 1.Trends and cross-product correlations of the globalmean surface temperature products over
2003–2107. Trend uncertainties are 95% confidence intervals (2.16 standard deviations from the linearfits,
based on the Students’ t-test with 14 degrees of freedom) from annual data. Correlations are either annual,
ormonthly (excludingNovember 2003 fromAIRS).

Trend (2003–2017)

Correlations of globalmean anomalies (Ann/Mon)
(2003–2017)

(°C/decade) GISTEMP HadCRUT4 C&W ECMWF

AIRS 0.24±0.12 0.98/0.92 0.93/0.84 0.97/0.89 0.96/0.90

GISTEMP 0.22±0.13 0.97/0.92 0.99/0.95 0.97/0.92

HadCRUT4 0.17±0.13 0.98/0.94 0.94/0.88

C&W 0.19±0.12 0.96/0.94

ECMWF 0.20±0.16

Figure 2.Zonalmean trends (°C/decade) as a function of area-weighted latitude for AIRS (red) andGISTEMP (black), alongwith the
area-weighted globalmean short term trends. Uncertainties are the 95%confidence interval on the trend derived from the annual
zonalmeans.
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uncertain and subject to a lot of natural variability
(Keupp et al 2017).

Figures 3(c) and (d) show AIRS and GISTEMP
temperature anomalies for Dec 2017. Agreement
between both sets of temperature anomalies is again
extremely close, given the differences in spatial resolu-
tion and spatial sampling, with a spatial correlation of
0.74. The range of area-weighted spatial correlations
over all months is 0.58±0.1 (1 sigma) with max-
imum of 0.83 in November 2016 and minima of 0.13
in Nov 2003. The AIRS monthly mean data was affec-
ted by the solar proton event during Nov 2003 and the
instrument did not collect the data for the first two
weeks of the month. Depictions of AIRS single day
surface temperature spatial coverages in Northern
Hemisphere Winter and Northern Hemisphere Sum-
mer are given in the appendix. AIRS single day spatial
coverage over land is almost complete with the excep-
tion of orbit gaps at low latitudes which rotate around
the Earthwith an 8 day repeat cycle.

The December 2017 anomalies feature far more
internal variability than the long-term trends. AIRS
and GISTEMP both show large positive global mean
anomalies for December 2017, with values of 0.19 °C
and 0.23 °C respectively, despite the significant cold
anomalies that took place in the northeastern United
States and eastern Canada, as clearly depicted in both
data sets. December 2017 also features a minor La
Niña event that started in 2017. As shown in the next
section, La Niña time periods typically correspond to
local minima in annual mean surface temperature
anomalies, and El Niño time periods correspond to
localmaxima. Figure 3(d) demonstrates a limitation of
the GISTEMP data set in that the data coverage is
sparse near the poles. This is evidenced by the relative
lack of longitudinal variation poleward of 85°N,where
GISTEMP is extrapolating over sea ice covered areas
while AIRS is seeing longitudinal changes in skin
temperature directly.

Figure 3. (a) and (b) Spatial plots of 15-year trends of AIRS andGISTEMP surface temperatures. (c) and (d) Spatial plots of AIRS and
GISTEMPDecember 2017 surface temperature anomalies.Map of spatial correlations betweenAIRS andGISTEMP (calculated on a
2°×2° grid) using (e)monthly, and (f) annual data.
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The maps of temporal correlations in figures 3(e)
and (f) give insight into where the AIRS andGISTEMP
products differ most—mainly the Southern Ocean,
sub-Saharan Africa, and areas of high topography.
This mainly mirrors regions in which there are cover-
age issues in the GISTEMP product. There is no indi-
cation of issues with areas that are heavily cloud
covered, suggesting that the cloud clearing algorithms
inAIRS areworkingwell.

3.2. Global annualmean anomalies
Figure 4 shows global annual mean surface temper-
ature anomalies for the AIRS and four surface-based
data sets for 15 years 2003 through 2017. There is
excellent agreement between all sets of annual mean
anomalies. In particular, all five data sets show an
increase in temperature, with 2016 being the warmest
year, 2017 the secondwarmest year, and 2015 the third
warmest year over the 15 years under study.

Figure 4 also shows the 12-month running mean
of an El Niño Index (ENI) defined as the average of
monthly mean grid point point SST anomalies using
data over the combined Niño 4 and Niño 3 areas. We
use the average anomaly over these two areas because
while most El Niño/La Niña activity early in the time
period under study took place in the NOAA Niño 4
region, El Niño/La Niña activity toward the end of the
time period took place in the NOAANiño 3 region off
thewest coast of SouthAmerica.

As is well known, figure 4 demonstrates that local
maxima in annualmean temperatures tend to occur in
years that start with positive ENI (2003, 2005, 2007,
2010, 2015, 2016), and local minima tend to occur in
years that have negative ENI (2006, 2008, 2011, 2017).
2017 started off with neutral ENI conditions, and
developed mild La Niña conditions by the end of the
year keeping the year relatively cool with respect to the

record years set previously. ENI in December/January
explains about 62% (AIRS) or 70% (GISTEMP) of the
residual variance in the following year’s annual mean
temperature anomaly.

The biggest difference between annual mean AIRS
anomalies and those of GISTEMP and the other data
sets occurs in 2003, which is the year that contained
the anomalous AIRS month of November 2003, dur-
ing which some AIRS data was missing. The most sig-
nificant point of figure 4 is the strong coherence
among the independent data sets both in the inter-
annual variance and trends, including the record-
breakingwarmth in the later years.

Table 1 quantifies the 15-year trends (°C/decade)
and inter-correlations of each data set, computed
using the annual mean and monthly mean anomalies.
All data sets show a highly significant warming trend
of ∼0.2 °C/decade over this time period. The AIRS
warming trend is slightly higher than that of GIS-
TEMP and the other data sets. There is no significant
auto-correlation in the residuals from the linear trend
on annual data, and so the trend uncertainties given
are simply those from the ordinary least squares calc-
ulation. Trends in the non-spatially complete Had-
CRUT4 data set are the smallest of the 5 products. The
AIRS anomaly time series strongly matches the inde-
pendent GISTEMP anomaly time series very well in
terms of trends and correlations in time (r=0.98/
0.92 using annual/monthly data). This is slightly
higher than the correlation of AIRS anomalies with
those of any of the other data products, but not sig-
nificantly so.

4. Conclusions

The GISTEMP data set, and the totally independent
satellite-based AIRS surface skin temperature data set,

Figure 4.Global annualmean anomalies (°C) for the AIRS and selected in situ data sets for 2003 through 2017 and the 12-month
runningmean ElNiño Index (ENI) in °C. Positive ENI periods are indicated in red and negative periods are indicated in blue.
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are very consistent with each over the past 15 years.
Both data sets demonstrate that the Earth’s surface has
been warming globally over this time period, and that
2016, 2017, and 2015 have been the warmest years in
the instrumental record, in that order. In addition to
being an independent data set, AIRS products comple-
ment those of GISTEMP because they are at a higher
spatial resolution than those of GISTEMP and have
more complete spatial coverage, despite a shorter
record. Differences in the products (and lower tem-
poral correlations) mostly reflect areas without much
directly observed station data (the Arctic, Southern
Ocean, sub-Saharan Africa) suggesting that the fault
lies in the station-based products rather than with the
AIRS data. Notably, surface-based data sets may be
underestimating the changes in the Arctic.

The characteristics of the Earth’s climate change
continually. Complementary satellite-based surface
temperature analyses serve as an important validation
of surface-based estimates, and theymay point the way
to make improvements in surface-based products that
can perhaps be extended backmany decades.
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AppendixA.Quality control (QC) ofAIRS
surface skin temperatures (Ts)

A1.Overview
The AIRS is a high spectral resolution IR sounder that
was launched in May 2002 on EOS Aqua in a stable
sun-synchronous orbit that observes the Earth twice
daily, at roughly 1:30 AM and 1:30 PM local times.
AIRS was accompanied by the AMSU (AMSU)-A to
form a next-generation polar-orbiting IR and MW
atmospheric-sounding system. There is a 3×3 array
of AIRS fields of view (FOVs), with a spatial resolution
of 13 km×13 km at nadir, within a single AMSU-A
footprint, which is 45 km×45 km at nadir. With the
exception of cloud parameters, a single AIRS retrieval
is performed on a field of regard (FOR) basis, contain-
ing a 3×3 grouping of AIRS FOVs. The current
operational AIRS Science Team retrieval algorithm

(Susskind et al 2014) is AIRSVersion-6 AO,which uses
AIRS observations, but does not use AMSU observa-
tions in any way. AIRS observations had been analyzed
in parallel in both Version-6 AIRS/AMSU and Ver-
sion-6 AO modes until some important AMSU
channels died in September 2017, after which AIRS
data was, and still is, analyzed only in the AO mode.
Results using Version-6 AIRS/AMSU and Version-6
AO are similar to each other in the overlap period
when both modes were being processed simulta-
neously. The results shown in this paper are monthly
mean values of AIRS gridded level-3 1:30 AM/PM
averages of Ts taken from the operational AIRS
Version-6 level-3 AO data set. Both AIRS Version-6
data sets begin in September 2002 when the AIRS
instrument became stable. AIRS level-3 products are
presented on a 1°×1° latitude–longitude spatial grid,
and extend from pole to pole. AIRS values of Ts
represent the temperature of roughly the top mm of
the solid earth.

Version-6 AO retrievals of all geophysical para-
meters from AIRS observations are physically based
and do not use any information other than AIRS
observations, with the exception of a forecasted sur-
face pressure ps which is needed as a boundary condi-
tion when computing AIRS channel i radiances
expected for the FOR state X. Ri(X) is computed using
a Radiative Transfer Model. The retrieved state for the
FOR is the geophysical state for which the ensemble
Ri(X) best matches, in a weighted RMS sense, the set of
channel clear column radiances Ri ¢ for the subset of
AIRS channels used to retrieve the appropriate geo-
physical parameters, which are a subset of the com-
plete state X. Ri ¢ are derived quantities, generated on
a FOR basis, that represent the radiances that AIRS
channel i ‘would have seen’ if the FOR were com-
pletely clear.

AIRS Version-6 retrieval methodology is descri-
bed in detail in Susskind et al (2014), and the refer-
ences therein, especially Susskind et al (2011). The
retrieval process starts with a neural net initial guessX0

for the FOR, from which initial values of AIRS clear
column radiances are determined. AIRS channel clear
column radiances are then used to sequentially deter-
mine: (1) surface skin temperature Ts, along with sur-
face spectral emissivity and, during the day, surface
bidirectional reflectance of solar radiation; (2) atmo-
spheric temperature profile T(p), including surface air
temperature T(ps); (3) atmospheric moisture profile;
(4) atmospheric ozone profile; (5) atmospheric CO
profile; and (6) atmospheric CH4 profile. These steps
are done sequentially, solving only for the variables to
be determined in each retrieval step using the appro-
priate set of channels for that step, and using pre-
viously determined variables as fixed but with an
appropriate uncertainty attached to them, which is
accounted for in a channel-noise covariance matrix.
Steps 1–6 are ordered so as to allow for selection of
channels in each step which are primarily sensitive to
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variables to be determined in that step or determined
in a previous step, and are relatively insensitive to
other parameters. T(p) is determined in the step after
Ts is determined, and uses a different set of channels in
the retrieval process. A cloud parameter retrieval is
performed after the final surface and atmospheric state
has been determined by finding cloud parameters for
which the computed channel cloudy radiances,
including both the cloud parameters and other
retrieved parameters, is most consistent with the
observed radiances for a subset of channels. Cloud
parameters are retrieved on a FOVbasis and are always
generated as long as AIRS observations are present.

A2. Surface skin temperatureQC
Susskind et al (2014)describes theQCprocedures used
for all geophysical parameters in AIRS Version-6 and
AIRS Version-6 AO retrievals. QC flags are generated
for all geophysical parameters Xj, and are based on
thresholds of error estimates for each parameter j
contained in Xj. Each retrieved geophysical parameter
for a FOR is given aQC flagwhich is equal to 0 (highest
quality), 1 (good quality) or 2 (poor quality) which
depend both on the error estimate for that geophysical
parameter and parameter dependent thresholds.
Gridded level-3 products for parameter j include only
those cases with QC Flags 0 or 1. Cases with QC
flags=2 are excluded from the generation of the
level-3 product for that geophysical parameter. QC
thresholds for oceanic values of Ts are considerably
tighter than those for Ts over land or frozen ocean,

both because ocean surface skin temperatures are
already known very well based on ship measurements,
and also because ocean surface skin temperatures
change very slowly in space and time. Susskind et al
(2014) show that Version-6 AO oceanic surface skin
temperatures between 50°S and 50°N, with QC=0
or 1, have an acceptance yield of about 50%with a bias
compared to collocated ECMWF ‘truth’ of −0.34 K
and a spatial standard deviation of 0.95 K compared to
ECMWF values. It must be remembered that ECMWF
oceanic surface skin temperatures are reasonably
accurate in general, but are not perfect. It is possible
that QC’d AIRS retrieved values of Ts over ocean are
actually more accurate than those of ECMWF, espe-
cially in regions far fromwhere shipmeasurements are
made.QC thresholds forTs over land and frozen ocean
are considerably larger than those over non-frozen
ocean, both because Ts is not well known from other
sources over land and ice, and also because land values
of Ts change rapidly in space and time. For this reason,
it is more important to maintain the highest spatial
coverage of AIRS retrieved values of Ts over land and
ice, provided they have reasonable error estimates.

A3. Sample level-3 single dayfields ofTs and cloud
cover
Sample ascending mode single day gridded 1° × 1°
level-3 fields of AIRS Version-6 AO surface skin
temperature and cloud cover in two different seasons
are shown in figure A1. These results are indicative of
the spatial sampling and spatial coverage contained in

Figure A1. (a)The level-3 field of Version-6 AO surface skin temperature for the EOSAquaAscendingOrbits (roughly 1:30 PM local
time) for 15 January, 2016, and (b) associated retrieved fractional cloud cover. Panels (c) and (d) show analogous plots for 15 July,
2016.
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single day AIRS surface skin temperatures in Northern
Hemisphere winter and summer respectively.
Figures A1(b) and (d) show level-3 cloud fields for a
day in January and a day in July. Cloud products are
always generated provided valid AIRS radiances exist.
These figures clearly depict gaps between the different
orbits of EOSAqua, which are largest near the equator.
AIRS scans from side to side as it flies along the orbit,
but the swath width is smaller than the separation of
the orbits at low latitudes. 85% of the Earth’s area has
coverage in the January cloud field, and 84% of the
Earth is covered in the July cloud field. The orbits
move from day to day, with an eight-day repeat cycle.
The existence of these moving gaps will influence
monthly mean products and their inter-annual differ-
ences to some extent. The results shown in this paper
indicate that this is not a big concern regarding AIRS
products on themonthlymean time scale.

Figures A1(a) and (c) show spatial plots of level-3
fields of surface skin temperatures for 15 January and15
July respectively. Grid points containing no cloud data
also contain no surface skin temperature data, because a
lack of cloud data means there were no AIRS observa-
tions in that grid box. In January, 69% of the Earth has
skin temperature coverage, which is 81% of the area
observed by AIRS, and, in July, 63% of the Earth con-
tains skin temperatures, corresponding to 75% of the
grid points observed by AIRS. Most of the grid points
observed by AIRS, in which surface skin temperatures
are missing, occur over ocean, in locations containing
large amounts of cloud cover. For the most part, cloud
cover moves from day to day, and this does not sig-
nificantly degrade the monthly mean ocean skin temp-
erature product. Land and ice surface skin temperature
coverage on a daily basis is almost complete. This is a
result of the use of looser QC thresholds over land and
ice than over ocean because of the need to maintain
good spatial coverage over these areas.

Grid points containing no data are shown in gray
in the figures.Warm temperatures in panels (a) and (c)
are in shades of yellow and red, and cold temperatures
are in shades of blue. Very cloudy grid points are indi-
cated in white in panels (b) and (d), and very clear grid
points are indicated in dark blue.

Estimate of the uncertainty in the satellite mea-
surements of surface temperature due to inconsistent
temporal and spatial sampling is a challenging task
(Mears et al 2011). The sampling bias in AIRSmonthly
mean product can be separated into two components;
temporal and instrument biases. The temporal bias is
caused by two times of observation fromAqua ascend-
ing and descending orbit in a given day and location.
The instrumental sampling biases are uncertainties
caused by scenes that prevent successful retrievals of
surface temperature due to orbit gaps and overcast
clouds, as mentioned above. The regional instru-
mental sampling bias of surface temperature can be up
to ±2 °C. The temporal sampling biases are generally
smaller than the instrumental sampling biases except

in regions with large diurnal variations where it can be
up to±2 °Cover desert area (Hearty et al 2014).
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