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The LISA Pathfinder (LPF) mission succeeded outstandingly in demonstrating key technological aspects
of future space-borne gravitational-wave detectors, such as the Laser Interferometer Space Antenna
(LISA). Specifically, LPF demonstrated with unprecedented sensitivity the measurement of the relative
acceleration of two free-falling cubic test masses. Although most disruptive nongravitational forces have
been identified and their effects mitigated through a series of calibration processes, some faint transient
signals of yet unexplained origin remain in the measurements. If they appear in the LISA data, these
perturbations (also called glitches) could skew the characterization of gravitational-wave sources or even be
confused with gravitational-wave bursts. For the first time, we provide a comprehensive census of LPF
transient events. Our analysis is based on a phenomenological shapelet model allowing us to derive simple
statistics about the physical features of the glitch population. We then implement a generator of synthetic
glitches designed to be used for subsequent LISA studies, and perform a preliminary evaluation of the
effect of the glitches on future LISA data analyses.

DOI: 10.1103/PhysRevD.105.042002

I. INTRODUCTION

LISA Pathfinder (LPF) was launched on December 3,
2015 as a technological demonstrator for the Laser
Interferometer Space Antenna (LISA), a future space-based
gravitational-wave observatory [1]. The LPF mission mea-
sured the relative acceleration between two cubic free-
falling test masses (TMs) housed within the spacecraft
(SC), up to a precision of 30 fm s−2 Hz−1=2 for mHz
frequencies, as depicted by the orange spectrum in Fig. 1.
LPF demonstrated the feasibility of LISA free-fall pre-

cision requirement via the assessment of parasitic differ-
ential accelerationΔgðtÞ between the two free-floating TMs,
which constitutes the main science measurement of the LPF
mission. This performance reached the required free-fall
levels for LISA [2,3], and was far more sensitive than LPF’s
precision target. Several incremental corrections and cali-
brations were necessary to reach this better-than-expected
goal [4], along with the characterization of various sub-
systems. The satellite was successfully operated until its
planned decommissioning on July 18th, 2017.
The TMs differential acceleration data ΔgðtÞ, once

cleaned of the inertial effects, were found to be affected
by spurious nongravitational forces of instrumental origin,

which degraded LPF noise performance and limited its
sensitivity. These perturbations, often referred to as
glitches, were transient in nature. To produce the results
in Ref. [3], they were subtracted from ΔgðtÞ data in order to
recover the full LISA-like sensitivity, allowing to go from
the green to the orange periodogram in Fig. 1. The removal
of these transients was particularly critical to obtain the full
sensitivity at the lowest frequencies. Should they arise in
LISA data, their presence could impact the characterization
of gravitational-wave sources. Adequately accounting for
them in the data modeling is therefore crucial both for noise
and signal estimation.
The physical nature of these spurious events is still

unknown. They manifested as uncorrelated nonperiodic
events during ordinary runs, occurring with varying inten-
sity and duration. The glitch phenomenology presented
here appears to be connected to a series of physical
counterparts that are currently under investigation and
are outside the aim of this work. Hypotheses regarding
their physical origin are under analysis and require further
simulation and eventually on-ground testing at torsion
pendulum facilities. Note that these unmodeled perturba-
tions in the differential acceleration measurements are
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different from micrometeorids impacts considered by the
authors of Ref. [5], which are detected with satellite
position telemetry.
Despite the lack of a physical understanding of their

origin, glitches can be modeled mathematically. In this
work, we adopt an approach to allow for an automated and
systematic glitch detection. We use generic basis functions
called shapelets [6] to form a template bank and detect
events through matched filtering. Here, we only consider
TM differential acceleration measurements, and we detect
events without any assumption on their physical nature.
The objective is two-fold: (i) provide a mathematical and
comprehensive study of glitch population that can be
informative for LISA and (ii) obtain a distribution of event
parameters serving as an input for LISA simulation studies,
as well as data challenges [7].
The article is outlined as follows. In Sec. II, we start by

describing the measurements used in this analysis. We then
introduce the shapelet model and the detection method in
Sec. III. In Sec. IV we present the results of the glitch
search and evaluate its performance, before analyzing
the statistics of glitch parameters in Sec. V. We show in
Sec. IV D that these parameters can also be estimated
through Bayesian analysis from matched filtering outputs,
for an optimal modeling and removal. Finally, based on the
statistics we obtain, we describe the design of a glitch
generator readily usable for LISA studies in Sec. VI.

II. ANALYZED MEASUREMENTS

A. Description of the data

The differential acceleration ΔgðtÞ is derived from the
most sensitive measurement of the TMs position, per-
formed via the differential interferometer o12 [8,9], as

ΔgðtÞ≡ ö12ðtÞ − gcðtÞ þ ω2
2o12ðtÞ þ Δω2

12o1ðtÞ; ð1Þ

where the ω2
i terms are the springlike constants of noisy

forces acting on the TMs, due to electrostatic, magnetic,
and local gravity effects, while gcðtÞ are the commanded
forces, known up to a multiplicative amplitude calibration
constant.
Equation (1) describes the dynamics along the x-axis,

but does not include any inertial effects caused by cross-
coupling with other degrees-of-freedom. Thus the under-
standing and accurate calibration of ΔgðtÞ required a series
of dedicated experiments, designed to identify the dynami-
cal relations between the three-body system constituted by
the TMs and SC, and the various environmental noises
contributing to the overall noise budget [4,10].
After subtraction of the inertial effects, ΔgðtÞ includes

the sensitive x-axis dynamics of LPF TMs free of the
inertial forces acting on the system, allowing for evaluation
of the LPF noise performance on noise-onlymeasurements.
Noise-only measurements were acquired during mission
operations, in-between the different calibration and system
identification experiments, lasting up to two weeks at a
time, in order to benchmark LPF performance.
The analysis in this paper only examines the noise-only

Δg measurements containing spurious signals, which are
publicly available on the LPF legacy data archive [11]. We
select continuous time series segments where no signal
injections took place, and we use the developed detection
method to identify the transient signals in the noise (see
Sec. III below). The actual time segments are listed in
Appendix A.

B. Target instrumental perturbations

The data exhibit spurious signals of varying duration and
amplitudes. These artefacts are distinguishable from sta-
tionary Gaussian noise, and can be described by a transient
process with short time duration compared to the overall
measurement.
We observe two types of glitches. The majority include a

sharp rise followed by a slow exponential decay back to the
previous acceleration trend. The initial slope can be a
positive or negative acceleration. Adopting the gamma-ray
burst terminology [12], we will refer to these glitches as fast
rise and an exponential decay (FRED) events. An example
is shown in Fig. 2 (b). The other common type of glitches,
which occur less frequently, have a sine-Gaussian shape
characterized by two sequential excursions with opposite
signs, as shown in the example of Fig. 2 (b)). Although this
is beyond the scope of this work, ongoing analysis suggest
that the two glitch types are connected to different physical
phenomena [13,14].
During nominal mission operations, glitches appeared

stochastically with a characteristic time interval. However,
during the course of LPF mission, the system was cooled
down in order to further investigate the effects contributing
to the overall noise budget. Unexpectedly, this increased
the glitch event rate substantially. We will henceforth refer

FIG. 1. Amplitude spectral density (
ffiffiffiffiffiffiffiffiffi
PSD

p
) of parasitic differ-

ential acceleration of LPF TMs as a function of frequency for the
best performance noise run, with (green) and without (orange)
spurious signals.

QUENTIN BAGHI et al. PHYS. REV. D 105, 042002 (2022)

042002-2



to these measurements as cold runs, and we will separately
investigate them in addition to the ordinary noise runs.

III. DETECTION METHOD

A. Penalized likelihood model

In order to make an inventory of transient signals in
LPF Δg data, we need a flexible framework to detect the
corresponding excess of power. This can be done by
decomposing glitch signals into a dictionary of functions
where they are sparse, i.e. only a reduced number of nonzero
coefficients is necessary to accurately represent the signal.
The general model of the measured data can be written as

follows:

y ¼ sþ n; ð2Þ

where y is the observed time series of size N sampled at
frequency fs, s is the glitch signal, and n is the realization

of a stochastic random variable assumed to follow a zero-
mean, stationary Gaussian distribution.
Formally, we design the detection pipeline by finding the

maximum of a penalized likelihood function whose log-
arithm can be written as

LðθÞ ¼ logpθðyjθÞ − penλðθÞ; ð3Þ

where pθðyjθÞ is the unpenalized likelihood function of
the model parameters θ, equal to the Gaussian probability
density function in this problem. The second term penλðθÞ
is the penalty function, which controls the thresholding of
the function amplitudes. The vector θ is the vector of
parameters to be estimated, and λ is the regularization
parameter, controlling the model quality in representing the
data and the sparsity level.
For a Gaussian zero-mean distribution, the unpenalized

likelihood writes

pθðyÞ ¼
exp f− 1

2
ðy − sðθsÞÞ†ΣðθnÞ−1ðy − sðθsÞÞgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2πÞN jΣðθnÞj
p ; ð4Þ

where Σ is the covariance matrix of the noise vector n, x†

refers to the Hermitian conjugate of any vector or matrix x
and jXj is the determinant of any matrixX. Note that in this
formulation, the model parameter vector includes both
signal parameters θs and noise parameters θn, and can
therefore be written as θ≡ ðθs; θnÞ. We further assume that
the noise is wide-sense stationary, with power spectral
density (PSD) Snðθn; fÞ, so that its covariance can be
approximated by a circulant matrix that is diagonalizable in
the Fourier basis:

Σ ¼ F†ΛF; ð5Þ

where F is the discrete Fourier transform (DFT) matrix
with elements Fkn ¼ e−2jπkn=N and Λ is a diagonal matrix
whose diagonal elements are proportional to the PSD
Λkk ¼ NfsSnðθn; fkÞ
In the following, we choose a penalty function equal to

the l0 pseudo norm of the coefficient vector, which imposes
the sparsest constraint on the representation, and is well
adapted to sharp features:

penλðαÞ ¼ λkαk0 ¼ λlim
p→0

XN−1

i¼0

jαijp: ð6Þ

The l0-norm of a vector gives its number of non-zero
coefficients, thus minimizing it enforces sparsity.

B. Modeling transient signals using shapelets

Aswe donot postulate any physical process underlying the
glitch phenomena, we choose to adopt a representative
phenomenological model. Given previous observations, this

(a)

(b)

FIG. 2. Example of two glitch types observed in LPF: fast rise
and slow exponential decay type (upper panel) and singe-
Gaussian type (bottom panel). Data have been low-pass filtered
with a second-order Butterworth filter with a cut-off frequency of
10−2 Hz. (a) FRED glitch and (b) Sine-Gaussian glitch.
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model should have the following characteristics: it should
allow for (i) a sharp rise, (ii) an exponential decay, and (iii) one
or a few oscillations. Most wavelet functions, including
Gaussian-shape sinusoids, are not well suited to that kind
of transients because of their symmetric shape. Asymmetric
functions defined for positive times only are preferable. In
addition, the model should be general enough to describe the
various types of glitches that have been cataloged.
A good option that meets these requirements is the

exponential shapelet function described in Ref. [6]. This is
a collection of exponentially damped functions that are
eigenwave functions of the normalized 1D-hydrogen atom.
They can be defined in the time domain as follows:

ψnðtÞ ¼ cn
2t
n
e−

t
nL1

n−1

�
2t
n

�
hþðtÞ; ð7Þ

where cn ¼ ð−1Þn−1n−3
2 is a normalizing factor ensuring

that the quadratic sum of the components is equal to 1, L1
n is

the generalized Laguerre polynomial of order n, and hþðtÞ
is the Heaviside function which is equal to 1 for t ≥ 0, 0
otherwise. A glitch perturbation is then modeled by a finite
linear combination of shapelets:

gðtÞ ¼
XP−1
i¼0

αiψn

�
t − τi
βi

�
: ð8Þ

The parameters to be estimated for each shapelet compo-
nent are therefore the scale parameter β, which acts as a
characteristic damping time and hence is related to the
glitch duration, the arrival time τ and the amplitude α. We
denote as θs ≡ ðβ; τ; αÞ the vector gathering the shapelet
parameters.

C. Matching pursuit algorithm

A common approach for signal detection in gravita-
tional-wave data analysis is to perform a matched filtering
of the data with a template bank, correlating the observed
signal with a parametric waveform model. This method is
equivalent to calculating the ratio between two likelihoods:
the likelihood in the numerator corresponds to the hypoth-
esis that a signal is present, and the one in the denominator
corresponds to the null hypothesis (absence of signal).
However, when the signal is assumed to be the super-

imposition of several nonorthogonal waveform atoms,
direct matched filtering can be cumbersome. Instead, here
we use an iterative version called matching-pursuit [15],
where matched filtering is applied at each iteration to the
residuals of the fit at the previous iteration. The final
estimation is given by the sum of the signals estimated
individually. It can be shown that this algorithm approx-
imately solves the maximum penalized likelihood problem

θs;opt ¼ argmaxθsLðθsÞ; ð9Þ

where LðαÞ is the penalized log-likelihood given in Eq. (3)
with fixed covariance parameter θn (assumed to be known)
and with penalty function given by Eq. (6).
Let us consider iteration i, and let us label rðiÞ the

residuals from the previous iteration. We assume that we
already found i − 1 components fitting the signal, and we
now want to find the next significant element, if any, to add
to the sum in Eq. (8). We are looking for the value of θs that
best fits the signal left in rðiÞ. This is done by matched
filtering the residuals with the waveform model hðt; θÞ
given by

hðt; τ; βÞ≡ ψn

�
t − τ

β

�
; ð10Þ

i.e. finding the set of parameters τ, β that maximize the
output signal-to-noise ratio (SNR)

ρi ¼
hhjrðiÞiffiffiffiffiffiffiffiffiffiffiffiffihhjhip ; ð11Þ

where we defined the scalar products h·j·i as

hhjrðiÞi ¼
XN−1

k¼0

h̃�ðfk; τ; β; nÞr̃ðiÞk
SðfkÞ

: ð12Þ

The symbol x̃ represents the DFT of any vector x,
defined as

x̃k ≡ 1ffiffiffiffiffiffiffiffi
Nfs

p
XN−1

m¼0

xme−2jπ
mk
N ; ð13Þ

where the normalization depends on the time series size N
and the sampling frequency fs, and is chosen such that the
square modulus of x̃k is homogeneous to a PSD. If we
denote ψ̃nðfÞ the continuous Fourier transform of the
shapelet function in Eq. (7), we can write

h̃ðf; τ; β; nÞ ≈ βψ̃nðβfÞe−2jπfτ: ð14Þ

We now fix the shapelet order to n ¼ 1. This choice greatly
simplifies the model and hereby lightens the computational
cost of matched filtering. The counterpart is that we may
need more shapelet components to fit the rare events with
multiple oscillations.
We approximate the DFT of the shapelet function by its

continuous Fourier transform evaluated at discrete Fourier
frequencies fk, as given in Ref. [6]:

ψ̃nðfkÞ ¼ ð−1Þn
ffiffiffiffiffiffi
2n
π

r
ðnk − jÞ2n

ððnkÞ2 þ 1Þnþ1
: ð15Þ

Plugging Eq. (14) into Eq. (12) yields
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hhjrðiÞi ¼
XN−1

k¼0

βψ̃�
nðβfkÞr̃ðiÞk
SðfkÞ

e2jπfkτ: ð16Þ

Note that we choose the grid of arrival times τm ¼ m=fs to
be the same as the time series sampling cadence, then
Eq. (16) can be efficiently computed with an inverse fast
Fourier transform (FFT) algorithm.

D. Detection and false alarm probability

Here we derive the detection threshold used in the
matched filtering process. In gravitational-wave data analy-
sis, a common way to do that is through the F-statistics,
which is the likelihood in Eq. (4) maximized with respect to
the parameters on which the model depends linearly, called
extrinsic parameters [16]. In our problem, the extrinsic
parameters are the amplitudes of the shapelet functions αi.
Maximizing the logarithm of Eq. (4) with respect to α
yields

FyðθintrÞ ¼
1

2

jhhjyij2
hhjhi ; ð17Þ

where θintr ≡ ðβ; τÞ denotes the intrinsic parameters, i.e.
all other parameters different than the extrinsic ones. The
scalar product hhjyi involves a weighted sum of the data
DFT components ỹk which, in the absence of signal,
follows a zero-mean Gaussian distribution. Therefore the
scalar product follows a zero-mean Gaussian distribution
with covariance hhjhi−1, and 2Fy is a chi-squared distri-
bution with 2 degrees of freedom [17]. The cumulative
probability density of Fy is

pðF ≤ xÞ ¼ Γrð1; xÞ ð18Þ

where Γr is the regularized gamma function, given by

Γrðs; xÞ ¼
1

ΓðsÞ
Z

x

0

ts−1e−tdt; ð19Þ

where Γ is the gamma function.
In practice, we will calculate the F-statistics for a given

grid of values of the arrival time τ and the damping
parameter β. Assuming that the different variables Fi ≡
Fðτi; βiÞ are uncorrelated, the probability that neither of
them will exceed the threshold F0 is

pðmax
i
Fðτi; βiÞ ≤ F0Þ ¼

Yq
i¼0

pðFðτi; βiÞ ≤ F0Þ

¼ ½Γrð1; F0Þ�q; ð20Þ

where q is the number of explored parameters. The total
false alarm probability is therefore

PF;tot ¼ 1 − ½Γrð1; F0Þ�q: ð21Þ

If we impose a total false alarm probability α, then the
threshold must be such that

F0 ¼ Γ−1
r ð1; ð1 − αÞ1qÞ: ð22Þ

For large q, we can approximate the last equality by

F0 ¼ log

�
q
α

�
: ð23Þ

We impose to have a α ¼ 0.01% false alarm probability,
meaning that there is 0.01% chance that the detection could
be triggered by Gaussian random noise only. The corre-
sponding threshold for a 2.5-day segment sampled every
0.1 seconds with a grid of 80 values for β is nearly
SNR ¼ ffiffiffiffiffiffi

F0

p
∼ 5. Adopting this value, we chose to focus

on the robustness of the detection over its completeness,
in particular to be conservative with respect to PSD
estimation errors.

IV. APPLICATION TO LPF NOISE RUNS

The matching pursuit method described in the previous
section is applied to 56 LPF Δg noise-only measurements
acquired between March 2016 and July 2017, lasting 1 to
10 days. Some of them contain one or several transient
events. In this section, we describe the tuning of the search
and its outputs.

A. Preprocessing

Prior to running the algorithm, we divide each noise run
in segments of Tseg ¼ 2.5 days (or smaller, when the noise
measurement run itself is shorter). This segmentation
allows us to bound the memory cost of the matched
filtering, while encompassing the longest events in the
search window. After computing the SNR as a function of
the arrival time, we crop the SNR time series by Tseg=8 ¼
7.5 hours at the start and at the end, to avoid edge effects
(see, for example, [18]). As a result, there is an overlap of
2=8 ¼ 25% between two consecutive segments.
Afterwards, we perform a raw estimate of the noise PSD,

by fitting a spline to the log-periodogram. This fit is made
by taking the median of the PSDs estimated on 8 subseg-
ments, improving the robustness against glitches. This
provides a first estimate for the matching pursuit run,
during which the PSD estimate will be updated using the
residuals of the fit at each iteration. The parametrization of
the search is described below.

B. Parametrization of the search

The parameter grid that we explore is evenly sampled in
logarithmic space of β, with 80 values in the interval [0.1,
50000] s. The lower bound corresponds to the sampling
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time, and the upper bound corresponds to about twice the
duration of the longest glitch. In addition, we evenly
sample arrival times at the same rate as the input time
series (0.1 second). The order of the shapelet model is fixed
to n ¼ 1 to mitigate the computational cost of the search.
Since a single shapelet of order 1 may not be sufficient to
account for one glitch shape, we allow for several shapelet
elements to describe a single event. For example, sine-
Gaussian events are usually modeled with two elements of
the basis. Note that a new shapelet component is added to
the model only if the associated SNR in the residuals of the
previous iteration exceeds the detection threshold, thereby
preventing overfitting.
The iterations of the matching pursuit algorithm stop

when there are no more signal in the residuals that exceeds
the SNR threshold. The estimated glitch signal is then the
sum of all detected components, as given by Eq. (8).

C. Search results

At each iteration, the matching pursuit algorithm com-
putes the SNR time series from the residuals of the previous

iteration, using the current estimate of the noise PSD.
In Fig. 3, we present the SNR values, maximized over β,
computed at the first iteration of the third search segments
in the noise run covering the period between February 13,
2017 and March 2, 2017 (or noise run number 66). We
choose this excerpt because it corresponds to the best noise
performance achieved [3], and we zoom in the interval
where two events of different amplitudes are clearly visible.
For these events, the matching pursuit detections

coincide with events recorded in the legacy catalog made
to produce the data in Ref. [3]. In this earlier analysis, glitch
detection was performed visually using low-pass filtered
data. Then, glitches were subtracted using ad hoc models
based on exponential functions or filtered impulses [13].
This comparison confirms our ability to automatically
detect transients that were manually highlighted.
We plot in Fig. 4 two examples of spotted events. The

first one is a FRED event which corresponds to the SNR
peak exhibited in the upper panel of Fig. 3. We also plot a
sine-Gaussian event occurring earlier in the run, corre-
sponding to the peak shown in the lower panel of Fig. 3.
In addition, to cross-check the arrival times with the

events spotted in the best performance noise run of
February 2017, in Fig. 5 we compare the shapelet fit
residuals with the deglitched data that are shown in Ref. [3].
We plot the matching pursuit shapelet residuals (red)
against Ref. [3]’s data (orange). We observe a slight excess
of power at low frequency, below 0.2 mHz. This difference
is due to the grid of damping parameter β used in the
matching pursuit search which is not fine enough to provide
the best fit of the glitch signal, although it is sufficient to
yield a reliable detection. This is particularly true for long-
lived glitches where the maximum likelihood value lies
between two grid elements. To improve the fit, we can
refine the parameters estimation by sampling their posterior
distribution using a Markov chain Monte-Carlo (MCMC)
technique, as described in Sec. IV D. Starting with the
matching pursuit outputs, we can quickly converge toward
a more optimal value. By performing such a refinement on
the longest events, we obtain the black residuals in Fig. 5
which are close to Ref. [3]’s data within error bars. Note
that this comparison only provides a consistency check
between two deglitching approaches, since we do not have
access to pure noise residuals.

D. Refined parameter estimation

In this section, we check the results of the matched
filtering process on selected events by performing a refined
parameter estimation. To this aim, we use a Bayesian
approach by sampling the posterior distribution of the
glitch parameters:

pðθjxÞ ¼ pðxjθÞpðθÞ
pðxÞ ; ð24Þ

FIG. 3. SNR time series maximized over β, obtained at the first
iteration of the matching pursuit algorithm, for the third (upper
panel) and first segment (lower panel) of the 66th noise run. The
solid black line is the computed SNR, and the horizontal blue
dashed line corresponds to the detection threshold SNR ¼ 5. Red
circles localize detected events. Vertical dotted lines in orange
corresponds to the arrival times that were initially recorded in the
legacy catalog.
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where pðxjθÞ is the likelihood function, pðxÞ is the
evidence and pðθÞ is the prior distribution of the model
parameters. We estimate the posterior distribution for glitch
parameters θs ¼ ðα; β; τÞ.
The prior distribution for all glitch parameters are chosen

to be uniform around the values output by the matched
filtering. To probe the posterior, we use PTEMCEE [19,20], a
stochastic sampling method based on MCMC with parallel
tempering and linear transformations among chain states as
proposals. We choose the longest glitch present in the noise
run 66 as an example (see Table I), as this event has a

significant impact on the low-frequency part of the residual
spectrum shown in Fig. 5.
After sampling, the resulting posteriors for this inves-

tigation are shown in Fig. 6. Their marginal distribution
follows closely the Gaussian probability density, and
becomes stationary around the input values provided
by the matching pursuit algorithms, which were θs ¼
ð5.6 × 10−13 ms−2; 1.096 × 103 s; 3.6 × 105 sÞ.
Not surprisingly, the arrival time is the parameter best

spotted by the matching pursuit detection, because the grid
is as fine as the data sampling rate. The damping time grid
being coarser, the Bayesian estimation allows one to better
fit β to an intermediate value. This has also an impact on the
amplitude estimate α, since it is correlated with β. The
related improvement is visible on the residual plot shown in
Fig. 5, where the noise level is lower at frequencies
below 0.2 mHz.
This result advocates for including a glitch model as part

of LISA global fit, i.e. the full characterization of all
detectable sources in the data [22]. A glitch detection and
subtraction as a preprocessing phase might not be enough
to mitigate their impact on the noise PSD estimate and on
the bias of gravitational waves (GW) source parameters.

V. ANALYSIS OF GLITCH PARAMETER
STATISTICS

A. Description of the observed population

In this section, we analyse the distribution of glitch
parameters among all detected events. Since some glitches
are described by more than one basis component, we
assume that flagged arrival times occurring within less
than 5 seconds belong to the same event. We represent such
multicomponent glitches by an equivalent triad (αeq, βeq,
τeq) corresponding to the component of maximum SNR

FIG. 5. Comparison of the shapelet fit residuals with the results
of Ref. [3]. The red curve corresponds to the output of the
matching filter algorithm, while the black curve is obtained by
refining the glitch parameter estimates with an exploration of the
posterior. The orange curve show the residuals of the fit that was
performed in Ref. [3].

(a)

(b)

FIG. 4. Excerpt of the noise run covering the period between
February 13, 2017 and March 2, 2017, zoomed on the first
detection visible in Fig. 3. The black solid line is the detrended
Δg measurement filtered using a Butterworth filter with cutting
frequency 0.1 Hz; the red dashed line is the fitted shapelet signal,
and the grey curve is the fit residuals. (a) FRED example and
(b) Sine-Gaussian example.
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among the sum of components describing the event. Note
that due to the normalization of the shapelet function in
Eq. (7), the effective amplitude of a glitch is proportional to
α=β. Therefore the parameter αeq corresponds to an
equivalent transferred impulse αeq ¼ Δveq expressed in
units of velocity (m s−1). This quantity is important as it is
directly related to the event SNR.
We gather in Fig. 7 the histograms of the parameters from

all detected events. We separate the cold runs statistics
from the ordinary runs statistics. This study only includes a
single cold run, where 20% of the total number of events
were found. An upcoming investigation from the LPF
Collaboration will investigate more cold run measurements
[23]. The upper left panel shows the histogram of time
intervals between glitches, zoomed on values smaller than
105 seconds. We verify that they follow an exponential
distribution by fitting a linear curve between the logarithm of
the number of events and the time intervals. We estimate a
glitch rate of λ ≈ 5 × 10−5 s−1 (about 4 events per day) for
ordinary runs, and a rate about ten times larger for cold runs.
The histograms in the upper right panel exhibit

transferred impulses mostly ranging between 10−15 and
10−13 ms−1. Note that the lower bound is likely to be
due to the observation bias, i.e. the impossibility to
detect events below the noise level. For example, for the
estimated PSD in noise run 66, for β ≈ 1 minute and a SNR
detection threshold of 5, events with amplitudes below
2 × 10−16 ms−1 are not detected.

The lower left panel represents the damping times
distributions, which show that most events last less than
one minute, with rarer events lasting a few hours. The peaks
visible at the leftmost edge of the damping time histograms
are due to events whose timescales are either close or below
the sampling time, resulting in Dirac-like signals.
We also plot the statistics of the number of shapelet

components needed to describe single events. In most
cases, glitches have FRED shapes and one component is
enough to describe them. However, some glitches require
two or more components for their fit, like the sine-Gaussian
signal shown in the lower panel of Fig. 4.
To examine correlations among the glitch waveform

parameters, we plot in Fig. 8 the joint distribution of βeq
and Δveq in the form of a corner plot. We can crudely
distinguish two populations of events, especially when
considering the ordinary runs (gray). The first category
gathers short-duration events with damping times below
one second (lower contours in the figure), while the second
category includes longer events, with a peak around one
minute (upper contours). The impulses of short events are
on average slightly larger than the long ones.

B. Sampling from the glitch parameter distribution

For future instrument and data analysis characterization
efforts, it will be important to be able to generate as many
glitch events as needed for LISA simulations. To this aim,
we developed a method to sample the 2-dimensional
distribution of the glitch amplitudes and damping times,
to enable the corresponding LISA waveform generation.

FIG. 6. Posterior distribution of the amplitude (ms−2), damping
time (s) and arrival time (s) for the longest glitch event in run 66.
Priors are taken uniform around the matching pursuit output
values. This plot was produced using the CORNER PYTHON

package [21].

FIG. 7. Histograms representing the distribution of equivalent
glitch parameters from all detections, with logarithmic parameter
bins. Top left panel: difference in arrival time between sequential
glitches; top right panel: equivalent transferred impulse; bottom
left panel: equivalent damping time; bottom right panel: number
of shapelet components per detected event. We distinguish cold
(blue) and ordinary (gray) runs as they are affected by different
rates of event occurrence.
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Drawing new samples representative of the LPF glitch
population requires sampling the complicated two-
dimensional distribution of the glitch parameters ðα; βÞ
presented in Fig. 8, and sampling the times of arrival τ. The
approach that we adopt to draw samples from the desired
distribution follows the idea that one can define an
invertible map from the simple normal distribution
N ð0; IÞ to the desired distribution. This can be formalized
using the following change of variable equation:

pðθÞ ¼ N ðz−1ðθÞÞ
���� det ∂z

−1ðθÞ
∂θ

����; ð25Þ

where the parameters of the glitch are defined as θ ¼ ðα; βÞ,
pðθÞ is the distribution in question and zð:Þ is themap that we
want to estimate. The map can be estimated using machine
learning techniques called normalizing flows. We used a
particular implementation called neural spline flows [24].
We sample the glitches arrival times using the exponen-

tial distribution of the intervals between ordinary run events
that we fitted from the upper left histogram in Fig. 7.

VI. EXTRAPOLATING THE GLITCH
DISTRIBUTION FROM LPF TO LISA

Our analysis of LPF glitches can serve to inform a
tentative assessment of the impact of spurious instrumental
transients on LISA data processing. Another objective is to
develop the tools needed to test data analysis techniques

which will be robust to their presence. To do this assess-
ment, we need a process to translate LPF measurement into
equivalent LISA simulations.
In LPF, the presence of glitch signals could not be

detected in any measurement other than the most sensitive
channel that was the differential interferometer measuring
the position of one TM relative to the other. If we consider
the same scenario in LISA, we have to assume that glitches
may only be visible in the most sensitive channels as well,
which are time-delay interferometry (TDI) observables
[25,26]. TDI variables allow for the cancellation of laser
frequency noise and are obtained from a post-process
performed on ground. Besides, data analyses are generally
performed in units of relative laser frequency deviations,
also referred to as fractional frequency. Converting LPF
data into equivalent relative laser frequency deviations
requires integration with respect to time of the analytical
shapelet model. Then, it needs to be projected to LISA arms
and transformed through the TDI algorithm.
This approach was implemented in LISA GLITCH [27],

a Python module easily interfaced with the rest of the
simulation tool chain. LISA GLITCH is able to generate glitch
signals of various shapes, including the shapelet model
introduced in Sec. III B. These glitch signals are associated
with one injection point and written to a glitch file. This
glitch file is then read by the instrument simulator and
glitch signals are injected into their respective injection
points during the simulation.

A. Derivation of relative frequency deviations
induced by glitches

To adjust the glitch shapes to the commonly used units
we first integrate the acceleration perturbation Δa into a
fractional frequency signal dν=ν0 as

dν
ν0

¼
Z

t

0

Δaðt0Þ
c

dt0: ð26Þ

Plugging the shapelet model into the above equation yields
(see Appendix B)

dν
ν0

ðtÞ ¼ 2α

cβ

�
1 − e−

t−τ
β

�
t − τ

β
þ 1

��
hþðt − τÞ: ð27Þ

Graphs of the original glitch in differential acceleration
and the integrated glitch in fractional frequency are shown
in Fig. 9.

B. Time-delay interferometry response to glitches

A thorough investigation of glitch propagation would
require introducing them at different simulated injection
points, propagating the signals through the LISA dynamics
and observation of the output in different interferometers.
We postpone such an in-depth study for the future, as the
development of LISA dynamics simulations is still in

FIG. 8. Smoothed contour plots for the distribution of the
equivalent damping time βeq (s) and the transferred impulse
jΔveqj (m s−1, absolute value) in log scale. Blue histograms
correspond to the samples from the cold run and gray histograms
correspond to the samples from the ordinary run.
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progress at the time of the writing of this paper. In the
absence of dynamics, we inject glitches directly on the test-
mass interferometer or on the inter-spacecraft (science)
interferometer. We look at how the resulting output in the
TDI channels will differ based on the place of injection.
In reality the appearance of the glitches in one of the
interferometers will depend on their frequency content and
on the drag free and attitude controllers (DFACS) [28]
frequency response.
We consider the triple quasiorthogonal combinations A,

E and T which are typically used in the literature [29]. The
advantage of these combinations is that they exhibit
quasiorthogonal noise and T is a “null” combination which

suppresses most of the GW signal at low frequency. To
propagate the glitches through LISA data streams, we use
the pyTDI package [30] which computes TDI combinations
from raw interferometer measurements. We show an
example in Fig. 10. We see that the smooth step function
shape at the interferometer level in Fig. 9 is turned into
sharper features in the TDI combinations, which act as a
differentiation on a duration of a few interspacecraft delays
(about 8 seconds). We inject the glitch signal into one
single science interferometer out of six. Note that in reality,
the reaction of the spacecraft drag-free system control loop
may result in occurrences of the glitch signal in more than
one interferometer. More accurate and realistic propagation
of glitches in LISA is the subject of an ongoing study.

C. Glitch SNR in LISA

Using the simulation described in the previous section,
we can compute the glitch TDI response, and hence the
SNR in simulated LISA data. Although this computation

FIG. 10. Glitch response in TDI combinations A (first row), E
(second row), and T (third row) for an injection at the test-mass
(left column) and science (right column) interferometers.

(a) (b)

FIG. 9. Generated glitch with the shapelet model for the
parameter values β ¼ 50 s and α ¼ 5 × 10−12 m2 s−1 [panel
(a)]; and the representation of the same glitch in fractional
frequency [panel (b)]. (a) Dierential acceleration and (b) Frac-
tional frequency

FIG. 11. Median (blue) and 1σ-confidence interval (light blue
area) of the distribution of all detected glitches PSDs in the TDI
channel A (upper), E (middle), and T (lower), compared to the
theoretical noise PSD (red) expressed in fractional frequency
deviation.
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relies on the assumptions we made regarding the injection
point, it can provide us with a good order of magnitude
estimate. In the following, we choose to treat glitches as a
perturbation on one of the TMs.
We have to assume a noise model for the second-

generation pseudo-orthogonal TDI channels, reflecting
the main pathlength noises in the measurement. We use
the model provided by the LDC software [7], based on the
LISA science requirement document [31].
First, we compare the glitch power in the TDI combi-

nations A, E, and T with the theoretical PSD of the
stochastic instrumental noise. We choose an observation
time of 105 s, which encompasses the duration of the
longest glitch, and compute the empirical PSDs of all
detected events. We plot the median and the standard
deviation of this PSD distribution in Fig. 11, along with the
noise PSD.
We see that the median of the glitch power lies below the

mean noise level in the LISA frequency band. However, the
spreading of the power across a large bandwidth implies

large SNRs. Integrating the distribution over all frequencies
yields the events SNRs in TDI channels:

SNR2
LISA ¼

X
i¼A;E;T

Z
fmax

fmin

4
js̃iðfÞj2
SiðfÞ

df; ð28Þ

where s̃iðfÞ is the Fourier transform of the glitch response
in TDI i, and SiðfÞ is the instrumental noise one-sided
PSD in channel i. We restrict the integration to frequencies
greater than fmin ¼ 10−5 Hz and lower than fmax ¼ 1 Hz,
which are the boundaries of the observatory sensitivity goal,
as stated in the LISA Science Requirement Document [31].
Figure 12 shows the distribution of TDI SNRs derived

from LPF events detected in ordinary (gray) and cold (blue)
runs. It exhibits values that range between 10−2 and 104,
with 50% of events having SNRs larger than 10. The
maximal values are largewith respect to typical GW sources,
which can reach a few hundreds for galactic binaries to a few
thousands for supermassive black holes. However, glitch
signals are very short in time so they can easily be isolated in
time-frequency representations. This very preliminary analy-
sis suggests the need for an adequate processing to mitigate
the impact of glitches on science performance.

VII. CONCLUSION

In this paper, we investigated the presence of transient
noise artefacts in the LPF noise runs. We developed a
method to detect these glitches based on the matched
filtering of shapelets, a family of adapted mathematical
functions. Each shapelet component is parametrized by an
amplitude and a decay time, which can be interpreted as an
equivalent transferred impulse amplitude and duration,
respectively.
We characterize the glitch population by applying the

detection scheme to 56 differential acceleration measure-
ments, from which we obtain a distribution of amplitudes,
damping times, and arrival times. Then, we develop a
machine-learning method that allows one to draw an
arbitrary number of events from this distribution.
We explore possible consequences for LISA by making

assumptions on glitch injection points, i.e. on the system
components from which they may originate. Based on these
assumptions, we sketch a preliminary process to compute
equivalent perturbations in LISA TDI data. We find that
half of the detected events have a significant SNR when
extrapolated to LISAmeasurements. This result makes it all
the more necessary to study in depth the impact of transient
disturbances on LISA performance.
The tool that we develop constitutes a first building block

to inform studies assessing the impact of glitches on LISA
scientific performance, and develop adapted data analysis
methods to mitigate it. The outputs of this study are
currently used in the LISA Data Challenge dataset code-
named Spritz [7], where we simulate LISA data corrupted

FIG. 12. Distribution of extrapolated SNRs from LPF events in
the orthogonal TDI A (upper panel), E (middle), and T (bottom)
channels, for ordinary (gray) and cold (blue) runs, assuming a
single perturbation in one of the TMs.
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by LPF-like glitches. Investigating the effect of glitches on
the detection and characterization of GW sources is para-
mount for the LISA mission development. While some
studies already tackled the problem of distinguishing
instrumental glitches from GW bursts [32], more realistic
simulation campaigns including LPF-like signals and
dynamical instrumental response will be carried out in
the near future.
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APPENDIX A: LIST OF ANALYZED
NOISE-ONLY MEASUREMENTS

We insert in Table I the list of the analyzed data
segments.

TABLE I. Differential acceleration noise runs used in this work.

LPF run index Start time Stop time

1 2016-03-01 08:05:00 UTC 2016-03-03 08:00:00 UTC
2 2016-03-03 09:00:00 UTC 2016-03-05 08:00:00 UTC
3 2016-03-06 18:15:00 UTC 2016-03-11 07:59:46 UTC
4 2016-03-13 16:30:00 UTC 2016-03-15 07:00:00 UTC
5 2016-03-16 20:00:00 UTC 2016-03-19 07:59:47 UTC
6 2016-03-21 20:00:00 UTC 2016-03-26 08:00:00 UTC
7 2016-03-27 14:00:00 UTC 2016-03-28 08:00:00 UTC
7 2016-03-29 80:00:00 UTC 2016-03-30 08:00:00 UTC
8 2016-03-31 07:02:00 UTC 2016-04-02 08:00:00 UTC
9 2016-04-04 15:00:00 UTC 2016-04-14 08:00:00 UTC
10 2016-04-18 19:00:00 UTC 2016-04-18 22:00:00 UTC
12 2016-04-26 08:00:00 UTC 2016-04-30 08:00:00 UTC
13 2016-05-01 08:05:00 UTC 2016-05-02 23:55:00 UTC
14 2016-05-03 04:20:00 UTC 2016-05-05 15:30:00 UTC
15 2016-05-13 00:50:00 UTC 2016-05-13 07:30:00 UTC
16 2016-05-13 08:30:00 UTC 2016-05-14 08:00:00 UTC
17 2016-05-16 00:00:00 UTC 2016-05-19 08:00:00 UTC
18 2016-05-19 08:30:00 UTC 2016-05-21 11:00:00 UTC
21 2016-05-26 17:00:00 UTC 2016-05-27 01:00:00 UTC
37 2016-06-15 13:30:00 UTC 2016-06-18 08:00:00 UTC
39 2016-06-19 11:00:00 UTC 2016-06-25 08:00:00 UTC
40 2016-07-10 08:00:00 UTC 2016-07-11 09:55:00 UTC
42 2016-07-17 12:00:00 UTC 2016-07-20 06:00:00 UTC
43 2016-07-24 07:40:00 UTC 2016-07-30 00:00:00 UTC
44 2016-07-31 10:10:00 UTC 2016-08-02 06:00:00 UTC
45 2016-08-07 07:45:00 UTC 2016-08-08 04:20:00 UTC
47 2016-08-16 13:15:00 UTC 2016-08-20 05:45:00 UTC
48 2016-08-23 14:00:00 UTC 2016-08-27 20:00:00 UTC
49 2016-09-05 11:35:00 UTC 2016-09-06 05:05:00 UTC
50 2016-09-07 03:09:07 UTC 2016-09-07 04:50:00 UTC
51 2016-09-11 21:15:00 UTC 2016-09-16 05:15:00 UTC

(Table continued)
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APPENDIX B: DERIVATION OF LISA
RESPONSE TO GLITCHES

In this section, we derive LISA response to glitches in
fractional frequency deviations, assuming they can be
described by shapelets. For a shapelet of order n ¼ 1,
Eqs. (7) and (8) give

ΔaðtÞ ¼ 2α
t − τ

β
e−

t−τ
β hþ

�
t − τ

β

�
: ðB1Þ

Plugging this into Eq. (26) yields

dν
ν0

ðtÞ ¼ 2α

c

Z
t

0

t0 − τ

β
e−

t0−τ
β hþðt0 − τÞdt0

¼ 2α

cβ

Z t−τ
β

−τ
β

ue−uhþðuÞdu: ðB2Þ

This equation gives a nonzero value for t > τ, and is zero
otherwise. Therefore

dν
ν0

ðtÞ ¼ hþðt − τÞ 2α
cβ

Z t−τ
β

0

ue−udu

¼ 2α

cβ
½−e−uðuþ 1Þ�

t−τ
β

0 hþðt − τÞ

¼ 2α

cβ

�
1 − e−

t−τ
β

�
t − τ

β
þ 1

��
hþðt − τÞ: ðB3Þ

This function is similar to a step function starting from a
value zero and rising at

lim
t→þ∞

dν
ν0

ðtÞ ¼ 2α

cβ
: ðB4Þ
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