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Introduction 
• An explosion in scientific publication rates

• as exemplified by the COVID-19 infodemic
• large amounts of scientific documents freely 

accessible online

• Contributing factors: 
• Open science, open-access initiatives
• preprint servers, generative AI

• Problems:
• ‘burden of knowledge’: rate of scientific research 

progress not keeping up with publication rates
• ‘fake science’: rise in prevalence of misinformation

Else, H., 2020. How a Torrent of COVID Science changed 
Research Publishing—in seven charts. Nature, V588 (553).

Need more machine-driven, human-interpretable approaches to scientific knowledge discovery



The rise of AI-assisted Science  
• Open datasets, e.g., CORD-19 (articles on COVID-19)

• Led to tools for search, Q&A, recommendation, summarization, 
and claim verification over scientific documents.

• Foundation models, e.g., GPT-n, Galactica  
• Led to tools for literature review, explaining scientific concepts, 

scientific code generation, intelligent reading interfaces.
• Allen AI’s Semantic Reader product aims to integrate tools to 

augment the scientific reading & discovery experience.

• From scientific discovery to scientific understanding
• Early works show potential emergent autonomous                

scientific research capabilities of LLMs (Boiko et al. 2023)

Most research to process, analyze, explore scientific documents focuses only on text content.
Significant information also present within structured artifacts, e.g., tables, charts.    

https://allenai.org/data/cord-19
https://www.semanticscholar.org/product/semantic-reader
https://arxiv.org/abs/2304.05332


Our research Focus: (Scientific) Tables
• Information in tables is critical to emerging 

knowledge-driven applications:
• e.g., intelligence analysis and production, 

genomic surveillance
• technical experts (scientists, analysts) look to 

discover vital knowledge nuggets not only from 
text but also from tables

• Automated mechanisms to infer the 
semantic meaning of scientific tables 
• relevance to a knowledge discovery scenario
• generate tabular responses on-the-fly by 

possibly fusing information from multiple tables

Scientific documents à Collection of content-rich tables + descriptive context
Apply semantic technologies to model information in scientific tables to enable discovery

“Treatment efficacies against the top prevalent 
COVID-19 variants in each US state”

Understanding information contained in tables from 
scientific & technical documents within specialized 

domains (e.g., biomedical)



Tables have been extensively studied 

Extraction & interpretation of web tables 
for search, retrieval, Q&A
Some capability already integrated into 
modern-day search engines

Dataset retrieval over Open data with 
view discovery, augmentation
Dataset search engines help prepare 
datasets for data science applications

https://arxiv.org/abs/2002.00207
https://arxiv.org/abs/1901.00735


Tables have been extensively studied 

Scientific tables bring additional challenges and opportunities

• Significant advances in pre-trained / table representation learning 
models for well-structured tabular data and a variety of 
downstream tasks.

• Some specifically address tables in scientific/technical documents:
Dataset Downstream task
PubTables-1M Table detection, Table structure recognition
ChemTables Table classification
ArxivPapers Table extraction
SciGen Reasoning-aware Table-to-text generation
TAT-QA Question-answering over Tables and text
S2abEL Entity Linking for scientific Tables

https://www.eurecom.fr/en/publication/6721
https://arxiv.org/abs/2110.00061v3
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-021-00568-2
https://github.com/paperswithcode/axcell
https://cogcomp.seas.upenn.edu/page/publication_view/962
https://aclanthology.org/2021.acl-long.254/
https://arxiv.org/abs/2305.00366


Tables in Scientific Documents
• Optimized for human visual consumption

• minimize information overload
• various information compaction practices to ensure fit 

under space constraints

• Machine-driven understanding and discovery 
of scientific tables is challenging

Structural Heterogeneity

Dense, often implicit, 
semantics

Diffuse context

Domain-specific entities

Questionable reliability

shares some similarities 
with web tables

shares similarities with 
open dataset search

not adequately 
addressed by either



Approach and Contributions**
• Collect tables from scientific articles
• Represent scientific tables as 

semantically-annotated linked data 
through a two-stage methodology:
• Automated rule-based structural 

characterization; syntactic parsing through 
“specialists”

• Semantic table interpretation with joint inference

• Enable discovery of tabular 
information from knowledge graph
• Search queries under rich contextual constraints 

(including information reliability)
• On-the-fly table generation by fusing information 

from compatible tables

Dataset Collection Pipeline
• harvest tables and provenance metadata 

from PubMed Central open-access subset

Preliminary Prototype Systems
1. Automated pipeline to construct a 

knowledge graph of scientific tables
• Ontology to model tabular data and context
• Core entity linker for scientific tables
• Joint inference based on KG embeddings

2. Scientific table discovery system
• UI to specify table-based semantic search 

requests and explore responses
• Discovery engine to produce ranked lists of 

matching tables (including on-the-fly tables) 
with explainability

** https://github.com/ge-knowledge-discovery (currently in process of being open-sourced)
Looking for collaborations to build on/extend our work, co-develop new datasets & applications

https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
https://github.com/ge-knowledge-discovery


Dataset Collection Pipeline

PMC Search 
API

Verify Access 
& Filter

PMC Open Access Commercial Use Collection

PMC5500358
PMC3230403
PMC1665467
…

Download Unpack
Archive Extract Tables

"COVID"  OR "COVID-
19" OR "Coronavirus" 

OR "Corona virus" 
OR "2019-nCoV"

200K+ IDs 62,777 
articles

271K+ 
images
(jpg, png, tif)

62,746 XMLs

120,417 
HTML Tables

PMC – PubMed Central

(as of 06/26/2021)

Code available under: https://github.com/ge-knowledge-discovery/procure-corpus-builder

CC BY, CC0

https://github.com/ge-knowledge-discovery/procure-corpus-builder


Knowledge Graph Construction from 
Scientific Tables

Table 
Characterization Table Flattening Core Entity Linker Joint Inference Triple Generation

Knowledge Graph 
of Scientific Tables

Semantic Interpretation
<HTML> PMC 

Table

• infer structural characteristics at the 
cell, column, row and table levels

• basic data types (number, string) and 
high-level types (e.g., DNA sequence)

• separate core cell content from its 
contextual metadata (e.g., units)

• convert complex structures into simple 
relational tables

• link header cells to concepts and data 
cells to entities in Wikidata

• where possible, collectively assign 
concepts and entities to header and cells

• represent inferred structural, syntactic 
and semantic knowledge as RDF triples

• triples for document metadata + context
• populate into a knowledge graph 



Taxonomy to Characterize Tables 

We leverage and extend multiple existing taxonomies and classification techniques in order to 
adequately characterize scientific tables

Relational

Concise Nested Multivalued

Simple Composed

Splitted

Web Tables

Relational 

Horizontal Vertical Matrix

Layout

Formatting Navigation

Lautert, L. R., Scheidt, M. M., & Dorneles, C. F. (2013). Web table taxonomy and formalization. ACM SIGMOD Record, 42(3), 28-33.



Table Characterization at different granularities

Horizontal Table Vertical Table Matrix Table

Concise Header

Multilevel Header

Splitted (Header)

Simple Header

Basic type: number

Header Column

Header Row

Concise Body

Basic type: number with tolerance

Basic type: string

Basic type: number with range
. . .  

(Main Classification)

Characterize tables with 18 
different labels at cell, row, 

column, and table levels 
(full list in the paper) 



Rule–based approach for Table Characterization

Multi-level Header
(multiple <tr> in <thead>)

Concise Header
(colspan/rowspan > 1)



Table Characterization – Illustrative Example



Table Characterization Stats and Results
Characterization System Count # of Tables 

manually labelled
Precision Recall

Tables with Header Rows 113,582 110 1.00 0.94

Tables with Header Columns 48,733 103 1.00 0.55

Tables with Concise Header Rows 36,182 34 0.84 0.94

Tables with Multi-level Header Rows 32,169 33 1.00 0.97

Tables with ONLY Numeric Data Cells 12,969 29 1.00 0.83

Tables with Concise Body 40,158 39 0.97 0.67

Horizontal Tables 21,863 38 0.95 0.50

Vertical Tables 7205 16 0.91 0.62

Manually annotated tables from randomly selected articles. Computed Precision & Recall at the label level 
(Precision: # of correct predictions / total predictions; Recall: # of correct predictions / expected predictions)

PMC8185411

Manual User Annotations

Precision is generally high. Recall is low in some cases.
Rule coverage not exhaustive enough. Additional supervised algorithms may help.



Specialists to Detect Commonly Occurring Data

• Scientific table cells encode commonly 
occurring data – e.g., references, DNA/ 
RNA sequences, clinical trial IDs, etc.

• Specialists assess commonly encoded 
data types to avoid linking such cells 
à overall better table characterization 
and semantics 

• Specialists may be regex/pattern-
based, dictionary-based, or ML-based 
depending on the data type

• Each applicable specialist assesses 
the cell values independently

Identified using Pint python package 
https://pint.readthedocs.io/

Large amount of literals in scientific tables.
Important to detect and learn to not link literals.

https://pint.readthedocs.io/


< /> HTML table 

Table 
Characterization

Import into 
Pandas DF

Re-export Table 
as HTML

Detect Table, Header, 
and Body types

Pandas “Flatten”
< /> HTML table 

Complex tables
Flatten by importing to Pandas dataframe

After flattening, this complex table is now 
correctly classified as a horizontal table



Semantic Table Interpretation

Table 
Characterization Table Flattening Core Entity Linker Joint Inference Triple Generation

• Infer table semantics by mapping to concepts & 
entities in some reference knowledge base 
(Wikidata, DBpedia)

• SemTab challenge @ ISWC
• CTA: Assign a KG class to a column
• CEA: Match a cell string to a Wikidata entity
• CPA: Assign a property to relationship between two 

columns
• Recently included BioTables, BiodivTab datasets



Core Entity Linker

• We developed a practical, scalable 
entity linker to keep up with rate of 
publication of scientific tables

• Given a cell string, we retrieve top k 
matching Wikidata items, performing 
type analysis and filtering to return 
top-ranked candidate.

• Currently focused on CTA, CEA only
• Adapted to scientific tables in the 

biomedical domain 

Mulwad, V., Finin, T., Kumar, V. S., Williams, J. W., Dixit, S., Joshi, A.
A Practical Entity Linking System for Tables in Scientific Literature. 

In 3rd Workshop on Scientific Document Understanding at AAAI-2023.



Embeddings-based Joint Inference
overview

Candidate 
Generation

Find 
Agreement

Country
USA
India
Italy

Brazil
UK
…
…

Agreement between entities 
assigned to data cells in a column

Wikidata 
Entities

Update 
Assignments

Joint Assignment

Candidate 
Embeddings

Embeddings-based 
Agreement Function

Wikidata Embeddings 
(via Wembedder API)

Inferring table semantics is improved via joint inference using embeddings of Wikidata items 
(i.e., embeddings-driven agreement function to compute compatibility between entities)

Core entity linker



Embeddings-based Agreement
a clustering approach

https://en.wikipedia.org/wiki/K-means_clustering

K-Means Clustering
Separates samples into N clusters, 

minimizing the within-cluster sum-of-squares 
(minimize sum of distances between each point 

and its cluster centroid)

Required Input: NUM_CLUSTERS
(target number of clusters)

Embeddings-based 
Agreement Function

Candidate 
Embeddings Clustering Determine 

Mode Cluster
Update 

Assignments



Embeddings-based Joint Inference
perform clustering on embedding vectors; example

Country
USA
Italy

Brazil
…
…
…
…

1. Q114147 (city in Japan)
2. Q8175 (river in Russia)
3. Q30 (United States)
4. …

Cluster IDs 
(K-Means)

Ranked List of 
Candidate Entities

(using base entity linker)

cluster 0
(no cluster)
cluster 2
…

“Mode”
Cluster ID
(most frequently 
occurring as first-

ranked vector)

[vector]
(no vector)
[vector] 
…

m
od

e 
cl

us
te

r I
D

 =
 2

Candidate 
Selected

(highest-ranked entity 
with mode cluster id)

Country
USA Q30
Italy Q38

Brazil Q155
…
…
…
…

1. Q38 (Italy)
2. Q977238 (town in Texas)
3. Q172579 (historical kingdom)
4. …

[vector]
(no vector)
[vector] 
…

cluster 2
(no cluster)
cluster 2
…

1. Q155 (Brazil)
2. Q1998364 (town in Indiana)
3. Q682944 (microregion)
4. …

[vector]
[vector]
[vector] 
…

cluster 2
cluster 0
cluster 0
…

Embedding 
vectors

(via Wembedder API)



Annotations for Evaluating Table Semantics
• Manually annotated 47 tables drawn from 

randomly selected 45 PMC articles
• Each table cell was mapped to: 

• Wikidata Item
• Literal (string/numeric data not representing an entity) 
• Reference (header cells for cols. with references)
• Clinical Trial IDs (header cells for cols. with clinical trial 

IDs )
• Index (header cells representing index cols. in a table)
• NA (entity, but doesn’t exist in reference KG)

• 3600 table cells were annotated

Annotation Type Count
Wikidata 910
Literal 2548
NA 118
Clinical Trial ID 4
Reference 14
Index 6

Distribution of manual 
annotations amongst 

different types

Almost 70% of cells across manually annotated tables are literals



Semantic Annotation: Overall Evaluation

Anno. Type # of cells Pr. Re. F-Score

Literal 2548 0.98 0.81 0.89

Wikidata 910 0.33 0.50 0.40

NA 118 - - -

Reference 14 0.91 0.71 0.80

Index 6 - - -

Clinical Trial ID 4 1.00 0.50 0.67

Rule-based methods 
(basic types + specialists) 
lead to high precision for 
Literals, CT IDs, and Ref. 

As expected, also can 
lead to low recall (e.g., 
CT ID) when rules don’t 
provide coverage

Lower scores for 
predicting Wikidata links

Computed Precision & Recall at the label level
Precision: # of correct predictions / total predictions
Recall: # of correct predictions / expected predictions



Wikidata Annotation – Analysis

Expected Annotation in 
Candidate Set

~60% (554/910) 

Expected Annotation 
Missing in Candidate Set

~40% (356/910)

Does the expected annotation appear in the top 
25 candidates for table cells where expected 
annotation is a Wikidata item? Core linker is not able to 

retrieve candidates for a 
fairly large fraction of 
possible idiomatic strings

Expected Wikidata Annotation 910

System Predicted Wikidata Annotation 1373

Literal/Ref./CT ID Cells misclassified as Wikidata Links 488

Did the system confuse literals and entities?
Non-entity strings 
mapped/predicted as Wikidata 
annotations makes a 
substantial negative impact on 
performance



Knowledge Graph population

Table 
Characterization Table Flattening Core Entity Linker Joint Inference Triple Generation

Knowledge Graph 
of Scientific Tables



Ontology and Triple Generation

• We developed an ontology to represent article 
metadata, data and inferred semantics of scientific 
tables

• Builds on W3C standards, including PROV

• We auto-generate RDF triples at document-level, 
followed by table-level, and finally at cell-level

• Roughly 1000 triples per PMC document (but 
varies widely based on table count and contents)

• Knowledge graph persisted in triple store to support 
table discovery

• Open-source: Apache Jena/TDB2/Fuseki, RDFlib, 
pyfuseki, …



Discovery of Scientific Tables
overview

• Search and retrieval of tabular 
information from our knowledge graph

• Emulate database-style discovery 
operations against semantically 
annotated scientific tables

• Leverage semantic technologies for 
search:

• Header-cell semantics à search/filter matching 
tables, and on-the-fly fusion of contextually-
compatible tables

• Header-cell & data-cell semantics (incl. units) à 
disambiguate contents of on-the-fly fused tables



Discovery of Scientific Tables
prototype search application and user interface

1 3

2
1. Interface for table-based semantic search queries

• list of query terms, semantic resolution of query terms  (map to 
items in knowledge base), ‘sketch’ desired resultant table

2. Advanced search features
• multiple contextual constraints and ranking preferences

3. Sample response to search query
• ranked list of original and on-the-fly fused tables
• explore content and provenance of individual result tables
• highlighted header cells depict semantic match
• reliability score provides guardrails for safe search

  



Discovery of Scientific Tables
table discovery engine: system-centric view

Data Discovery Engine

Query ParserTable-based 
Request Query Plan SPARQL 

Formulator
SPARQL 
Executor

SPARQL 
Query

SPARQL 
Result 

Processor

Result 
Tables

Table Fusion
strategy

Any search request gets transformed into a query plan composed of one or more of ‘primitive’ 
operators. Each operator is then translated into an ad hoc query clause as part of incremental 
SPARQL query formulation.



Conclusions and Future Work
• Tables in scientific documents contain important information
• Knowledge discovery from scientific tables is as vital as from text
• We implemented preliminary prototype systems for constructing and 

searching over a knowledge graph of scientific tables.
• Novel aspects: Two-stage table interpretation, table-based semantic 

search, on-the-fly table generation
Table Characterization
(over 120K tables)

High precision. Future: Improve recall for certain labels by including 
additional rules or exploring development of supervised algorithms.

Semantic Interpretation Performs well when our system discovers appropriate entity in its 
ranked candidate set but fails otherwise. Future: Further adapt 
candidate search to idiomatic strings; Techniques to distinguish 
between literals and entity strings.

Tabular Data Discovery 
(only strict header match)

Low mean average precision, but high recall. Future: Enhanced 
semantic matching and information fusion across tables.
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