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ABSTRACT

Title of dissertation: Robust Value-at-Risk (VaR) Portfolio Selection
Problem Under the Joint Ellipsoidal Uncertainty
Set In the Presence of Transactions Costs

Hyekyung Park, Doctor of Philosophy, 2017

Dissertation directed by: Florian Potra, Weining Kang
Department of Mathematics and Statistics

The robust portfolio selection problem considers the worst case of return un-

der uncertainty sets of parameters, such as mean return and covariance of return.

Goldfarb and Iyengar defined the return of assets by a factor model and provide

the ‘Separable’ uncertainty sets for mean return and covariance of factor returns.

However the sets are too conservative and construct a non-diversified portfolio. To

overcome the drawbacks, Lu defined the ‘Joint’ ellipsoidal uncertainty set for mean

return and covariance of factor returns.

In this research we derive a robust portfolio under the ‘Joint’ ellipsoidal un-

certainty set. The problem is to maximize the expected return on a portfolio while

restricting loss to exceed an investor’s specific acceptable loss on a specified degree

of confidence, called the robust Value-at-Risk (VaR) constraint problem. The con-

straint establishes an upper bound ε on the probability of losing a given percentage

δ on the investment. The constraint under the uncertainty set is a non-convex func-

tion, so we use two reasonable estimations, which can be derived as semidefinite and



second order cone constraints, so that the problem with the estimations can be eas-

ily solved. The computational results on real market data show why the estimations

are reasonable, and these results are compared to the problem under the ‘Separable’

uncertainty sets.

Additionally we extend the robust VaR constraint problem under the ‘joint’

uncertainty set to the problem in the presence of transactions costs, which are

expenses incurred when buying or selling stocks. The idea is from the multi-period

portfolio management problem and uses the same notations. The problem is to

maximize transactions costs-adjusted return with the VaR constraint under the

ellipsoidal uncertainty set. The real market simulation examines the impact of

transactions costs consideration in the model.
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Chapter 1

Introduction

1.1 Background and Motivation

One of the main problems in finance is how to allocate money into a given

number of financial assets, e.g., options, stocks, and cash equivalents, in other words,

how to construct a portfolio with available assets. Not all investors behave in the

same manner. There are many factors that affect an investor’s decisions, such as risk

tolerance, available capital, and time horizon, so they have various different goals.

Many researchers developed a variety of real market problems which depend on

investors’ goals and other factors. Risk and potential return are especially considered

by researchers. Risk, or volatility, includes a possibility of losing investment, and

typically variance or standard deviation are used as measures of the risk. The first

mathematical portfolio model, called Mean-Variance Optimization (MVO), which

maximizes the expected return of a portfolio while the variance of the return is

less than a certain value, was introduced by Markowitz [30]. The classical optimal

strategy is to assume parameters, such as mean return and covariance of return, to be

known from historical data, but the solution is too sensitive to small perturbations

in the parameters. As such, researchers in robust optimization further developed

the Markowitz model by assuming the worst case of return or adopting a range of

parameters instead of an estimating a single value and finding an optimal strategy.
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There are a variety of robust portfolio models and many helpful overviews of robust

portfolio optimization [5, 13,25].

In this dissertation research, we are interested in the problem of maximizing

the expected return on the portfolio while restricting the loss not to exceed an

investor’s specific acceptable loss on a given a specified degree of confidence, called

the Value-at-Risk (VaR) constraint. The VaR measures the level of financial risk

within an investment portfolio and defines the expected loss of the portfolio over a

time period for a level of probability. The VaR constraint imposes a threshold on

the expected loss of the portfolio.

When investors buy or sell stocks, transactions costs are incurred. For passive

investors, who seldom rebalance their portfolios, transactions costs do not signifi-

cantly affect their wealth. However, investors who rebalance their portfolio regularly,

i.e. a few times a year, need to consider transactions costs because the profit they

earn from the portfolio can be negated by the cost. Thus, we also extend the robust

VaR constraint problem to the problem in the presence of transactions costs. The

problem is to maximize the return of the portfolio adjusted for transactions costs

under the VaR constraint of the return.

1.2 Outline of Thesis

Assume that there are n assets in a market. Let r be an n-dimensional column

vector such that ri is the return of asset i, i = 1, . . . , n. Our objective is to find

an optimal weight that maximizes the return of a portfolio under a probability
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constraint, called the VaR constraint, which establishes an upper bound ε on the

probability of losing a given percentage δ on an investment, i.e.,

max
φ

rTφ

s.t P
r∼P

(rTφ ≤ −δ) ≤ ε, (1.2.1)

φ ∈ Φ,

where φ is a weight vector so that the entry φi represents the fraction of total wealth

invested in the i-th asset. In the portfolio model, Φ represents the set of acceptable

weight vectors, which is typically defined as

Φ = {φ ∈ Rn : eTφ = 1, φi ≥ 0, i = 1, . . . , n}. (1.2.2)

Note that a nonnegative weight means that short selling is disallowed.

To solve the problem (1.2.1), we study various robust portfolio models that

relate to this dissertation work in Section 1.4. In Section 1.4.1, we examine how

the robust models have been developed in finance. Since the return of assets or the

distribution of the return are unknown in practice, so we examine the distributional

uncertainty models that can handle the VaR constraint in problem (1.2.1) in Section

1.4.2. The returns used in this dissertation are all defined using a factor model, the

details of which are described in Section 1.4.3. Using the factor model, Goldfarb and

Iyengar [16] provide the uncertainty sets for the mean return µ and the covariance

matrix of factor return V , called separable uncertainty sets, which are described in

3



Section 1.4.4. Lu [29] develops a set called the joint ellipsoidal uncertainty set, which

shares common properties with separable sets, but also overcomes some drawbacks

of the separable sets. The definition of the joint ellipsoidal uncertainty set is given in

Section 1.4.5 and is applied to solve the problem (1.2.1) in the next chapter. Section

1.4.6 introduces the multi-period robust portfolio selection problem, which considers

the transactions cost in the model. As such, models in the previous sections only

consider the return of the portfolio, whereas this model considers the actual return

produced by deducting the cost. The notations used in this section are used to

extend the model described in Chapter 3.

In Chapter 2, we discuss the real market data and performance measures of

portfolio used to simulate all models in this dissertation. Several models examined

in Section 1.4.1 are applied to the real market data so that the computational results

can be compared to our model in the subsequent chapters.

In Chapter 3, we derive a model that solves the problem (1.2.1) under the

joint ellipsoidal uncertainty set. The VaR constraint under this set is difficult to

solve directly, so we use two estimations of the constraint and derive models using

each estimation. In Chapter 4, the model introduced in Chapter 3 is extended to

a model in the presence of transactions costs. Theses results are compared to the

earlier model results that did not consider transactions costs. The models use the

notation in [6], described in detail in Section 2.6. We have used MOSEK 1 in Matlab

for simulations.

1Available at www.mosek.com [1]
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1.3 Notation

The list of mathematical notations are defined in this section.

R the set of all real numbers
Rn the set of all n dimensional real column vectors
Rm×n the set of all matrix with m rows and n columns
Sn the set of all symmetric matrix in Rn×n

Sn+ the set of all symmetric positive semidefinite matrix in Rn×n

Sn++ the set of all symmetric positive definite matrix in Rn×n

Ln n-dimensional second order cone, {z ∈ Rn : z1 ≥
√∑n

i=2 z
2
i }

Let x ∈ Rn be a vector.
‖x‖1 1-norm of x,

∑n
i=1 |xi|

‖x‖2 2-norm of x,
√∑n

i=1 x
2
i

‖x‖∞ ∞-norm of x, max{|xi| : i = 1, . . . , n}

Let S be a vector space over the real numbers and a set C in S is convex, i.e.,
for all x, y ∈ C, and for all t ∈ [0, 1], the point (1− t)x+ ty also belongs to C.
ri(C) the relative interior of C, {x ∈ C : ∀y ∈ C, ∃λ > 1 : λx+ (1− λ)y ∈ C}

Let r ∈ Rn be a random variable.
E(r) the mean(or expected value) of r
Var(r) the covariance of matrix of r
ρx,y a correlation of two random variables x ∈ R and y ∈ R
N (m,σ2) a normal (or Gaussian) distribution with mean m ∈ R, variance σ2 ∈ R
N (µ,Σ) a multivariate normal distribution with mean µ ∈ Rn,

covariance Σ ∈ Rn×n

Z ∼ N (0, 1) the standard normal random variable
FZ (·) the cumulative density function (CDF) of a random variable Z

Let M ∈ Rn×n be a square matrix.
σ(M) the spectrum of M, set of its eigenvalues
σmax(M) the maximum eigenvalue of matrix M
M � 0 M is a symmetric postive definite matrix, i.e., M ∈ Sn++

M � 0 M is a symmetric positive semidefinite matrix, i.e., M ∈ Sn+
rank(M) the dimension of the vector space generated by its columns (or rows)
‖M‖2 2-norm of M , max

‖x‖2=1
‖Mx‖2 = σmax(M)
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Let A ∈ Rm×n, B ∈ Rp×q be matrices.
vec(A) the vectorization of A,

[a1,1, . . . , am,1, a1,2 . . . , am,2, . . . , a1,n, . . . , am,n]T ∈ Rmn

vech(A) the half-vectorization of A ∈ Sn, vectorization of the lower
triangular part of A

[a1,1, . . . , an,1, a2,2, . . . , an,2, . . . , an,n−1, an,n]T ∈ R(n+1)n/2

A⊗B the Kronecker product,

a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq

Let A,B ∈ Rm×n.

A ·B the Frobenius inner product,
∑m

i=1

∑n
j=1 AijBij = vec(A)Tvec(B)

A ◦B the Hadamard product, (A ◦B)i,j = AijBij

1.4 Literature Review

1.4.1 Uncertainty Sets for Mean and Covariance of Return

The first mathematical portfolio selection model, called the mean-variance

optimization (MVO) model, was introduced by Markowitz [30]. The model can be

formed in two ways: one way is the minimum variance problem that minimizes the

variance of the portfolio while it yields at least a given target return R, i.e.,

min
φ
{φTΣφ : µTφ ≥ R, φ ∈ Φ}, (1.4.1)

and the other way is the maximization return problem that maximizes the return on

the portfolio while it satisfies a given upper limit σ2 on the variance of the portfolio,

i.e.,

max
φ
{µTφ : φTΣφ ≤ σ2, φ ∈ Φ}, (1.4.2)

6



where µ ∈ Rn denotes the mean return and Σ ∈ Sn+ denotes the covariance matrix of

returns. Despite the model’s theoretical success, practitioners do not use the basic

model because parameters µ and Σ are unknown, and the solution is too sensitive

to small perturbations in these parameters. To overcome this drawback, many

researchers have proposed robust optimization models for the portfolio selection

problems, specifically modeling them as linear programming problems. Consider a

linear programming (LP) problem in the form

min
x

cTx

s.t Ãx ≤ b, (1.4.3)

l ≤ x ≤ u.

Soyster [36] developed a stable model by introducing the notion of the uncer-

tainty set of the parameter, which is unknown but bounded and symmetric, such as

ãij ∈ [aij − âij, aij + âij], and solves the problem by assuming the worst case on the

parameters. Then model (1.4.3) can be reformulated as

max
x,y

cTx

s.t
∑
j

aijxj +
∑
j∈Ji

âijyj ≤ bi,∀i, (1.4.4)

− yj ≤ xj ≤ yj, ∀j,

l ≤ x ≤ u, y ≥ 0,

7



where Ji is the set of coefficients in row i that are subject to uncertainty.

Although the models reduce the sensitivity of the parameters, these models

are too conservative, resulting in solutions with much worse expected return than

the solution of the nominal problem. By using Soyster’s scheme, Ben-Tal and Ne-

mirovski [4] proposed a model that gives a reliable robust solution of the linear

programming problem with a specified amount of uncertain data. They proposed

the following robust problem:

max
x,y

cTx

s.t
∑
j

aijxj +
∑
j∈Ji

âijyij + Ωi

√∑
j∈Ji

â2
ijz

2
ij ≤ bi,∀i, (1.4.5)

− yij ≤ xj − zij ≤ yij,∀i, j ∈ Ji,

l ≤ x ≤ u, y ≥ 0.

The authors have shown that the probability that the i-th constraint is violated is

at most exp(−Ω2/2). This model applied to portfolio problem will be examined in

Section 2.7.

Bertsimas and Sim [7] relaxed the worst case of the parameters by defining

a new parameter called the budget of uncertainty. They defined Ji as the set of

coefficients aij, j ∈ Ji that are subject to parameter uncertainty, and the budget of

uncertainty Γi takes values in the interval [0, |Ji|]. The parameter Γi adjusts the level

of robustness and if the parameter is integer, then it is interpreted as the number

of uncertainty parameters that take their worst case value, aij − âij. They flexibly

8



adjusted the level of conservatism of the robust solution in terms of probabilistic

bounds on constraint violations. Then the LP problem in (1.4.3) can be derived as

max
x,y,p,z

cTx

s.t
∑
j

aijxj + ziΓi +
∑
j∈Ji

pij ≤ bi,∀i (1.4.6)

zi + pij ≥ âijyj,∀i, j ∈ Ji

− yj ≤ xj ≤ yj,∀j

l ≤ x ≤ u, p, y, z ≥ 0.

Many other researchers have proposed different uncertainty sets for µ and

Σ in order to solve the Markowitz model (1.4.2) by assuming the worst case of

the parameters, more details of which are in [5]. Lobo and Boyd [27] proposed box,

ellipsoidal, and other uncertainty sets for µ and Σ. For example, the box uncertainty

sets have the form M = {µ ∈ Rn | µ
i
≤ µ ≤ µi, i = 1, . . . , n}, S = {Σ ∈ Sn+ | Σij ≤

Σ ≤ Σij, i = 1, . . . , n, j = 1, . . . , n}. With these uncertainty sets, they solve robust

variants of problems (1.4.1) and (1.4.2):

min
φ

{
sup
Σ∈S

φTΣφ : inf
µ∈M

µTφ ≥ R, φ ∈ Φ

}
. (1.4.7)

Tütüncü and Koenig [37] focused on the case of box uncertainty sets for µ and

9



Σ, and show that problem (1.4.7) is equivalent to

min
φ

{
inf

µ∈M,Σ∈S
µTφ− θφTΣφ : φ ∈ Φ

}
, (1.4.8)

where θ ≥ 0 is an investor-specified risk factor.

Ben-Tal, El Ghaoui, and Nemirovski [2] solved the problem in (1.4.3) under

three different uncertainty sets, namely Box, Ball-Box, and Budgeted uncertainty

sets. The return r is defined as ri = µi + σiζi, where ζ is in the three different

uncertainty sets Z:

• Box uncertainty set: Z = {ζ ∈ Rn : ‖ζ‖∞ ≤ 1},

• Ball-Box uncertainty set: Z = {ζ ∈ Rn : ‖ζ‖∞ ≤ 1, ‖ζ‖2 ≤ Ω},

• Budgeted uncertainty set: Z = {ζ ∈ Rn : ‖ζ‖∞ ≤ 1, ‖ζ‖1 ≤ γ}.

The problem under the box uncertainty set can then be formulated as

max
φ
{(µ− σ)Tφ : φ ∈ Φ}. (1.4.9)

The Box uncertainty set guarantees 100% immunization against perturbations. The

problem under the Ball-Box uncertainty set is

max
φ,z,w

{
µTφ− ‖z‖1 − Ω‖w‖2 : z + w = σφ, φ ∈ Φ

}
, (1.4.10)

10



where Ω is a safety parameter. The problem under the Budgeted uncertainty set is

max
φ,z,w

{
µTφ− ‖z‖1 − γ‖w‖∞ : z + w = σφ, φ ∈ Φ

}
. (1.4.11)

Goldfarb and Iyengar [16] provided an uncertainty set by using the multi-

factor model of return, which is discussed in the next section. They solve several

different portfolio selection problems, specifically the mean-variance optimal port-

folio selection problem, the maximum Sharpe ratio portfolio selection problem, and

the value-at-risk portfolio selection problem, under uncertainty sets.

Lu [29] found a drawback of the set provided by Goldfarb and Iyengar, and

introduced a new set, called a joint ellipsoidal uncertainty set, for the model param-

eters. They showed that it can be constructed as a confidence region, and applied

it to the mean-variance optimal portfolio selection problem. This set will be used

to solve the robust VaR problem in the subsequent chapters. Ling and Xu [12]

proposed a robust portfolio selection model involving options under marginal and

joint ellipsoidal uncertainty sets.

1.4.2 Distributional Uncertainty Models

Recall the portfolio selection problem in (1.2.1) that maximizes return and

establishes an upper bound ε on the probability of losing a given percentage δ on

the portfolio. In other words, δ is a risk level that investors can accept. However,

the distribution is unknown, so in this section, we construct an uncertainty set of

the distribution and take the worst case of the set, which makes the probability

11



constraint conservative and easily solvable. First, we assume that the mean return

µ and the covariance matrix of return Σ of the distribution of returns are known

exactly, and that the probability can have any distribution P in P , which is the

set of all distributions that have mean µ and covariance Σ. Then, we take the

supremum over the probabilities instead of having a random distribution. Value-

at-Risk is one of the most widely accepted risk measures in the financial industry.

El Ghaoui, Oks, and Oustry [14] examined the problem of worst-case Value-at-

Risk over portfolios with risky returns belonging to a restricted class of probability

distributions. The worst-case VaR with level ε is less than δ, that is, the authors

derive an equivalent second order cone programming (SOCP). Let P be the set of

probability distributions with mean µ and covariance matrix Σ � 0. Let ε ∈ (0, 1]

and δ ∈ R be given. The following propositions are equivalent. The worst-case VaR

with level ε is less than δ, that is,

sup
P∈P

P
r∼P
{δ ≤ −rTφ} ≤ ε,

where the sup is taken with respect to all probability distributions in P . This is

equivalent to the SOCP

κ(ε)‖Σ1/2φ‖2 − µTφ ≤ δ,
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where κ(ε) =
√

(1− ε)/ε. By using the proposition, the problem in (1.2.1) with the

worst-case VaR (WVaR) constraint can be written as

max
φ,t,y

µTφ,

s.t κ(ε)t− µTφ ≤ δ,

y = Σ1/2φ, (1.4.12)

‖y‖2 ≤ t,

φ ∈ Φ.

The problem in (1.4.12) is easy to solve if the future return, r, is known. How-

ever, r cannot be known before it happens, so the problem is not deterministic.

Pinar and Tütüncü [34] proposed an investment concept related to arbitrage using

partial probabilistic information. Popescu [35] considered the problem that maxi-

mizes the worst case expected return on the portfolio over all possible distributions

when the mean and covariance of the distribution are known. Huang, Fabozzi,

and Fukushima [22] extended the worst-case VaR approach and formulated the cor-

responding problems as semi-definite programs to deal with uncertain exit times

in robust portfolio selection. Natarajan, Pachamanova, and Sim [31] proposed an

approximation method for minimizing the VaR of a portfolio based on robust opti-

mization techniques, which results in the optimization of a modified VaR measure,

Asymmetry-Robust VaR (ARVaR) that considers asymmetries in the distributions

of returns and is coherent. Goh, Lim, Sim, and Zhang [15] presented an approach
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that minimizes a Partitioned VaR (PVaR) measure by separating asset return dis-

tributions into positive and negative half-spaces. As an alternative risk measure,

Conditional Value-at-Risk (CVaR) is defined to be the mean of the tail distribution

exceeding VaR. Natarajan, Pachamanova, and Sim [32] presented a model for the

worst-case CVaR based on partial moment information when the exact distributions

of random variables are unknown. Zhu and Fukushima [40] studied the minimiza-

tion of worst-case CVaR under mixture distribution uncertainty, box uncertainty,

and ellipsoidal uncertainty when only partial information on the underlying proba-

bility distribution is available. Huang, Zhu, Fabozzi, and Fukushima [23] considered

a relative robust CVaR (RCVaR) portfolio selection problem where the underlying

probability distribution of the portfolio return is only known to belong to a certain

set.

1.4.3 Robust Factor Model

Goldfarb and Iyengar [16] used a factor model to define asset returns. They

assumed that the market opens for trading at discrete instants in time and has n

trading assets. The vector of n random asset returns over a single period r ∈ Rn is

given by

r = µ+ V Tf + ε, (1.4.13)

where µ ∈ Rn is the vector of mean returns, f ∼ N (0, F ) ∈ Rm is the vector of m

factor returns that drive the market, V ∈ Rm×n is the factor loading matrix of the n

assets, and ε ∼ N (0, D) is the vector of residual returns. Let x ∼ N (µ,Σ) ∈ Rn be
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a multivariate normal random variable with mean vector µ and covariance matrix

Σ. In addition, it is assumed that the vector of residual returns ε is independent

of the vector of factor returns f , and that the covariance matrix F � 0 and the

covariance matrix D are typically much smaller than the covariance matrix V TFV .

Thus, the vector of asset returns is normally distributed as r ∼ N (µ, V TFV + D).

Then the return on the portfolio rTφ is normally distributed as

rTφ = µTφ+ fTV φ+ εTφ ∼ N (φTµ, φT (V TFV +D)φ). (1.4.14)

Goldfarb and Iyengar defined the uncertainty sets Sd, Sm, and Sv for the residual

covariance matrix D, the mean return vector µ and the factor loadings matrix V .

These are

Sd = {D : D = diag(d), di ∈ [di, d̄i], i = 1, . . . , n},

Sm = {µ : µ = µ0 + ξ, |ξi| ≤ γi, i = 1, . . . , n},

Sv = {V : V = V0 +W, ‖Wi‖g ≤ ρi, i = 1, . . . , n},

whereWi is the ith column ofW and ‖w‖g =
√
wTGw forG � 0. Suppose the market

data consists of asset returns {rt : t = 1, . . . , p} and factor returns {f t : t = 1, . . . , p}

for p periods. Then the linear model (1.4.13) implies that

rti = µi +
m∑
j=1

Vjif
t
j + εti, i = 1, ..., n, t = 1, ..., p. (1.4.15)
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As in typical linear regression analysis, it is assumed that {εti : i = 1, . . . , n, t =

1, . . . , p} are all independent normal random variables and εti ∼ N (0, σ2
i ) for all

t = 1, . . . , p. Now, let B = (f 1, f 2, . . . , f p) ∈ Rm×p be the matrix of the factor

returns and e = (1, 1, . . . , 1)T ∈ Rn be the column vector of all ones.

1.4.4 Separable Uncertainty Sets

Goldfarb and Iyengar [16] defined uncertainty sets for the mean return of

assets µ and factor loading matrix V , called separable uncertainty sets, using a

factor model. Define

yi = (r1
i , . . . , r

p
i )
T , A = (e BT ), xi = (µi, V1i, . . . , Vmi)

T , εi = (ε1i , . . . , ε
p
i )
T (1.4.16)

for i = 1, . . . , n. Then (1.4.15) can be rewritten as

yi = Axi + εi, ∀i = 1, . . . , n. (1.4.17)

Suppose that matrix A has full column rank, that is rank(A) = m + 1. Then the

least squares estimate x̄i of the true parameter xi is given by x̄i = (ATA)−1ATyi.

The following proposition is used to define the uncertainty sets in [16].

Proposition 1.4.1. Let s2
i be the unbiased estimate of σ2

i given by

s2
i =
‖yi − Ax̄i‖2

p−m− 1
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for i = 1, 2, . . . , n. Then the random variables

Y i =
1

(m+ 1)s2
i

(x̄i − xi)TATA(x̄i − xi), i = 1, . . . , n,

are distributed according to the F -distribution with m+ 1 degrees of freedom in the

numerator and p−m−1 degrees of freedom in the denominator. Moreover, {Y i}ni=1

are independent.

Let w̃ ∈ (0, 1) be given, FJ denotes cumulative distribution function (CDF)

of the F -distribution with J degrees of freedom in the numerator and p − m − 1

degrees of freedom in the denominator, and cJ(w̃) be the w̃-critical value, i.e., the

solution of the equation FJ(cJ(w̃)) = w̃. Then the probability Y i ≤ cm+1(w̃) is w̃.

Define

Si(w̃) = {xi : (x̄i − xi)TATA(x̄i − xi) ≤ (m+ 1)cm+1(w̃)s2
i }, i = 1, . . . , n.

Then the set Si(w̃) is a w̃-confidence set, and it follows that

S(w̃) = S1(w̃)× S2(w̃)× · · · × Sn(w̃) (1.4.18)

is also a w̃n-confidence set for (µ, V ) since the residual errors {εi : i = 1, . . . , n} are

assumed to be independent. Let Sm(w̃) denote the projection of S(w̃) along the

vector µ; i.e.,

Sm(w̃) = {µ : µ = µ0 + ν, |νi| ≤ γi, i = 1, . . . , n}, (1.4.19)

17



where

µ0,i = µ̄i, γi =
√

(m+ 1)(ATA)−1
11 cm+1(w̃)s2

i , i = 1, . . . , n.

Let Q = [e2, . . . , em+1]T ∈ Rm×(m+1) be a projection matrix that projects xi along

Vi. Define the projection Sv(w̃) of S(w̃) along V as follows:

Sv(w̃) = {V : V = V0 +W, ‖Wi‖g ≤ ρi, i = 1, . . . , n}, (1.4.20)

where

V0 = [V̄1 · · · V̄n],

G = (Q(ATA)−1QT )−1 = BBT − 1

p
(Be)(Be)T ,

ρi =
√

(m+ 1)cm+1(w̃)s2
i , i = 1, . . . , n.

Then (1.4.18) implies that Sm(w) and Sv(w̃) are an w̃n-confidence set for the mean

asset return vector µ and the covariance matrix of factor return V , respectively. Let

φ ∈ Rn be the allocation vector in typical set, defined in (1.2.2). Then the rate of

return of the portfolio is

rφ = rTφ = µTφ+ fTV φ+ εTφ ∼ N (φTµ, φT (V TFV +D)φ).

Goldfarb and Iyengar proposed four different portfolio selection problems, (1.4.21)–

(1.4.24), under the separable uncertainty sets Sm and Sv, defined in (1.4.19) and

(1.4.20). Then the results from the theory of multivariate linear regression are used
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to justify the uncertainty sets Sv and Sm. The robust analog of the Markowitz

mean-variance optimization problem in (1.4.2) is given by

min
φ∈Φ

max
V ∈Sv

Var[rφ]

s.t min
µ∈Sm

E[rφ] ≥ α. (1.4.21)

The robust minimum variance portfolio selection problem in (1.4.21) is to minimize

the worst case variance of the portfolio subject to the constraint that the worst case

expected return on the portfolio is at least α.

A closely related problem shown in (1.4.22), the robust maximum return prob-

lem, is the dual of (1.4.21). The problem is to maximize the worst case of expected

return subject to a constraint on the worst case variance:

max
φ∈Φ

min
µ∈Sm

E[rφ]

s.t max
V ∈Sv

Var[rφ] ≤ λ. (1.4.22)

Another problem is also provided, which is called the robust maximum Sharpe

ratio problem. The objective of the problem is to maximize the worst case of the

Sharpe ratio of the expected return on the portfolio, i.e., the return in excess of the

risk-free rate rf to the standard deviation of the return:

max
φ∈Φ

min
(µ,V )∈Sm×Sv

{
E[rφ]− rf√

Var[rφ]

}
. (1.4.23)
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Assume the optimal value of this problem is strictly positive, that is, there exists a

portfolio whose worst-case return is strictly greater than rf . Then there is at least

one asset with worst-case return greater than rf .

The robust portfolio selection problem with VaR constraint is also discussed

under the separable uncertainty set:

max
φ∈Φ

min
µ∈Sm

E[rφ]

s.t max
(µ,V )∈Sm×Sv

P(rφ ≤ α) ≤ β. (1.4.24)

They assumed that the probability P is normally distributed. The last portfolio

selection problem in (1.4.24) is the main problem we focus in this dissertation.

The models Goldfarb and Iyengar provided under the separable uncertainty sets

are robust but too conservative. Moreover they constructed highly non-diversified

portfolios in computational results. To overcome these drawbacks of the sets, Lu

defined a new uncertainty set discussed in the next section.

1.4.5 Joint Ellipsoidal Uncertainty Set

Lu [28, 29] provided a joint uncertainty set to overcome the drawback of the

separable uncertainty sets, provided by Goldfarb and Iyengar. Let Sm(w̃) and Sv(w̃)
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denote the projection of S(w̃) along µ and V . Then

P(µ ∈ Sm(w̃)) ≥ P((µ, V ) ∈ S(w̃)) = w̃n, and

P(V ∈ Sv(w̃)) ≥ P((µ, V ) ∈ S(w̃)) = w̃n.

Hence, Sm(w̃) and Sv(w̃) have at least w̃n-confidence levels, but their actual confi-

dence levels are unknown and can be much higher than w̃n. Since S(w̃) ⊆ Sm(w̃)×

Sv(w̃),

P((µ, V ) ∈ Sm(w̃)× Sv(w̃)) ≥ P((µ, V ) ∈ S(w̃)) = w̃n.

Thus Sm(w̃)×Sv(w̃), as a joint uncertainty set of (µ, V ), has at least w̃n-confidence

level. But, its actual confidence level is unknown and can be much higher than

w̃n. Thus, the robust portfolio selection models based on such uncertainty sets

Sm(w̃) and Sv(w̃) can be too conservative. As such, Lu [29] introduced a ‘joint’

ellipsoidal uncertainty set for the Goldfarb and Iyengar factor model to overcome

the drawbacks.

Sm,v(w) =

{
(µ, V ) ∈ Rn×Rm×n :

n∑
i=1

(xi − x̄i)T (ATA)(xi − x̄i)
s2
i (m+ 1)

≤ c(w)

}
(1.4.25)

for some c(w), where xi = (µi, V1i, V2i, . . . , Vmi)
T for i = 1, . . . , n. We know that

{Y i}ni=1 are i.i.d.. Using this fact and the central limit theorem in [24], we can

conclude that the distribution of the random variable

Ln =

∑n
i=1 Y i − nµF
σF
√
n
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converges towards the standard normal distribution N (0, 1) as n → ∞. For a

relatively large n, P(Ln ≤ c̃(w)) ≈ w, hence, P(
∑n

i=1 Y i ≤ c(w)) ≈ w, where

c(w) = c̃(w)σF
√
n+ nµF .

Proposition 1.4.2 (Proposition 3.1 of [29]). Sm,v is an w-confidence uncertainty

set of (µ, V ) for some c̃(w) if and only if P (
∑n

i=1 Y i ≤ c(w)) = w. That is, c(w) is

the w-critical value of
∑n

i=1 Y i. Moreover, c(w) = c̃(w)σF
√
n+ nµF , where c̃(w) is

the w-critical value for a standard normal distribution,

µF =
p−m− 1

p−m− 3
, and σF =

√
2(p−m− 1)2(p− 2)

(m+ 1)(p−m− 3)2(p−m− 5)
.

Lu solved the robust maximum return problem in (1.4.22) under the joint uncer-

tainty set (1.4.25):

max
φ∈Φ

min
(µ,V )∈Sm,v

E[rφ]

s.t max
(µ,V )∈Sm,v

Var[rφ] ≤ λ. (1.4.26)

However, the uncertainty set of (µ, V ) used in the problem is essentially Sm × Sv,

where Sm = {(µ, V ) ∈ Sm,v for some V} and Sv = {(µ, V ) ∈ Sm,v for some µ}.

Then problem (1.4.26) is under the separable uncertainty sets. Since Sm,v has a

w-confidence level,

P((µ, V ) ∈ Sm × Sv) ≥ P((µ, V ) ∈ Sm,v) = wn.
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So, Sm × Sv has at least a w-confidence level, but its actual confidence level is

unknown and can be much higher than wn. To resolve the issue, Lu derived the

robust maximum risk-adjusted return problem (RMRAR) under the uncertainty set

Sm,v:

max
φ∈Φ

min
(µ,V )∈Sm,v

E[rφ]− θVar[rφ], (1.4.27)

where θ ≥ 0 represents the risk-aversion parameter. The RMRAR problem will be

extended to the problem in the presence of transactions costs in Chapter 4.

1.4.6 Multi-period Robust Models

Ben-Tal, Margalit, and Nemirovski [3] formulated the L-stage portfolio se-

lection problem that maximizes the investor’s wealth on L-stage. Glpinal and

Rustem [19] extended the multi-period mean-variance portfolio optimization to the

robust worst-case design with multiple rival return and risk scenarios. Bertsimas and

Pachamanova [6] suggested robust optimization formulations of the multi-period.

Bertsimas and Pachamanova proposed the following multi-period portfolio manage-

ment problem [6]. There are n risky assets, one riskless asset (asset 0), and N

trading periods. At time period N , an investor collects final wealth WN . The ob-

jective is to manage the portfolio of assets to maximize expected final wealth. The

following notation is used:

• xnt is the investor’s dollar holdings at the beginning of time period.

• unt , vnt are the amount for the investor to sell and buy the stock n at time t.
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• csellunt , and cbuyv
n
t are the transactions cost.

• r̃nt is the uncertainty returns.

Then the investor’s dollar holdings are given by equations,

xnt = (1 + r̃nt−1)(xnt−1 − unt−1 + vnt−1), t = 1, . . . , T, n = 1, . . . , N,

x0
t = (1 + r0

t−1)

(
x0
t−1 +

N∑
n=1

(1− csell)unt−1 −
N∑
n=1

(1 + cbuy)v
n
t−1

)
, t = 1, . . . , T.

The maximum final wealth problem is the following:

max
N∑
n=0

xnT

s.t xnt = (1 + r̃nt−1)(xnt−1 − unt−1 + vnt−1), t = 1, . . . , T, n = 1, . . . , N, (1.4.28)

x0
t = (1 + r0

t−1)

(
x0
t−1 +

N∑
n=1

(1− csell)unt−1 −
N∑
n=1

(1 + cbuy)v
n
t−1

)
, t = 1, . . . , T,

xnt ≥ 0, t = 1, . . . , T, n = 0, . . . , N,

unt ≥ 0, vnt ≥ 0, t = 1, . . . , T, n = 1, . . . , N.

The maximum final wealth problem is considered with these notations in Chapter

4.
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Chapter 2

Real Market Data Simulation

In this chapter, we discuss the real market data and performance measures

that will be used on all models in this dissertation, and simulations of several LP

models using the data and measures are provided.

In Section 2.1, the real market data are provided and performance measures

are defined. In Section 2.2, we investigate the appropriate threshold on return δ

with a certain confidence level (1− ε) on the VaR constraint using the market data.

In Section 2.3, we apply a few robust LP models introduced in the previous chapter

to solve the robust maximum return problem, then provide computational results

on real market data. The results will be used to draw comparisons with the model

we propose in the next chapter.

2.1 Real Market Data and Performance Measures

All models use the factor model to define the daily return of stocks as in Section

1.4.3, and are simulated on the same real market data. Note that the portfolio return

is assumed to be normally distributed as

rTφ ∼ N (φTµ, φT (V TFV +D)φ).
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The assets that are chosen for investment are those which are currently ranked at

the top of each sector by Fortune 5001 in 2016. In total, there are n = 36 assets in

this set (see Table A.1.3). The set of factors are 6 major market indices (see Table

A.1.2). We use four years of historical daily returns2 from January 1, 2013 through

December 31, 2016. Rebalancing of the portfolio is done every four months. Each

year has 252 trading days, hence the four years data contains 12 periods of length

p = 84 trading days. For each period, the portfolio is rebalanced using the previous

period data. The first investment starts on May 1, 2013, so there are 11 investment

periods. For each investment period t, the factor covariance matrix F is computed

on the factor returns of the previous trading period, and the upper bound of the

variance d̄i of the residual return is computed to be d̄i = s2
i , where s2

i is given in

Proposition 1.4.1.

Performance of each model on the same market data is measured by overall

wealth growth rate, diversification number, transactions costs, and the Sharpe ratio.

The wealth growth rate (wgr) of period t, t = 1, . . . , 11, is defined as

wgrt =

 ∏
pt≤k≤pt+1

(e+ rk)

T φt − 1,

where rk is a daily return vector of k-th day, and φt is the weight vector of the

portfolio on period t. Then the overall wealth growth rate (owgr) on period t is

1http://beta.fortune.com/fortune500/
2The daily stock return is calculated by (P1 − P0)/P0, where P0 and P1 are adjusted closing

prices, which reflect all of the dividends and splits, on the previous day and the current day. The
adjusted closing prices are obtained from Yahoo! Finance.
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defined as

owgrt =
∏

1≤k≤t

(1 + wgrk)− 1.

The diversification number of a portfolio is defined as the number of its components

that are above 1%. The transaction cost is defined as expenses incurred when buy-

ing or selling a stock, i.e., broker’s commissions. In the real market, most brokerage

companies charge a flat trade commission fee, but this can be converted to rate.

For instance, if an investor purchases 40 units of a stock priced at $25 ($1,000 in-

vestment) with commission of $5, then the transaction cost rate is 0.5%. Another

investor purchases 400 units of the stock at the same price ($10,000 investment)

with the same commission amount, then the cost rate is 0.05%. As total investment

increases, the cost rate can be adjusted to a smaller rate. If an investor has $10, 000

and buys more than one stock, for example 20 different stocks, with the same com-

mission, then the transaction cost rate is 20× $5/$10, 000 = 1%. As the investor’s

portfolio increases in diversification, the cost rate will increase.

Another performance measure of the portfolio is Sharpe ratio, a measure for

calculating risk-adjusted return, developed by William F. Sharpe. The Sharpe ratio

is defined as excess return divided by risk.

Sharpe ratio =
E(rp)− rf√

Var(rp)
,

where excess return is the expected return on the investment rp less risk-free return

rf , and the risk is the standard deviation of the portfolio returns. The interest rate
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on the U.S. Treasury bill is commonly used as a risk-free rate. The Sharpe ratio is

negative when the expected portfolio return is lower than the risk-free rate. Let the

4-month risk free rate during period t be calculated by

rtf = (1 + rtf1/12)(1 + rtf2/12)(1 + rtf3/12)(1 + rtf4/12)− 1

where rtfk is the four-week U.S. Treasury bill rate per year of the k-th month on

period t. The 4-week U.S. Treasury bill rates per year for the 4-year investment

period are given in Table A.1.13. From the equation and 4-week U.S. Treasury bill

rates, the 4-month risk-free rate is given as in Table 2.1.1. The factor model is

Table 2.1.1: 4-month U.S. Treasury bill rate per year

2013 2014 2015 2016

0.0183 0.0092 0.0058 0.0692
0.0075 0.0083 0.0042 0.0658
0.0150 0.0058 0.0167 0.0875

applied on daily return, not 4-month return. In order to get the expected 4-month

return and standard deviation of 4-month return of the portfolio, we multiply the

expected daily return and variance of daily return by 84 trading days. Thus the

Sharpe ratio of a 4-month portfolio is defined as

Sharpe ratio =
84× µTφ− rf√

84× φT (V TFV +D)φ
.

The mean stock return µ and covariance of factor return V are not single values,

3The 4-week U.S. T- bill rate is the 4-week bank discount rate of the first trading day
of each month quoted from https://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/TextView.aspx?data=billrates
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they are in Sm,v. We want to calculate the worst case Sharpe ratio under the set,

but the maximum Sharpe ratio problem under the set is not easy to calculate. So

we substitute µ̄ and V̄ , defined as the least squares estimate x̄i of problem (1.4.17)

for µ and V in the Sharpe ratio.

2.2 Minimum Value-at-Risk

Value-at-Risk (VaR) is one of the risk measure, defined as the possible loss

on a portfolio with (1− ε) confidence level during the next holding period. Typical

values for the threshold on probability ε are 1%, 2.5%, and 5% in [26]. An investor

wants to minimize the risk of losing 1% of investment on a 99% confidence level.

But there might not exist such a portfolio that satisfies this specification. In this

section, we demonstrate the smallest possible threshold on return under different

confidence levels to help investors select the threshold on return. For a given weight

vector φ ∈ Φ, where Φ = {φ ∈ Rn : eTφ = 1, φi ≥ 0, i = 1, . . . , n}, the return of

the portfolio is defined as in (2.3.2). The VaR can be found by solving

min δ (2.2.1)

s.t P
r∼P

(δ ≤ −rTφ) ≤ ε.

Assume that the returns of assets are defined as in Section 1.4.3 using factor model.

So the return is normally distributed with mean µ and covariance V TFV +D. Then
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the probability constraint in (2.2.1) is changed to

P(rTφ ≤ −δ) ≤ ε⇔ P(µTφ+ Z
√
φT (V TFV +D)φ ≤ −δ) ≤ ε,

⇔ P

(
Z ≤ −µTφ− δ√

φTV TFV +Dφ

)
≤ ε,

⇔ −µTφ− δ√
φT (V TFV +D)φ

≤ F−1(ε),

⇔ −F−1(ε)
√
φT (V TFV +D)φ− µTφ ≤ δ,

where Z ∼ N (0, 1) is the standard normal random variable and F−1(·) is its cumu-

lative density function(CDF). The optimal VaR on problem (2.2.1) can be expressed

as function of φ,

VaR(φ) = ε0
√
φT (V TFV +D)φ− µTφ,

where ε0 = −F−1(ε). The smallest Worst-case Value-at-Risk (WVaR) under the

joint ellipsoidal uncertainty set, defined in 1.4.5, over the possible weight vector φ

in typical set Φ is found by solving the following problem

min
φ∈Φ

max
(µ,V )∈Sm,v

VaR(φ).

However, the objective function under the joint uncertainty set is hard to solve, so

separable uncertainty set, defined in 1.4.4 is considered instead of the joint set. Note

that the joint uncertainty set is smaller than the separable uncertainty set, so the
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minimum of WVaR under the joint set is smaller than the separable sets.

min
φ∈Φ

max
(µ,V )∈Sm,v

VaR(φ) ≤ min
φ∈Φ

max
(µ,V )∈Sm×Sv

VaR(φ),

where the set Sm and Sv are defined as in (1.4.19) and (1.4.20). Then the problem

(2.2.1) can be derived as second order cone programming (SOCP):

min
φ,α,β,t

(ε0t− min
µ∈Sm

µTφ)

s.t

∥∥∥∥∥∥∥∥
α
β


∥∥∥∥∥∥∥∥ ≤ t,

‖D̄1/2φ‖ ≤ β, (2.2.2)

max
V ∈Sv

‖F 1/2V φ‖ ≤ α,

φ ∈ Φ.

The SOCP under the separable uncertainty sets was solved by Goldfarb and Iyengar

[16].

Table 2.2.1 shows the smallest WVaR on the portfolio with different confidence

levels on probability. The confidence levels are 99%, 97.5%, 95%, 90% when ε =

0.01, 0.025, 0.05, 0.1. Let the confidence level of the joint uncertainty set w be 97.5%.

As ε gets larger, the VaR becomes smaller. Assume a 99% confidence level, i.e.,

ε = 0.01. Then the robust VaR constraint problem does not have a solution if

the investor chooses a return threshold δ below 1%. However, since ε is 0.01, the

problem can have a solution for all periods. Thus, an adequate pair of ε and δ needs
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Table 2.2.1: The smallest VaR with different confidence levels

HH
HHHHt

ε
0.01 0.025 0.05 0.1

1 0.0128 0.0113 0.0100 0.0085
2 0.0125 0.0110 0.0097 0.0082
3 0.0111 0.0098 0.0086 0.0073
4 0.0130 0.0115 0.0103 0.0088
5 0.0123 0.0109 0.0097 0.0083
6 0.0131 0.0115 0.0102 0.0087
7 0.0131 0.0115 0.0102 0.0086
8 0.0118 0.0104 0.0092 0.0078
9 0.0129 0.0113 0.0100 0.0085
10 0.0141 0.0124 0.0109 0.0093
11 0.0105 0.0092 0.0081 0.0068

Mean 0.0125 0.0110 0.0097 0.0082

to be chosen. Under the joint ellipsoidal uncertainty set, the robust VaR problem

can be solved using the smallest VaR in Table 2.2.1.

2.3 Simulation of LP Models

Consider the problem (1.2.1) without the probability constraint that maxi-

mizes return of the portfolio:

max
φ

rTφ (2.3.1)

s.t φ ∈ Φ.

Using the multivariate factor model to define the return of stocks in Section 1.4.3,

the least squares estimate x̄i of the true parameter xi is given by

x̄i = (ATA)−1ATyi = (µ̄i, V̄1i, V̄2i, . . . , V̄mi).
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Assume that the return of stocks have mean stock return µ̄ and covariance of factor

return V̄ , and the return of stocks are assumed to have a normal distribution from

the factor model as

r ∼ N (µ̄, V̄ TFV̄ +D). (2.3.2)

Let the return of each stock ri ∼ N (µi, σi), then the random variable is standardized

to a z-score by subtracting the mean and then dividing by its standard deviation:

zi =
ri − µi
σi

∼ N (0, 1).

The probabilities that the absolute value of the z-score is less than 1, 2, and 3 are,

respectively,

P (µi − 3σi ≤ ri ≤ µi + 3σi) = P (|zi| ≤ 3) = 99.74%,

P (µi − 2σi ≤ ri ≤ µi + 2σi) = P (|zi| ≤ 2) = 95.44%,

P (µi − σi ≤ ri ≤ µi + σi) = P (|zi| ≤ 1) = 68.26%.

The probabilities determine the interval of the random return. From the return

defined in (2.3.2), define the mean return of stock i by µi = µ̄i and the standard

derivation of the return σi = 3
√

(V̄ TFV̄ +D)ii. Then the i-th stock return ri will

lie within [µi − σi, µi + σi] with 99.74% confidence level for i = 1, . . . , n. Since the

number of asset n = 36, the probability that return r is in [µ− σ, µ+ σ] is at least

91%(= 0.997436 = 0.9105).
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2.3.1 Ben-Tal and Nemirovski

Ben-Tal and Nemirovski [4] assumed that the return on asset i is given by

ri = µi + ξiσi, where the perturbations {ξi} are independent random variables

symmetrically distributed in [−1, 1]. By using an auxiliary variable c, problem (2.3.1)

can be written as

max
φ

c

s.t − rTφ ≤ −c, (2.3.3)

φ ∈ Φ.

Since ri = µi + ξiσi for every i = 1, . . . , n, the negative return is −ri = −µi + ξiσi.

The feasible solution of (2.3.3) can be extended to the solution of the following

optimization problem with a positive parameter Ω:

max
φ,y,z

c,

s.t − µTφ+ σTy + Ω
√∑

σ2
i z

2
i ≤ −c, (2.3.4)

− y ≤ φ− z ≤ y,

eTφ = 1,

y ≥ 0, φ ≥ 0,

where Ω is a positive parameter with a reliability level κ = exp {−Ω2/2}, which

means the first constraint in (2.3.3) is violated with probability at most κ. By
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bringing the constraint back to the objective function, the problem can be rewritten

as:

max
φ,y,z

µTφ− σTy − Ω
√∑

σ2
i z

2
i

s.t − y ≤ φ− z ≤ y, (2.3.5)

n∑
i=1

φi = 1,

y ≥ 0, φ ≥ 0.

Real market data can be used to simulate model (2.3.5). If a reliability level k is

5%, then parameter Ω = −2ln(k) = 6. Figure 2.3.1(a) shows that the portfolio

has steady growth return over the periods except for the period between 6 and 7,

and the portfolio has reached 53% of overall growth return. According to Figure

2.3.1(b), the portfolio is highly diversified and contains at least 30 stocks over the

entire period. In Figure 2.3.1(c), the transaction cost is 1 on the first period since we

start with no investment in each stock, so that the portfolio changed 100%. Later

on, it decreases and keeps the cost below 0.4. The Sharpe ratio in Figure 2.3.1(d)

is positive for the entire period. A positive Shape ratio occurs if the return of the

portfolio is greater than the risk free rate during the period. The maximum Shape

ratio 0.75 occurs in period 3, the minimum Sharpe ratio 0.12 occurs in period 4,

and the average Sharpe ratio for the 11 periods is 0.44.
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Figure 2.3.1: Performance of Ben-Tal and Nemirovski’s model with 5% reliability
level: (a) overall wealth growth return (b) diversification number (c) transaction
cost (d) Sharpe ratio over the 11 investment periods
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2.3.2 Bertsimas and Sim

Bertsimas and Sim [7] proposed a new approach to solve the linear program-

ming problem in (1.4.3). Since the model is already applied to the robust maximum

return problem in (2.3.1) by Gregory, Darby-Dowman, and Mitra [17], the details

behind the construction of the model are omitted. A new stochastic variable ηi

measures the deviation of parameter ri from µi and takes values in [-1,1], where

ηi = (ri − µi)/σi. That is, rearrange the rate of return as ri = µi + σiηi, and let

|J | be the number of parameters ri that are uncertain. Then from Soyster’s and

Ben-Tal and Nemirovski’s models,

∑
i

| ri − µi |
σi

= |J |.

Bertsimas and Sim relaxed this condition by defining a new parameter Γ, the budget

of uncertainty, as the number of uncertain parameters that take their worst case

value µi − σi. Therefore,
∑

i | ηi |≤ Γ, such that Γ ∈ [0, |J |]. Then problem (2.3.3)

can be derived as

Max
φ,p,q

c

s.t c ≤ µTφ− Γp−
∑
i

qi,

p+ qi ≥ σiφi, ∀i,

eTφ = 1,

p, q, φ ≥ 0.
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Bertsimas and Sim provided three different bounds on the probability of violation

under the model. If φ∗ is an optimal solution of problem (2.3.6), the bounds are:

(i) Pr(rTφ∗ < c) ≤ exp(− Γ2

2|J |
) (2.3.6)

(ii) Pr(rTφ∗ < c) ≤ B(n,Γ) (2.3.7)

(iii) B(n,Γ) ≤ (1− µ)C(n, bvc) +
n∑

l=bvc+1

C(n, l) (2.3.8)

where n = |Ji|, v = (Γi + n)/2, µ = v − bvc, and

B(n,Γ) =
1

2n

{
(1− µ)

n∑
l=bvc

(
n

k

)
+ µ

n∑
l=bvc+1

(
n

l

)}

=
1

2n

{
(1− µ)

(
n

bvc

)
+

n∑
l=bvc+1

(
n

l

)}

C(n, l) =


1

2n
, if l = 0 or l = n,

1√
2π

√
n

(n−l)lexp(n log( n
2(n−l)) + l log(n−l

l
)), otherwise.

By using Bertsimas and Sim’s model, (2.3.1) can be reformulated as

max
φ

µTφ− Γp− eT q

s.t p+ qi ≥ σiφi, ∀i

eTφ = 1

y, φ, q, p ≥ 0.

Figure 2.3.2 presents the bound’s estimation of the probability of violation for the
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Figure 2.3.2: Probability bounds with respect to Γ.

budget of uncertainty Γ = 0, 1, . . . n by using estimation (2.3.7) when 36 assets are

available (n = 36). The probability of violation is decreasing as Γ increases since the

model with bigger Γ is more conservative by taking the worst case on more assets.

Table 2.3.1 shows probability bounds for some Γ values.

Table 2.3.1: Probability bounds for some Γ values

Γ 0 1 4 6 9 11 14 19 23

bounds(%) 57 50 31 20 9 5 1 0.1 0.01

Our choice of Γ = 11 gives less than 5% probability of violation, in other

words, the confidence level is 95%. Figure 2.3.3(a) overall growth similar to that of

the BS model. It has steady growth and a big gain between period 1 and 2, and big

loss between period 6 and 7. But the owgr of BN model is slightly higher than the

owgr of BS models. Figure 2.3.3(b) shows the model is well-diversified and contains
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Figure 2.3.3: Performance of Bertsimas and Sim’s model with 5% reliability level:
(a) overall wealth growth return (b) diversification number (c) transaction cost (d)
Sharpe ratio over the 11 investment periods
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35 or 36 of the 36 stocks. Figure 2.3.3(c) starts with cost 1 on the first period and all

cost stay less than 0.2. Compared to the BS model, the cost is half, which means the

portfolio is changed less. For each period, the Sharpe ratio of Bertsimas and Sim’s

model in Figure 2.3.3(d) is less than the Sharpe ratio of Ben-tal and Nemirovski’s

model in Figure 2.3.1(d). The mean Sharpe ratio over 11 investment periods of

Bertsimas and Sim’s model is 0.3.

2.3.3 Box, Ball-Box, Budgeted Uncertainty Sets

Ben-Tal, El Ghaoui, and Nemirovski [2] provided three different uncertainty

sets, namely Box, BallBox, and Budgeted, and produced the following propositions

to solve problem (2.3.3). Let the unknown return ri = µi+σiζi, where ζ is a random

perturbation vector.

Proposition 2.3.1 (proposition 2.3.3 in [2]). The robust linear inequality constraint

(2.3.3) under the Ballbox uncertainty set Z = {ζ ∈ RL : ‖ζ‖∞ ≤ 1, ‖ζ‖2 ≤ Ω} is

equivalent to the system of conic quadratic constraints:

(a) zl + wl = σlφl, l = 1, . . . , L,

(b)
∑
l

|zl|+ Ω

√∑
l

w2
l ≤ −c+ µTφ.

Also, the feasible solution violates the inequality condition (2.3.3) at most exp {−Ω2/2}.

Proposition 2.3.2 (proposition 2.3.4 in [2]). The constraint (2.3.3) under the Bud-

geted uncertainty set Z = {ζ ∈ RL : ‖ζ‖∞ ≤ 1, ‖ζ‖1 ≤ γ} is equivalent to the system
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of conic quadratic constraints:

(a) zl + wl = σlφl, l = 1, . . . , L,

(b)
∑
l

|zl|+ γmax
l
|wl| ≤ −c+ µTφ.

Also, the feasible solution violates the inequality condition (2.3.3) at most exp {−γ2
2L
}.

By using the above propositions, problem (2.3.3) under the three different uncer-

tainty sets can be derived as quadratic cone programmings. The problem (2.3.1)

under the Box uncertainty set, Z = {ζ : ‖ζ‖∞ ≤ 1}, is similar to Soyster’s model:

max
φ

(µ− σ)Tφ

s.t φT e = 1,

φ ≥ 0.

To deal with the absolute value in constraint (b) of Proposition 2.3.1, introduce two

positive variables p and q such that zl = pl − ql and |zl| = pl + ql. By Proposition

2.3.1, the problem in (2.3.1) under the Ballbox uncertainty set, Z = {ζ : ‖ζ‖∞ ≤
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1, ‖ζ‖2 ≤ Ω} can be derived as

max
φ,w,p,q,s

µTφ− (p+ q)T e− Ωs

s.t pi − qi + wi = σiφi, i = 1, . . . , n,

‖w‖2 ≤ s,

φT e = 1,

φ, p, q ≥ 0.

Similarly, introduce four positive variables p, q, u, and v such that zl = pl − ql,

|zl| = pl + ql, wl = ul − vl, and |wl| = ul + vl. By Proposition 2.3.2, the problem in

(2.3.1) under the Budgeted uncertainty set, Z = {ζ : ‖ζ‖∞ ≤ 1, ‖ζ‖1 ≤ γ} can be

derived as

max
φ,p,q,u,v,s

µTφ− (p+ q)T e− γs

s.t pi − qi + ui − vi = σiφi, i = 1, . . . , n,

ui + vi ≤ s, l = 1, . . . , n,

φT e = 1,

φ, p, q, u, v, s ≥ 0.

Figure 2.3.3(a) shows that the problem under the Ballbox and Budgeted un-

certainty sets have similar performance but the return under the Box uncertainty
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Figure 2.3.4: Performance under three different uncertainty sets: (a) overall wealth
growth return over the periods under three different sets, (b) diversification number,
(c) transaction cost, and (d) Sharpe ratio. The reliability level is 5% for the ballbox
and budgeted sets.
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set performs worse than these two sets. Figure 2.3.3(b) shows that both the Ballbox

and Budgeted uncertainty sets construct well-diversified portfolios, which contain

at least 30 stocks, so that the risk of portfolio return is low. However, the portfolio

return under the box uncertainty set solely depends on one stock that had a good

performance in the previous period. The stock that had a good performance in

a previous period does not guarantee the similar performance in the next period.

Hence, constructing the portfolio with one stock is too risky. Also Figure 2.3.3(c)

shows that the Ballbox and Budgeted uncertainty sets have less transaction cost

than the Box uncertainty set. Figure 2.3.3(d) shows that the Sharpe ratios of the

Ballbox and Budgeted uncertainty sets are close to the models in the previous two

sections, but the Box uncertainty set provides a completely different Sharpe ratio.

The Sharpe ratio of the Box uncertainty set is much higher than two uncertainty

sets for the most periods by putting all money into one stock, which has a high

return and low risk. This shows that higher Sharpe ratio doesn’t always guarantee

a better portfolio if the portfolio is not diversified.
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Chapter 3

Robust Portfolio Problem with VaR under Joint Uncertainty Set

3.1 Overview

Recall that the main goal is to find the optimal weight from the robust port-

folio selection problem (1.2.1) under the joint ellipsoidal uncertainty set, defined

in Section 1.4.5. The problem was solved by Goldfard and Iyengar [16] under the

separable uncertainty sets for the mean return µ and the covariance matrix of factor

returns V . Also, they solved three other problems, namely the robust minimum

variance portfolio selection problem (1.4.21), the robust maximum return problem

(1.4.22), and the robust maximum Sharpe ratio problem (1.4.23). However, Lu [29]

addressed the drawbacks of the uncertainty sets, such as high conservativeness and

the construction of non-diversified portfolios. As such, he defined a new uncertainty

set, called the joint ellipsoidal uncertainty set (1.4.25), which is described in Section

1.4.5. Lu applied this new set to the robust maximum return and robust minimum

variance problems, but did not do so with the robust maximum Sharpe ratio and

robust VaR constraint problems.

In Section 3.2, the robust VaR constraint portfolio selection problem under

the joint ellipsoidal uncertainty set is solved. Consider the same factor model for

asset returns in Section 1.4.3. It is difficult to solve with VaR constraint directly

since it is a non-convex constraint. So estimations of the constraint, written as
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a semidefinite and a second order cone constraints are used. In Section 3.3, the

portfolio selection problem with VaR constraint in Section 3.3 is examined using

historical real market data. This is compared to the performance of the problem

under the separable uncertainty set.

The benefit of the joint ellipsoidal uncertainty set is that it constructs a well-

diversified portfolio. This simple example explains why the diversification number

of a portfolio matters. A well-diversified portfolio is safer because it reduces risk

while maintaining strong return potential. There are two assets A and B, which

have expected returns E(r) and risks σ(r) as in Table 3.1.1. Figure 3.1.1 presents

the investment opportunity set (IOS) with these two stocks, which is all the returns

and risks of portfolios consisting of these two assets. The IOS will depend on the

correlation of returns of A and B.

Table 3.1.1: Two risky assets

Assets E(r) σ(r)

A 6% 10%
B 10% 20%

When investors put all their money into one asset, say A, then the expected

return is 6% and the risk is given as 10%. By adding one more asset B in the port-

folio, which is negatively correlated to the return of asset A, then we can construct

a portfolio that has the same risk but higher expected return than asset A.

Similarly, if the portfolio is constructed by 100% of asset B, its expected return

is 10% and its risk is 20%. By adding asset A in the portfolio, investors can reduce

risk substantially with a small decrease of the expected return. Theoretically, if
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Figure 3.1.1: Investment opportunity set (IOS) for two risky assets when the cor-
relation of the two assets in Table 3.1.1 is perfectly positively correlated ρ = 1,
uncorrelated ρ = 0, and perfectly negatively correlated ρ = −1.

two assets are perfectly positively correlated, the constructed portfolio with these

two assets has no risk reduction benefits. If two are perfectly negatively correlated,

investors can reduce risk to zero.

In general, as the number of assets increases, the variance of the portfolio

will decrease. Suppose there are n available assets. Bodie, Kane, and Marcus [8]

provided the general formula for the variance of a portfolio as

σ2
p =

n∑
i,j=1

wiwjCov(ri, rj).

Consider the case of an equally weighted portfolio so that wi = 1/n. For simplicity,

assume that all assets have common standard deviation σ, and common correlation

coefficient ρ of any pair of assets. Bodie, Kane, and Marcus showed the variance of
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the portfolio as

σ2
p =

1

n
σ2 +

n− 1

n
ρσ2 = σ2

(
1

n
+

(
1− 1

n

)
ρ

)
.

When correlation coefficient ρ is 0, as n increases, the variance of the portfolio

decreases and eventually approaches 0. Suppose ρ = 1, then σ2
p = σ2, and there is

no benefit on the number of assets. For any positive ρ less than 1, the variance of

the portfolio approaches ρσ2 as n increases. Let standard deviation σ be 1. If
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Figure 3.1.2: Variance of equally weighted portfolio of n assets. The variance of all
assets σi = σ and the correlation coefficient of any pair of assets ρij = ρ.

more assets are added to the portfolio, the risk of the portfolio will eventually reach

the level of the market portfolio. Unlike the separable sets, the joint uncertainty set

will include many assets in the portfolio. In other words, it constructs a diversified
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portfolio, which can be seen from the computational results in next section.

3.2 The Robust VaR Problem under Joint Ellipsoidal Set

Recall the joint ellipsoidal uncertainty set for mean return µ and the covariance

matrix for factor return V , provided by Lu [29], for some c(w),

Sm,v(w) =

{
(µ, V ) ∈ Rn × Rm×n :

n∑
i=1

(xi − x̄i)T (ATA)(xi − x̄i)
s2
i (m+ 1)

≤ c(w)

}
, (3.2.1)

where xi = (µi, V1i, V2i, . . . , Vmi)
T for i = 1, . . . , n, and A = (e BT ) are defined as in

(1.4.16). Consider the VaR constraint problem under the above uncertainty set.

max
φ∈Φ

min
(µ,V )∈Sm,v

E[rφ] (3.2.2)

s.t max
(µ,V )∈Sm,v

P(rφ ≤ −δ) ≤ ε,

Since the return on the portfolio is rφ ∼ N (µTφ, φT (V TFV + D)φ), the VaR con-

straint can be written as below inequality

P(rφ ≤ −δ) ≤ ε⇔ P(µTφ+ Z
√
φT (V TFV +D)φ ≤ −δ) ≤ ε

⇔ P

(
Z ≤ −µTφ− δ√

φT (V TFV +D)φ

)
≤ ε

⇔ −µTφ− δ√
φT (V TFV +D)φ

≤ F−1(ε)

⇔ −F−1(ε)
√
φT (V TFV +D)φ ≤ µTφ+ δ
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where Z ∼ N (0, 1) is the standard normal random variable and F−1(·) is its cu-

mulative density function (CDF). Typically, we set the possibility of losing certain

percentage on a portfolio small ε� 0.5, and so F−1(ε) < 0. Then both sides of the

equation are nonnegative. Squaring both sides of the inequality will be valid, so the

VaR constraint can be changed to a quadratic inequality constraint:

P (rφ ≤ −δ) ≤ ε⇔ ε20φ
T (V TFV +D)φ ≤ (µTφ+ δ)2

⇔ ε20φ
T (V TFV +D)φ− (µTφ+ δ)2 ≤ 0,

where ε0 = -F−1(ε). Then problem (3.2.2) is equivalent to

max
φ∈Φ

min
(µ,V )∈Sm,v

µTφ

s.t max
(µ,V )∈Sm,v

{ε20φTV TFV φ− (µTφ)2 − 2δ(µTφ)}+ ε20φ
TDφ− δ2 ≤ 0.

By introducing auxiliary variables ν and t, the objective function can be moved to

the constraint, and the quadratic function is changed to a quadratic cone constraint
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as

max
ν,t,φ

ν

s.t min
(µ,V )∈Sm,v

µTφ ≥ ν,

max
(µ,V )∈Sm,v

{ε20φTV TFV φ− (µTφ)2 − 2δ(µTφ)}+ ε20t− δ2 ≤ 0, (3.2.3)

φTDφ ≤ t,

φ ∈ Φ.

By using the equivalent conditions of the first two constraints, problem (3.2.3) can

be rewritten as

max
ν,t,φ

ν

s.t ν − µTφ ≤ 0, ∀(µ, V ) ∈ Sm,v, (3.2.4)

ε20φ
TV TFV φ− (µTφ)2 − 2δ(µTφ) + ε20t− δ2 ≤ 0, ∀(µ, V ) ∈ Sm,v, (3.2.5)

φTDφ ≤ t,

φ ∈ Φ.

The third constraint can be reformulated as second-order cone constraint by using

below Lemma provided by Nesterov and Nemirovski in [33].

Lemma 3.2.1. The restricted hyperbolic constraints, zT z ≤ xy, x, y ≥ 0, can be
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reformulated as second-order cone constraints as follows

zT z ≤ xy ⇔ 4zT z ≤ (x+ y)2 − (x− y)2 ⇔

∥∥∥∥∥∥∥∥
 2x

x− y


∥∥∥∥∥∥∥∥ ≤ x+ y.

Let Ln be the n-dimensional second-order cone given by

Ln =

{
z ∈ Rn : z1 ≥

√√√√ n∑
i=2

z2
i

}
.

Then the third quadratic constraint of the problem can be written as

φTDφ ≤ t ⇔ ‖D1/2φ‖2 ≤ t ⇔ ‖2D1/2φ‖2 ≤ (1 + t)2 − (1− t)2

⇔
√

(1− t)2 + ‖2D1/2φ‖2 ≤ (1 + t)

⇔


1 + t

1− t

2D1/2φ

 ∈ L
n+2.

The following proposition is called the S -procedure lemma and the proof is given

in [9].

Proposition 3.2.2. Let Fi(x) = xTAix + 2bTi x + ci, i = 0, . . . , p be quadratic func-

tions of x ∈ Rn. Then F0(x) ≤ 0 for all x such that Fi(x) ≤ 0, i = 1, . . . , p, if there
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exists τi ≥ 0 such that

p∑
i=1

τi

ci bTi
bi Ai

−
c0 b

T
0

b0 A0

 � 0.

Moreover, if p = 1 then the converse holds if there is x0 ∈ Rn such that F1(x0) < 0.

The next proposition states a property of the Kronecker product of positive semidef-

inite matrices. For the proof, see [21].

Proposition 3.2.3. If H � 0 and K � 0, then H ⊗K � 0.

By the above propositions, two constraints (3.2.4) and (3.2.5) can be derived to

equivalent semidefinite constraints.

Lemma 3.2.4. Let Sm,v be an w-confidence uncertainty set given in (3.2.1) for

w ∈ (0, 1). Then two inequality constraints (3.2.4) and (3.2.5) are equivalent to


τ1R− (φφT )⊗

−1 0

0 ε20F

 τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0,

 τ2R τ2h+ q

τ2h
T + qT τ2η − 2ν

 � 0,

τ1, τ2 ≥ 0,
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where

R =


ATA

s21(m+1)

. . .

ATA
s2n(m+1)

 ∈ R[(m+1)n×(m+1)n], η =
n∑
i=1

x̄Ti

(
ATA

s2
i (m+ 1)

)
x̄i − c(w),

h =


− ATAx̄1
s21(m+1)

...

− ATAx̄n
s2n(m+1)

 ∈ R(m+1)n, q = (φ1, 0 . . . , φn, 0)T ∈ R(m+1)n.

Proof. Given any (t, ν, φ) ∈ R× R× Rn, we define

H(µ, V ) = ε20φ
TV TFV φ− (µTφ)2 − 2δ(µTφ) + ε20t− δ2,

L(µ, V ) = −µTφ+ ν.

For xi = (µi, V1i, V2i, . . . , Vmi)
T for i = 1, . . . , n,

∂H

∂xi
=

−2(µTφ)φi − 2δφi

2ε20φ
TV TFφi

 ,
∂2H

∂xi∂xj
=

−2φiφj 0

0 2ε20φiφjF

 ,

∂H

∂xi
(0, 0) =

−2δφi

0

 ,
∂2H

∂xi∂xj
(0, 0) =

−2φiφj 0

0 2ε20φiφjF

 .
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By the Taylor series expansion for H(µ, V ) at x = 0, we get

H(µ, V ) =
1

2

n∑
i,j=1

xTi

−2φiφj 0

0 2ε20φiφjF

xj +
n∑
i=1

−2δφi

0

xi + ε20t− δ2

=
n∑

i,j=1

xTi

−φiφj 0

0 ε20φiφjF

xj + 2
n∑
i=1

−δφi
0

xi + ε20t− δ2.

Similarly, the Taylor series expansion for L(µ, V ) at x = 0, we obtain

∂L

∂xi
(0, 0) =

−φi
0

 , L(µ, V ) =
n∑
i=1

−φi
0

xi + ν.

The joint uncertainty set Sm,v in (3.2.1) can be written as

Sm,v =

{
(µ, V ) ∈Rn × Rm×n :

n∑
i=1

xTi

(
ATA

(m+ 1)s2
i

)
xi

+ 2
n∑
i=1

(
−ATAx̄i
(m+ 1)s2

i

)T

xi +
n∑
i=1

x̄Ti

(
ATA

(m+ 1)s2
i

)
x̄i − c(w) ≤ 0

}
.

(3.2.6)

We see that x = x̄ strictly satisfies the inequality given in (3.2.6). By using proposi-

tion 3.2.2, we can conclude that H(µ, V ) ≤ 0 and L(µ, V ) ≤ 0 for all (µ, V ) ∈ Sm,v
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if and only if there exist τ1, τ2 ∈ R such that

τ1

R h

hT η

−
 E −δq

−δqT ε20t− δ2

 � 0, τ1 ≥ 0,

τ2

R h

hT η

−
 0 −q

−qT 2ν

 � 0, τ2 ≥ 0,

where R, q, h, and η are the same as those defined in proposition 3.2.3, and E is

given by

Eij =

−φiφj 0

0 ε20φiφjF

 , E = (φφT )⊗

−1 0

0 ε20F

 .

Using proposition (3.2.3) and the fact that F � 0 implies that


τ1R− (φφT )⊗

0 0

0 ε20F

 τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0,

 τ2R τ2h+ q

τ2h
T + qT τ2η − 2ν

 � 0,

τ1, τ2 ≥ 0.

From the lemma, the constraint (3.2.5) is equivalent to the semidefinite constraint.
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For simplicity, replace the quadratic variable φφT by semidefinite matrix S ∈ Rn×n.

Then above constraint becomes


τ1R− S ⊗

−1 0

0 ε20F

 τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0, τ1 ≥ 0, S = φφT . (3.2.7)

The constraint S � φφT can be changed to the semidefinite constraint by Schur’s

complements

S̃ =

1 φ

φ S

 � 0.

However, the reverse inequality constrain φφT � S cannot be changed to semidefinite

constraint. So, we try to find the equivalent condition to S = φφT . One we found

was a constraint that includes the rank of the matrix. Vandenberche and Boyd [38]

showed that the nonconvex constraint S = φφT is equivalent to

S̃ � 0, and rank(S̃) = 1.

But the rank-constrained semidefinite programming is also hard to compute. So we

use the estimated matrix to remove the nonconvex constraint. First, we use the

below estimate function of the constraint (3.2.5):

ε20φ
TV TFV φ− 2δ(µTφ) + ε20t− δ2 ≤ 0 ∀(µ, V ) ∈ Sm,v. (3.2.8)
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The mean of the daily return µ is small, and φT e = 1, so the quadratic term of

the product, (µTφ)2, can be ignored. Moreover, the term is nonnegative, estimation

(3.2.8) implies VaR constraint (3.2.5). Thus, the estimation is a stronger constraint

than (3.2.5). By Lemma 3.2.3 with the fact that F � 0, the estimated constraint

(3.2.8) holds if and only if for some τ1 ≥ 0,


τ1R− S ⊗

0 0

0 ε20F

 τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0, S � φφT . (3.2.9)

We also find another estimation of constraint (3.2.5), and the equivalent semidefinite

constraint (3.2.7) is hard to compute because of the nonconvex constraint S = φφT .

So we relaxed the condition by S � φφT and add more conditions to reduce the gap

between S and φφT . Assume that S = φφT . Then S is doubly non-negative matrix

that is both non-negative, Sij ≥ 0 ∀i, j, and positive semidefinite, S � 0. By the

fact that the sum of the weight vector is φT e = 1,

φ = φ(φT e) = (φφT )e = Se, 1 = (eTφ)(φT e) = eT (φφT )e = eTSe.

The estimated constraint of (3.2.7) including all of the properties above is


τ1R− S ⊗

−1 0

0 ε20F

 τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0, S � φφT , φ = Se, Sij ≥ 0. (3.2.10)

59



VaR constraint (3.2.7) implies estimation (3.2.10), thus the estimation is a weaker

constraint than (3.2.7). The following two theorems show that problem (3.2.2) with

two estimations of the VaR constraint can be reformulated as cone programming

problems.

Theorem 3.2.5. Let Sm,v be an w-confidence uncertainty set given in (3.2.1) for

w ∈ (0, 1). Then, problem (3.2.2) with estimation (3.2.9) on VaR constraint is

equivalent to

max
φ,S,τ1,τ2,ν,t,

ν

s.t


τ1R− S ⊗

0 0

0 ε20F

 τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0,

 τ2R τ2h+ q

τ2h
T + qT τ2η − 2ν

 � 0,

1 φT

φ S

 � 0, (3.2.11)


1 + t

1− t

2D1/2φ

 ∈ L
n+2,

Sij ≥ 0, τ1, τ2 ≥ 0, φ ∈ Φ,

where R, h, q and η are the same as those defined in Lemma 3.2.4.
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Theorem 3.2.6. Let Sm,v be an w-confidence uncertainty set given in (3.2.1) for

w ∈ (0, 1). Then, problem (3.2.2) with estimation (3.2.10) on VaR constraint is

equivalent to

max
φ,S,τ1,τ2,ν,t,

ν

s.t


τ1R− S ⊗

−1 0

0 ε20F

 τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0,

 τ2R τ2h+ q

τ2h
T + qT τ2η − 2ν

 � 0,

1 φT

φ S

 � 0, (3.2.12)

φ = Se,

Sij ≥ 0,
1 + t

1− t

2D1/2φ

 ∈ L
n+2,

τ1, τ2 ≥ 0, φ ∈ Φ,

where R, h, q and η are the same as those defined in lemma 3.2.4.

The following proposition, called the strict S -procedure, is obtained from [39].

Proposition 3.2.7 (Theorem 1.2 in [39]). Let Fi(x) = xTAix+2bTi x+ci, i = 0, 1 be
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quadratic functions of x ∈ Rn, and assume F1(x) > 0 for some x. Then F0(x) < 0

for all nonzero x such that F1(x) ≤ 0, if and only if there exists τ ≥ 0 such that

τ

c1 b
T
1

b1 A1

−
c0 b

T
0

b0 A0

 � 0. (3.2.13)

Lemma 3.2.8. Let δ∗ to be the minimum of the WVaR problem over φ, i.e.,

δ∗ := min
φ∈Φ

max
(µ,V )∈Sm,v

ε0
√

(φ)T (V TFV +D)φ− µTφ.

Let ri(·) be the relative interior of the associated set. Then there exists δ0 such that

for any δ > δ0, there exist a solution φ ∈ ri(Φ) such that

max
(µ,V )∈Sm,v

φTV TFV φ− 2δ(µTφ) + ε20t− δ2 < 0 and

φTDφ < t.

Proof. By the definition of δ∗, there exists solution φ∗ ∈ Φ such that

δ∗ = max
(µ,V )∈Sm,v

ε0
√

(φ∗)T (V TFV +D)φ∗ − µTφ∗,

0 = max
(µ,V )∈Sm,v

ε0
√

(φ∗)T (V TFV +D)φ∗ − (µTφ∗ + δ∗).

Since both terms are positive, it can be stated that

max
(µ,V )∈Sm,v

ε20(φ∗)T (V TFV +D)φ∗ − (µTφ∗ + δ∗)2 = 0.
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Then for any δ > δ∗, there exists φ ∈ Φ such that

max
(µ,V )∈Sm,v

φT (V TFV +D)φ− (µTφ+ δ)2 < 0.

Since the mean daily return µ is small, there is δ0 slightly greater than δ∗ such that

for any δ > δ0, it can be stated that

max
(µ,V )∈Sm,v

φT (V TFV +D)φ− 2δ(µTφ)− δ2 < 0,

and there is t ∈ R,

max
(µ,V )∈Sm,v

φTV TFV φ− 2δ(µTφ) + ε20t− δ2 < 0,

φTDφ < t.

Theorem 3.2.9. Assume that 0 6= F � 0, and w ∈ (0, 1). Problem (3.2.11) and its

dual are strictly feasible, both problem are solvable, and duality gap is zero.

Proof. We first show that problem (3.2.11) is strictly feasible. By Lemma 3.2.8,

there exists φ0 ∈ ri(Φ) and t0 ∈ R such that

max
(µ,V )∈Sm,v

(φ0)TV TFV φ0 − 2δ(µTφ0) + ε20t
0 − δ2 < 0,

(φ0)TDφ0 < t0.
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Then we observe that 
1 + t0

1− t0

2D1/2φ0

 ∈ ri(Ln+2).

By Proposition 3.2.7, there exists τ1 > 0 such that


τ 0

1R− S0 ⊗

0 0

0 ε20F

 τ 0
1h+ δq0

(τ 0
1h+ δq0)T τ 0

1 η − ε20t0 + δ2

 � 0,

S0 � φ0(φ0)T ,

for some matrix S0 that has all positive entries. Then by the Schur Complement

Lemma, the following holds:

 1 (φ0)T

φ0 S0

 � 0.

Since A has full column rank, R � 0. Let τ 0
2 be any given positive number and ν0

be sufficiently small such that

τ 0
2 η − 2ν0 − (τ 0

2h+ q0)T (τ 0
2R)−1(τ 0

2h+ q0) > 0,

where q0 = (φ0
1, 0, . . . , φ

0
n, 0)T ∈ R(m+1)n. By the Schur’s Complement Lemma, this
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is equivalent to  τ 0
2R τ 0

2h+ q0

(τ 0
2h+ q0)T τ 0

2 η − 2ν0

 � 0.

Thus, (φ0, S0, τ 0
1 , τ

0
2 , ν

0, t0) is a strictly feasible point of problem (3.2.11). Next, we

show that the dual of problem (3.2.11) is also strictly feasible. Let

X1 =

X1
11 X

1
12

X1
21 X

1
22

 , X2 =

X2
11 X

2
12

X2
21 X

2
22

 , X3 =

X3
11 X

3
12

X3
21 X

3
22

 , x4 =


x4

1

x4
2

x4
3


be the dual variables corresponding to the first five constraints of the problem

(3.2.11), respectively, where X1
11, X

2
11 ∈ R[(m+1)n]×[(m+1)n], X1

12, X
2
12 ∈ R(m+1)n, X3

22 ∈

Rn×n, X3
21, x

4
3 ∈ Rn, X1

22, X
2
22, X

3
11, x

4
1, x

4
2 ∈ R. Let x5 be the dual variable corre-

sponding to the condition eTφ = 1. Then the Lagrange function of problem (3.2.11)

is defined as

Z (φ, S, τ1, τ2, ν, t,X
1, X2, X3, x4, x5) = −ν

−X1 ·


τ1R− S ⊗

0 0

0 ε20F

 τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2



−X2 ·

 τ2R τ2h+ q

τ2h
T + qT τ2η − 2ν

−X3 ·

1 φT

φ S

− x4 ·


1 + t

1− t

2D1/2φ

+ x5(eTφ− 1).
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∂Z

∂φ
= −2δΨ(X1

12)− 2Ψ(X2
12)− 2X3

21 − 2D
1
2x4

3 + x5e ≥ 0,

∂Z

∂S
=

0 0

0 ε20F

�X1
11 −X3

22 � 0,

∂Z

∂τ1

= −

R h

hT η

 ·X1 ≥ 0,

∂Z

∂τ2

= −

R h

hT η

 ·X2 ≥ 0,

∂Z

∂t
= ε20X

1
22 − x4

1 + x4
2 = 0,

∂Z

∂ν
= −1 + 2X2

22 = 0.

Then dual of the problem (3.2.11) is

min
X1,X2,X3,x4,x5

δ2X1
22 +X3

11 + x4
1 + x4

2 + x5,

s.t 2δΨ(X1
12) + 2Ψ(X2

12) + 2X3
21 + 2D

1
2x4

3 − x5e ≤ 0,0 0

0 ε20F

�X1
11 −X3

22 ≥ 0,

R h

hT η

 ·Xk ≤ 0, k = 1, 2,

− ε20X1
22 + x4

1 − x4
2 = 0,

2X2
22 = 1,

X1 � 0, X2 � 0, X3 � 0, x4 ∈ Ln+2,
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where Ψ : R(m+1)n → Rn is defined as Ψ(x) = (x1, xm+2, . . . , x(n−2)(m+1)+1, x(n−1)(m+1)+1)T

for any x ∈ R(m+1)n, and

0 0

0 F

�X ≡

0 0

0 F

 ·Xij

 ∈ Rn×n

for any X = (Xij) ∈ R[(m+1)n]×[(m+1)n] with Xij ∈ R(m+1)×(m+1) for i, j = 1, · · · , n.

Let X2 = 1
2(1+γ)





x̄1

...

x̄n

1





x̄1

...

x̄n

1



T

+ γI


for some γ and X1 = tX2 for some t. Then

it follows that 2X2
22 = 1 and X1

22 = t/2. Let x4 = (ε20t/2, 0, . . . , 0) ∈ ri(Ln+2) so that

−ε20X1
22 + x4

1 − x4
2 = 0. Lu [29] showed that

−

R h

hT η

 ·X1 � 0

and X1 � 0 for sufficiently small positive γ. Thus it implies that X2 � 0 and

−

R h

hT η

 ·X2 = −1

2

R h

hT η

 ·X1 � 0.

Now, let

X3
22 = t

0 0

0 ε20F

�X1
11
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for some small positive number t < 1. Using the fact that

0 0

0 F

�X1
11 � 0,

which is proven by Lu [29], we get

0 0

0 ε20F

�X1
11 −X3

22 = (1− t)

0 0

0 ε20F

�X1
11 � 0.

By letting X3
12 = 0 and X3

11 = 1, the matrix X3 � 0. Thus for a sufficiently large

number x5, we can get

2δΨ(X1
21) + 2Ψ(X2

12) + 2X3
21 + 2D

1
2x4

3 − x5e < 0.

Hence, (X1, X2, X3, x4, x5) is a strictly feasible solution of the dual problem.

3.3 Real Market Data Simulation

We compute the robust portfolio selection problem with the VaR constraint

(3.2.2) on the same real market data in the previous section with the ‘joint’ and

‘separable’ uncertainty sets. In total, there are n = 36 assets in this set (see Table

A.1.3). The set of factors are 6 major market indices (see Table A.1.2). Note that

there are 252 trading days per year. The time period is from January 1, 2013 through

December 31, 2016, containing 12 periods of length p = 84 trading days, 4 years,
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Table 3.3.1: Maximum weight

Period HP1 HP2 GI

1 0.0933 0.1114 1
2 0.0881 0.1359 0.9052
3 0.1062 0.1196 1
4 0.0825 0.1105 0.9536
5 0.0550 0.0849 0.9749
6 0.0971 0.1310 1
7 0.0867 0.1082 0.6062
8 0.0719 0.0757 1
9 0.0893 0.1342 0.5418
10 0.1428 0.1909 0.7668
11 0.1015 0.1242 1

Mean 0.0922 0.1206 0.8862

(a) δ = 0.015

HP1 HP2 GI

0.1010 0.1010 1
0.0687 0.0687 1
0.1020 0.1019 1
0.0803 0.0803 1
0.0550 0.0550 1
0.0723 0.0723 1
0.1018 0.0982 1
0.0812 0.0856 1
0.1030 0.1188 1
0.1382 0.1405 1
0.1035 0.1035 1

0.0915 0.0933 1

(b) δ = 0.02

HP1 HP2 GI

0.1010 0.1010 1
0.0687 0.0687 1
0.1020 0.1019 1
0.0803 0.0803 1
0.0550 0.0550 1
0.0730 0.0730 1
0.0757 0.0758 1
0.0844 0.0844 1
0.0948 0.0948 1
0.0914 0.0914 1
0.1035 0.1035 1

0.0845 0.0845 1

(c) δ = 0.03

and so there are 11 investment periods. For a given desired confidence level w > 0,

the confidence level for Goldfarb and Iyengar’s separable uncertainty set in [16] is

defined as w̃ = w1/n. Let the confidence on the set w be 97.5%, thus w̃ is 99.93%.

Typical values for the probability ε are 1, 2.5, and 5 percent in [26], so we assume

the confidence level on the probability constraint to be 97.5%, i.e., ε = 0.025. Then

the confidence level on the set and the constraint is at least 95%(= 0.9752). The

symbol ‘HP1’ represents the VaR constraint problem with estimation (3.2.9) and

the symbol ‘HP2’ represents the problem with estimation (3.2.10) under the joint

ellipsoidal uncertainty set. The symbol ‘GI’ represents the VaR constraint problem

under the separable uncertainty sets.

Figure 3.3.1 is the performance of the portfolio when the threshold on the

investor’s loss δ is 1.5% on the investment, Figure 3.3.2 is the performance when δ

is 2%, and Figure 3.3.3 is the performance when δ is 3%. The performance does not
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Figure 3.3.1: Performance of portfolio with δ = 0.015
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Figure 3.3.2: Performance of portfolio with δ = 0.02
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Figure 3.3.3: Performance of portfolio with δ = 0.03
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significantly change beyond δ = 3% for each model. The ‘HP1’ and ‘HP2’ models

construct similar portfolios for any δ and have the exact same portfolio when δ is

greater than 3%. The ‘HP1’ and ‘HP2’ models have better overall wealth growth

returns than the ‘GI’ model regardless δ. The figures of diversification number

(3.3.1(b), 3.3.2(b), and 3.3.3(b)) and Table 3.3.1 show that the ‘GI’ model has a

highly non-diversified portfolio. The diversification number of 1 means the investor

puts all the portfolio into one stock, so the risk of the portfolio depends entirely on

that stock. When δ = 0.015, the ‘GI’ model includes a small number of stocks, so it

is not that well diversified. In Table 3.3.1, the model has still about a 90% weight

on one stock when δ = 0.015. So it is not well diversified. On the other hand, the

‘HP1’ and ‘HP2’ models construct the portfolios with more than 26 stocks, and the

maximum weight of the portfolio is around 10%, so the portfolio is well diversified.

All three models start with transaction cost 1 since the initial amount invested in

each stock is 0. Transaction cost 0 means no change in the portfolio. Transaction

cost 2 means the portfolio is changed completely, which doesn’t included any stocks

in the previous portfolio, thus cost 1 is from selling all the stocks and the other 1 is

to buy all new stocks. Since the ‘GI’ model includes only one stock in the portfolio,

the transaction cost is close to 2 for the most period by selling one stock and buying

new stock, while the ‘HP1’ and ‘HP2’ models are around 0.5 in Figure 3.3.3(c).

Similarly, the ‘GI’ model has a huge weight on a single stock, the transaction cost

is close to 2 in Figure 3.3.1(c) and Figure 3.3.2(c).

In Table 3.3.2 and Figure 3.3.4, all three models have positive Sharpe ratios.

For any δ, the ‘GI’ model has a higher Sharpe ratio than the other two models since
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(b) Sharpe ratio when δ = 0.02
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Figure 3.3.4: Sharpe ratio over the investment period of three different models with
δ = 0.015, 0.02, 0.03. The transaction cost is not considered in the return of the
portfolio, and the risk-free rate rf is chosen from the U.S. Treasury bill rate.
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Table 3.3.2: Mean Sharpe ratio

δ HP1 HP2 GI

0.015 0.4917 0.5049 1.0197
0.02 0.5306 0.5302 1.0792
0.03 0.6023 0.6023 1.0860

the ‘GI’ model constructs a conservative portfolio by putting most of the portfolio

into one stock that has high return and low variance.

From the computational results, we see the ‘HP1’ and ‘HP2’ models have

similar owgr, dn, and tc. Table 3.3.3 shows the difference of weights between the

‘HP1’ and ‘HP2’ models, which is calculated by the absolute sum of the weights on

each period:

‖φtHP1 − φtHP2‖1, t = 1, . . . , 11.

Two models have different estimations on the VaR constraint, but they have similar

Table 3.3.3: Difference of weights between the HP1 and HP2 models

Period 0.015 0.02 0.03

1 0.1816 0.0001 0.0000
2 0.2536 0.0002 0.0001
3 0.2136 0.0002 0.0001
4 0.2336 0.0001 0.0001
5 0.3710 0.0000 0.0001
6 0.2465 0.0160 0.0001
7 0.2604 0.0570 0.0001
8 0.2202 0.0918 0.0002
9 0.3021 0.0558 0.0001
10 0.2561 0.0397 0.0003
11 0.2519 0.0002 0.0002

Mean 0.2537 0.0237 0.0001

weights on each period. As δ gets bigger, the two models construct closer portfolios.
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From the result, the problem with the actual VaR constraint is also expected to

have similar weights as these two models.

3.4 Discussion

In this chapter, we used the factor model to define the random asset returns

and solved the robust VaR problem under the joint ellipsoidal uncertainty set with

estimations on the VaR constraint. This set is less conservative and produces a

diversified portfolio compared to the separable uncertainty set. The difficult part

in solving the robust VaR problem is that the VaR constraint is non-convex, so we

estimate the constraint to be semidefinite constraint, which is easier to handle.

For the VaR constraint, the ‘HP1’ model uses estimation (3.2.9), which implies

the VaR constraint, so the estimation is a strong condition. The ‘HP2’ model uses

estimation (3.2.10), in which the VaR constraint implies the estimation, so the

estimation is a weak condition. From the simulation, the ‘HP1’ and ‘HP2’ models

construct very close optimal portfolios. Thus we can conclude that the VaR problem

constructs the close portfolio and so the ‘HP1’ and ‘HP2’ models are reasonable

estimations.
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Chapter 4

Robust Portfolio Problem in the Presence of Transactions Costs

under Joint Uncertainty Set

4.1 Overview

When investors rebalance their portfolios, they need to consider the transac-

tions costs-adjusted return of the portfolio, which is defined as

(P1 − P0 − Tc)/P0,

where P1 is the value of portfolio in the next period, P0 is the current portfolio

value, and Tc is transactions costs. The next simple example will show the effect of

the transactions costs on return. Consider two assets, A and B, where asset A has

Table 4.1.1: No transactions costs

Assets Return Initial amount Rebalance

A 5% $100 $0
B 5.1% $0 $100

Expected Profit $5 $5.1

expected return 5% and asset B has expected return 5.1%. The initial amount of

money in asset A is $100 and no money is in asset B. In the case of no transactions

costs considered (see Table 4.1.1), the investor will rebalance the portfolio by moving
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all of money into asset B to maximize the expected profit. Consider transactions

Table 4.1.2: 0.5% transactions costs

Assets Return Initial amount Rebalance

A 5% $100 $0
B 5.1% $0 $100

Expected Profit $5 $4.1

costs rate of 0.5% to buy or sell assets. The expected profit without rebalancing

is $5. The expected profit putting all of the money into asset B gives $4.1 since

the transactions costs of $0.5 to sell asset A and $0.5 to buy asset B are deducted

from the profit (see Table 4.1.2). In the presence of the 0.5% transactions costs, it

is better to keep the same portfolio to get more profit. This simple example shows

that the small transactions costs affects portfolio so we construct totally different

portfolio from the case without the transactions costs.

In this chapter, the robust VaR constraint portfolio model under the joint

ellipsoidal uncertainty set in Chapter 3 will be extended to a model which considers

transactions costs. The models in Chapter 3 find the optimal weight of assets

to construct the portfolio, but the models did not consider the initial portfolio.

However, the model in this chapter will find the optimal weights that rebalance the

initial portfolio to maximize the transactions costs-adjusted return. To involve the

costs, we use similar notation from the multi-period portfolio problem (1.4.28) that

Bertisimas and Pachamanova provided in [6]. The next section derives the robust

VaR constraint problem, which maximizes transactions costs-adjusted return while

having a threshold on the return as a constraint. The computational results on the
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real market data of this model are presented in Section 4.3 and they are compared to

the model in Chapter 3. In Section 4.4, we extend the RMRAR model introduced in

Section 1.4.5 to consider transactions costs. The computational results of the model

are provided in Section 4.5 using the same data used in Section 4.3 to compare the

results.

4.2 The Robust VaR Constraint in the Presence of Transactions

Costs

To introduce transactions costs, we use similar notations from the multi-period

maximum final wealth problem (1.4.28) that Bertsimas and Pachamanova [6] pro-

vided. For a single period, the following notation will be used:

• x0
i and x1

i are the investor’s initial and final dollar holdings on stock i.

• x0
0 and x1

0 are the investor’s initial and final cash holdings.

• yi and zi are the amount for the investor to sell and buy the stock i.

• csellyi, and cbuyzi are the transactions costs to sell and buy.

• r̃i and r0 are the uncertainty returns on stock i and the certain cash return.
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Using the notations, the dollar holding on stock i and cash holding after one period

are defined as

x1
i = (1 + r̃i)(x

0
i − yi + zi), i = 1, 2, . . . , n,

x1
0 = (1 + r0)

(
x0

0 +
n∑
i=1

(1− csell)yi −
n∑
i=1

(1 + cbuy)zi

)
.

Then
∑n

i=0 x
1
i represents the final wealth, and

∑n
i=0 x

0
i represents the initial wealth.

The transactions costs-adjusted return that we want to maximize is defined by profit

over initial wealth, i.e.,

(
n∑
i=0

x1
i −

n∑
i=0

x0
i

)/
n∑
i=0

x0
i =

n∑
i=0

x1
i

/ n∑
i=0

x0
i − 1.

Using the notations, the robust VaR portfolio problem under the joint uncertainty

set in the presence of transactions costs can be formulated as

max
x1,y,z

min
(µ,V )∈Sm,v

E

(∑n
i=0 x

1
i∑n

i=0 x
0
i

− 1

)

s.t max
(µ,V )∈Sm,v

P

(∑n
i=0 x

1
i∑n

i=0 x
0
i

− 1 ≤ −δ

)
≤ ε, (4.2.1)

x1
i = (1 + r̃i)(x

0
i − yi + zi), i = 1, 2, . . . , n,

x1
0 = (1 + r0)

(
x0

0 +
n∑
i=1

(1− csell)yi −
n∑
i=1

(1 + cbuy)zi

)
,

y ≥ 0, z ≥ 0.
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In the objective function, the constant 1 can be dropped. For given initial amount

in stock i, x0
i , let c̄i be the dollar amount after reconstructing portfolio on stock

i. Then c̄ ∈ Rn is a column vector that represents a dollar holding on stocks after

reconstructing, i.e., c̄i = (x0
i −yi+zi), i = 1, . . . , n. The transaction-adjusted return

can be written as

∑n
i=1 x

1
i∑n

i=0 x
0
i

− 1 =

∑n
i=1(1 + r̃i)c̄i∑n

i=0 x
0
i

− 1 =
n∑
i=1

(1 + r̃i)ci − 1, (4.2.2)

where c = c̄/(
∑n

i=0 x
0
i ). By using the new variable c, variable x1 can be removed

in the objective function and probability constraint. The new variable c is an non-

negative vector, which means no short selling is allowed. The sum of its entries

is

eT c =
eT (x0 − y + z)

x̄
=
eTx0 − eTy + eT z

eTx0 + x0
0

=
eTx0 − (1− csell)eTy + (1 + cbuy)e

T z − cselleTy − cbuyeT z
eTx0 + x0

0

=
x0

0 + eTx0 − cselleTy − cbuyeT z
eTx0 + x0

0

= 1− cselle
Ty + cbuye

T z

eTx0 + x0
0

where e = (1, 1, . . . , 1)T ∈ Rn is the column vector with all entries equal to one.

Let tcri = (cselle
Tyi + cbuye

T zi)/(e
Tx0 + x0

0) be the portion of the transactions costs

incurred from stock i on total investment. Then the variable of sum c+tcr is defined

as the allocation vector φ ∈ Φ = {φ ∈ Rn : φi ≥ 0, eTφ = 1}. To allocate all money
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into stocks, set the cash holding after reconstructing portfolio equal to zero,

x0
0 +

n∑
i=1

(1− csell)yi −
n∑
i=1

(1 + cbuy)zi = 0.

Consequently, the final cash holding x1
0 also becomes zero. By using new variable

c and the fact no cash holding after rebalancing is allowed, the problem (4.2.1)

becomes

max
c,y,z

min
(µ,V )∈Sm,v

E(cT (e+ r̃))

s.t max
(µ,V )∈Sm,v

P(cT (e+ r̃) ≤ (1− δ)) ≤ ε, (4.2.3)

x0
0 = −(1− csell)eTy + (1 + cbuy)e

T z,

x̄c = x0 − y + z,

c ≥ 0, y ≥ 0, z ≥ 0.

Define an unknown return vector R ∈ Rn as R = e + r = (e + µ) + V Tf + ε. Then

the multi-period factor model is defined as the following:

yi = Axi + εi, for all i = 1, . . . , n,

where yi = (1 + r1
i , . . . , 1 + rpi )

T , A = (e BT ), xi = (1 + µi, V1i, . . . , Vmi)
T , and

εi = (ε1i , . . . , ε
p
i )
T for i = 1, . . . , n. The least squares estimate x̄i of the true parameter
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xi is given by x̄i = (ATA)−1ATyi. The joint ellipsoidal uncertainty set is defined as

Sm,v(w) =

{
(µ, V ) ∈ Rn × Rm×n :

n∑
i=1

(xi − x̄i)T (ATA)(xi − x̄i)
s2
i (m+ 1)

≤ c(w)

}
(4.2.4)

for some c(w), where xi = (1+µi, V1i, V2i, . . . , Vmi)
T for i = 1, . . . , n. Since the return

R ∼ N (e+ µ, V TFV +D), the probability constraint is changed to

P(cTR ≤ 1− δ) ≤ ε⇔ P((e+ µ)T c+ Z
√
cT (V TFV +D)c ≤ 1− δ) ≤ ε

⇔ P

(
Z ≤ −(e+ µ)T c+ 1− δ√

cT (V TFV +D)c

)
≤ ε

⇔ −(e+ µ)T c+ 1− δ√
cT (V TFV +D)c

≤ F−1(ε)

⇔ −F−1(ε)
√
cT (V TFV +D)c ≤ (e+ µ)T c− (1− δ)

⇔ ε20c
T (V TFV +D)c ≤ ((e+ µ)T c− δ0)2

where ε0 = −F−1(ε) and δ0 = 1 − δ. By the above equivalent constraint and

introducing new variable ν on the objective function, the problem (4.2.3) can be
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derived as follow

max
c,y,z,ν

ν

s.t ε20c
T (V TFV +D)c− ((e+ µ)T c− δ0)2 ≤ 0, ∀(µ, V ) ∈ Sm,v,

ν − (e+ µ)T c ≤ 0, ∀(µ, V ) ∈ Sm,v, (4.2.5)

x0
0 = −(1− csell)eTy + (1 + cbuy)e

T z,

x̄c = x0 − y + z,

c ≥ 0, y ≥ 0, z ≥ 0.

Let δ∗ is the minimum of the WVaR over c, i.e.,

δ∗ := max
c

max
(µ,V )∈Sm,v

ε0
√
cT (V TFV +D)c− µT c.

By the definition of δ∗, for any δ > δ∗, there exists a solution c such that

max
(µ,V )∈Sm,v

ε20c
T (V TFV +D)c− (µT c+ δ)2 ≤ 0.

First two constraints in problem (4.2.5) can be changed to semidefinite constraints,

which are shown in the next lemma.

Lemma 4.2.1. Let Sm,v be an w-confidence uncertainty set given in (4.2.4) for
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w ∈ (0, 1). Then, the first two constraints in problem (4.2.5) are equivalent to


τ1R− (ccT )⊗

−1 0

0 ε0F

 τ1h− δ0q

τ1h
T − δ0q

T τ1η − ε20t+ δ2
0

 � 0, (4.2.6)

 τ2R τ2h+ q

τ2h
T + qT τ2η − 2ν

 � 0, τ1, τ2 ≥ 0,

where

R =


ATA

s21(m+1)

. . .

ATA
s2n(m+1)

 ∈ R[(m+1)n]×(m+1)n], η =
n∑
i=1

x̄Ti

(
ATA

s2
i (m+ 1)

)
x̄i − c(w),

h =


− ATAx̄1
s21(m+1)

...

− ATAx̄n
s21(m+1)

 ∈ R(m+1)n, q = (c1, 0 . . . , cn, 0)T ∈ R(m+1)n.

Proof. Given any (t, ν, c) ∈ R× R× Rn, we define

H(µ, V ) = ε20c
TV TFV c− ((1 + µ)T c)2 + 2δ0(1 + µ)T c− δ2

0 + ε20t ≤ 0 and

L(µ, V ) = ν − (1 + µ)T c ≤ 0.
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Since xi = (1 + µi, V1i, V2i, . . . , Vmi)
T for i = 1, . . . , n,

∂H

∂xi
=

2δci − 2(µT c)ci

2ε20ciFV c

 ,
∂2H

∂xi∂xj
=

−2cicj 0

0 2ε20cicjF


∂H

∂xi
(0, 0) =

2δci

0

 ,
∂2H

∂xi∂xj
(0, 0) =

−2cicj 0

0 2ε20cicjF


By the Taylor series expansion for H(e+ µ, V ) at x = 0, we get

H(µ, V ) =
1

2

n∑
i,j=1

xTi

−2cicj 0

0 2ε20cicjF

xj +
n∑
i=1

2δ0ci

0

xi + ε20t− δ2
0

=
n∑

i,j=1

xTi

−cicj 0

0 ε20cicjF

xj + 2
n∑
i=1

δ0ci

0

xi + ε20t− δ2
0 + ν.

Similarly, the Taylor series expansion for L(µ, V ) at x = 0, we obtain

∂L

∂xi
(0, 0) =

−ci
0

 , L(µ, V ) =
n∑
i=1

−ci
0

xi + ν.

The joint uncertainty set in (4.2.4), Sm,v can be written as

Sm,v =

{
(µ, V ) ∈ Rn × Rm×n :

n∑
i=1

xTi

(
ATA

(m+ 1)s2
i

)
xi

+ 2
n∑
i=1

(
−ATAx̄i
(m+ 1)s2

i

)T

xi +
n∑
i=1

x̄Ti

(
ATA

(m+ 1)s2
i

)
x̄i − c(w) ≤ 0

}
. (4.2.7)

We see that x = x̄ satisfies the strict inequality given in (4.2.7). By using Lemma
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3.3.1, we can conclude that H(µ, V ) ≤ 0 and L(µ, V ) ≤ 0 for all (µ, V ) ∈ Sm,v if

and only if there exist τ1, τ2 ∈ R such that

τ1

R h

hT η

−


(ccT )⊗

−1 0

0 ε20F

 δ0q

δ0q
T ε20t− δ2

0 + ν

 � 0, τ1 ≥ 0,

τ2

R h

hT η

−
 0 −q

−qT 2ν

 � 0, τ2 ≥ 0.

By the lemma, the VaR constraint in problem (4.2.5) has the equivalent semidefinite

constraint as the one in (4.2.6). For simplicity, we replace the quadratic variable

ccT by semidefinite matrix S ∈ Rn
+ so that S = ccT . We relax the constraint by

S � ccT and add more conditions to reduce the gap between S and ccT . Since ccT

is a doubly non-negative matrix constraint, so is S. By the fact that cT e ≤ 1,

Se = c(cT e) ≤ c, eTSe ≤ eT c ≤ 1.

The estimated constraint of (4.2.6) is


τ1R− S ⊗

−1 0

0 ε0F

 τ1h− δ0q

τ1h
T − δ0q

T τ1η − ε20t+ δ2
0

 � 0, S � ccT , Se ≤ c, Sij ≥ 0.
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Theorem 4.2.2. Let Sm,v be an w-confidence uncertainty set given in (4.2.4) for

w ∈ (0, 1). Then, problem (4.2.5) with estimation on VaR constraint is equivalent

to

max
ν,c,y,z,τ1,τ2,S,t

ν

s.t


τ1R− S ⊗

−1 0

0 ε0F

 τ1h− δ0q

τ1h
T − δ0q

T τ1η − ε20t+ δ2
0

 � 0,

 τ2R τ2h+ q

τ2h
T + qT τ2η − 2ν

 � 0,

1 cT

c S

 � 0, (4.2.8)


1 + t

1− t

2D1/2c

 ∈ L
n+2,

c− Se ≥ 0,

Sij ≥ 0, ∀i, j,

x0 − y + z − x̄c = 0,

x0
0 + (1− csell)eTy − (1 + cbuy)e

T z ≥ 0,

c, y, z ≥ 0, τ1, τ2 ≥ 0,

where R, h, η, and q are the same as those defined in Lemma 4.2.1.
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4.3 Real Market Data Simulation

We compute the problem (4.2.8) on real market data and compare to the

VaR model without considering transactions costs in Section 3. The same assets

and factors are used from Section 3.4. In total, there are n = 36 assets in this

set (see Table A.1.3). The set of factors are m = 6 major market indices (see

Table A.1.2 ). The time period is from January 1, 2013 through December 31,

2016, containing 12 periods of length p = 84 trading days over 4 years, so there are

11 investment periods. For each investment period t, the factor covariance matrix

F is computed on the factor returns of the previous trading period, and the upper

bound of the variance d̄i of the residual return is computed to be d̄i = s2
i , where s2

i is

given in Proposition 1.4.1. Let the confidence level w be 97.5%. The symbol ‘HP2’

represents the robust VaR constraint problem solved using (3.2.10). The symbol

‘HPtc’ represents problem (4.2.8) that maximizes transactions costs-adjusted return

while imposing threshold on the transactions costs-adjusted return.

We define transactions costs as the 1-norm of difference between the weight

vectors of current period and previous period. The transactions costs percentage of

the pervious wealth for the ‘HP2’ model are the from the results of Section 3.3. For

the models considering transactions costs, the cost can be directly obtained from

variables y, the amount to sell, and z, the amount to buy. The Rebalancing ratio,

transactions costs percentage of the wealth on period p, p = 1, . . . , 11, is defined by

eT (y + z)∑n
i=1 x

p
i + xp0

× 100 (%).
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Figure 4.3.1: Rebalancing ratio with no transactions costs
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Figure 4.3.2: Rebalancing ratio with 0.5% transactions costs
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Figure 4.3.3: Rebalancing ratio with 1% transactions costs
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Figure 4.3.1 represents the rebalancing ratio when transactions costs are 0. Figure

4.3.2 represents the ratio when transactions costs have rate 0.5%. The ratio of the

‘HPtc’ model decreases significantly since the portfolio does not make profit more

than the cost when rebalanced. When transactions costs rate is 1%, the rebalancing

ratio is negligible compared to the ‘HP2’ model since the portfolio does not change

for this same reason. As transactions costs rate increases, rebalancing ratio of the

‘HPtc’ model decreases but it does not affect the ‘HP2’ model. Table 4.3.1 is the

average transactions costs over 10 periods excluding the costs for the first period

for the different threshold on return δ and transactions costs rate. Both the ‘HPtc’

model decreases as transactions costs rate increases.

Table 4.3.1: Mean rebalancing ratio

0.015 0.02 0.03

0 0.6681 0.6075 0.6014
0.1 0.6658 0.6056 0.5995
0.5 0.6566 0.5981 0.5922
1 0.6454 0.5887 0.5831

(a) HP2

0.015 0.02 0.03

0 0.4450 0.4494 0.4475
0.1 0.1689 0.1697 0.1712
0.5 0.0165 0.0165 0.0170
1 0.0011 0.0013 0.0013

(b) HPtc

The overall wealth growth return on the period k = 1, . . . , 11 for the ‘HPtc’ models
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are defined as

owgrk =
∏

1≤t≤k

[
(rt + e)T ct

]
− 1 =

∏
1≤t≤k

[
1 + ((rt)T ct − tcrt)]− 1

where tcrt = (cselle
Tyti + cbuye

T zti)/x̄
t−1 is the portion of transactions costs incurred

from stock i on wealth on the previous period. The overall wealth growth return for

the ‘HP2’ model is in Figure 3.3.1(a), 3.3.2(a), and 3.3.3(a). Figure 4.3.4 plots the

overall wealth growth return when there is no transactions costs, Figure 4.3.5 shows

the same plots with a transactions costs rate of 0.5% amount of buying or selling

stocks, and Figure 4.3.6 shows the same plots with a transactions costs rate of 1%.

When there is no transaction fee, the owgr graphs of both models coincide. When

transactions costs exist, the owgr graph of the ‘HP2’ model is under the ‘HPtc’

model for the most period of time. As the costs rate increases, the difference of the

two models gets bigger.
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Figure 4.3.4: Overall wealth growth return with no transactions costs
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Figure 4.3.5: Overall wealth growth return with 0.5% transactions costs
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Figure 4.3.6: Overall wealth growth return with 1% transactions costs
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4.4 The RMRAR Problem with Transactions Costs

In this section, we extend the RMRAR problem (1.4.27) under the joint el-

lipsoidal uncertainty set to the problem in the presence of transactions costs. The

problem is

max
φ∈Φ

min
(µ,V )∈Sm,v

E[r̃Tφ]− θVar[r̃Tφ] (4.4.1)

where θ ≥ 0 is the risk-aversion parameter. The definition of transactions costs-

adjusted return is defined same as in (4.2.2). Using the definition and notations

from Section 4.2, problem 4.4.1 can be rewritten as

max
c,y,z

min
(µ,V )∈Sm,v

E[cT (e+ r̃)]− θVar[cT (e+ r̃)],

s.t x0
0 = −(1− csell)eTy + (1 + cbuy)e

T z, (4.4.2)

c = (x0 − y + z)/x̄,

c ≥ 0, y ≥ 0, z ≥ 0,

where x̄ =
∑n

i=0 x
0
i is the initial wealth. Using the definition of stock returns from

a factor model (1.4.13), the transactions costs-adjusted portfolio return is normally

distributed with mean cT (e+µ) and variance cT (V TFV +D)c. Then, the objective

function in problem (4.4.2) is changed to

min
(µ,V )∈Sm,v

{
cT (e+ µ)− θcTV TFV c

}
− θcTDc.
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Using the slack variables ν and t in the objective function, problem (4.4.2) is equiv-

alent to

max
c,y,z,ν,t

ν − θt

s.t min
(µ,V )∈Sm,v

cT (e+ µ)− θcTV TFV c ≥ ν,

cTDc ≤ t, (4.4.3)

x0
0 = −(1− csell)eTy + (1 + cbuy)e

T z,

c = (x0 − y + z)/x̄,

c ≥ 0, y ≥ 0, z ≥ 0.

The first constraint in (4.4.3) has an equivalent semidefinite constraint, which can

be easily seen from Lemma 4.3 of [29].

Lemma 4.4.1. The first constraint in (4.4.3) is equivalent to


τR− 2θS ⊗

0 0

0 F

 τh+ q

τhT + qT τη − 2ν + 2(cT e)

 � 0, S � φφT , τ ≥ 0.

Proof. This is easy to get by moving cT e to the right hand side:

min
(µ,V )∈Sm,v

cTµ− θcTV TFV c ≥ (ν − cT e).

ν − cT e is according to ν in Lemma [29].
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Theorem 4.4.2. Let Sm,v be an w-confidence uncertainty set given in (3.2.1) for

w ∈ (0, 1). Then, problem (4.4.3) is equivalent to

max
c,y,z,S,τ,ν,t

ν − θt

s.t


τR− 2θS ⊗

0 0

0 F

 τh+ q

τhT + qT τη + 2cT e− 2ν

 � 0,

1 cT

c S

 � 0, (4.4.4)


1 + t

1− t

2D1/2c

 ∈ L
n+2,

c = (x0 − y + z)/x̄

x0
0 = −(1− csell)eTy + (1 + cbuy)e

T z

c, y, z ≥ 0, τ ≥ 0,

where R, h, η, and q are the same as those defined in Lemma 3.2.4

4.5 Real Market Data Simulation

We compute the problem (4.4.4) on the same real market data in Section 4.3.

The symbol ‘MVtc’ represents the RMRAR model under the joint uncertainty set

in the presence of transactions costs, and the symbol ‘HPtc’ represents the robust
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VaR model under the same set in the presence of the costs, that were derived in

Section 4.2. The overall wealth growth return is defined as in Section 4.3. The

average diversification number is defined as
∑11

p=1 I(φp)/11, where I(φp) denotes

the diversification number of the portfolio φp. The average transactions costs is

defined as

1

10

11∑
p=2

cselly
t + cbuyz

t∑n
i=1 x

p
i + xp0

× 100(%).

Figure 4.5.1 is total return over the 11 periods with respect to the risk aversion

parameter θ. Low levels of risk associated with low potential returns and high levels

of risk are associated with high potential returns. It is expected that the overall

return might be higher when the risk aversion parameter is low, and all considered

transactions costs rates of 0%, 0.1%, 0.5%, and 1% fulfill this expectation. Also, for

a given θ, the owgr of the portfolio decreases as transactions costs rate increases.

Table 4.5.1(a) is the average diversification number of the ‘MVtc’ model with

respect to θ from 0 to 10 and the ‘HPtc’ model with respect to δ = 0.015, 0.02, 0.03

when transactions costs rate is 0%, 0.1%, 0.5% and 1%. Both models construct well-

diversified portfolio with 26 to 30 number of assets. Table 4.5.1(b) is the average

transactions costs in the percentage units. The risk aversion parameter θ does not

affect the atc of ‘MVtc’ model and also the threshold δ does not affect the atc of the

‘HPtc’ model. However, both models tend to change portfolio less as transactions

costs rate increases in order to reduce the cost.
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Figure 4.5.1: Overall wealth growth return of the ‘MVtc’ model compare to the
‘HPtc’ model with δ = 0.015, δ = 0.02, and δ = 0.03 as the risk aversion parameter
θ ranges from 0 to 10: (a) tcb = tcs = 0, (b) tcb = tcs = 0.001, (c) tcb = tcs =
0.005, (d) tcb = tcs = 0.01.
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Table 4.5.1: The comparison of the ‘MVtc’ and ‘HPtc’ models with w = 0.975,
ε = 0.025. (a) Average diversification number (b) Average transactions costs except
for the first period

(a) Adn

MVtc

θ 0% 0.1% 0.5% 1%

0 30.3 32.0 27.5 26.5
1 30.4 32.0 27.5 26.3
2 30.3 31.8 26.7 26.1
3 30.3 31.8 26.6 26.0
4 30.0 32.0 26.5 26.0
5 29.8 31.9 26.4 26.0
6 29.7 31.6 26.4 25.9
7 29.7 31.6 26.4 25.9
8 29.5 31.6 26.4 25.9
9 29.3 31.5 26.4 25.9
10 29.2 31.5 26.4 25.9

HPtc

δ 0% 0.1% 0.5% 1%

1.5 30.5 32.0 29.0 27.4
2 30.5 32.1 28.8 27.6
3 30.4 32.1 29.0 27.4

(b) Atc : (%)

MVtc

θ 0% 0.1% 0.5% 1%

0 0.4648 0.1664 0.0151 0.0001
1 0.4647 0.1673 0.0153 0.0001
2 0.4645 0.1682 0.0157 0.0001
3 0.4644 0.1691 0.0160 0.0002
4 0.4643 0.1702 0.0163 0.0002
5 0.4644 0.1713 0.0166 0.0002
6 0.4646 0.1724 0.0170 0.0002
7 0.4647 0.1735 0.0173 0.0002
8 0.4650 0.1747 0.0177 0.0002
9 0.4656 0.1760 0.0181 0.0002
10 0.4664 0.1774 0.0185 0.0002

HPtc

δ 0% 0.1% 0.5% 1%

1.5 0.4450 0.1689 0.0165 0.0011
2 0.4494 0.1697 0.0165 0.0013
3 0.4475 0.1712 0.0170 0.0013

4.6 Discussion

In this chapter, we derive the robust VaR models in the presence of transac-

tions costs using the notations from the multi-period portfolio selection problem.

Investors consider not only the expected return of each stock but also the costs of

the transactions, which impact the actual return. There are two models we derive,

both of which have the same objective function, which maximizes the worst ex-

pected transactions costs-adjusted return, but have a slight difference on the VaR

constraint. The ‘HPtc’ model restricts the transactions costs-adjusted return to be
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less than a certain threshold. The two models construct similar portfolios regardless

of transactions costs rate and threshold δ. When the transactions costs rate is large,

the ‘HPtc’ model does not change the portfolio that much in order to reduce the

cost for any δ.

We also extend the RMRAR problem to the model in the presence of trans-

actions costs. For an investor who defines the risk as the standard deviation of the

portfolio, the ‘MVtc’ model is applicable. For an investor who defines the risk as

VaR, the ‘HPtc’ model is applicable.

Assume a portfolio consists of 30 stocks and a flat fee of $5 is on each trans-

action. If an investor has a small capital less than $15,000 so that the transactions

costs rate is more than 1%, then the ‘HPtc’ and ’MVtc’ models will provide better

portfolios. However, if an investor has a huge capital so that the transactions costs

is negligible, then all of the models we derive in this dissertation will produce similar

portfolios.
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Appendix A

Appendix

A.1 Market Data for Simulation

This section has the assets and factors used for the computations in Chapters

2,3, and 4.

Table A.1.1: 4-week U.S. Treasury bill rate (%) per year

Month 2013 2014 2015 2016

Jan 0.07 0.01 0.02 0.17
Feb 0.02 0.04 0.01 0.17
Mar 0.07 0.04 0.02 0.29
Apr 0.06 0.02 0.02 0.20
May 0.03 0.02 0.00 0.10
Jun 0.03 0.04 0.02 0.27
Jul 0.01 0.03 0.01 0.23
Aug 0.02 0.01 0.02 0.19
Sep 0.03 0.02 0.01 0.26
Oct 0.10 0.01 -0.01 0.24
Nov 0.03 0.03 0.01 0.24
Dec 0.02 0.01 0.19 0.31

Table A.1.2: 6 factors

GSPC S&P 500 Index
DJI Dow Jones 30 Industrial Average
IXIC NASDAQ Composite
NYA NYSE Composite index
XAX NYSE AMEX Composite
RUT Russell 2000 Index
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Table A.1.3: 36 assets

Financials Health care

BRK-A Berkshire Hathaway MCK McKesson
FNMA Fannie Mae UNH UnitedHealth Group
JPM J.P Morgan Chase ABC AmerisourceBergen
BAC Bank of America Corp. CAH Cardinal Health

Energy Food and Drug Stores

XOM Exxon Mobil CVS CVS
CVX Chevron KR Kroger
PSX Phillips 66 WBA Walgreens Boots Alliance

Retailing Technology

WMT Walmart AAPL Apple
COST Costco AMZN Amazon.com
HD Home Depot HPQ HP

Aerospace & Depence Food, Beverages & Tobacco

BA Boeing ADM Archer Danils Midland
UTX United Technologies PEP PepsiCo

Industrials Motor Vehicles and Parts

GE General Electric GM General Motors
CAT Caterpillar F Ford Motor

Telecommunications Transportation

T AT&T UPS UPS
VZ Verizon FDX FedEx

Chemicals Household Products

DOW Dow Chemical PG Proctor&Gamble

Media Wholesalers

DIS Disney SYY Sysco

100



A.2 Dual Problems and Dual Variables Of Models in Chapter 3

All the models in this dissertation are solved using MOSEK, a tool for solv-

ing mathematical optimization problems, with a personal academic license in Mat-

lab [20]. The duals of each models are provided in this chapter and are used for

computation. All the dual problems contain linear, quadratic cone, and semidefinite

constraints for which a primal solution can be easily obtained with MOSEK. The

dual of the robust VaR problem with estimation (3.2.9) is provided, and the dual

variables corresponding to the constraints in the problem are listed in Table A.2.1.

Note that ε0 = −F−1(ε).

min
Y 1,Y 2,Y 3,x4,x5

δ2Y 1
22 + Y 3

11 + x1
1 + x1

2 + x2,

s.t 2δΨ(Y 1
21) + 2Ψ(Y 2

12) + 2Y 3
21 + 2D1/2x1

3 − x2e ≤ 0,0 0

0 ε20F

� Y 1
11 − Y 3

22 ≥ 0,

R h

hT η

 · Y k ≤ 0, k = 1, 2 (A.2.1)

− ε20Y 1
22 + x1

1 − x1
2 = 0,

2Y 2
22 = 1,

Y 1 � 0, Y 2 � 0, Y 3 � 0, x1 ∈ Ln+2,

where Y 1
11, Y

2
11 ∈ R[(m+1)n]×[(m+1)n], Y 1

12, Y
2

12 ∈ R(m+1)n, Y 3
22 ∈ Rn×n, x4 ∈ R(n2+n)/2,

Y 3
21, x

1
3 ∈ Rn, Y 1

22, Y
2

22, Y
3

11, x
1
1, x

1
2, x

2 ∈ R, Ψ : R(m+1)n → Rn is defined as Ψ(x) =
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(x1, xm+2, . . . , x(n−2)(m+1)+1, x(n−1)(m+1)+1)T for any x ∈ R(m+1)n, and

0 0

0 ε20F

�X ≡

0 0

0 ε20F

 ·Xij

 ∈ Rn×n

for any X = (Xij) ∈ R[(m+1)n]×[(m+1)n] with Xij ∈ R(m+1)×(m+1) for i, j = 1, · · · , n.

The dual of the robust VaR problem with estimation (3.2.10) is provided, and the

Table A.2.1: Constraints of (3.2.11) and its dual variables

The constraints of (3.2.11) Dual variablesτ1R− S ⊗
(

0 0
0 ε20F

)
τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0 Y 1 =

(
Y 1

11 Y
1

12

Y 1
21 Y

1
22

)
� 0(

τ2R τ2h+ q
τ2h

T + qT τ2η − 2ν

)
� 0 Y 2 =

(
Y 2

11 Y
2

12

Y 2
21 Y

2
22

)
� 0(

1 φT

φ S

)
� 0 Y 3 =

(
Y 3

11 Y
3

12

Y 3
21 Y

3
22

)
� 0 1 + t

1− t
2D1/2

 ∈ Ln+2

x1
1

x1
2

x1
3

 ∈ Ln+2

eTφ = 1 x2(∈ R)

dual variables corresponding to the constraints in the problem are listed in Table
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A.2.2.

min
Y 1,Y 2,Y 3,x1,x2,x3,x4

δ2Y 1
22 + Y 3

11 + x1
1 + x1

2 + x2,

s.t 2δΨ(Y 1
21) + 2Ψ(Y 2

12) + 2Y 3
21 + 2D1/2x1

3 + x2 − x3e ≤ 0,−1 0

0 ε20F

� Y 1
11 − Y 3

22 + x2eT + x4 = 0,

R h

hT η

 · Y k ≤ 0, k = 1, 2 (A.2.2)

− ε20Y 1
22 + x1

1 − x1
2 = 0,

2Y 2
22 = 1,

Y 1 � 0, Y 2 � 0, Y 3 � 0, x1 ∈ Ln+2,

where Y 1
11, Y

2
11 ∈ R[(m+1)n]×[(m+1)n], Y 1

12, Y
2

12 ∈ R(m+1)n, Y 3
22 ∈ Rn×n, x4 ∈ R(n2+n)/2,

Y 3
21, x

1
3, x

2 ∈ Rn, Y 1
22, Y

2
22, Y

3
11, x

1
1, x

1
2, x

3 ∈ R.
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Table A.2.2: Constraints of (3.2.12) and its dual variables

The constraints of (3.2.12) Dual variablesτ1R− S ⊗
(
−1 0
0 ε20F

)
τ1h+ δq

τ1h
T + δqT τ1η − ε20t+ δ2

 � 0 Y 1 =

(
Y 1

11 Y
1

12

Y 1
21 Y

1
22

)
� 0(

τ2R τ2h+ q
τ2h

T + qT τ2η − 2ν

)
� 0 Y 2 =

(
Y 2

11 Y
2

12

Y 2
21 Y

2
22

)
� 0(

1 φT

φ S

)
� 0 Y 3 =

(
Y 3

11 Y
3

12

Y 3
21 Y

3
22

)
� 0 1 + t

1− t
2D1/2

 ∈ Ln+2

x1
1

x1
2

x1
3

 ∈ Ln+2

φ− Se ≥ 0 x2(∈ Rn) ≥ 0
eTφ = 1 x3(∈ R)

104



A.3 Dual Problems and Dual Variables Of Models in Chapter 4

The dual problem of the robust VaR problem (4.2.8) is provided and dual

variables corresponding constraints in the problem are also listed in Table A.3.1.

Note that δ0 = 1 − δ, α ∈ Rn represents the vector of initial amounts on stocks,

α0 ∈ R represents the initial cash holding and ᾱ is the sum of all initial amount on

stocks and cash holding.

min
Y 1,Y 2,Y 3,x1,x2,x3,x4,x5

δ2
0Y

1
22 + Y 3

11 + x1
1 − x1

2 + αTx3 + α0x
4,

s.t − 2δ0Ψ(Y 1
12) + 2Ψ(Y 2

12) + 2Y 3
21 − 2D1/2x1

3 + x2 − ᾱx3 ≤ 0,−1 0

0 ε20F

� Y 1
11 − Y 3

22 + x2eT = 0,

R h

hT η

 · Y k ≤ 0, k = 1, 2, (A.3.1)

− x3 + (1 + csell)x
4 ≤ 0,

x3 − (1 + cbuy)x
4 ≤ 0,

− ε20Y 1
22 + x1

1 − x1
2 = 0,

2Y 2
22 = 1,

Y 1 � 0, Y 2 � 0, Y 3 � 0, x1 ∈ Ln+2, x2 ≥ 0

The dual problem of the robust VaR problem (4.4.4) is provided and dual variables
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Table A.3.1: Constraints of (4.2.8) and its dual variables

The constraints of (4.2.8) Dual variablesτ1R− S ⊗
(
−1 0
0 ε20F

)
τ1h− δ0q

τ1h
T − δ0q

T τ1η − ε20t+ δ2
0

 � 0 Y 1 =

(
Y 1

11 Y
1

12

Y 1
21 Y

1
22

)
� 0(

τ2R τ2h+ q
τ2h

T + qT τ2η − 2ν

)
� 0 Y 2 =

(
Y 2

11 Y
2

12

Y 2
21 Y

2
22

)
� 0(

1 cT

c S

)
� 0 Y 3 =

(
Y 3

11 Y
3

12

Y 3
21 Y

3
22

)
� 0 1 + t

1− t
2D1/2

 ∈ Ln+2

x1
1

x1
2

x1
3

 ∈ Ln+2

c− Se ≥ 0 x2(∈ Rn) ≥ 0
α− y + z − ᾱc = 0 x3(∈ Rn)
α0 + (1− csell)eTy − (1 + cbuy)e

T z = 0 x4(∈ R)

corresponding constraints in the problem are also listed in Table A.3.2.

min
Y 1,Y 2,x1,x2,x3

Y 2
11 + x1

1 − x1
2 + αTx2 + α0x

3,

s.t 2Ψ(Y 1
12) + 2Y 2

21 − 2D1/2x1
3 + ᾱx2 ≤ 0,

2θ

0 0

0 F

� Y 1
11 − Y 3

22 = 0,

R h

hT η

 · Y 1 ≤ 0, (A.3.2)

x1
1 − x1

2 = θ

− x2 + (1 + csell)x
3 ≤ 0,

x2 − (1 + cbuy)x
3 ≤ 0,

2Y 1
22 = 1,

Y 1 � 0, Y 2 � 0, x1 ∈ Ln+2.
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Table A.3.2: Constraints of (4.4.4) and its dual variables

The constraints of (4.4.4) Dual variablesτR− 2θS ⊗
(

0 0
0 F

)
τh+ q

τhT + qT τη + 2cT e− 2ν

 � 0 Y 1 =

(
Y 1

11 Y
1

12

Y 1
21 Y

1
22

)
� 0(

1 cT

c S

)
� 0 Y 3 =

(
Y 3

11 Y
3

12

Y 3
21 Y

2
22

)
� 0 1 + t

1− t
2D1/2

 ∈ Ln+2

x1
1

x1
2

x1
3

 ∈ Ln+2

α− y + z − ᾱc = 0 x2(∈ Rn)
α0 + (1− csell)eTy − (1 + cbuy)e

T z = 0 x3(∈ R)
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