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Myoelectric Control of a Soft Hand Exoskeleton
Using Kinematic Synergies
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Abstract—Soft hand exoskeletons offer a lightweight, low-profile
alternative to rigid rehabilitative robotic systems, enabling their
use to restore activities of daily living (ADL) in those with hand
paresis due to stroke or other conditions. The hand exoskeleton
with embedded synergies (HEXOES) is a soft cable-driven hand
exoskeleton capable of independently actuating and sensing 10
degrees of freedom (DoF) of the hand. Control of the 10 DoF
exoskeleton is dimensionally reduced using three manually defined
synergies in software corresponding to thumb, index, and 3-finger
flexion and extension. In this paper, five healthy subjects control
HEXOES using a neural network which decodes synergy weights
from contralateral electromyography (EMG) activity. The three
synergies are manipulated in real time to grasp and lift 15 ADL
objects of various sizes and weights. The neural network’s training
and validation mean squared error, object grasp time, and grasp
success rate were measured for five healthy subjects. The final
training error of the neural network was 4.8 1= 1.8% averaged
across subjects and tasks, with 8.3 £ 3.4% validation error. The
time to reach, grasp, and lift an object was 11.15 4 4.35 s on
average, with an average success rate of 66.7% across all objects.
The complete system demonstrates real time use of biosignals and
machine learning to allow subjects to operate kinematic synergies
to grasp objects using a wearable hand exoskeleton. Future work
and applications are further discussed, including possible design
improvements and enrollment of individuals with stroke.

Index Terms—Hand exoskeleton, kinematic synergies, neural
networks, object grasping, soft robotics, wearable robotics.

I. INTRODUCTION

TROKE, spinal cord injury, and other conditions can lead

to functional impairment of the hand in an exceptionally
large number of individuals in the US and worldwide [1]-[3].
The loss of motor function severely impairs a person’s ability to
independently perform activities of daily living (ADL), leading
to financial, mental, emotional, and social hardships for them-
selves and their loved ones [4].
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Wearable robots capable of actuating an impaired hand offer
to help these individuals in rehabilitative and assistive capacities.
Numerous groups worldwide have produced hand exoskeletons
using rigid constructions and linkages. The HANDEXOS/HX
systems [5]-[7] are remote-actuated assistive devices which uti-
lize compact pulley systems and self-aligning rotation axes using
redundant joints. The Hand of Hope system [8], [9] uses linear
actuators mounted on the back of the hand to independently
actuate each finger for rehabilitation exercises. The ExoK’ab
uses DC motors mounted on the fingers to drive 10 active degrees
of freedom (DoF) in flexion and extension for rehabilitation
[10]. The UT hand exoskeleton is a low-weight index/thumb
rehabilitation device which uses remote DC actuators and a 3D
printed parallel mechanism to actuate the hand [11], [12].

Rigid hand exoskeletons are readily modeled and controlled;
however, they compromise hand component mass and size.
This may be acceptable in the rehabilitation context, where
such systems are mechanically supported and/or immobile.
However, form factor and weight of the hand component are
significant decision drivers for assistive devices with individ-
uals with hand paresis [13], [14]. In response, many recent
assistive hand exoskeletons are soft, lightweight systems [15],
[16]. The ExoGlove Poly is a remote-actuated cable driven
thumb/index/middle exoskeleton fabricated from silicone which
is capable of two independently actuated DoF [17]. The Bioservo
CarbonHand is a commercially available cable driven fabric
exoskeleton which provides grasp assist for users with residual
hand function [18]. Some designs use soft hydraulic or pneu-
matic actuators instead of motors and cables, such as the Wyss
Soft Robotic Glove [19] and the ExoGlove [20]. The construc-
tion of soft exoskeletons relies on the user’s bone structure to
supply the rigidity and joint centers of rotation for effective
motion. This causes the device dynamics to be heavily dependent
on the user, leading to high model uncertainty and difficulty in
accomplishing accurate control. For this reason, soft exoskele-
tons tend to be open-loop systems which don’t incorporate
sensor feedback from the finger joints. These wearable devices,
as well as current prosthetics, can be controlled in many different
ways, with promising progress using electromyography (EMG)
[21]-[23].

The tradeoff between controllability and portability has major
implications for dexterous control. For a device to adequately
reproduce natural hand function it must have a high number of
DoFs and have a controller which can coordinate those DoFs
biomimetically, with minimal effort from the user. This equates
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Fig. 1. HEXOES hand component, showing the dorsal spring-extension
system and the flex sensor wiring.

to dimensionally reducing the controls problem: imposing a
lower-dimensional control method onto the high-DoF system
with minimal tradeoff in dexterity. In hand grasping research,
this comes in the form of kinematic synergies, or “a collection of
relatively independent degrees of freedom that behave as a single
functional unit” [24]. Synergies derived from biomechanical
hand grasping studies represent whole-hand movement patterns
that best account for variance in grasping data, and so are
hypothesized to act as building blocks of motion. Human hand
grasping can be reproduced to an arbitrary accuracy by selecting
fewer synergies than the number of DoFs of the controlled
system [25]. This has been demonstrated in grasping [26]-[28],
biometrics [29], and bilateral reaching [30].

Prior work on synergy-based brain machine interfaces (BMIs)
has demonstrated that relatively few motion patterns can be used
to control high DoF systems [26], even to replicate tasks of ADL
[30]. Several groups have designed prosthetics and exoskeletons
which mechanically implement synergies to control high-DoF
hands with only one or two actuators [31]-[33]. These devices
significantly simplify the control complexity of prosthetics,
however the synergies they actuate cannot readily be modified. In
this study we experimentally demonstrate the hand exoskeleton
with embedded synergies (HEXOES), shown in Fig. 1, which
is an iteration on the previous HEXOES model [34]. This
10-DoF soft whole-hand remote cable-driven exoskeleton uses
software-defined kinematic synergies to dimensionally reduce
the required control inputs. The high-DoF actuation allows us to
easily change synergies or control methods, making this system
novel and ideal for testing synergy-based controls. EMG signals
from the contralateral arm control 3 pre-defined synergy profiles
inreal time using a trained neural network. Five healthy individu-
als are recruited to train the neural network and conduct an object
grasping study using fifteen objects representative of ADL.

II. METHODS

In this experiment, healthy subjects were recruited to con-
trol HEXOES, worn on their right hand, using EMG signals
from their left arm. Flexion/extension of the wrist and elbow
and abduction/adduction of the shoulder of the left arm are
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coordinated by the user and measured using the EMG sensors.
A neural network was first trained to recognize the individual
arm motions and their combinations, which were then used
to control three manually defined kinematic synergies of the
exoskeleton hand. Once the system was trained, subjects used
the real-time open loop system to complete an object grasping
study. All real-time algorithms, neural network training, and
hardware communications were implemented in LabVIEW and
MATLAB, with MATLAB used for offline analysis. The indi-
vidual components of the system will be discussed in detail,
followed by the experiment protocol.

A. Exoskeleton Design

HEXOES is composed of a lightweight hand assembly and a
remote actuator assembly connected by a flexor bundle (Fig. 2).
The actuator assembly contains ten L16 linear actuators (Ac-
tuonix, British Columbia, Canada) with a 20 mm/s no-load
speed and 100N maximum linear force. Each actuator has a
built-in potentiometer which measures linear position, ranging
from 0.5 V to 4.5 V. Two Arduino Mega 2560 boards are used
for analog data acquisition and PWM control of the motors. The
total mass of the actuator assembly is 2.2 kg.

The glove-based soft hand (Fig. 3) provides active flexion
and passive extension of the metacarpophalangeal (MCP) and
proximal interphalangeal (PIP) joints of each finger and thumb
of the right hand, totaling 10 independently actuated DoF. 3D
printed compliant finger components fabricated from thermo-
plastic polyurethane (TPU) provide anchor points for the flexion
and extension cables while allowing the exoskeleton’s fingers
to stretch to fit different hand sizes. These soft deformable
components allow a comfortable yet snug fit, increasing device
usability. Flexion is actuated by ten nylon braided filament cables
which run along the palm support of the hand and out through
the flexor bundle, which contains ten polytetrafluoroethylene
(PTFE) Bowden tubes. The palm support can be detached from
the rest of the glove using a tongue-and-groove clasp locked
with a cotter pin, and zippers along the sides of the palm allow
the exoskeleton to be opened for donning and doffing. Passive
extension of each joint is provided by adjustable springs on
the dorsal side of the hand. The angle of each MCP and PIP
[Fig. 3(c)] joint is measured using 2" and 1 Tactilus flex sensors
(Sensor Products, New Jersey, USA) stitched into pockets on the
back of the glove. The glove assembly weighs a total of 258 g.

B. Data Capture

1) Kinematic Data: Joint angles are recorded over time us-
ing two sets of data streams. The MCP and PIP flex sensors
are measured using 33 k(2 voltage dividers with a 4.5 V ex-
citation voltage and digitized using an Arduino Mega. The
actuator potentiometers are also recorded over time, allowing
redundant joint angle measurement. For this work, the distal
interphalangeal (DIP) joint is not independently measured as it
is standard to approximate its motion as directly proportional to
the PIP joint. A 60 Hz notch filter and 10-point moving average
filter eliminate sensor noise.

2) Electromyography: EMG signals were measured at 2 kHz
using a 16-channel Trigno wireless EMG system (Delsys, MA
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Actuator Assembly

(a) Actuation diagram of 1 DoF of HEXOES. A linear actuator pulls nylon filament through a Bowden tube which terminates on the palmar side of a

joint. An extension filament attaches to a spring on the dorsal side of the joint which is fixed to the structure of the exoskeleton. (b) The HEXOES system with the

hand component and remote actuator assembly visible.

Flex Sensor \

Fig. 3.

Flexion
Anchor Points

Labeled components of HEXOES hand component. (a) Palmar side, with key features of the palm support and finger components labeled. (b) Dorsal side,

with sensors and spring-retraction system labeled. (c) Lateral view of index finger with filament anchor points labeled. (d) Index finger flexed with 8y, #p, and 84

labeled for the MCP, PIP, and DIP joint angles respectively.

United States). Sensors were placed on six locations on the
left arm according to Table I after light abrasion and cleaning
of the site. Data was processed in real time by forming a
300-sample moving window (Fig. 4). This window was pro-
cessed using a 20500 Hz bandpass filter to remove movement
artefacts, higher-frequency noise, and heartbeat, and a 60 Hz
notch filter with a 0.5 Hz bandwidth for line interference, and
a 200-sample moving average rectified value filter to stabilize
the signal. An average of the window is computed every 150
samples to yield an input set for the neural network at a sample
rate of 13.33 Hz. This sample rate was chosen to be rapid enough
to be imperceptible to the user [35] while reducing noise in the
measured signal.

C. Neural Network

The aim of this study was to use EMG signals from wrist,
elbow, and shoulder flexion to control three synergies in an
exoskeleton hand. Using these joint-level motions would be

mentally easier for the subject to coordinate than the equiva-
lent individual muscle activations, an issue that is especially
present in the affected population. However, these joint-level
motions can result in unintended co-contractions of the muscles
being instrumented, and these co-contractions can vary from
subject to subject. This precludes the use of simple thresholds
on muscle activity in favor of an algorithm that can learn these
activation patterns. For this, a neural network is used. The
neural network consists of a 6-element input layer, a hidden
layer, and a 3-element output layer. The hidden layer consists
of 8 elements with a sigmoid transfer function, and was de-
signed prior to the experiment. The structure of the network
was fixed for consistency during this experiment. The outputs
of the neural network are continuous from —1 to +1, so a
threshold of 0.5 is applied to each output element to produce
either —1, 0, or +1. The thresholded outputs are used as a
three-element synergy recruitment weight column vector, ,
to produce the 10-element motor power command vector, 7,
ranging from —1 (extend) to 41 (flex) using a 3 x 10 synergy
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TABLE 1
EMG SENSOR POSITIONS

£ Sensor
Motion Number Muscle
’ 1 Flexor Carpi Radialis
WrstEiR 2 Extensor Carpi Ulnaris
3 Biceps Brachii

Ao EE 4 Triceps Brachii Lateral Head
Shoulder 5 Pectoralis Major (Clavicular Region)
Abd/Add 6 Medial Deltoid

Raw EMG Signal l Future EMG Signal
S B

300-Sample Sliding Window 4
¢ Bandpass, Notch
] S S 2 KHz
I >
v v Avg. Filter
Filtered Window —CT T T T T T 1771
150 samples —¢— T T 1 T 1]
e
3
y Avg. y Ave B33t
Neural Network Input :

Fig. 4. EMG processing scheme from raw data to neural network inputs. A
300 sample sliding window is filtered using a bandpass, notch, and 200-sample
moving average filter. The average of the filtered 300-sample window is com-
puted every 150 samples, yielding the neural network inputs at a final sample
rate of 13.33 Hz. This was performed for each EMG channel.

matrix S:
p=>5w (1)

In this scheme, the first element of 7 controls thumb flexion
and extension, the second element controls index flexion and
extension, and the third element controls flexion and extension
of the remaining three fingers. The S matrix is manually set
to generate these motions when the corresponding weight is
activated.

D. Neural Network Training

The neural network is trained such that the thumb is controlled
by the shoulder, the index finger is controlled by the elbow,
and the remaining fingers are controlled by the wrist. Training
tasks were accumulated for the neural network in alternating
rest/task pairs, an example of which is shown in Fig. 5. Three
random rest samples (red dots) are selected from the interval
before the task prompt is given, shown as the blue dotted line. An
automated prompt tells the subject to flex their wrist, resulting
in the processed wrist flexor EMG activity shown in black as
the first neural network input. A K-means clustering algorithm
is applied to all channels of the data during this task, which
separates the recorded data into three clusters. K-means allows
automatic data separation which adapts to different activation
amplitudes without the need to manually tune an activation
threshold. C-1 identifies transient activation spikes in the data,
C-2 identifies the sustained task activation, and C-3 identifies
the signal’s resting state. Three task samples are isolated from
C-1 and C-2 at random with a spacing buffer as the task samples.
The resting and task samples are paired with the corresponding
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Fig. 5. Isolation of EMG training samples using K-means clustering. The
stimulus given to the subject (blue) elicits the processed EMG response (black).
Three clusters are identified corresponding to the transient activation spike (C-1),
the sustained activation (C-2), and the resting signal (C-3) shown as alternating
white/gray regions. Three random samples shown in red circles are isolated from
each rest period and each activation.

neural network output targets for training, and the process is
repeated for every training task in the experiment. The neural
network is trained using a Bayesian regularization algorithm,
which minimizes the network’s internal parameters and model
error to avoid overfitting.

E. Subjects

Subjects were recruited under an approved protocol overseen
by the Stevens Institute of Technology IRB, in accordance with
the Helsinki Declaration. Five healthy subjects age 24.8 4= 2.8
years, 4 male and 1 female, were recruited for this experiment
after giving their informed consent. Three subjects were self-
reported right-handed. Subjects were all naive to EMG-based
myoelectric interfaces and had no prior injuries that affect hand
or arm function.

F. Experiment Protocol

Upon arrival, subjects signed the necessary consent docu-
ments and were fitted with the EMG sensors described above.
Sensor locations on each muscle were manually probed until
a visually discernable signal was measured during isometric
contraction. The subject then donned the exoskeleton, and the
experimenter-controlled calibration process was executed. The
experiment consists of three phases conducted in one session.
Phases one and two collect training data for the neural network,
while phase three consists of object grasping using the EMG-
driven exoskeleton without assistance or guidance.

Each of the first two phases consist of two sets of six arm
contraction tasks. The first set of tasks are performed for four
repetitions and are used to accumulate training data for the
neural network. The second set of tasks are performed for three
repetitions and are used as a validation dataset for the final
model. Each repetition of each task consists of approximately 3
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seconds of rest, followed by approximately three seconds of arm
contraction. Successful rest and contraction tasks are manually
marked by button press by the experimenter. The exoskeleton
actuates according to the synergy corresponding to that task
when the experimenter cues a successful arm contraction. In
phase one, the six contraction tasks are shoulder adduction,
shoulder abduction, elbow flexion, elbow extension, wrist flex-
ion, and wrist extension. In phase two, the six contraction tasks
are simultaneous contractions of multiple joints, chosen based
on their corresponding grasping scheme. Simultaneous shoulder
and elbow flexion and extension is trained for an index/thumb
precision grasp, shoulder and wrist flexion and extension are
trained for a thumb and three-finger grasp, and shoulder, elbow,
and wrist flexion and extension are trained for a whole-hand
grasp. In total, the training set consists of 144 rest samples, 72
single-contraction samples (12 for each of six possible motions),
and 72 simultaneous contractions (12 for each of six included
motions). At the end of phase two, the neural network is fully
trained and an independent validation dataset has been accumu-
lated for single and simultaneous contractions.

Phase three of the study is the object grasping phase. The
subject sits at a table with the exoskeleton hand resting palm-
downina?25cm x 15 cm rest area, aligned with the subject-side
edge of the table. The object is placed 35 cm away from the edge
of the table centered on the subject. The subject is given a verbal
start cue, at which point they reach for the object and begin using
their contralateral arm to operate their hand. Subjects pick up the
object to signify a successful grasp, place it back on the table,
use their contralateral arm to release the object, and return to the
resting position. The experimenter uses a keyboard input to mark
the time from a successful object lift to the subject returning their
hand to the rest area. Subjects are instructed to maintain light
finger extension in their right hand during object grasping. This
serves as a simple cue for the subject that ensures there is no
subconscious grasp assistance to the exoskeleton. In the event
of an unsuccessful grasp, subjects are instructed to continue with
the release and return phase as if the grasp was a success. Fifteen
objects are grasped: A large handle, a pencil eraser, a dry erase
marker laid flat on the table, a baseball, a dish sponge, a wooden
spoon, a2” x 2.5” x 2" foam block, a roll of painter’s tape, a 17
triangle of foam, a coffee mug handle, a wooden nut and bolt, a
full water bottle (492 g mass), a full spray bottle (920 g mass),
an empty soda can, and a screw driver. Each object is grasped
in this order, and the sequence is repeated for three repetitions.

G. Experiment Metrics

Kinematic data and EMG signals are recorded during all
phases of the experiment. The neural network is trained after
the first set in phases one and two. The network’s training per-
formance, measured as training mean-squared error (M SET) as
generated by the Bayesian regularization algorithm, is recorded
for the single contraction training (phase one) and the combined
single/simultaneous contraction training (phase two). The neu-
ral network’s performance is computed as the mean squared
error (M SEy ) between the task stimulus, 3(t), and the neural
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TABLE I
OBJECT GRASP CATEGORIES

Precision Cylinder Whole=hand/spherical
Pencil eraser Handle Ball
Dry-erase marker Spoon Foam (large)
Tape roll Mug Nut & bolt
Foam (small) Water bottle Screwdriver
Spray bottle Sponge
Soda can

network’s output, W(t), of a given validation task

1T

MSEy = = ; (@) —w(t)? )
and is computed for each output and individual validation task of
phase one and two. Grasp success, measured as ability to lift the
object off the table without dropping it, time to pick up object,
and task completion time are also measured for each repetition
of each object as high-level task metrics. We also compute
the fraction of synergy recruitments used during each object

grasp, fi:

f— _Ziolui @)
Yot Yoo lwi (8)]

where w;(t) is the i*" recruitment weight at time t. This method
ignores the resting or no-recruitment samples and so focuses on
the absolute relative recruitment of each synergy. We group the
objects into three broad categories based on the three types of
grasps expected: precision grasps, cylinder grasps, and whole-
hand/spherical grasps (Table II). This is done in accordance with
accepted grasp taxonomies [36], [37]. The synergy recruitment
fractions are compared between grasp types.

3)

III. RESULTS

A. Neural Network Training

MSET is reported as the mean-squared error between the
trained neural network output for the training dataset and its
expected output. For single-contraction training, the neural net-
work yielded an M SEr of 0.048 + 0.018 across subjects while
the final network trained on single and combined contractions
had an M SEr of 0.048 + 0.013.

After training, the neural network was evaluated with separate
real-time validation tasks for both single and combined contrac-
tions. Fig. 6 shows one set of validation tasks for subject 1. In this
task, the subject performed shoulder abduction and wrist exten-
sion, corresponding to values of —1 in the blue plot. Activation of
the lateral deltoid (Syn. 1 EMG) and wrist extensor bundle (Syn.
3 EMG) are visible, with coactivation of the biceps brachii in the
elbow (Syn. 2 EMG). The neural network output, shown as gray
circles, is overlaid on the expected output in blue. Except for
three samples the neural network was able to correctly classify
Syn. 2 as inactive. The M SEy for this task averaged across
outputs is 0.0394. The mean M SEy, across subjects, outputs,
and tasks is 0.066 = 0.045 for single-contraction validation and
0.083 =+ 0.034 for combined contraction validation.
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and wrist extension are performed for three rest-task repetitions. Filtered EMG
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neural network. The output (gray circles) are compared to the stimulus (blue) to
compute M SEy,. Co-contraction of the elbow muscles (Syn. 2) are visible in
the data, however the model can still correctly classify the output.
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Fig. 7. Object grasping time averaged across subjects and repetitions. The
object numbers correspond to the object order listen in the experiment protocol
section.

B. Object Grasping

Object grasping time, defined as the time between movement
onset and object pickup, was averaged across subjects and
repetitions. These results are shown in Fig. 7. The fastest object
grasps were object 9, the small foam triangle (7.31 £ 3.04 5), and
object 14, the empty soda can (9.02 4 2.31 s). Object 3, the dry
erase marker, has a large standard deviation and inflated mean
due to an extreme outlier of 54.47 s. With this outlier removed,
the grasp time for object 3 changes from 15.02 + 12.97 s to
11.43 & 3.9 s. The object with the longest mean grasp time
(outlier removed) was object 13, the 920 g spray bottle at 14.4 4
5.61 s. The global mean object grasping time across objects, rep-
etitions, and subjects is 11.15 + 4.35 s excluding the outlier. An
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Fig.8. Object grasp success rate across subjects and repetitions. A statistically

significant difference was found between the ball and the sponge, small foam
triangle, nut & bolt, spray bottle, and soda can (p = 0.001).

ANOVA comparison between objects with a = 0.05 revealed
significant differences in object grasp times (p = 0.004), with
outliers removed. A tukey-kramer post-hoc analysis showed a
significant difference between the grasp times of the marker
and the small foam triangle, with all other grasp times being
statistically similar. The mean task completion time is 21.92 £+
7.16 s.

The grasp success rate (Fig. 8) is an interesting metric for
determining candidate objects for grasp studies with individuals
with stroke. Successful repetitions for all subjects are pooled to
get an overall success rate for each object. The most successfully
grasped objects are objects 5 and 9 which are the dish sponge
and small foam triangle, respectively. Each of these objects had
a 91.7% success rate with only one missed repetition across
subjects. The worst-performing object was the baseball, with
only two successful grasps across all subjects, ora 16.7% success
rate. The mean and mode of the grasp success rate was 67.8% and
66.7%, respectively. An ANOVA analysis with tukey-kramer
post-hoc reveals a significant difference between the lowest
success rate (ball grasp) and the highest success rates (sponge,
small foam triangle, nut & bolt, spray bottle, and soda can) with
a = 0.05.

The synergy recruitment fractions were computed for each
repetition, task, and subject and were pooled into the three
grasp categories in Table II. The results are shown in Fig. 9,
with each group of bars representing each grasp type and each
sub-bar representing synergy recruitment. Two-way unbalanced
ANOVA with grasp type and synergy number as groups revealed
no statistical difference across grasp types (p > 0.05), meaning
there was a roughly equal recruitment averaged across synergies
within each grasp type. A significant difference was found across
synergies (p < 0.05), with post-hoc analysis showing all three
synergies had significantly different levels. Synergy 1, control-
ling the thumb, was recruited the most followed by synergy 2
with the index finger and synergy 3 with fingers 2—4. A signif-
icant interaction was also found between grasps and synergies
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type. No significant difference was found across grasp type (p > 0.05). Signif-
icant differences were found across synergies (p < 0.05). Significant interac-
tions between grasps and synergies resulted in significant differences between
synergy 1 recruitment in precision grasps and in cylinder grasps. Synergy 3 was
recruited significantly less in precision grasps than in whole-hand/spherical and
cylinder grasps.

(p < 0.05), meaning that the synergy recruitment fraction was
affected by grasp type. Post-hoc analysis of the interaction re-
veals several trends. Synergy 2 was statistically equivalent across
all grasp types, meaning the index finger was recruited equally
across precision, cylinder, and whole-hand grasps. Synergy 1
was recruited significantly higher in precision grasp than in
cylinder grasps but was similar to whole-hand/spherical grasps.
Synergy 3 was significantly lower in the precision grasp than in
both the cylinder and whole-hand/spherical grasps, which is an
expected result. There was no difference found between cylinder
and whole-hand/spherical grasps within synergies.

C. Exoskeleton Kinematics

A sample of the kinematics, EMG signals, and synergy re-
cruitment is shown in Fig. 10. The different motion phases (rest-
ing, grasping, object pickup, releasing, and return) are visible in
the kinematic data, however sensor placement issues cause some
sensors to not detect motion. Four such sensors are visible in
this sample data, with other subjects missing two active sensors,
which tend to be the pinky sensors.

IV. DisCcUSSION

This paper presents a soft cable actuated 10-DoF whole-hand
exoskeleton meant to be an assistive device for individuals with
stroke. We demonstrate an open-loop control system where a
neural network interprets EMG signals in the contralateral arm
to actuate three synergy motions of the hand. The synergies
correspond to independent flexion and extension of the thumb,
index, and remaining three fingers. Subjects can operate this sys-
tem to grasp objects ranging from a pencil eraser to a full spray
bottle weighing approximately 1kg without assisting the glove.
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As a usability study, this work verifies that the HEXOES device
is a functional object grasp system that meets requirements for
safety, device mass, and donning/doffing, while offering high-
DoF actuation and sensor feedback. The use of kinematic syner-
gies enables complex high-DoF biomimetic movement patterns
operated through the low-DoF synergy recruitment domain.
Adaptive algorithms, such as the neural network shown here, are
used to map biosignals, such as EMG, to the synergy recruitment
domain. The next steps in the development of HEXOES will be
to extend subject recruitment to include individuals with stroke
with minimal residual hand function. We will also experiment
with postural and spatiotemporal synergies to evaluate their
use as assistive grasping controls. Finally, we will implement
a model-driven closed-loop control system, however this will
require several advances to first occur.

The synergy control method shown here uses EMG signals of
the unaffected arm to drive hand motion of the affected arm. We
use an automated training system to learn the muscle activation
patterns corresponding to three bidirectional control commands
without the need for manual tuning or adjusting thresholds.
The motions of the contralateral arm were chosen as distinct
motions that use the unaffected motor pathway for the upper
limb. This approach is supported by prior findings where the
brain manages to learn interlimb motor mappings, especially
in the presence of proprioceptive feedback [38]. These motions
serves the purpose of a lab-controlled grasping study, however in
real applications this approach could impair the use of a patient’s
unaffected arm, or lead to false control signals being sent to the
exoskeleton. Future work on the assistive system will explore
optimal EMG sensor placement and leverage control movements
that are intuitive for individuals with Stroke. Such a system can
use the same machine learning system as shown here to derive
synergy commands. Once determined, subjects could practice
driving the system with either the exoskeleton or with virtual
reality environments.

The primary design requirements for assistive hand exoskele-
tons concern wearability and ease of use. The mass of the hand
component must be light enough that an individual with hand
impairment can lift, move, and position themselves for object
grasping. This mass was suggested to be 0.5 kg [35], which is
roughly equivalent to the mass of the average adult male hand
[39]. Any external hardware such as a remote actuation unit
must also weigh less than 3 kg [35]. In addition, the assistive
system should be controllable through biosignals or kinematics,
must supply adequate force to perform ADL, must be minimally
complex, comfortable to wear, easy to don/doff, provide close to
a healthy range of motion, produce smooth responses to control
inputs, be safe to use, and be low enough in cost to be available
to the population [40], [41]. Rigid systems such as the Hand of
Hope [8], [9] meet many of these design criteria, particularly
for controllability, range of motion, and force to execute ADL,
however the rigid mechanisms tend to make the devices too
heavy to be worn as an assistive system. Soft exoskeletons such
as the Wyss Soft Robotic Glove [19] and the ExoGlove Poly [17]
use an alternative approach, adapting intrinsically soft design
and low-DoF control to achieve functional grasping systems
with minimal worn weight. With this approach, these low-DoF
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Fig. 10.

Subject 3 performing a reach and grasp task for object 11, the nut and bolt. The filtered EMG signal, in Volts, for the flexor (solid red) and extensor

(black dotted) muscles are shown for each synergy (Syn. 1-Syn. 3) along with the resulting synergy recruitment, in blue. Exoskeleton sensor measurements in
Volts are shown below, showing a clear grasp, hold, and release period. Joints are labeled in the exoskeleton sensor plot in finger-joint pairs, e.g., TM stands for
thumb MCP and RP stands for ring PIP. Grasp events are shown along the bottom, with the corresponding time in the data.

systems meet the design criteria but may sacrifice their dexterity,
placing a limit on the performance they can achieve for object
grasping and manipulation.

HEXOES aims to match the dexterity of the hand as closely as
possible while meeting the design criteria that outline a practical
assistive device. The system is easy to don and doff, with a
zipper and clasp system which allows the palmar side of the
hand component to open. This makes the glove-based design
easy to wear on a paralyzed hand. We incorporate 10 indepen-
dently actuated DoF, more than other devices in the literature,
to finely control hand postures and motion. The increased DoF
lead to higher device complexity in both mechanical design and
user control, however we address this tradeoff in several ways.
Mechanically, we sought a simple design for a single DoF, which
minimizes the parts and mechanisms needed to actuate the hand.
The reduced part count leads to fewer points of failure, as well as

a significantly reduced total mass. The 10 DoF hand component
and actuator assembly of HEXOES weighs 258 g and 2.2 kg
respectively, coming in significantly lower than the 0.5 g and
3 kg criteria. The increased DoF would lead to a higher control
burden on the user, however by employing a synergy-based
control method we can minimize the effort needed to operate
a dexterous system while maintaining the system’s dexterity.
This paper proposes a control scheme based on spatial or
postural kinematic synergies. The three actuated synergy profiles
were manually defined as orthogonal motion of the thumb,
index, and remaining three fingers. These were chosen as easily
coordinated motions while still allowing formation of pinch,
key, handle, and whole-hand grasps. Biomechanically derived
spatial synergies, such as those extracted from grasp data [28],
[42], [43], can easily be integrated by modifying S. Spatial
synergies are concise, represent hand postures well, and are
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easy to integrate into traditional control methods. Numerous
other groups have demonstrated similar controllers based on
postural synergies for autonomous object grasping [44]-[46]
as well as prosthetics/robotic control [47]-[51]. These range
from open-loop systems using positional control at the joint
level to impedance controllers which operate in the synergy
recruitment domain. Whereas spatial synergies encode relative
joint movements that are fixed in time and are derived from
end-postures of object grasps, spatiotemporal synergies allow
these relative motions to vary across the duration of the synergy.
This allows them to capture the dynamic trajectory the hand
follows during reaching and grasping, and so may capture more
information on hand motion. Spatiotemporal synergies have
been used to computationally reconstruct hand grasps [52],
[53] and bilateral reaching and manipulations [30] to a high
accuracy, and have also been mechanically implemented into
a two-synergy anthropomorphic prosthetic hand [31]. The next
steps in this project will be to develop a control system that
operates using spatiotemporal synergies, which would be one of
the first made. This should enable greater dexterity and object
manipulation while still using as few as one or two control inputs.

Soft robotic hand exoskeletons rely on the user’s anatomy to
provide the structure for proper function, and so their dynamics
are heavily influenced by the user’s hand. The compliant nature
of the system leads to high uncertainty in geometric parameters
(filament anchor points, sensor locations, etc.) which will change
over time with component deformation. This would include both
short-term changes over individual flexion/extension motions
and long-term changes over the course of a session or over the
span of hours. There are many unknown variables that must be
determined to get a full controllable system, so identifying an
adequate model of the exoskeleton and hand system is essential
work that will be pursued as next steps. This includes not only
geometric parameters but dynamic effects from line friction,
extension forces, and the effect of contact forces between the
tendon lines and grasped objects. It is also possible that the
grasp times and success rates measured here are sensitive to
hand size. The early results shown here appear to support this,
however more subjects must be recruited to achieve a statistical
result. If found to be significant, then hand components designed
for different hand sizes may be produced and used with the same
actuator assembly.

Sensor accuracy is essential to create a controllable robotic
system, yet there is no reliable method of sensing hand joint
angles with soft systems. The actuation of soft systems results in
bending or compliant deformation of the device members, as op-
posed to rotation of linkages in rigid mechanisms. This precludes
the use of traditional angle sensors such as potentiometers or
encoders without incorporating rigid hardware. Because of this,
sensors that detect bending and deformation offer a logical solu-
tion to the sensor issue, especially considering the commercial
availability of bendable flex sensors. Indeed, several commercial
devices such as the CyberGlove (CyberGlove Systems LLC,
San Jose, CA, USA), 5DT Glove (5DT Technologies, Pretoria,
ZA), Data Glove (Performancemesh, UK), and the VMG 30 data
glove (Virtual Realities LLC, League City, TX, USA) all operate
using flex-sensing fiber optics or printed electronics. Sensor
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gloves in research, such as those produced by [54]-[56], also
use flex sensors. The major drawback to these sensors, which
has been extensively noted in the cited literature, is that they are
susceptible to several different kinds of variation which impedes
their use in joint angle sensing. There is variability between sen-
sors in the electrical resistances supplied, their sensing regions
are susceptible to damage, affecting their performance, the wire
connections tend to degrade from repeated bending, and they are
prone to placement error on the glove. In this study we observe
sensor placement issues on the exoskeleton, where the sensing
region of some (fewer than 3) flex sensors are not located over
the joint and so no change in signal is observed over the range
of motion. Moving forward, we expect to incorporate the flex
sensors and actuator potentiometer measurements into a model
for the exoskeleton joint angles, however a full treatment of this
approach will be examined in future work. Once a robust angle
sensing system is in place, the exoskeleton can be operated by
a full closed-loop control system.

Additional improvements to HEXOES can increase its us-
ability. The object grasp results shown here reveal that some
design changes can be made to allow easier object grasping. For
instance, the palm support can be revised to interfere less with
the hand’s workspace, which would lead to improved grasps
on the ball. Future design iterations can further reduce the
mass and size of both the hand component and the actuator
assembly. The actuator assembly can also be condensed into
a backpack or hip bag or can be mounted on a platform such
as a wheelchair or mobility scooter. The hand component is
already light enough for those with residual arm function to use,
however coupling the device with a wrist or forearm assist device
could allow those with total paralysis to benefit from HEXOES.
Since the hand component is predominantly 3D printed, we can
investigate methods of personalized design and fabrication so
that the system can be custom-fit to the user. We can also explore
more durable materials, yielding a highly robust device aimed at
dexterously assisting those with paralysis. Additionally, the data
monitored by HEXOES could be used to evaluate hand function
in those who suffer stroke, spinal cord injury, or traumatic brain
injury. Joint range of motion, fluidity of movement, muscle
fatigue, and measures of degree of assistance could all be tracked
by clinicians.

V. CONCLUSION

This paper demonstrates HEXOES as an open-loop assis-
tive robotic exoskeleton which uses biosignals to control hand
synergies. Healthy individuals were recruited to control the
system with their contralateral arm while maintaining a limp
hand. Subjects were able to grasp and lift objects indicative
of ADL. These objects ranged from small objects requiring
precise coordination, and large heavy objects which needed a
powerful grip force with the flexibility to conform to irregular
shapes. Future directions are discussed including enrollment of
individuals with stroke, extension to recruitment of spatiotem-
poral synergies, model development with closed-loop control,
and refining sensor feedback for joint angle estimation.
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