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ABSTRACT 

Unsupervised target generation for hyperspectral imagery (HSI) have generated great interest in the hyperspectral 
community. However, most of the current unsupervised target generation algorithms have to process large HSI data, which 
is acquired using the traditional Nyquist-Shannon sampling theorem, resulting in data with high band-to-band correlation. 
As a consequence, these algorithms end up processing redundant information, raising the demand for large memory 
storage, processing time, and transmission bandwidth. In the past, some efforts have been dedicated to dealing with the 
redundant information via data reduction (DR) or data compression post-acquisition. However, to the best of our 
knowledge, this challenge has been addressed outside the context of Compressive Sensing (CS). This paper applies CS 
data acquisition  process at the sensor level so that the redundant information is removed at the early stage of the data 
processing chain. The main advantage of our approach is that it employs a random sensing process, and the concept of 
universality, to randomly sense the HSI bands and produce data containing the bare minimum information. We take 
advantage of CS Restricted Isometric Properties (RIP), Restricted Conformal Properties (RCP), and newly derived 
orthogonal sub-space projection (OSP) properties to perform automatic target generation process (ATGP) in the 
compressively sensed band domain (CSBD), instead of in the original data space (ODS), where the HSI data contains full 
spectral bands. Our experimental results show that, by working in the CSBD, we avoid processing redundant data and still 
maintain performance results that are comparable with the performance results obtained in the ODS.  

Keywords: Compressive sensing (CS), automatic target generation process (ATGP), compressively sensed band domain 
(CSBD), original data space (ODS), orthogonal sub-space projection (OSP), Restricted Orthogonal Sub-space Projection 
Property (ROSPP) 

1. INTRODUCTION

Many applications in the Military and Civilian require sensing, detection, and tracking of objects or activities. 
Hyperspectral sensors provide passively detected spatial and spectral information allowing remote sensing applications 
such as mineral mapping, vegetation classification and environment analysis, etc. [1], which have received tremendous 
attention in the hyperspectral community. In a hyperspectral remote sensing system, there are four basic elements: radiation 
source, atmospheric, image surface, and sensor [2]. The sun’s energy provides the illumination source, which travels 
through the earth’s atmosphere and interacts with elements (material) on the surface of the earth before it reflects to the 
sensor. The sensor has the ability to measure the amount of intensity reflected back from the material to the sensor. The 
amount of intensity the sensor measures is a function of the composition of the imaged material on the earth’s surface. 
Therefore, depending on the material type, the amount of energy absorbed by the material is different. In addition, the 
sensor measures the amount of energy reflected from the material as a function of different wavelengths or spectral bands. 

Because hyperspectral sensors have the technological ability to measure many contiguous intensity of spectral bands 
(wavelengths), they provide tremendous amount of information, which can be used for data exploitation. One example of 
data exploitation is endmember finding. An endmember is defined as an idealized “pure” signature that can be used to 
specify a particular spectral class. As a consequence, finding endmembers in hyperspectral imagery has become a major 
and unique application, which cannot be found in other imagery such as multispectral or single spectral imagery. There 
are many supervised and unsupervised endmember finding techniques, which have been very successful in extracting 
endmembers (targets) from hyperspectral imagery. Another very important data exploitation application, which depends 
on target extraction is spectral unmixing [3] (i.e., abundance fractions estimation). The material composition of a 
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hyperspectral image can be inferred by performing data processing and spectral unmixing [4]. This is possible because 
hyperspectral sensors have very fine resolutions.  As a result, they capture very detailed information about the material 
present on the surface. 

Despite providing very rich spatial and spectral information, hyperspectral sensors provide redundant information, which 
many algorithms must deal within the processing chain down the stream. The direct impact is that the high band-to-band 
correlation present in the imagery cost high algorithm computational time, memory storage, and transmission bandwidth. 
Lately, much efforts and attention have been given to developing hyperspectral image processing algorithms in order to 
deal with this challenge. One approach to dealing with this challenge is to develop new algorithms (i.e., compression post 
acquisition) that remove the high band-to-band correlation present in the imagery before applying the endmember (target) 
finding algorithms. However, these approaches have shown to have performance issues and complicate the problem even 
more because they are still required to process redundant data. A new but very promising approach is to take advantage of 
the concept of Compressive Sensing (CS), which compresses (senses) the imagery as the signal is being acquired at the 
sensor level. As a result, the redundant information is removed immediately (at the sensor layer) and never enters the data 
processing chain.    

To demonstrate the utility of using CS for unsupervised ATGP, a series of experiments are designed and their results are 
presented. In particular, we show the results of applying CS to ATGP in the CSBD using two synthetic images and one 
real image. We then compare the results with the results obtained in the ODS, where the traditional approach is used 
(i.e., non-CS). 

2. COMPRESSIVE SENSING OVERVIEW

Recently, CS has been and continued to be a major research area in many applications. It is a new signal or image 
acquisition technique, which goes against the conventional and well-known approach, Nyquist-Shannon sampling 
theorem. For a perfect signal reconstruction, the conventional approach requires the signal sampling rate to be at least 
twice faster than the signal bandwidth. On the other hand, CS does not have such a sampling constraint. The CS theory 
asserts that a perfect signal reconstruction is possible with much fewer samples than samples required by the conventional 
method [5]–[9]. The key of CS theory relies on three major ideas: sparsity, incoherence, signal sampling and recovery.  

2.1 Sparsity 

In many real-life applications signals may not appear sparse in one domain, but may be highly sparse under some 
“sparsifying” domain represented by a basis matrix 𝚿 ∈ ℜ$%$. For example, a signal 𝐫 ∈ ℜ$ may not look sparse in time-
domain but may be very sparse in other domains such as fast fourier transform (FFT), direct cosine transform (DCT), or 
wavelet [10], [11]. What this means is that the signal 𝐫 is well approximated by a linear combination of k vectors such that 
𝐫	 ≈ ∑ 𝜌+,

+-. 𝛙+, where	𝜌+	are the coefficients and	𝛙+ are the basis vectors in the sparse domain. Mathematically speaking, 
a signal	𝐫	is said to be sparse if most of its coefficients are zeros. In addition,	𝐫	is 𝑘-sparse if 

‖𝚿𝐫‖2 ≤ 	𝑘, (1) 

where ‖	. ‖2 denotes the number of non-zero coefficients in the vector 𝚿𝐫. If the information bearing signal, 𝐫, is very 
sparse (i.e., can be represented using few coefficients) in some sparse domain, then sampling the signal at twice its 
bandwidth is not necessary. This is one of the central themes of the CS theory. In fact, the CS theory asserts that a perfect 
signal recovery is possible, with high probability, despite that sampling (sensing) the signal at a rate that is much lower 
than the Nyquist rate, provided that certain CS conditions are satisfied and the signal is sparse [5]–[9]. 

2.2 Incoherence 

Mutual incoherence, or coherence, plays a significant role in CS. It is used to measure the correlation between the sensing 
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matrix 𝚽 ∈ ℜ7%$ and the sparse representation basis matrix 𝚿	 ∈ ℜ$%$. According to the CS theory, the lowest coherence 
between the sensing matrix and the sparse representation matrix is desired for better signal sensing and reconstruction. 
Mathematically, mutual coherence is defined as 

µ(𝚽,𝚿) = √𝐿 max
.AB,BA$

|〈𝛟B, 	𝛙+	〉|, (2) 

where 𝛟B and	𝛙+ represent the columns of the sensing matrix 𝚽 and the sparse representation matrix 𝚿, respectively. Low 
coherence between the sensing matrix and any sparse representation matrix is guaranteed by choosing a sensing matrix 𝚽 
with random entries [5]–[9]. In our experiments, incoherence is directly achieved by using a Gaussian sensing matrix. 
Therefore, there is no need to check for incoherence explicitly. 

2.3 Signal Sampling and Recovery  

The CS framework treats signal sampling as a linear model given by  

𝐫𝚽 = 	𝚽𝚿𝐫	 + 	𝖓, (3) 

where 𝚿 is sparse matrix, 𝚽 is a user-specified measurement (sensing) matrix,  𝐫𝚽 ∈ ℜ7	is a vector containing the sensed 
signal, and 𝖓 ∈ ℜ7 is a random noise vector. It is clearly seen in (3)  that the matrix 𝚽 represents dimensionality reduction. 
It maps the vector		𝐫 ∈ ℜ$ into another vector 𝐫𝚽 	∈ ℜ7 with dimensionality of m	≪ 𝐿	being the number of compressively 
sensed bands (CSBs) size. It is important to note that the framework given by (3) is not the universality model used in CS, 
where the transformation, 𝚿 of 𝐫	to a sparse domain is not required during sampling (sensing). More precisely, in the CS 
universality model, the sparse transformation 𝚿 is only needed during reconstruction. Therefore, in our research, we take 
advantage of the so-called CS universality model to avoid any time-domain to sparse-domain (FFT, DCT, etc.) 
transformation of the signal 𝐫	 by directly applying CS to 𝐫	. In other words, we can avoid the 𝚿 transformation applied 
to	𝐫	  and use the universality model by reducing (3) to 

𝐫𝚽 = 	𝚽𝐫	 + 	𝖓. (4) 

The CS sampling framework is shown below in  

Fig. 1. 

 

Fig. 1.  Compressive Sampling 
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The use of the universality model given by (4) is significant since it allows us to avoid “sparsifying” the HSI. In addition, 
considering the HSI is very sparse to begin with, transforming the HSI to another sparse domain brings no added benefits. 
In fact, it introduces more complexity and unnecessary computational time. Our early experimental results did demonstrate 
that transforming the HSI from time-domain to the DCT-domain brought no additional performance gains.  

One fundamental question in CS is how to design a sensing matrix 𝚽 so that 𝐫𝚽 preserves as much of the bare minimum 
formation content from the original signal 𝐫	? In other words, the sensing matrix 𝚽 must ensure that the signal  𝐫	 is 
recovered from 𝐫𝚽 as accurately as possible. One way to address this question is to impose a requirement on the sensing 
matrix 𝚽. The CS theory establishes the Restricted Isometric Property (RIP), which is a sufficient condition for signal 
recovery [12], [13]. A sensing matrix 𝚽 satisfies the RIP condition of order 	𝑘	if there exists a Restricted Isometric 
Constant (RIC) δK, which is the smallest constant [12] such that the RIP condition specified by 

 

(1 − 𝛿,)	‖𝐫‖OO ≤ ‖𝚽𝐫‖OO ≤ 	‖𝐫‖OO(1 + 𝛿,	) (5) 

is satisfied for a k-sparse vector 𝐫. According to CS	theory, if a sensing matrix 𝚽 satisfies (5), then the original signal 𝐫	can 
be recovered from signal 𝐫𝚽with high probability [5]–[9]. Therefore, the design requirement on the sensing matrix 𝚽 is 
equivalent to satisfying the RIP condition. From seeing (5), it is apparent that the RIP condition is a distance preserving 
criterion on 𝐫. Alternatively speaking, the length (norm) of 𝐫 in the ODS is close to the length of		𝐫𝚽 in the CSBD. A direct 
consequence of RIP is that the difference in length between 	𝐫𝚽 and 𝐫 is bounded by δK	as shown below. 

‖𝚽𝐫	‖OO − ‖𝐫‖OO		
‖𝐫‖OO

	≤ δ,. 
(6) 

A related concept to RIP is the RCP [14], which relates the angle between two vectors in the ODS to their corresponding 
angle between two vectors in the CSBD. For example, the RCP condition asserts that the angle θ	between two vectors 𝐫. 
and 𝐫O in the ODS and the angle	θ𝚽	between their corresponding vectors 𝐫𝚽. and  𝐫𝚽O in the CSBD is preserved. More 
specifically, RCP can be described by  
 
 

(1 − δK)
(1 + δK)

cosθ ≤ cos θ𝚽 ≤ cos θ	
(1 − δK)
(1 + δK)

. 
(7) 

In practice, checking if the RIP condition is satisfied is difficult if not impossible [5]. However, one can	easily construct 
a sensing matrix	𝚽	by sampling independently identical distributed (i.i.d.) entries from a Gaussian distribution with 0 
mean and variance .

7
 or construct 𝚽	by sampling i.i.d. entries U± .

√7
W from a symmetric Bernoulli distribution. If the 

sensing matrix 𝚽	 is constructed using random entries from a Gaussian or a Bernoulli distribution, then (5) is satisfied with 
high probability provided that  

 
𝑚 ≥ 𝐶	 × 	𝑘	 × 	log(𝐿/𝑘) (8) 

is true, where C depends on the desired application. It is interesting but not surprising to note that the lower bound on 𝑚 
to guarantee the RIP condition depends on the sparsity of 𝐫. The fewer coefficients are used to represent the signal 𝐫, the 
fewer samples, (small 	𝑚), are needed to recover the signal and to satisfy the RIP condition. Directly determining the 
minimum 𝑚 bounded by (8) to satisfy (5) is not easy. One major issue is that accurately estimating the sparsity of a signal 
is difficulty [15], [16]. As a result, in our experiments, we avoid estimating the sparsity and determine the minimum m 
empirically. Also, as mentioned earlier, we use the universality model of CS, which avoids estimating sparsity. 
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Typically, the signal recovery process is accomplished by using either the Orthogonal Matching Pursuit (OMP) or Basis 
Pursuit (BP) algorithms [17]–[20]. Generally speaking, the recovery process is formulated as  
 

arg	min
𝚿𝐫

a‖𝚿𝐫‖𝒒			𝑠. 𝑡.				𝚽𝐫 = 𝐫𝚽e, (9) 

where	𝚿𝐫	is	the	sparse	recovery	of	the	original	signal	𝐫.	A	more	traditional	sparse-based	recovery	approach	is	

arg	min
𝐫

{‖	𝚽𝐫 − 𝐫𝚽‖𝟐			𝑠. 𝑡.				‖𝐫‖. ≤ 	𝑘}, (10) 

which requires estimating the sparsity of k. Since we completely avoid the HSI reconstruction process, we can also avoid 
directly estimating 𝑘 by taking advantage of universality specified by (4), RIP, and RCP.  
 
One way to think of CS is as a mapping process from the ODS to the CSBD, where a vector in the ODS is mapped to 
another vector in the CSBD via the sensing matrix 𝚽.  The recovery process is the inverse operation, where the sensed 
vector 𝐫𝚽 is mapped back uniquely to its original vector 𝐫 in the ODS. Fig. 2. below shows how the mapping from the 
ODS to the CSBD is performed via the sensing matrix 𝚽 and how the lengths of the vectors are preserved via the RIP 
condition. The figure shows the length difference between 𝐫𝟏 and 𝐫𝟐 in the ODS is preserved in the CSBD, which also 
implies that the actual length (norm) of the individual vectors is also preserved.  

 

 
Fig. 2.  Restricted Isometric Property 

 

3. ORTHOGONAL SUB-SPACE PROJECTIOB PRESERVATION 

 
The orthogonal sub-space projection (OSP) is a well-studied technique [21], which has been applied in wide range of 
hyperspectral applications. One such application that utilizes OSP is the Automatic Target Generation Process (ATGP).  
As we will show later, ATGP uses OSP to find the desired targets (endmembers) in the HSI without any prior knowledge. 
In ATGP, the desired target is the pixel with the maximum projected height for a given data matrix and a projection matrix. 

! ∈ ℜ$ !% ∈ ℜ&

!'

!(

Original Data Space (ODS) Compressively Sensed Band Domain (CSBD)

Sensing

Recovery:

: !% = %! + n

arg	min! ! 6	s. t.%! = !%

!%'

!%(

Proc. of SPIE Vol. 10989  109890G-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

Therefore, the ATGP techniques relies on the projection matrix and the projected heights of pixel vectors in the HSI to 
find the desired targets.  
 
Our goal in this paper is to show how the sensing matrix 𝚽 preserves the projected heights of vectors for a given projection 
matrix. To show this, we will first define the data matrix and the corresponding projection matrix in the ODS. The data 
matrix in the ODS is defined as 
 

𝐔(+w.) = 	 x𝐫.	𝐫O,… , 𝐫(+w.)z, (11) 

and the corresponding projection matrix is defined as 
 

𝐏𝐔|
} = ~𝐈 − 𝐔(+w.)�𝐔(+w.)� 𝐔(+w.)�

w.
𝐔(+w.)� �. (12) 

 In the CSBD, the data matrix is defined as  
 

𝐔(+w.)𝚽 = 	 x𝐫.𝚽	𝐫O𝚽,… , 𝐫(+w.)𝚽z, (13) 

while the projection matrix is defined as 
  

𝐏𝐔|𝚽
} = ~𝐈 − 𝐔(+w.)𝚽�𝐔(+w.)𝚽

� 𝐔(+w.)𝚽�
w.
𝐔(+w.)𝚽
� �. (14) 

However, looking at (14) closely, the data matrix 𝐔𝚽(+w.) can be rewritten as 
 

𝐔(+w.)𝚽 = 	𝚽x𝐫.	𝐫O,… , 𝐫(+w.)z = 	𝚽𝐔(+w.), (15) 

and substituting this for the projection matrix 𝐏𝐔𝚽|
} , we get 

 
𝐏𝐔|𝚽
} = ~𝐈 −𝚽𝐔(+w.)�𝐔(+w.)� 𝚽�𝚽𝐔(+w.)�

w.
𝐔(+w.)� 𝚽��. (16) 

With this in mind, the projected component of vector 𝐫𝚽 by the projection matrix 𝐏𝐔|𝚽
}  is simply given by multiplying the 

projection matrix 𝐏𝐔|𝚽
}  by 𝐫𝚽 as in   

 
𝐏𝐔|𝚽
} 𝐫𝚽 = ~𝐫𝚽 −𝚽𝐔(+w.)�𝐔(+w.)� 𝚽�𝚽𝐔(+w.)�

w.
𝐔(+w.)� 𝚽�𝐫𝚽�. (17) 

Recalling the fact that 𝐫𝚽 = 	𝚽𝐫, we can write (17) as 
 

𝐏𝐔|𝚽
} 𝚽𝐫 = ~𝚽𝐫 −𝚽𝐔(+w.)�𝐔(+w.)� 𝚽�𝚽𝐔(+w.)�

w.
𝐔(+w.)� 𝚽�𝚽𝐫�. (18) 

Letting 𝚽�𝚽	 → 𝐈 as 𝑚 → 𝐿, we reduce (18) to 
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𝐏𝐔|𝚽
} 𝚽𝐫 ≅ ~𝚽𝐫 −𝚽𝐔(+w.)�𝐔(+w.)� 𝐔(+w.)�

w.
𝐔(+w.)� 𝐫�. (19) 

After factoring out the common terms 𝚽 and 𝐫, (19) is equivalent to  
 

𝐏𝐔|𝚽
} 𝚽𝐫 ≅ 𝚽~𝐈 − 𝐔(+w.)�𝐔(+w.)� 𝐔(+w.)�

w.
𝐔(+w.)� � 𝐫. (20) 

By using the definition of 𝐏𝐔|
}  in (12), we can simplify (20) to  

 
𝐏𝐔|𝚽
} 𝚽𝐫 ≅ 𝚽𝐏𝐔|

} 𝐫, (21) 

Squaring the norm of (21), it yields  

	�𝐏𝐔|𝚽
} 𝚽𝐫�

O

O
≅ �𝚽𝐏𝐔|

} 𝐫	�
O

O
. 

 

(22) 

Using the RIP, we can write the right side of (22) as  
 

�𝚽𝐏𝐔|
} 𝐫	�

O

O
	≤ 	 �𝐏𝐔|

} 𝐫	�
O

O(1 + 𝛿,). 
 

(23) 

Therefore, combining (21) and (23), we can assert that 
 

�𝐏𝐔|𝚽
} 𝚽𝐫�

O

O
	≤ 	 �𝐏𝐔|

} 𝐫	�
O

O(1 + 𝛿,). 
 

(24) 

By using the RIP symmetry, we can claim  
 

(1 − 𝛿,)�𝐏𝐔|
} 𝐫	�

O

O
≤ �𝐏𝐔|𝚽

} 𝚽𝐫�
O

O
	≤ 	 �𝐏𝐔|

} 𝐫	�
O

O(1 + 𝛿,). 
(25) 

The result obtained in (25) shows that the projected length in the CSBD is bounded exactly the same way any vector length 
is bounded by RIP. Again, this finding was expected considering that the projection of a vector using a projection matrix 
results in an orthogonal vector, which has length. It is worth mention that it is this OSP preservation that allows the ATGP 
and any other target (endmember) finding algorithms to extract the desired targets from the HSI in the CSBD. We call this 
OSP preservation Restricted Orthogonal Sub-space Projection Property (ROSPP).  

 

4. COMPRESSIVE SENSING AUTOMATIC TARGET GENERATION PROCESS 

 
In this section, we show how the concept of CS is directly applied to the Automatic Target Generation Process (ATGP) 
[22]–[25] algorithm for unsupervised target detection (i.e., endmember finding) by using the important CS property of 
RIP.  The ATGP algorithm relies on the well-developed OSP concept, which is described in detail in [26]. The algorithm 
implements a sequence of OSP to detects targets (endmembers) imbedded in the HSI. At each iteration, it finds a pixel 
vectors (endmembers), which provides the maximum orthogonal projects. The research in this paper compares the CS-
based ATGP with the traditional ATGP, which does not take CS into account. For convenience, the two different 
approaches are shown in  Fig. 3. below.  
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Fig. 3. Traditional AGTP setup vs. CS-ATGP setup  

 

In CS-ATGP algorithm, the first step is determining the initial target in the HSI. This is typically done by finding the pixel 
with the maximum energy as seen below 

 

𝐭2𝚽 = 𝐦𝐚𝐱
𝐫𝚽

(𝐫𝚽�𝐫𝚽) = 𝐦𝐚𝐱
𝐫𝚽

(𝐫�𝚽�𝚽𝐫) (26) 

Applying the property that 𝚽�𝚽 → 𝐈 as 𝑚 → 𝐿,  we can see that (26) approaches the regular (non-CS) ATGP given by 
 

𝐭2𝚽 = 𝐦𝐚𝐱
𝐫𝚽

(𝐫𝚽�𝐫𝚽) ≅ 𝐦𝐚𝐱
𝐫
(𝐫�𝐫). (27) 

As a result, the length of all pixel vectors in the HSI are preserved due to RIP, which also implies that energy of all pixels 
is preserved. Therefore, applying CS to ATGP, does not change the first target picked, despite using very fewer CSBs, 𝑚, 
to determine the initial target pixel. 
 
After determining the initial target, the next step is determining the initial data matrix given by 
 

𝐔𝟎𝚽 = 𝚽𝐔𝟎 = 𝚽𝐭𝟎, (28) 

whose length is also preserved due to RIP. Therefore, the initial data matrix will not be affected. In other words, the initial 
data matrix 𝐔2selected in the ODS is equivalent to the initial data matrix selected in the CSBD, except it will be sensed 
using the sensing matrix 𝚽. It is also worth mentioning that if the selected initial data matrix 𝐔𝟎𝚽	in the CSBD is the same 
as the initial data matrix in the ODS, then the subsequent data matrices will also be the same in the CSBD and in the ODS.  
In other words, 𝐔+𝚽 = 𝚽𝐔+, After determining the initial data matrix, the next step is figuring out the projection matrix 
𝐏𝐔𝚽
} , which was defined earlier, but it is re-defined again below for convivence 

 

𝐏𝐔𝚽
} = 𝐈 − 𝐔𝚽(𝐔𝚽�𝐔𝚽)w.𝐔𝚽� 	= [𝐈 −𝚽𝐔(𝐔�𝚽�𝚽𝐔)w.𝐔�𝚽�]. (29) 

From the OSP length preservation property and proof given in (21), we claim that 
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𝐏𝐔𝚽
} 𝐫𝚽 		≅	𝚽𝐏𝐔}𝐫, 

 
(30) 

and 

�𝐏𝐔𝚽
} 𝐫𝚽	�O 	≅ ‖𝐏𝐔}𝐫	‖O (31) 

The most important step in ATGP is determining the current target pixel 𝐭+𝚽 after determining the current projection matrix 
and data matrix. In the CSBD, the current target is determined using 
 

𝐭+𝚽 = 𝐦𝐚𝐱
𝐫𝚽

U(𝐏𝐔(|��)𝚽
} 𝐫𝚽)�(𝐏𝐔(|��)𝚽

} 𝐫𝚽)W	 = 𝐦𝐚𝐱
𝐫𝚽

U(𝚽𝐏𝐔(|��)
} 𝐫)�(𝚽𝐏𝐔(|��)

} 𝐫)W, (32) 

where 𝐔(+w.)𝚽 = 	 x𝐭.𝚽	𝐭O𝚽,… , 𝐭(+w.)𝚽z. As 𝑚 → 𝐿 and using (15), it can farther be reduced to  
 

𝐭+𝚽 = 𝐦𝐚𝐱
𝐫𝚽

�𝐫� U𝐏𝐔(|��)
} W

�
𝚽�𝚽𝐏𝐔(|��)

} 𝐫� ≅ 𝐦𝐚𝐱
𝐫

�U𝐏𝐔(|��)
} 𝐫W

�
𝐏𝐔(|��)
} 𝐫�. (33) 

 
It is important to observe that (33) approaches the case when ATGP is executed in the ODS. In other words, 𝐭+𝚽 	≅ 	 𝐭+ as 
𝑚 → 𝐿. Therefore, when CS is applied to ATGP using compressively sensed band vectors, it will pick the same target as 
when ATGP is used in ODS, as long as the sampling size 𝑚 is large enough. This is a significant finding since, as it will 
be shown later, the CS-based ATGP only requires a very few CSBs, 𝑚, to find the same targets as the targets found in the 
ODS. The CS-ATGP algorithm is summarized below in Table 1. 
 

Table 1 CS-ATGP Algorithm Summary 

Algorithm 1: CS-ATGP Algorithm Summary 
1. Initial conditions: 

Choose an initial target pixel vector 𝐭𝚽2 using the method below: 

𝐭2𝚽 = 𝐦𝐚𝐱
𝐫𝚽

(𝐫𝚽�𝐫𝚽) =	𝐦𝐚𝐱𝐫𝚽
(𝐫�𝚽�𝚽𝐫), using all pixel vectors in the HSI 

Set 𝐔2𝚽= 	𝐭2𝚽 = 𝚽𝐔2 = 𝚽	𝐭2	 

Set 𝑖 = 1 

2. At ith iteration apply the projection matrix to all pixel vectors in the HSI: 

𝐭+𝚽 = 𝐦𝐚𝐱
𝐫𝚽

U(𝐏𝐔(|��)𝚽
} 𝐫𝚽)�𝐏𝐔(|��)𝚽

} 𝐫𝚽W ≅ 	𝐦𝐚𝐱𝐫 �U𝐏𝐔(|��)
} 𝐫W

�
𝐏𝐔(|��)
} 𝐫�, 

where 𝐔(+w.)𝚽 = 	 x𝐭.𝚽	𝐭O𝚽,… , 𝐭(+w.)𝚽z, 𝐔(+w.) =	 x𝐭.	𝐭O,… , 𝐭(+w.)z. 

3. Stopping rule: 

If 𝑖 < (𝑛����� − 1), then i ← 𝑖 + 1 and go step 2. Otherwise, 

~𝐭.𝚽	𝐭O𝚽,… , 𝐭���� ¡𝚽� are the desired 𝑛����� targets in the HSI. 
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5. EXPERIMENTAL IMAGES 

 
In order to show how the concept of CS is applied to unsupervised target detection using ATGP, experiments were 
designed. The designed experiments used both real and synthetic hyperspectral images. For the proposed experiments, one 
real image and two synthetic images were used. Each hyperspectral image is described below. 
 

5.1 AVIRS Cuprite Real Image  

The Airborne Infrared Imaging Spectrometer (AVIRIS) Cuprite hyperspectral image is one of the most widely used image 
in the hyperspectral community. The image contains a spatial resolution of 20 m collected using 224 bands (only	𝐿 =189 
used for experiment) and 10 nm spectral resolution in the range of 0.4-2.5 um. The image contains five pure pixels that 
can be identified and located. The pure pixels are alunite (A), buddingtone (B), calcite (C), kaolinite (K), and muscovite 
(M). The Cuprite image has 350×350 pixels (i.e., 𝑁 = 122,500). The details of the Cuprite image are also covered in [27].   
Fig. 4. below shows the Cuprite image. 
 

 
Fig. 4.  AVIRIS Cuprite Real Image 

 

5.2 Target Implantation 2 (TI2) Synthetic Image 

The Target Implantation 2 (TI2) image is a 200	 × 	200 (i.e., 𝑁 = 4,000).  synthetic image, which is simulated using the 
real Cuprite image. The TI2 image is simulated by implanting (inserting) target pixels into noise background, which were 
corrupted by adaptive white Gaussian noise and made to maintain a signal-to-noise (SNR) ratio of 20:1 after removing the 
background pixels. Therefore, the image simulates the cases where clean targets are present in noisy image background. 
The image contains  5	 × 	5  = 25  pixel panel as seen in Fig. 5. Each row in the image panel contains the same mineral 
signature and each column in the image panel contains the same size. The pixels in the first column are  4	 × 	4  pure 
pixels, while the pixels in the second column are pure pixels with size of  2	 × 	2.  The third column contains 2	 × 	2	 mixed 
pixels, while the fourth and the fifth columns contain sub-pixels. The details of the TI2 image are covered in [27].   
 

 

 
                      Fig. 5.  TI2 Synthetic Image 

Proc. of SPIE Vol. 10989  109890G-10
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

5.3 Target Embeddedness 2 (TE2) Synthetic Image 

The Target Embeddedness 2 (TE2) is the same as the TE1 image, except the way the image was simulated is little different. 
For the TI1 image, the background pixels were removed before inserting the pure pixels. For the TE2 image, the 
background pixels are not removed. Instead, the targets are embedded or superimposed into the background pixels without 
removing the background pixels. Therefore, the final simulated TE2 image has clean targets imbedded into a noisy 
background as seen in Fig. 6. The details of the TE2 image are covered in [27].   
 

 
               Fig. 6.  TE2 Synthetic Image 

 

6. EXPERIMENTAL RESULTS 

 
6.1 Experimental Results for TE2 Image 

Fig. 7.  below shows the result of applying CS to ATGP. As it can be seen from Fig. 7(b). through Fig. 7(f)., applying CS 
to ATGP was successful in finding the targets (endmembers). However, in Fig. 7(b)., when the number of CSBs, 𝑚, was 
only 6, the spatial locations of the endmembers were off compared to their true locations. After increasing 𝑚, however, 
the locations of the endmembers were very close to their truth locations. It is interesting to note that only 𝑚 = 46 or less 
(see Fig. 7(c).) CSBs were needed to exactly determine the endmember locations. The third endmember’s location, 
however, was not the same as its true locations, despite using all CSBs (i.e.,  𝑚 =	 L). This is the case because the third 
endmember’s spectral values are very close to the image background. In other words, the third target is background. 

 

 
Fig. 7.  TE2: (a) Endmembers in ODS (b)-(f) Found endmembers in CSBD for different value of 𝑚 
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Fig. 8. below depicts the spectral angle map (SAM) [28] results between the found targets and the truth targets. The same 
figure also shows reflectance of the found targets (endmembers). The first figure, Fig. 8(a)., shows the SAM values 
calculated by using the endmembers extracted by applying CS to ATGP in the CSBD for different values of 𝑚 and using 
the ground truth endmembers. Looking at the figure, we can see that the spectral signatures of the extracted endmembers 
using CS-ATGP are very close to the spectral signatures of the true endmembers. The rest of the figures, Fig. 8(b). through 
Fig. 8(f)., show the radiance of the five endmembers in the first left column (top to bottom) of the TE2 HSI. By looking at 
the figures, we can see that the radiance of the extracted targets (endmembers) approach that of the ground truth radiance 
for 𝑚 ≤ 46. This is a significant result considering that it only took 𝑚 ≤ 46 to find the desired targets in the CSBD, while 
processing less data compared to the ODS. 

 

 
Fig. 8.  TE2: (a) Found endmembers’ SAM for different value of 𝑚 (b) Found endmembers’ radiance for different value of 𝑚 

The algorithm computational times obtained by CS-ATGP in the CSBD as well as the case when CS is not applied in the 
ODS are shown in Fig. 9. below. Comparing the two cases, it easily seen that when the CSBs size, 𝑚, is small, the CS-
ATGP case takes less computational time to run the algorithm, despite producing the correct endmember locations. As 
expected, as 𝑚 increases, it approaches the case seen in the ODS.  
 
 

 
Fig. 9.  TE2: CS-ATGP computational time for different values of 𝑚 
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6.2 Experimental Results for TI2 Image 

In order to increase the test data diversity, the synthetic TI2 image was also used for the experiment. The results of using 
the TI2 image are shown in Fig. 10. through Fig. 12. Paying a close attention to the figures, we can see that the same 
results are obtained as using TE2. In other words, it takes a small number of CSBs (𝑚 ≤ 46) to find the desired targets. In 
addition, it takes less computational time to find the desired target in the CSBD compared with the ODS.  
 

 
Fig. 10.  TI2: (a) Endmembers in ODS (b)-(f) Found endmembers in CSBD for different value of 𝑚 

 

 
Fig. 11.  TI2: (a) Found endmembers’ SAM for different value of 𝑚 (b)-(f) Found endmembers’ radiance for different value of 𝑚 

 

p1

p2

p3

p4

p51

2

3

4

5

6

20 40 60 80 100 120 140 160 180 200
original data space

20

40

60

80

100

120

140

160

180

200

p1

p2

p3

p4

p51

2

3

4

5

6

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

p1

p2

p3

p4

p51

2

3

4

5

6

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

p1

p2

p3

p4

p51

2

3

4

5

6

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

p1

p2

p3

p4

p51

2

3

4

5

6

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

p1

p2

p3

p4

p51

2

3

4

5

6

20 40 60 80 100 120 140 160 180 200

20

40

60

80

100

120

140

160

180

200

(a) (b) (c)

(d) (e) (f)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

p1 p2 p3 p4 p5 0 20 40 60 80 100 120 140 160 180 200
Bands

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ra
di
an
ce

0 20 40 60 80 100 120 140 160 180 200
Bands

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ra
di
an
ce

0 20 40 60 80 100 120 140 160 180 200
Bands

0

1000

2000

3000

4000

5000

6000

7000

Ra
di
an
ce

0 20 40 60 80 100 120 140 160 180 200
Bands

0

1000

2000

3000

4000

5000

6000

7000

Ra
di
an
ce

0 20 40 60 80 100 120 140 160 180 200
Bands

0

2000

4000

6000

8000

10000

12000

Ra
di
an
ce

(a) (b) (c)

(d) (e) (f)

Proc. of SPIE Vol. 10989  109890G-13
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 03 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

 

 
Fig. 12.  TI2: (a) CS-ATGP computational time for different values of 𝑚 

 

6.3 Experimental Results for Cuprite Image 

The third HSI used for the ATGP experiment was the real Cuprite image.  Figures Fig. 13. through Fig. 15. below show 
the experimental results. The first figure of Fig. 13., Fig. 13(a)., shows the case when CS is not applied (i.e., ODS). The 
rest of the figures show the case when CS is used with different CSBs sizes. Looking at the rest of the figures, we can see 
that when  𝑚 = 22, the three endmember locations (M), (K), and (C) are very close to their ground truth locations. 
Therefore, it does not take many CSBs to find the endmember locations.  However, the other two endmember locations 
(A) and (B) are not close to their ground truth locations. This is the case because the there are other pixels in the image 
that have similar spectral signatures (i.e., reflectance) as the two endmembers, (A) and (B). In this case, the CS-based 
ATGP is finding other pixels that have spectral signatures that are very close to the true endmembers. At any rate, it is 
very evident that the CS-ATGP in CSBD requires a very few CSBs to find the desired targets. In doing so, it utilizes less 
data, and as a result, less storage memory compared to the ODS.  
 

 
Fig. 13. Cuprite:  (a) Endmembers in ODS (b)-(f) Found endmembers in CSBD for different value of 𝑚 
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The calculated SAM values and the reflectance for the found targets (endmembers) for the Cuprite image are shown in 
Fig. 14. The SAM results are depicted in Fig. 14(a)., where the SAMs are calculated for different values of CSBs, 𝑚, in 
the CSBD. In addition, the SAM results for the ODS is also shown in the same figure. Again, the same type of performance 
is observed again, where the CS-ATGP is successful in finding the targets (endmembers) in the Cuprite image, despite 
using a very few numbers of CSBs. This observation was made by comparing the SAM results obtained in CSBD with the 
SAM values seen from the ODS. The reflectance for the found targets (A), (B), (C), (K), and (M)) in the CSBD are shown 
in  Fig. 14(b). through Fig. 14(f)., respectively. In addition, the same figures show the reflectance for the ground truth 
targets and the reflectance for the targets obtained in the ODS.  Again, the reflectance produces by the CS-ATGP are very 
similar to the reflectance obtained in the ODS. However, the CS-ATGP requires less data to produce results that are similar 
to results produced in the ODS. 
 

 
Fig. 14. Cuprite: (a) Found endmembers’ SAM different value of m, (b)-(f) Found endmembers’ reflectance for different value of 𝑚 

 

Fig. 15. below shows the algorithm computational times for CS-ATGP in the CSBD and the non-CS ATGP in the ODS. 
As expected, the CS-ATGP takes less processing time to produce results that are comparable with results obtained in the 
ODS, the traditional approach, where CS is not considered. However, as the value of the CSBs is increased, the 
computational time of the CS-ATGP increases linearly. 
 

 
Fig. 15. Cuprite: (a) CS-ATGP computational time for different values of m 
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7. CONCLUSIONS

In this paper, we connected the concept of CS with one of the most popular targets finding (generation) algorithms, ATGP, 
in the hyperspectral community. Mathematically, we demonstrated the role the sensing matrix plays in ATGP, and the 
impact it has on the projection matrix as well as the projected vector’s length. We also showed that when the projected 
vector’s length is preserved in the CSBD, the energy of the projected vector is also preserved. In addition, we showed that, 
when the number of CSBs is high relative to the number of full bands used in the ODS, the objective function used by the 
CS-ATGP algorithm in the CSBD approaches the same objective function used in the ODS (non-CS). However, 
experimentally and using both synthetic and real images, we showed that it actually takes a very few numbers of CSBs to 
find the same targets as the targets found in the ODS. This implied that the CS-ATGP will use less memory since it 
processes less data compared to the traditional non-CS ATGP. Our experimental results also showed that the CS-ATGP 
requires less computational time to find the same targets found in the ODS using the non-CS ATGP.  
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