
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

S. C. Pallaprolu, R. Sankineni, M. Thevar, G. Karabatis and J. Wang, "Zero-Day Attack
Identification in Streaming Data Using Semantics and Spark," 2017 IEEE International Congress
on Big Data (BigData Congress), Honolulu, HI, USA, 2017, pp. 121-128, doi:
10.1109/BigDataCongress.2017.25.

https://doi.org/10.1109/BigDataCongress.2017.25

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://doi.org/10.1109/BigDataCongress.2017.25
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Zero-day Attack Identification in Streaming data
using Semantics and Spark

Sai C. Pallaprolu, Rishi Sankineni, Muthukumar Thevar, George Karabatis, Jianwu Wang
Department of Information Systems

University of Maryland, Baltimore County, Baltimore, MD, USA
Email: {p39, du83014, ai22698, georgek, jianwu}@umbc.edu

Abstract—Intrusion Detection Systems (IDS) have been in

existence for many years now, but they fall short in efficiently

detecting zero-day attacks. This paper presents an organic combi-

nation of Semantic Link Networks (SLN) and dynamic semantic

graph generation for the on the fly discovery of zero-day attacks

using the Spark Streaming platform for parallel detection. In

addition, a minimum redundancy maximum relevance (MRMR)

feature selection algorithm is deployed to determine the most

discriminating features of the dataset. Compared to previous

studies on zero-day attack identification, the described method

yields better results due to the semantic learning and reasoning

on top of the training data and due to the use of collaborative

classification methods. We also verified the scalability of our

method in a distributed environment.

Keywords—IDS; Flow Creation, Semantic learning and rea-

soning, Spark Streaming, Collaborative mining, Zero-day Attack

Identification.

I. INTRODUCTION

The development of computing infrastructures has prolif-
erated in our lives and large amounts of personal and sensitive
information are hosted on servers which are available through
the world wide web [9]. New malicious activities in the
Internet also known as intrusions developed by hackers aim
to gain unauthorized access to computer systems by exploit-
ing vulnerabilities of computing systems, to compromise the
integrity, validity and confidentiality of stored data.

These vulnerabilities used by the attackers weaken the
security of systems [2]. An Intrusion Detection System (IDS) is
a mechanism that tries to identify a set of actions or disallowed
behaviors in a computer system. There are two main types of
intrusion detection techniques: misuse detection and anomaly
detection. Misuse detection recognizes a suspicious behavior
by comparing its signature with a stored database of attacks
signatures; the only drawback of this technique is that it cannot
detect new attacks. Snort is an example of an IDS using misuse
detection techniques. Anomaly detection is another technique,
which creates a model of normal behavior, and tries to detect
any abnormal deviation from that model resulting in generation
of corresponding alerts [10].

Network Security issues are becoming serious with the
growth of Internet. Current IDS’s use certain detection al-
gorithms to predict the abnormal traffic and guarantee that
only benign traffic is allowed to access the system. The main
problem of traditional IDS is they take a long time to predict
the attacks especially when high volumes of data need to be
analyzed.

The key objective of our paper is to create an IDS system
which combines the Flow based Intrusion Detection System
and Semantic Link Network in the Apache Spark environment
and result in real or near-real time computation and analysis
of incoming traffic.

II. RELATED WORK

In general, most types of IDSs utilize logic operations,
statistical techniques, and machine learning approaches to
distinguish between different types of network activities [6],
[14], [18], [22], [25]. There have been few studies which
address zero-day attack detection problems, most of them
utilized unsupervised anomaly detection techniques to discover
these types of attacks [18], [22]. Support Vector Machines
(SVM) have been utilized by Jungsuk et al. in [25]. Clustering
approaches have been used in [14], [22] to discover new attacks
types. Hendry et al. in [14] proposed a hybrid supervised and
unsupervised clustering algorithm for zero-day attack signature
creation. The problem with this approach is the difficulty of
creating sufficient and accurate new attack signatures at real-
time. Zhichun et al. in [19] proposed a model to detect zero-
day worms by analyzing the invariant content of polymorphic
worms, making analytical attackresilience guarantees for the
signature generation. In [22] Song et al. introduced an ap-
proach that can detect zero-day attacks from IDS alerts. The
limitation of this approach was the large amount of alerts to be
analyzed in order to generate zero day signatures. While such
techniques have the capability of detecting zero-day patterns,
however, they produce large and unmanageable amounts of
false alerts [25].

Our previous work in [3] proposed an efficient approach
to detect zero-day attacks using linear data transformation
and anomaly detection techniques by processing suspicious
network connections which do not match known attack sig-
natures at run-time. The linear data transformation module
passes the suspicious connections to discriminant functions,
which differentiate between the behavior of known attacks
and normal activities [3]. Such functions are used to calculate
the estimated probabilities of attack patterns in network con-
nections. These probabilities are compared to a user tunable
threshold to raise alerts about zeroday attacks. The anomaly
detection technique relies on a modified implementation of
the one-class NN algorithm [3]. It has been used to detect
anomalies and thus to discover zeroday attack types using
an assigned anomaly score. The experimental results indicate
that linear data transformation, when applied on network data
using discriminant functions attained a detection rate (TPR)

of 0.83. In contrast, this paper, using semantic learning and
reasoning on Spark streaming platform attained a detection rate
(TPR) of 0.95. It can be also observed from our comparison
that semantics based learning is quite effective in term of TP
rate compared to other approaches, and it achieves competitive
results in term of false positive rate.

III. APPROACH

Our overall approach is shown in Figure 1. In this sec-
tion we describe the architecture of the system and its core
functionality. This section describes in detail how a semantic
link mesh network is formed from a training set, creation
of flows, training the classifier with non-zero day attacks,
dynamic generation of semantic link network for zero day
attacks and classification metrics.

Figure 1. Process Flow of Overall Approach

As shown in Figure 1, information from the input pcap
files is converted into flows. Using pre-existing labeled flow
data we generate a semantic link network (SLN), which is a
graph containing nodes that represent attacks, and edges that
represent the semantic relationships between attacks. Once the
SLN is completed, it can be used at run-time. In addition, the
labeled flow data is used to train a classifier, which is also used
at run-time in conjunction with the SLN. These tasks are part
of the training phase of the system. It is worth mentioning that
some existing attacks in the dataset have been removed from
the training part of the dataset, and they have been included
in the testing part of the dataset to simulate the existence of
zero-day attacks.

At run-time (testing phase) we get streaming incoming
flows from the network. These flows contain simulated zero-
day attacks which were excluded from the training dataset,
therefore the classifier and the SLN do not contain any
information about these attacks. When incoming flows are
streamed to the system, they pass through a classifier and
with information from the SLN, our system decides whether
an incoming flow is malicious or benign. If a zero-day attack
is identified then the SLN is dynamically updated to reflect
this information.

Training phase: Snort [11] is a real time open source
network based IDS that has the ability to sense the network
traffic and can perform packet analysis. We use snort to collect
alerts on incoming data and then label the incoming flows as
such.

A. Pcap to CSV converter (Flow Creation with Labels)

We first convert the input pcap file into a csv file using
tshark [7], which is used for analyzing packets and also to
monitor the network. In order to get the data points that are
benign, we used a subtraction module that subtracts two files
and gives a resultant file. Our main idea is to subtract the snort
alert file from the csv file that is generated from pcap to csv
convertor, to get benign data points as shown in figure 2. Then
we create a labeled dataset by combining the labeled alert data
with the benign data.

Figure 2. Generation of labeled dataset

Lines 1-7 in Algorithm 1 convert the original pcap file into
a csv file using tshark commands in a Linux based system.
Lines 8-18 summarize the subtraction of csv file containing
alerts from the csv file containing both alerts and benign,
resulting in a file that contains only normal data. Finally, we
combine both files that contain alerts and normal to form a
complete labeled dataset of flows.

Algorithm 1: Algorithm for converting the original pcap
file into a csv file using tshark commands.
1 Return: Dataset of flows containing attacks and benign.
2 Features: A list of common features extracted from

packet data to create one flow.
3 procedure createFlow(duration, features, packets)
4 Load the pcap file and convert it into csv file.
5 Feed pcap file as an input to snort.
6 Capture the alert pcap file and store it in local db.
7 Convert the alert pcap file into csv.
8 Spark DF df1 CSV (output of step 1).
9 Spark DF df2 CSV with attacks(snort output).

10 Intersection of two dataframes df1 and df2.
11 For i in range (length (df2)):
12 For j in range (length(df1)):
13 if df1(i) == df2(j) then

14 Delete df2(j);
15 end

16 end-loop

17 end-loop

18 df3 df2(containing only normal flows).
19 Union of df2 and df3.
20 df4 df2Udf3(attack and normal flows).

B. Creation of semantic link network

The main motivation to use semantics is that the classifica-
tion models do not provide any relationships between the types

of attacks. Improvement in attack prediction and decrease in
false positives can be achieved if we capture the contextual
relationships between the attacks [5]. Similarity between the
nodes is a measure of correlation between the features with
respect to the attacks. The construction of the SLN consists of
two major steps:

Step 1: Creation of weighted links among the nodes.

Semantic link networks contains both attacks and normal
activities as nodes. It is expected that the SLN shows a weak
relation between attacks and benign activities. The features of
the flows dataset fall into three categories as shown in Table
1.

Feature Type Feature Names
Nominal(categorical features) Protocol, flags

time-based(continuous) Start time, end time
Location based(continuous) Source ip ,destination ip, source port,destination port

Statistical features(continuous) Packets, octets

Table I. CATEGORIES OF FEATURES IN THE DATASET

To find the weighted links among the nodes, we create
a feature-node similarity matrix. Before creating the node-
similarity matrix we perform some preprocessing on the
numerical features, by applying binning since the similarity
measures we use in the SLN require binary values.

Source port Protocol Attack label
40 TCP back attack
60 UDP smurf
80 UDP DOS
99 HTTP Neptune

Table II. SUBSET OF RAW DATA FOR SIMILARITY CALCULATION

A node similarity matrix consists of features in rows and
attack types as in columns. It also contains normalization
frequency which is in the binary domain [0, 1] of each feature
f with each node n

i

.

To calculate the normalized frequency we followed a series
of steps as shown below:

1) Calculation of feature frequency with respect to par-
ticular class ff

c

.
2) Calculation of total frequency of that feature in entire

dataset f
t

.
3) Calculation of weight, W = ff

c

/f

t

.
4) Weight discretization (conversion of continuous

weights into binary with threshold=0.5)

After applying the above steps on the subset of raw data
in Table 2, the binary values are formed as shown in Table 3.

back attack smurf DOS Neptune
TCP 1 0 0 0
UDP 0 1 1 0

HTTP 0 0 0 1
Source port[40,60) 1 0 0 0
Source port[60,80) 0 1 0 0
Source port[80,100) 0 0 1 1

Table III. BINARY VALUES FOR THE SIMILARITY MATRIX

We then apply Anderberg’s similarity [13] on the prepro-
cessed data to generate the Node Similarity Matrix (Table 4).

back attack smurf DOS Neptune
backattack 1 0.1 0.2 0.02

smurf 0.1 1 0.78 0.3
DOS 0.2 0.78 1 0.0123

Neptune 0.02 0.3 0.0123 1

Table IV. UN-NORMALIZED SIMILARITY MATRIX

To normalize the data in the Similarity Matrix we use
Min-Max normalization technique [17] by considering the
maximum value as the second largest value in each feature.
After normalization, we get an initial SLN as shown in Figure
3.

Figure 3. Initial SLN

Step 2: Reasoning on such links to progress the seman-

tics. It was observed in the initial SLN that some nodes are not
connected and do not have any semantic relationships [4]. To
get the implicit semantic relation between the non-connecting
nodes we applied logical reasoning [5].

Let us assume that Node-Similarity-Matrix is represented
as ‘P’, so that p

ij

represents the weight of semantic link from
p

i

to p

j

and p

ji

represents the weight of semantic link from
p

j

to p

i

. If there are no direct semantic links from p

i

to p

j

then p

ij

= p

ji

=0 [6].

For a given Node-Similarity-Matrix P, the result of
(p

ij

Xp

jr

) means that the p

i

node can reach the p

r

node
through semantic links in one reasoning step from two links
p

i

! p

j

and p

j

! p

r

. Reasoning steps can be performed
by raising P to the power of v (i.e. P v + 1 = P

v

XP), where
p

i

v

r

+ 1 means that the node p

i

reaches the node p

r

in V +1
steps.

C. Data Preprocessing

In real world the data is incomplete, noisy and inconsis-
tent. To deal with these issues a proper data pre-processing
techniques should be performed on top data beforehand. We
performed several data pre-processing techniques as follows:

Filling missing values and normalization: Filling missing
values in random biases the classification model. So we filled
the missing values in a smarter way by replacing the missing
value of a particular attribute by the attribute mean of rest of
the values of that particular feature which belong to the same
class.

We normalized the feature values of all the features vectors
present in our dataset in order to not get influenced by features

with wide range of values while computing distances. For
example, if a feature has range in [-0.5,+0.5] and another
feature has range in [-100; 100], a small change in the second
feature is probably more influencing when computing the
distance of two feature vectors. This large variation may lead
to inconsistency in the mining model especially in distance
based models such as KNN. We normalized each value in the
feature vector by dividing it with the maximum value in that
particular feature value. If F is the feature with length n, then
f

i

will be the instance of vector and the formula we followed
for normalization is

Normalized Feature F � norm = f

i

/f

i�max

where f

i�max

= max value in that feature vector and i ranges
from (1-n).

Feature selection and dataset splitting: We have used
the KDD CUP’ 99 data set to prove our methods, which
is one of the most widely used dataset in cyber research.
The data set contains a total of 23 attacks. A critical issue
in data pre-processing is feature selection: instead of using
all the features (attributes or variables) in the data, one can
selectively choose a subset of features. There are a number of
benefits of feature selection: (1) dimensionality reduction to
reduce the computational cost; (2) noise reduction to revamp
the classification accuracy; (3) more interpretable features or
characteristics that can help identify and monitor the target
variables or class types. These advantages are typified on KDD
CUP’99 dataset. Out of 42 features, only a smaller number
of them shows strong correlation with the targeted network
attacks, meaning that computation is reduced, while prediction
accuracy is increased via effective feature selection.

As a result, selecting the relevant features and ignoring the
irrelevant and redundant features has become indispensable.
However, when dealing with large amounts of data, most
existing feature selection algorithms do not scale well, and
their efficiency may significantly deteriorate to the point of
becoming inapplicable. For these reasons, we propose a dis-
tributed approach for partitioned data using Minimum Redun-
dancy Maximum Relevance [21] (MRMR) feature selection
algorithm on the Apache Spark platform. MRMR feature
selection, as a preprocessing step on the dataset, is highly
efficient for dimensionality reduction, removing unrelated data,
and improving learning accuracy.

The main benefit of MRMR feature set is that by reduc-
ing mutual redundancy within the feature set, these features
capture the class characteristics in a broader scope. Features
selected within the MRMR framework are independent of class
prediction methods, and thus do not directly aim at producing
the best results for any prediction method. The fact that MRMR
features improve prediction for all four methods we tested
confirms that these features have better generalization property.
This also implies that with fewer features the MRMR feature
set can effectively cover the same class characteristic space as
more features in the baseline approach. Nevertheless, the recent
surge in dimensionality of data raises a serious challenge to
multiple prevailing feature selection methods with respect to
coherence and efficacy.

In our dataset we have total of 42 features including
the class attribute. Most of the data mining algorithms show

score Features score Features
0.9630 service 0.5531 logged in
0.9452 same srv rate 0.4068 dst host count
0.9119 count 0.3708 dst host srv diff host rate
0.8747 flag 0.2134 srv count
0.8498 dst host diff srv rate 0.1999 srv diff host rate
0.8226 dst host same srv rate 0.1546 dst host rerror rate
0.7932 dst host srv count 0.1489 protocol type
0.6735 dst host serror rate 0.1338 dst host srv rerror rate
0.6554 serror rate 0.0959 rerror rate
0.6302 dst host srv serror rate 0.0783 hot
0.6158 srv serror rate 0.0704 wrong fragment
0.6158 num access files

Table V. FEATURE SCORE OF TOP 25 ATTRIBUTES

inefficiency and are not effective due to high dimensionality
[26]. To deal with this problem we performed feature selection
process using information-gain [26] to reduce the features. We
performed feature selection and achieved success in ranking
the attributes based on information gain. After the dimension-
ality reduction, we split the dataset into two parts training and
testing sets to validate our model. The composition of training
set from the dataset is 60 percent and the rest is the testing
set.

Algorithm 2: Algorithm summarizing the preprocessing
technique used to clean the dirty data
1 Inputs: Dirty data Dataframe(DF).
2 Return: Preprocessed data.
3 Begin

4 Locate all missing values in dataframe.
5 if x = missing value then

6 sum (values in same column per that x's
class)/length of values in same column per x's
class)

7 end

8 f

i�max

= max value in that feature vector.
9 i ranges from (1-n) , n=length of the feature.

10 Normalized feature f � norm = f

i

/f

i�max

.

11 Import Info Gain.
12 For i in 0 to length of feature:
13 Information-Gain f

i

= IG(f
i

).
14 End-loop

15 User defined threshold t = ✓.

16 For i in 0 to length of columns:
17 if Information-Gain f

i

< ✓ then

18 Remove f

i

19 end

20 End-loop

21 End

Algorithm 2 summarizes the preprocessing technique we
followed to clean the dirty data. Lines 2-5 summarize the
process of removing missing values by replacing them the
average of the values in that same feature per that particular
class. Lines 6-8 summarize the process of normalization. Lines
9-18 summarize dimensionality reduction by removing certain
columns with the information gain less than the user provided
threshold value.

D. On the fly analytics and classification metrics

The run-time component of our approach, which uses
Spark Streaming, is shown in Figure 6. Spark is known for

its in memory computing and provides a streaming framework
called Spark Streaming [30].

Figure 4. Discovery of zero-day attacks on streaming test data.

Spark ecosystem and streaming: We performed flow-
based intrusion detection and prediction for network traffic
streaming by using Apache spark streaming framework [29].
Spark Streaming is an extensible spark core API and the main
properties of Spark-Streaming are scalability, high throughput
and fault tolerant stream processing [16]. Spark is known for its
feature called Resilient Distributed Dataset (RDD) [28] which
is collection of elements distributed across the memory nodes
of the cluster and can be operated on in parallel.

On top of RDD spark streaming provides DStreams which
are a sequence of RDDs that are captured in certain interval
of time. In our experiment we read the data from the open
ports and capture data to the spark RDD and further converts
that a python dataframe. One of the main reason we choose
Spark ecosystem is its extensive feature to combine different
formats of data processing tasks, which is needed for our
cyber-attack detection application. We built our application
using Spark ecosystem to bolster real-time streaming process
and classification tasks. In our experiments to stream the test
data, we sent the test data to one of the open ports by using awk
scripts [1]. And from the ports we used spark streaming to get
the data and fed as in test data to the classifier in continuously
streamed batch fashion.

Attack prediction and Data Storage: In our experimen-
tation we used KNN [27] classifier to identify whether an
incoming test stream data point is an attack or benign. KNN
classifier predicts an incoming flow as an attack or benign
by using nearest neighborhood heuristics. For every incoming
streamed test flow, KNN classifier calculates the Euclidean
distance to all the flows in the training set and assign its label
by taking voting amongst its ‘k’ number of nearest neighbor
data points. In our experimentation we used the k value as 3.

To handle such large amounts of data one should adopt
big data technologies as the traditional relational databases
could not easily withstand the volume [23]. To handle these
different varieties of data one requires a centralized platform
like Hadoop file systems. In our experiments we stored the
files in Hadoop file system [20]. We accessed HDFS by a user
interface called Hue and it provided an access to load the files
into HDFS.

Algorithm 3: Algorithm for Streaming test data and
prediction of zero-day attacks
1 Inputs: Training set and streaming test data.
2 Return: Prediction and classification metrics.
3 Initialize spark context as SC.
4 Initialize streaming context as ssc.
5 Split the data set into training and testing set (60, 40).
6 Awk script to send the data to a port.
7 Collect the Dstreams into spark RDD with batch

interval of 1 sec using streaming context.
8 Let i be the number of Dstreams.
9 For I in range (i):

10 Euclidean Measure (trainRDD(i) , testRDD(i)).
11 Assign labels for instance of testRDD.
12 Return the predictions.
13 End-loop

14 Calculate the accuracy and classification metrics.

Algorithm 3 summarizes the streaming of test data and
attack prediction. Lines 1-5 depicts the important packages
installed and initializing the spark and streaming context. Lines
6-10 summarizes the training of KNN classifier and testing the
incoming Dstreams to predict whether the incoming data point
is an attack or benign. Line 11 summarizes the calculation of
classification metrics.

Dynamic node updating upon zero-day hit: As shown
in Figure 4, we tested the data that is streamed from an open
port in the client system and we dynamically generated the
relevant attacks with similarities for the zero day attacks along
with non-zero day attacks as in nodes of dynamically updated
graph.

Figure 5. Dynamic Graph Updating.

In Figure 5, the classifier predicted the zero-day attack
as node n1. So our algorithm traverses through semantic link
network and add zero-day attack dynamically with relevancy
scores equals to node n1. When a zero-day attack node n1za

is discovered it is added to the graph. The closed pre-existing
node n3 is also found based on similarity of the features. Then
an edge w2 is drawn from the n1za to its most similar one n3,
with the similarity score as its weight. This process is repeated
for all nodes connected to the n3 that are dynamically

The above query summarizes how the graph is updated

jianwu

Figure 6. Dynamic Graph generation query.

dynamically upon the hit of zero-day attack. Here the merge
is happening between the two data frames test-stream with
predicted label and Node-Similarity-Matrix. The query update
the node of zero-day attack to the relevant nodes that are same
as the predicted node. Hence the table dynamic-graph contains
the newly updated nodes of zero-day attacks dynamically to
study the relevancy nodes.

IV. IMPLEMENTATION AND VALIDATION

In this section we discuss the implementation of our
proposed approach and study the results which were noticed.
Most of our experiments have been carried out on the MAYA
computing cluster [8], which is a community-based, interdis-
ciplinary core facility for scientific computing and research on
parallel algorithms at UMBC.

To evaluate our proposed approach we used metrics such as
precision, accuracy, recall and ROC curve [12] in the following
subsections.

Dataset and Source Description: For our experimentation
we have used 10 percent KDD CUP 1999 dataset [15]. This
dataset contains half a million data points. It contains 42
features including label feature which comprises of 22 attack
types and a normal. To train and test the classifier we had split
the dataset into 60 percent training and 40 percent training set.
To identify the zero-day attacks we trained the classifier with
8 attacks out of 22 attack types. In test dataset we had marked
14 attacks that were removed from training dataset as zero-
day attacks. The below table gives a list of the attacks that
were marked as zero-day attack and non-zero-day attacks. For
our experimental graphical representation we had given unique
number to each attack as shown in Table 6.

Attack Number Attack Name Zero Day/ Non Zero-day

1 back Non Zero-day
2 buffer-overflow Non Zero-day
3 ftp-write Zero-day
4 guess-passwd Non Zero-day
5 imap Zero-day
6 ipsweep Zero-day
7 land Zero-day
8 land-module Zero-day
9 multihop Zero-day
10 neptune Non Zero-day
11 nmap Zero-day
12 perl Zero-day
13 phf Zero-day
14 pod Zero-day
15 portsweep Zero-day
16 rootkit Zero-day
17 satan Non Zero-day
18 smurf Non Zero-day
19 spy Zero-day
20 teardrop Zero-day
21 warez-client Non Zero-day
22 warez-master Non Zero-day

Table VI. ATTACK CLASSIFICATION AS ZERO DAY/NON-ZERO DAY

The total number of samples in training dataset are 107,369
and in testing dataset are 36,398. The testing set consists of
data samples related to all the zero-day attacks.

Prediction of Zero-day Attacks and graph expansion:
After creation of Node-Similarity-Matrix, we deployed a KNN
classifier and set k value as 3. We split the whole dataset
into two parts, training set and testing set in the ration of
3:2. After the creation of training set, we had removed the
zero-day attacks which are mentioned in the above table 1.
After training we had tested the classifier using test data that
is streamed continuously using spark streaming context. Out
of 14 zero-day attacks our classifier had predicted 10 zero-day
attacks and for rest of them it predicted as benign. Classifier
prediction and actual nodes are depicted in Table 7.

Zero-day Attack Classifier Predicted Node

teardrop satan
nmap satan

portsweep neptune
ftp-write normal
rootkit satan

ipsweep neptune
land neptune

land-module buffer-overflow
pod warez-client

Imap normal
perl normal

multi-hop buffer-overflow
phf normal

Table VII. IDENTIFICATION OF ZERO-DAY ATTACKS BY KNN

Results: Table 8 gives a clear picture of total number of
test instances, number of attack samples, number of normal
samples.

Sample type Number of instance
Test data 36398

Zero day attacks 5683
Non-Zero attacks 6665
Attack samples 12348
Normal samples 24050

Table VIII. DISTRIBUTION OF SAMPLES IN TEST DATASET

Figure 7. Accuracy of KNN Classifier.

Figure 7 depicts the variation of accuracy between the
correctness in prediction of zero-day attacks, Non Zero-day
attacks and overall prediction rate. Figure 8 depicts the per-
formance of the classifier.

Figure 8. Classifier performance.

It is shown that the precision [24] is 99.572 percent, which
means our system had predicted the normal samples correctly
with almost 0 percent error rate. After plotting the accuracy
and classifier performance we had calculated true positive rate
and false positive rate for different values of k ranging from
0 to 3 and then we had plotted ROC curve to make sure that
our system is stable in identification of zero day attacks as in
Table 9.

K value TPR FPR

1 0.92 0.12
2 0.939 0.09
3 0.94768 0.03

Table IX. ROC METRICS

By using the above values in Table 9, we plotted the ROC
curve as shown in Figure 9.

Figure 9. Experimental Results using ROC.

As shown in Figure 10, the classifier predicted the zero-
day attack “tear drop” as a non zero day attack “Satan”, so
based on the similarity values of satan with different attacks,
the semantic web was dynamically developed for the Zero-day
attack.

We have also calculated the Program Execution Time by
collecting the JSON logs and by changing the number of nodes
in the cluster. Figure 11 shows details of the execution times
and we found that if we increase the number of nodes in the
cluster, as expected the program execution time decreases.

Figure 10. Dynamic graph update with zero day attack.

Figure 11. Average execution time with varying nodes.

We also calculated the throughput of our systems which
means number of batched processed per min which tells us
about the scalability of our system which is shown in Figure
11 and the throughput of our system in Figure 12.

Figure 12. Throughput of the prototype system.

As we increase the number of nodes in our spark envi-
ronment, the number of batch processed per minute increases
gradually.

V. CONCLUSION AND FUTURE WORK

In this research, we addressed the problem of time com-
plexity, handling large amount of data and parallel processing
by implementing our whole approach in the Apache spark
ecosystem. We used a flow-based approach and implemented
a classifier that could identify zero-day attacks. We performed
on the fly analytics and achieved near real-time predictions,
by categorizing the incoming stream flows into either attack
or benign activity without using any computer file system. We
applied semantics on the training data to find the relevancy
scores between the attacks. In our future work, instead of
depending on the result of single classifier we would like to
create a voting system between a series of classifier like KNN,
SVM, J-48, Naı̈ve Bayes and random forest.

REFERENCES

[1] Alfred V Aho, Brian W Kernighan, and Peter J Weinberger. The
AWK programming language. Addison-Wesley Longman Publishing
Co., Inc., 1987.

[2] Omar Al-Jarrah and Ahmad Arafat. Network intrusion detection system
using neural network classification of attack behavior. Journal of
Advances in Information Technology Vol, 6(1), 2015.

[3] Ahmed Aleroud and George Karabatis. Toward zero-day attack identifi-
cation using linear data transformation techniques. In Software Security
and Reliability (SERE), 2013 IEEE 7th International Conference on,
pages 159–168. IEEE, 2013.

[4] Ahmed Aleroud and George Karabatis. Context infusion in semantic
link networks to detect cyber-attacks: a flow-based detection approach.
In Semantic Computing (ICSC), 2014 IEEE International Conference
on, pages 175–182. IEEE, 2014.

[5] Ahmed Aleroud, George Karabatis, Prayank Sharma, and Peng He.
Context and semantics for detection of cyber attacks. International
Journal of Information and Computer Security 7, 6(1):63–92, 2014.

[6] Daniel Barbara, Ningning Wu, and Sushil Jajodia. Detecting novel
network intrusions using bayes estimators. In Proceedings of the 2001
SIAM International Conference on Data Mining, pages 1–17. SIAM,
2001.

[7] Gerald Combs et al. Wireshark. Web page: http://www. wireshark.
org/last modified, pages 12–02, 2007.

[8] Adam Cunningham, Gerald Payton, Jack Slettebak, and Jordi Wolfson-
Pou. Pushing the limits of the maya cluster.

[9] Solane Duque and Mohd NIzam bin Omar. Using data mining
algorithms for developing a model for intrusion detection system (ids).
Procedia Computer Science, 61:46–51, 2015.

[10] Zyad Elkhadir, Khalid Chougdali, and Mohammed Benattou. Intrusion
detection system using pca and kernel pca methods. In Proceedings
of the Mediterranean Conference on Information & Communication
Technologies 2015, pages 489–497. Springer, 2016.

[11] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and
Enrique Vázquez. Anomaly-based network intrusion detection: Tech-
niques, systems and challenges. computers & security, 28(1):18–28,
2009.

[12] James A Hanley and Barbara J McNeil. The meaning and use of the
area under a receiver operating characteristic (roc) curve. Radiology,
143(1):29–36, 1982.

[13] Peng He and George Karabatis. Using semantic networks to counter
cyber threats. In Intelligence and Security Informatics (ISI), 2012 IEEE
International Conference on, pages 184–184. IEEE, 2012.

[14] Gilbert R Hendry and Shanchieh J Yang. Intrusion signature creation
via clustering anomalies. In SPIE Defense and Security Symposium,
pages 69730C–69730C. International Society for Optics and Photonics,
2008.

[15] S Hettich and SD Bay. Kdd cup 1999 data. The UCI KD Archive,
Irvine, CA: University of California, Department of Information and
Computer Science, 1999.

[16] George Karabatis, Jianwu Wang, and Ahmed. AlEroud. Towards
adaptive big data cyber-attack detection via semantic link networks.
In The first Workshop of Mission-Critical Big Data Analytics workshop
(MCBDA 2016), 2016.

[17] SB Kotsiantis, D Kanellopoulos, and PE Pintelas. Data preprocessing
for supervised leaning. International Journal of Computer Science,
1(2):111–117, 2006.

[18] Kingsly Leung and Christopher Leckie. Unsupervised anomaly detec-
tion in network intrusion detection using clusters. In Proceedings of the
Twenty-eighth Australasian conference on Computer Science-Volume
38, pages 333–342. Australian Computer Society, Inc., 2005.

[19] Zhichun Li, Manan Sanghi, Yan Chen, Ming-Yang Kao, and Brian
Chavez. Hamsa: Fast signature generation for zero-day polymorphic
worms with provable attack resilience. In Security and Privacy, 2006
IEEE Symposium on, pages 15–pp. IEEE, 2006.

[20] Glenn K Lockwood. Conceptual overview of map-reduce and hadoop.
Retrieved March, 13:2016, 2015.

[21] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based
on mutual information criteria of max-dependency, max-relevance, and
min-redundancy. IEEE Transactions on pattern analysis and machine
intelligence, 27(8):1226–1238, 2005.

[22] Leonid Portnoy, Eleazar Eskin, and Sal Stolfo. Intrusion detection
with unlabeled data using clustering. In In Proceedings of ACM CSS
Workshop on Data Mining Applied to Security (DMSA-2001. Citeseer,
2001.

[23] Manas Srivastava, C Sabarinathan, Rishi Sankineni, and TM Manoj.
Mining of big data using map-reduce theorem. IOSR Journals (IOSR
Journal of Computer Engineering), 1(17):49–55.

[24] Kai Ming Ting. Precision and recall. In Encyclopedia of machine
learning, pages 781–781. Springer, 2011.

[25] Giovanni Vigna, William Robertson, and Davide Balzarotti. Testing
network-based intrusion detection signatures using mutant exploits. In
Proceedings of the 11th ACM conference on Computer and communi-
cations security, pages 21–30. ACM, 2004.

[26] Guohua Wu and Junjun Xu. Optimized approach of feature selection
based on information gain. In Computer Science and Mechanical
Automation (CSMA), 2015 International Conference on, pages 157–
161. IEEE, 2015.

[27] Hui Yu, Patrick PK Chan, Wing WY Ng, and Daniel S Yeung.
Apply randomization in knn to make the adversary harder to attack
the classifier. In Machine Learning and Cybernetics (ICMLC), 2010
International Conference on, volume 1, pages 179–183. IEEE, 2010.

[28] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages
2–2. USENIX Association, 2012.

[29] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working sets.
HotCloud, 10(10-10):95, 2010.

[30] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion
Stoica. Discretized streams: An efficient and fault-tolerant model for
stream processing on large clusters. HotCloud, 12:10–10, 2012.

	ScholarWorksCoverSheet2-CIT-URL
	Zero-day_Attack_Identification_in_Streaming_data_using_Semantics_and_Spark-BigDataCongress-2017

