© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works. Access to this work was provided by the University of Maryland, Baltimore County
(UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-
SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

IEEE INTERNET OF THINGS JOURNAL

A PUF-Based Modeling-Attack Resilient
Authentication Protocol for IoT Devices

Mohammad Ebrahimabadi, Graduate Student Member, IEEE, Mohamed Younis, Senior Member, IEEE,
and Naghmeh Karimi, Member, IEEE

Abstract—Physical Unclonable Functions (PUFs) offer a
promising solution for authentication of IoT devices as they
provide unique fingerprints for the underlying devices through
their challenge-response pairs. However, PUFs have been shown
to be vulnerable to modeling attacks. In this paper, we pro-
pose a novel protocol to thwart such vulnerability by limiting
the adversary’s ability to intercept the whole challenge bits
exchanged with IoT nodes. We split the challenge bits over
multiple messages and engage one or multiple helper nodes in
the dissemination process. We further study the implications
of various parts of the challenge patterns on the modeling
attack and propose extensions of our protocol that exploit bits
scrambling and padding to ameliorate the attack resiliency.
The experimental results extracted from a 16-bit and a 64-bit
arbiter-PUF implemented on FPGA demonstrate the effectiveness
of the proposed methods in boosting the robustness of IoT
authentication.

Index Terms—Authentication, Internet of Things, Physical
Unclonable Function (PUF), Machine Learning.

I. INTRODUCTION

HE notion of Internet of Things (IoT) has emerged
Tto characterize the inter-networking of numerous and
diverse devices to form ubiquitous computing systems that
enable probing the environment, sharing data, and control-
ling physical processes. In essence, an IoT provides a core
infrastructure that extends the communication and exchange
of data from servers, personal computers and smartphones
to an enormous range of objects used in everyday life. IoT
applications can be found in several domains, e.g., scientific,
military, and civil domains. For example, in space applications,
an IoT would enable broad accessibility at the global scale
by inter-networking of space assets owned and operated by
independent entities. Similarly in the realm of smart cities,
an Internet of Vehicles would self-manage traffic on the road
through interaction between vehicles and cooperation with
road infrastructure, e.g., traffic signals. Overall, it is estimated
that 100 billion devices will be interconnected through IoT
frameworks by 2025 [1].

The societal impact and role of IoT elevate the importance
of guarding it against security threats. However, countering se-
curity attacks in IoT is more challenging than in traditional net-
works due to the wide range of communication protocols and
limited capabilities of the involved devices. Security threats
for IoT devices range from enforcing malicious malfunctions

M. Ebrahimabadi, M. Younis, and N. Karimi are with the De-
partment of Computer Science and Electrical Engineering, University
of Maryland Baltimore County, Baltimore, MD, 21250 USA e-mails:
(e127,younis,nkarimi @umbc.edu).

and denial of service to leaking sensitive information. Given
the role that an IoT plays, combating security threats is a must,
and provisioning for node authentication, data integrity, access
control, and privacy would be expected in the design [2]-
[5]. However, in such an era of globalization, outsourcing of
digital design and IC fabrication has become very common,
and consequently, counterfeit electronics is a major worry
for application developers, especially in critical systems that
involve sensing and control [6]. Such an outsourcing trend
could potentially enable unauthorized devices to blend in and
join the network. Thereby, authenticating devices in an IoT has
become an extremely critical and challenging security threat.

An IoT is characterized by the heterogeneity of the inter-
connected devices, many of which are constrained in their
computation, communication and energy resources. Such re-
source limitation restrains the applicability of elaborate secu-
rity solutions, and mandates the use of lightweight primitives
and the trade-off between security and resources [5]. In
addition, IoT devices operate unattended and thus adversaries
could come close enough to eavesdrop on transmissions [7].
In practice, to ensure secure communication, the authenticity
of each device in the IoT framework should be confirmed.
Accordingly, provision for efficient device authentication is
highly required.

Authentication has been traditionally supported by either
deploying public key infrastructure (PKI) [8]-[! 1], or identity-
based encryption (IBE) [12], [13]. PKI employs one or
multiple trusted parties to certify that a cryptographic key
belongs to a particular user or device. Due to the associated
computation and communication overhead, such certification
is quite costly and not scalable for an IoT system with
numerous nodes [14]. Despite their performance advantages
over PKI, IBE schemes also suffer from scalability limitations
and are deemed unfit for the resource-constrained IoT devices.
Generally, authentication schemes that require computation-
intensive cryptographic primitives, e.g., asymmetric cryptog-
raphy, impose significant overhead and do not suit resource-
constrained IoT devices [15]. Moreover, conventional sole-
software authentication schemes [16] are not robust enough,
as a device can be hacked and its cryptographic identity in
terms of encryption (private) key or digital certificate can be
leaked or manipulated.

On the other hand, existing schemes that involve hardware
are not secure either [12], [15]. The use of non-volatile memo-
ries such as EEPROM or battery-backed SRAM to store shared
keys are vulnerable to device tampering. The same argument
applies for solutions that leverage trusted platform modules

(TPM) [17], [18]. TPM, and its lightweight alternatives [19],
increase the hardware complexity and are geared for software
integrity rather than device authentication. Thereby, to protect
IoT frameworks, it is necessary to develop authentication and
key management protocols that utilize lightweight cryptogra-
phy and low-cost tamper-resistant primitives. These protocols
should be versatile to be able to efficiently cope with dynamic
node membership, and resilient against contemporary attacks.

In this paper, we aspire to fill the technical gap and propose
a robust authentication mechanism for IoT devices. Our mech-
anism employs Physical Unclonable Functions (PUFs) [20] to
associate unique hardware-based identifiers to the participating
devices in order to enable effective protection against contem-
porary security threats such as eavesdropping, impersonation,
and message replay. PUFs operate based on unintentional
variations that occur in the fabrication process of the integrated
circuits, causing signals which follow similar paths in the
design to experience slightly different propagation delays in
different chips. Thereby, the response of each PUF to the
same input (so-called challenge) varies among similar chips.
These unique signatures are highly adopted by industry for
IC Metering, detection of counterfeit ICs, and logic obfusca-
tion [21], [22], and can also be used for device authentication
purposes. Deploying PUF unique signatures alleviates the need
to store the unique identifier of each IoT device in memory,
and thus deprives an adversary from revealing the secure
device ID through software hacking and makes IoT devices
more secure [7], [23].

A PUF is classified as weak or strong based on whether the
challenge response space is small or large, respectively. Strong
PUFs are often used for authentication protocols, while weak
PUFs are often deemed suitable for generating cryptographic
keys [4], [24]-[26]. Although PUFs are fundamentally based
on random physical variations and consequently supposed to
be unclonable [27], they may be prone to attacks that aim
at modeling their behavior using Machine Learning (ML)
techniques. In fact, by having access to a subset of the
Challenge-Response Pairs (CRPs), an adversary may be able
to model the PUF, even strong ones [27]-[34]. Thereby, it
is necessary to prevent intercepting the challenge-response
exchange messages used for authenticating IoT devices.

Accordingly, this paper focuses on strong PUFs and pro-
poses a novel authentication protocol that splits challenge
bit-streams into multiple messages, and engages additional
(helper) nodes. The challenge bits are extracted from mul-
tiple messages routed through different nodes. The goal is
to counter eavesdropping attempts aimed at uncovering the
exchanged CRPs. We also study the impact of various chal-
lenge bits on the PUF modeling attack, and further provision
additional protection by employing: (i) bit scrambling, and (ii)
challenge padding techniques to degrade the adversary’s mod-
eling capabilities. Thus, this paper fundamentally contributes
a novel authentication protocol for IoT that: (i) employs
lightweight hardware primitives, (ii) avoids the reliance on
cryptosystems, and (iii) resists machine modeling attacks.
Specifically, the contributions are as follows:

e Develop a novel lightweight PUF-based mechanism for

authenticating IoT devices. Rather than applying encryp-

IEEE INTERNET OF THINGS JOURNAL

tion, our mechanism pursues Challenge Splitting (CSP)
to thwart the PUF modeling attacks;

e Study the impact of a known portion of a challenge
pattern on the PUF modeling accuracy;

o Propose an enhancement for CSP through bit scrambling,
referred to hereafter as CSP-S;

o Strengthen CSP through challenge Padding (CSP-P) to
introduce noisy data that degrades the ML-based model-
ing accuracy;

o Evaluate all proposed methods using the data extracted
from FPGA implementation of the target PUF.

The rest of this paper is organized as follows. Section II
presents related work on IoT authentication. Section III
presents the threat model considered in this study and pro-
vides some preliminaries. Section IV describes the proposed
authentication mechanisms. The validation results are reported
in Section V. Section VI analyzes the security and overhead
of the proposed schemes. Section VII concludes the paper and
highlights future research directions.

II. RELATED WORK

An IoT is a collection of low cost and resource-constrained
devices operating in unsupervised environments [35], [36].
Even though several authentication protocols and security
provisions exist for wireless networks, they do not suit the
resource-constrained and very dynamic network membership
of IoT devices [2], [3], [8], [9], [23]. Most existing au-
thentication protocols rely on storing the device identifier
in its memory. However, such a methodology is not secure
as IoT devices may not be always protected against cyber
and physical attacks. To prevent storing keys in the IoT
devices, deploying PUFs has been explored [27], [29], [37]-
[42]. Although these authentication schemes are lightweight,
and benefit from the unique footprints of PUF devices, they
suffer from vulnerabilities to security threats such as modeling
attacks, replay attacks, and impersonation attacks.

Chatterjee et al. [14] use PUFs to generate public and
private keys to be used for securing data transfer in IoT.
The proposed scheme is resilient against replay attacks, yet
it is computationally intensive and would not suit resource-
constrained [oT devices. Wallrabenstein [7] opts to avoid stor-
ing the private key in the device memory in order to achieve
tamper resistance. The approach is to embed an Elliptic Curve
Cryptosystem on the IoT device, to be used along with the
PUF to regenerate the private key when needed. However, the
approach requires some changes to be made to the IoT device
hardware. The scheme of [43] has low storage requirements;
yet it needs considerable hardware changes to be applied to the
device. Meanwhile, PUF-RAKE [44] uses a random number
generator to shuffle the challenge and response bits and store
them in an encrypted form. The selection of the random
number generator is based on whether the challenge is even
or odd. The device is given a sequence of random numbers to
be used to reorder the provided challenge bits; upon applying
the challenges to the PUF, the response bits are shuffled again
before replying to the server. However, the approach either
requires synchronization if the sequence of random numbers

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES 3

is not predetermined, or introduces vulnerability if the device
can be hacked and its memory is read.

Successful modeling of the PUF behavior can compromise
the PUF-based IoT security provision. Some efforts have
been dedicated to mitigate the PUF vulnerability to model-
ing attacks. Ganji et al. [45]-[47] employ machine-learning
techniques to model different PUF types based on their CRPs.
However, those schemes need the attacker to have access to
a set of CRPs that meet a specific requirement, e.g., a set of
challenge bit-streams that are different in only 1 (or n) bits.
They use the corresponding response of such a set of challenge
bit-streams to determine the influential bits of the deployed
PUF and increase the accuracy of the modeling attack. Our
proposed schemes are resilient against such a PUF modeling
attack since by challenge splitting the adversary does not have
access to the full challenge bits, and applying bit scrambling
and padding prevents an adversary from determining the index
of each challenge bit in the intercepted bit-stream.

A number of approaches have been developed to safeguard
PUF-based authentication solutions against possible modeling
attacks, or at least or mitigate their threat. Existing schemes
can be categorized based on the methodology as: (i) hardware-
based, (ii) encryption-based, or (iii) protocol based. The former
opts to harness the PUF design by the incorporation of
additional logic. For example, PHEMAP [48] uses a sequencer
where the challenge C; at time ¢; is a function of Cy, C1,

.., C;_1. Meanwhile, the objective of [49] is to increase
PUF reliability and resilience to modeling. The approach is
to add two flip-flops and make the output as a function of
the PUF response and the first and last challenge bits. On
the other hand, Gu et al. deploy a replicated PUF, so called
Fake PUF [30]. Using such an extra PUF, fake challenge-
response pairs are exchanged to mislead the attacker. In fact,
in this method the genuine PUF is occasionally queried only
at predetermined time, while the fake PUF is used frequently
and is thus assumed to be queried by the adversary. Although
these schemes increase the resiliency of the IoT framework
against modeling attacks, they impose a significant hardware
overhead, i.e., an extra PUF along with a controller and counter
to decide when the fake and genuine CRPs are sent [30]. In
addition, a synchronization scheme could be needed, e.g., to
decide when exactly the challenge bit-stream should be sent
to the genuine PUF. Our proposed CSP mechanism does not
require any circuit-level modification of the basic PUF design.

Some schemes have employed a cryptosystem in order to
mitigate the PUF modeling vulnerability. For example, the ap-
proach of Gope et al. [50] does not transmit responses; instead
it uses the PUF output to generate a pseudo response through a
sequence of steps that are known to the communicating parties.
The server includes a random number (nonce) and employs
a hashing function in its request; such a number is used by
the device in generating the pseudo response. Similarly, PUF-
IPA [51] applies a cryptographic hash of the PUF response and
stores only hashed (and encrypted) values in the database that
is securely accessible by the verifier. Although the SRAM-PUF
based authentication scheme of [52] uses the SRAM address
instead of the challenge, it still applies a cryptographic hash
and uses a nonce. Overall, this category of schemes simply

loses the PUF advantage by employing a cryptographic hash
function which constitutes significant computational overhead
for the devices. CSP avoids such overhead. Also the hashing
function needs to be agreed upon by the communicating
parties. In addition, repeating the nonce makes the system
vulnerable to message replay and man-in-the-middle attacks.

Finally, the last category of work counters PUF-modeling
through protocol-level provisions. For example, Barbareschi
et al. [53] use predefined chains of CRPs. The authentication
process fully relies on knowing the chain and only the XOR
values of the responses are sent. To mitigate the vulnerability
of chain leakage, multiple chains are used with disjoint links.
While the PUF advantage of avoiding response storage is
leveraged, chains can still be used for modeling the PUF. Some
work mitigates the PUF-modelling threat by pursuing multi-
factor authentication, e.g., by using a shared cryptographic
key in addition to the CRP [54]. Mutual authentication of
IoT nodes have been tackled in [5], where the challenge bit-
pattern used for authentication in a certain time slot (iteration)
is determined based on the challenge that was used previously,
e.g., in the preceding iteration. Also the response is not ex-
plicitly transmitted. Such inter-iteration challenge dependency,
along with obfuscated response transmission degrade the ad-
versary’s ability to model the PUF. However, such a challenge
selection approach makes the IoT framework vulnerable to
impersonation attacks in case even one challenge is leaked.
Meanwhile, Yu et al. [55] secure their PUF against modeling
attacks via limiting the number of CRPs transferred in the IoT
framework. They also prevent using repetitive challenge bit-
streams to restrict launching the reliability attacks where the
adversary exploits the measurement noise to model the PUF.
However, such a scheme is only applicable for the cases where
authentication is not conducted very often, and consequently is
not suitable for applications like self-driving cars that need to
exchange data very frequently and require rapid authentication.

Overall, our CSP mechanism enables lightweight defense
against modeling attacks without employing computationally
intensive cryptosystems. It is worth noting that CSP also
counters reliability attacks that exploit the measurement noise
to model the PUF [56], since our CSP denies adversarial access
to the full challenge bits (by splitting scheme) and nullifies the
mapping functions [28] used by such an attack (through scram-
bling and/or padding schemes). We demonstrate the resilience
of our proposed schemes against such an attack in Section V-B.
Table I summarizes the shortcomings of the discussed state-
of-the-art methods in tackling the modeling attacks.

III. SYSTEM MODEL AND PRELIMINARIES

A. System and Threat Models

Our proposed solution employs hardware-based identifiers
for authenticating IoT devices. In particular, we assume that
a PUF is embedded in each IoT device. To authenticate a
device D,, the server sends a request to D), that includes
a challenge bit-stream. Upon receiving the request, D; will
apply the challenge to its embedded PUF and send back the
PUF response. By matching the node response to a pre-known
value, the identity of D; can be confirmed. Note that in this

model, a subset of CRP combinations of each device is stored
in the server during the device enrolment phase.

A PUF response could be affected by noise caused by power
variation, and environmental conditions, e.g., temperature [57].
Such a noise is often mitigated by the incorporation of an error
correction code (ECC) at the circuit-level. The focus of this
paper is on protocol-level protection against PUF modeling
attacks using machine learning techniques. We are assuming
that a suitable ECC, e.g., [58]-[60], is employed to ensure
stability and consistency of the PUF output.

Although PUFs are supposed to be unclonable, an adversary
may intercept and uncover the CRPs transferred between the
server and an enrolled device. The adversary can then use the
intercepted CRPs to model the behavior of the embedded PUF.
In this case, the underlying device can be impersonated to
introduce a wide range of malicious activities in the IoT
system. Thus, it is necessary to mitigate such vulnerabilities by
preventing access to CRPs. Note that the novelty of our work
is in prevention of modeling attacks on PUF-based authenti-
cation schemes, rather than using PUFs for authentication.

In this paper, we assume that the device authentication
and enrolment management are conducted through a central
supervisory node (e.g., server). The server carries out the
authentication of devices either as a part of IoT admission
control or as a service to enable communication between
device pairs. We also assume that the server is trustworthy.
Specifically, handling an IoT network with an untrusted server
is out of scope of the paper.

B. Preliminaries

1) Arbiter-PUF: Our authentication protocol employs a
strong PUF. In this paper, we focus on the use of arbiter-
PUFs; however, the proposed techniques can be adopted for
other strong PUFs. As mentioned earlier, weak PUFs are
not used for authentication and are more suitable for key
generation. An arbiter-PUF is a strong PUF consisting of a pair
of delay chains; when queried, it generates one response bit
per challenge [20]. This PUF operates based on the process-
variation that induces race between two identical paths (top
and bottom paths shown in Fig. 1). The race corresponds to
the difference in signal propagation delay on these two paths,
and affects the value latched by the arbiter [63]. The arbiter
can be realized as a simple SR-latch implemented by two NOR
gates. The latch output @ in Fig. 1 presents the PUF identifier
(response). If the transition reaches the upper NOR earlier, Q)
gets the value of “1”, otherwise @ would be “0”. The value
of () is important and presents the PUF identifier (response).
To support L response bits, the circuit is replicated L times,
yet using the same input (challenge bits).

2) Machine Learning: Machine learning is a data-driven
modeling technique and is particularly effective when there is
no knowledge about the process governing the data generation.
The modeling performed with ML algorithms consists of two
phases, namely, training and evaluation (or inference). In the
training phase, the model is constructed utilizing a set of input
and output data pairs. The model is adjusted based on whether
it classifies the input to the correct response or not. In the

IEEE INTERNET OF THINGS JOURNAL

Clo] i

Figure 1. Illustrating the design of an arbiter-PUF.

evaluation phase, unseen inputs are tested to see if the model
correctly determines the output.

In this paper, we assume that the adversary deploys ma-
chine learning algorithms to model the employed PUF. In
the training phase, the model is formed utilizing the PUF’s
CRPs. Then, in the evaluation phase, unseen inputs (i.e.,
challenges) are tested to see if the model correctly predicts
the response. In the experiments, We use the Support Vector
Machine (SVM) [65] as well as Neural Networks (NN) [66]
to launch the modeling attacks.

IV. PROPOSED METHODOLOGY

As mentioned earlier, to authenticate each device, the
challenge-response pairs of its embedded PUF are exchanged
between the server and the device. However, an eavesdropper
may intercept the exchanged messages between the server and
a device D; in order to uncover the challenge-response pairs;
such an eavesdropper could then launch a replay attack. When
sufficient CRPs are intercepted, the adversary can further
develop an accurate ML-based model of the PUF to imperson-
ate D;. To mitigate such vulnerability, our approach opts to
mislead the adversary about the transferred challenge-response
pairs by applying the following schemes:

1) Engaging what we call “helper nodes” in the authen-
tication process where the challenge is split among
multiple packets; each packet provides only one part of
the challenge bit-stream and relayed by a distinct helper
node.

2) Applying a pre-agreed upon scrambling pattern of the
whole or the subset challenge bits that are included in a
packet payload.

3) Adding redundant bits to the challenge bits within the
packet in a manner that is known to both server and
device. Such padding further confuses the adversary
about the PUF size.

Our approach does not employ a cryptosystem and is thus
computationally lightweight. At the time a device is enrolled
with the server, the protocol specifications will be determined
so that the device knows which portion of the challenge bit-
stream will be subject to padding and scrambling, and in what
form. The idea is to synchronize the device and server, while
avoiding information leakage about the defense mechanism
through the incorporation of any hint aboard a packet. The
number of helper nodes is determined based on the net-
work density. A helper node qualification is judged based on
prior authentication or using a trust assessment/management

Table I

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES

COMPARISON OF THE STATE-OF-THE-ART COUNTERMEASURES AGAINST PUF MODELING ATTACKS.

Methodology

Disadvantage

[5] Mutual authentication with a sequence of dependent challenges where
each challenge relates to the previous one

Vulnerable to impersonation if one challenge is leaked

Inserting a Fake PUF and querying it intermittently

Hardware and communication overhead

Challenge obfuscation by using a random number generator to shuffle
[44] | the CRPs

Requiring synchronization between the node and the server for the
sequence of used random numbers; also susceptibility to memory read

Generating challenges in a sequential manner where each challenge
depends on previous challenges

Vulnerable to device impersonation attack

Challenge obfuscation by embedding additional logic along the arbiter-
PUF

Major hardware overhead which is not suited for resource-constrained
IoT applications

Replacing the PUF response with a pseudo response generated by a
known algorithm for both device and server

Computational Overhead

Applying cryptographic hash function to the PUF response

High computational and hardware overhead

Applying cryptographic hash function to the response of SRAM PUF

SRAM PUF has a limited range of CRPs; Computational overhead;
susceptibility to the man-in-the-middle attack due to using repetitive
nonce

Authentication by XORing the PUF response with the previous re-
sponses when a predefined chain of challenges is used

Vulnerable to device impersonation attack

Multi-factor authentication by leveraging a shared cryptographic key
in addition to the CRP

Storing symmetric key in memory defies the main advantage of PUFs
and makes this scheme vulnerable to secrecy leakage

Limiting the number of transferred CRPs by avoiding repetitive CRPs

Only applicable when authentication is not required very often

Encrypting the challenge using AES for which the key is generated

Hardware overhead for implementing AES and adding an extra PUF

using a Weak PUF

Generating each challenge based on the previous one

Synchronization among the nodes is required for correct inference of
the challenge bit-stream

lenge bits

Adversarial machine learning to poison response based on the chal-

Can still be modeled using Neural Networks

Mutating the challenge and response bits using hash functions

Hardware overhead for the incorporation of two hash Functions

Preventing modeling attack via obfuscating the challenge bit-stream

Imposing major hardware overhead

methodology. The aforementioned three schemes are explained
in detail in the balance of this section.

A. Challenge SPlitting (CSP)

Unlike the usual form of transmitting challenges to an IoT
node, our proposed scheme makes the server split each chal-
lenge into multiple partitions. When D; is being authenticated,
it does not receive the whole challenge bits (C;) from the
server. Instead, the server divides the challenge bit-stream
into K partitions, sends one partition (C; o) directly to D;,
and arranges for the other partitions (C; 1, Cj2,.... Ci k—1)
to reach D; indirectly through K — 1 other "helper" nodes.
The rationale is that an eavesdropper should not be able to
distinguish between the various messages to reassemble the
challenge bit-stream, and correspondingly the response of the
PUF of D;. We refer to this scheme as “Challenge Splitting”.
In this scheme, the first few nodes are authenticated directly
without challenge splitting (yet via the scrambling and padding
schemes discussed in the following sections); then they can
serve as helpers.

In practice, the best value for K can be decided based on
different criteria and is subject to trade-off. For example, the
larger K is, the longer the authentication delay and the more
the overhead imposed on the network become. On the other
hand, a large K will make it more difficult for the adversary
since it requires intercepting and analyzing many messages.
It is noteworthy to mention that by splitting the challenge

bits, firstly the probability of intercepting is decreased as the
eavesdropper may not have access to all links due to not
being within the communication range. Secondly, even if the
adversary can eavesdrop on all links through which the PUF
challenge partitions are sent, the order of partitions within the
C; bit-stream will be unknown. The ordering of partitions is
decided between the server and each device during the device
enrolment phase in the IoT, as explained in Section IV-B.

Without loss of generality, Fig. 2 shows an example network
that consists of a server and two IoT devices, D; and Dj,
one of which is employed as a helper node. Assume that the
helper node has been already authenticated and the adversary
can only eavesdrop on one of the communication links, either
between the server and node D; or between server and node
Dj. Also, the response of the device can be sent directly
to the server, or split and forwarded via multiple nodes.
As Fig. 2 shows, the server splits the challenge into two
sub-challenges with size M and N-M, sends the M bit
portion directly to the target device and the rest through node
D;. In practice, the helper node selection could be done
dynamically based on different criteria, e.g., the proximity of
the helper to the authenticated node, the presence of wireless
communication links among the nodes, the time since the
helper was last authenticated, etc. Helper nodes can further be
qualified based on their trustworthiness that may be assessed
using application- or network-based models in the context of
IoT, e.g., CTRUST [67].

N bit Challenge

Challenge Splitting

) Eavesdropper
Device

D)

N-M bit
Sub-Challenge

Figure 2. The block diagram of the CSP scheme (to authenticate device D,
the server uses node D; as the helper node).

Modeling the PUF with partial access to the challenge bits
is very difficult, if not impossible. We will demonstrate in
Section V that the success rate of the modeling attack in
case of challenge splitting is also affected by whether the
Most Significant Bits (MSB) of the challenges are intercepted
or the Least Significant Bits (LSB). In Section V, we will
discuss how the attack success is affected based on whether
the attacker knows or doesn’t know the PUF size. We finally
note that even if the challenge C; sent by the server to node
D; cannot be split due to the unavailability of any trusted
helper node D; (that has already been authenticated) in the
communication range of D;, our approach still employs bits
scrambling and padding methods to boost the PUF modeling
resilience. As discussed in the following subsections, bit
scrambling and padding can be applied even when helper
nodes are involved.

B. Ordering of Challenge Partitions in CSP

Challenge reformation requires knowing the order for par-
titions received by the device from the server directly and
through helper nodes. CSP avoids explicit inclusion of control
information in the packet, instead it enables the device to infer
such an order based on the identifier (ID) of the helper node(s)
as well as the node to be authenticated. Conventionally nodes
in a given network have unique IDs that are monotonic in
nature. Such monotonicity is exploited by CSP to order the
received challenge partitions. Since the node ID is usually
included in the packet header, an adversary can retrieve it as
well. In order to prevent the adversary from concluding the
partitioning order, CSP remaps the IDs using a simple hashing
function similar to peer-to-peer systems. The procedure is as
follows:

1) When a device D, is enrolled, the server assigns such a
device a random number 6, using a uniform distribution
over the range [U, L].

2) When splitting the challenge, a set of K —1 helper nodes
is formed; assume that the identifiers of the helpers to
be IDq, IDs, ..., IDg_1. Assume that I Dy is the
identifier of Dy, i.e., the device to be authenticated.

IEEE INTERNET OF THINGS JOURNAL

3) The server calculates the rank of each involved node
using: Rank; = ID; mod 6,

4) A sorted list 7 of nodes is then formed where the device
D, and helpers are sorted ascendingly based on their
rank. Nodes that happen to have the same rank, are
sorted according to their ID.

5) The server splits the challenge into K unequally-sized
partitions and assigns them to the nodes in 7.

Device D, is to replicate the aforementioned steps since it
knows 0, and can read the helper nodes’ IDs from the received
packets. 0, constitutes a secret that prevents an adversary from
doing the same. We illustrate the process through an example.
Assume that a device D, with ID of 103 is to be authenticated.
At the time of enrollment, a random value in the range [2, 9]
is picked and happens to be equal to 5, i.e., §; = 5. The server
set K = 4 and picked three helpers D, D,, and D, whose
IDs are 215, 110, and 52, respectively. Thus, the ranks of nodes
Dy, Dy, Dy, and D, are 3, 0, 0, and 2, respectively. Since D,
and D, have the same rank, we sort them according to their ID.
Thus, the challenge partitions will be assigned according to the
sorted set n = {Dy, Dy, D, Dy }. Upon receiving the packets
from the server and nodes D, D,, and D, the device extract
the challenge partitions and concatenate them according to n
in order to form the challenge bit-stream.

C. Challenge Scrambling (CSP-S)

As mentioned earlier and will be shown in Section V, in the
CSP scheme, the success rate of the modeling attack increases
if the MSB part of the challenge is captured, rather than
the LSB part; in essence, the MSB bits are the challenge
bits being applied to the multiplexers close to the arbiter
as shown in Fig. 1. Accordingly, the bit position within the
intercepted challenge affects the modeling attack success rate.
This observation motivates our second protection scheme that
performs challenge scrambling, referred to as (CSP-S).

In CSP-S, the challenge bits are reordered before being sent
to the target device. For example, for an 8-bit arbiter-PUF,
instead of sending the challenge bits to the target device D;
as C;[0], C;[1], ...,C;i[7], we can send the reordered challenge
bits, e.g., C;[7], Cy[5], Cy[3], Cs[1], C4[0], C4[2], C;[4], C;[6].
In practice, all or a subset of the challenge bit-stream may be
scrambled; nonetheless, the more bits are reordered, the less
the attack success rate becomes. Unscrambling the challenge
bits may be performed either in hardware or at the system
level. The former does not impose much complexity and can
be done when the scrambling scheme is fixed (static), while
the latter is suitable when the scrambling algorithm changes
over time. In case of fixed scrambling, the challenge bit orders
should have been decided initially between the server and each
device during the enrollment phase.

For the dynamic scrambling, two options are possible. The
first is for the server to add some control information in the
packet so that the device can know how to unscramble the
challenge bits. Such an option is ruled out since the added
information could be exploited by the adversary to uncover the
scrambling pattern. Alternatively, the device and server agree
on a similar scrambling/unscrambling algorithm that is either

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES 7

sequential or time-dependent in nature. The former makes the
scrambling pattern in one authentication packet a function
of previously used patterns, while the latter determines the
scrambling pattern based on a timestamp. The algorithm could
be picked during the enrolment phase. It should be noted that
the inclusion of a serial number and/or a timestamp in a packet
header is quite popular in order to cope with possible packet
loss due to communication errors. Knowing the packet serial
number and/or timestamp would not suffice for unscrambling
without knowing the function. The server also varies the
scrambling function across the enrolled IoT devices. The
experimental results demonstrate remarkable effectiveness of
CSP-S against modeling attacks. We also note that combining
CSP and CSP-S can significantly increase the security of the
authentication process.

D. Challenge Padding (CSP-P)

The objective of the CSP-P method is to make the authen-
tication protocol resilient against ML-based modeling attacks
by introducing extra bits in the packets that are independent
from the challenge bit-stream. In CSP-P, we pad the challenge
bit-streams with random strings. In other words, the bit-
stream C; is first split into K partitions C; o, C; 1, ... , and
Ci k—1; then, each partition is padded with random strings
such that transmitted packets have a similar size. In essence,
the adversary assumes that the padded bits are part of the
challenge bit-stream, and thereby uses them in forming the
machine learning model. Hence, the padding bits act as noisy
data and degrade the PUF modeling accuracy.

In order to enable the target device to decode the received
packets and extract the underlying challenge partition, in-
formation about the challenge size and the location of the
challenge bits inside the packet are pre-agreed upon between
the server and node, i.e., defined by the server at the time a
device is enrolled. In order to prevent an adversary who could
guess the use of CSP-P, from extracting the relevant challenge
bits, the format of the packet changes among devices. Fig. 3
shows two samples of such a packet payload structure; again
the server varies the format among the devices for added
protection in case one device is compromised.

In Fig. 3, the Challenge Size specifies the length of the
portion of the actual challenge bit-stream included in the
packet. This can notify the target device about the number
of bits that it will receive through the helper node(s). Note
that it is also possible to send the entire challenge bit-stream
in one packet without splitting it and engaging a helper node.
In that case, the device’s underlying PUF does not need to
wait to receive the other part of the bit-stream through helper
node(s), and can evaluate the response right away. To increase
the security, we do not fix the position of the challenge
bit-streams inside the transferred packet, i.e., the position
can change in each packet. Accordingly, the Challenge Start
Point field informs the PUF about the starting position of
the included challenge partition inside the packet. Moreover,
in this method each challenge partition is padded with two
random bit-streams.

To elaborate, let’s assume that D; has an /N-bit PUF. In this
case the packets shown in Fig. 3 designate [Log,N'| bits for

Size=1L

Sub-
Challenge

(a) Node i

Size=1L

Sub-
Challenge
(b) Node j

Figure 3. Sample packet structures in CSP-P. Each packet includes 5 fields.
The order and size of these fields vary from one device to another (e.g., nodes
i and j) and are picked by the server during device enrolment. The actual
location of the sub-challenge bits within the packet payload can change from
one device to another as well as one packet to another for the same device.

the Challenge Size field. Note that each authentication packet
sent to D; will include [Logs N bits regardless whether D,
receives the challenge bit-stream in one or multiple packets.
In addition, as the packet size is L, we assign [Logs L] bits
for the Challenge Start Point field. The remaining part of the
packet payload shown in Fig. 3 are used for the sub-challenge
bits and the random bits; the latter are added to mislead the
adversary. During the enrolment phase, the server informs D;
about the positions of the Challenge Size and Challenge Start
Point fields in the packet; while these positions differ from
one device to another, they are fixed for all packets sent to
the same device. By knowing the position of these fields, the
receiver can determine where the sub-challenge bits "c" within
the packet are, even if ¢ changes from packet to packet (which
will be reflected in the challenge size and start points fields).
Such a variability will further mislead the adversary. Again,
the order and the size of each of the fields shown in Fig. 3
can change from one device to another and is determined by
the server during device enrolment. Our experimental results
show the efficacy of the CSP-P scheme.

E. Guidelines for Protocol Selection

Fig. 4 depicts the sequence diagram of our proposed CSP
authentication protocol and its variants, where K — 1 helper
nodes are engaged in authenticating D;. As will be shown in
Section V, all the proposed protocols improve the resilience
against modeling attacks. We expect, nonetheless, that de-
cisions on which protocol to employ will be based on the
network constraints as well as the threat model. The incor-
poration of padding is definitely plausible yet it elevates the
bandwidth requirements and would not be attractive when ra-
dio interference is high or in dense deployment with increased
medium access contention. Scrambling can be suitable in these
cases. In other words, when the packet size is a concern, we
rather deploy splitting and scrambling than padding. Finally,
scrambling is quite effective, yet is expected to be sensitive to
how the bits are reordered. Also, if the scrambling algorithm is
uncovered or modeled, the challenge bits would be recoverable
by the adversary. Therefore, splitting will be invaluable as the
adversary will be deprived of getting the whole challenge bits.

The same can be stated regarding padding, where combining
splitting and padding is a better option as the eavesdropper
does not have access to some parts of the CRPs even if the
padding details are leaked. Algorithm 1 provides a pseudo
code summary of the required settings at the device enrollment
phase and when to apply each of the CSP schemes.

Read CRP(C,R)
CsP-P(CSP-S(C))
csp-s(C)

€, €y oy Cu=CSP(P)

P=

ci

*
i .
Cn 4

P=CSP(C), C) ., Ci)
;| csP-P(csP-s(P))
" csps'(p)

R=PUF(C})

A 4

R Verifying Received R'
with the pre-store R’

l

Figure 4. A sequence diagram for the CSP protocol with K — 1 helper nodes
being involved in authenticating the targeted IoT device . The challenge C;
is split by the server into K partitions, where only one of these partitions is
sent directly to the targeted device while the rest are sent through the helpers.
In conjunction with splitting, challenge bit padding and scrambling are also
employed at the level of individual packets to defend against eavesdroppers.

Y

v

Algorithm 1: Guidelines for applying C'SP

Enrolment of IoT device D;:
o Record a set of CRPs for PUF of D;
o Assign a random value of 6; for D;
« Agree on the structure of C'SP — P packet
e Pick a C'SP — S scrambling algorithm
Authentication of IoT device D;:
1 Applying CSP — S
2 if (There is a helper node in range of D;) then
3 Applying CSP
1) Identifying active helper nodes in the range of D;
2) Splitting the challenge to K Sub-challenges

4 if (The network traffic is light) then
s | Applying CSP — P

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we first provide details of the setup used to
validate the proposed schemes. Then, we present the obtained
results and discuss our observations.

A. Experimental Setup

To validate our approach, we implemented 16-bit and 64-
bit arbiter-PUFs on Xilinx ARTIX-7 FPGA [68]. In our
experiments, we dedicated one FPGA to represent the IoT

IEEE INTERNET OF THINGS JOURNAL

node that includes an embedded PUF to be used for its
authentication, and another FPGA to act as a helper node when
applying our CSP scheme. The FPGA boards use the UART
protocol for connecting to a PC; the latter plays the role of
the server in our IoT framework. To support communication
between the device and helper nodes, the two FPGAs were
connected using their onboard peripheral interfaces. The PC
(i.e., Server) generates a number of randomly generated bit-
streams to be used as challenge bits, sends one portion to the
target FPGA directly and the other portion indirectly via the
helper node. These two portions are combined and used as the
PUF’s input challenge in the target node. The related response
is sent back to the PC via the UART communication. Please
note that our setup is wired but it can be also implemented as
a wireless infrastructure.

We employed the Support Vector Machine (SVM) and a
Neural Networks (NN) as representatives of ML techniques
that an adversary pursues to conduct a modeling attack against
the deployed PUFs. Our Neural Network is a 5-layer fully
connected architecture with one input layer (with 64 neurons
reflecting the PUFsize), three nonlinear hidden layers (with
5, 10 and 15 neurons) and one output neuron with sigmoid
function. Rectified linear unit (ReLLU) is used as an activation
function in all layers. The learning rate and momentum are
0.01 and 0.99, respectively, and the number of epochs is
1000. The adversary is assumed to intercept some of the
challenge-response pairs. Two scenarios are considered: (1)
when the adversary intercepts a packet with the full challenge
bit-streams, and (2) when only some part of each challenge
bit-stream is included in the intercepted packet. We note that
the mapping function of [28] is used in the PUF modeling.
Such a mapping reflects the structure of the arbiter-PUF
considered in this paper and enables successful modeling using
relatively small training challenge-response sets. By using the
mapping function, we are principally assuming an adversary
with significant knowledge of the protection system. In these
experiments, we first show the modeling results using 2000
CRPs for each PUF. Then we increase the training size and
demonstrate its impact on the launched modeling attacks when
our proposed schemes are used.

B. Experimental Results

1) The effect of challenge splitting: The first set of results
assesses the resilience of CSP against modeling attacks. The
results for a 16-bit PUF are shown in Fig. 5. These results were
gathered for the cases in which the N-bit challenge (N=16)
is split into two parts, one M -bit portion is sent to the node
and the other N-M bits are routed through one helper node.
The assumption is that the adversary can only eavesdrop on
the M-bit part. The bars shown in red in Fig. 5 presents the
results when the M MSB bits of the challenge (and intercepted
by the adversary) are used to model the PUF, while the blue
bars correspond to the case in which the M LSB bits are used
for modeling the PUF. Obviously, there is no splitting when
M is 16 in these experiments.

As expected, the more bits the adversary can intercept,
the more accurate the PUF modeling would be. The results

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES 9

depicted in Fig. 5 show that getting access to the 3, 6, and
15 MSB bits results in 61.8%, 71.5%, and 93.75% modeling
accuracy, respectively. A small fluctuation in accuracy (e.g., in
case of intercepting 9 MSB bits) is due to the randomness of
the training in ML schemes, and generally does not affect the
trend. In case of no-splitting (M =16), the accuracy increases
to 94.95%.

Another important trend that could be observed from the
experiments is that all challenge bits do not have equivalent
effects on the PUF response prediction. In other words, if the
adversary could uncover L (out of IV) bits of the challenge,
the accuracy of the PUF modeling significantly differs based
on the position of these L bits within the N bit challenge
pattern, e.g., L. MSB or LSB bits. For example, the results
shown in Fig. 5 indicate that if the attacker has access to the
most significant 8 bits, the accuracy is 69.40%, while with
using the least significant 8 bits, the accuracy drops to 50.6%.
Comparing the bars related to M = 8 in this figure points
out the dominant effect of the most significant bits in the
challenge. In essence, even with access to all challenge bits
except the MSB one, the adversary may not be successful in
modeling the PUF, where the prediction accuracy is 49.2% for
this case (corresponding to M=15 in Fig. 5).

100

Il Eavesdropped LSB
90 | | Eavesdropped MSB

80 -

70

Accuracy (%)

60 -

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
The Width of Eavesdropped Bits (M)

Figure 5. PUF modeling accuracy using SVM when the adversary intercepts
the M LSB or MSB bits of challenge (MN, where N=16).

The criticality of the MSB bits of the challenge in modeling
the arbiter-PUF, compared to the LSB bits, can be explained
via the circuit Fig. 1. In each stage of this circuit, based
on the related challenge values, either the upper and lower
path inputs are connected to the related upper and lower path
outputs, respectively (so-called pass mode) or these inputs
are swapped and get connected to the lower and upper path
outputs, respectively (so-called switch mode). In this case,
if the attacker cannot intercept the last bit of the challenge
C[N — 1], there is 50% probability that an incorrect value
for C[N — 1] will be used in the ML model, even if all other
challenge bits are intercepted. Such an incorrect value realizes
a wrong mode, i.e., the last level multiplexers experience the
pass (switch) mode incorrectly. Thus, such an incorrect value
results in 100% wrong output for that particular challenge.
However, if C[i] is missed by the attacker (i < N — 1), it is
still probable that the multiplexers fed by C[i+1], ..., C[N —1]
can restore the correct output if their accumulative delay can
compensate for the incorrect swap (or pass) in the stage 7
of multiplexers. Thereby, the closer to the arbiter a challenge

bit is, the more negative effect it has on the success of the
modeling attack if it cannot be intercepted. Here, closer refers
to the presence of fewer gates between that challenge bit and
the arbiter. For example in Fig. 1, C[N — 1] (C[0]) is the
closest (farthest) challenge bit to (from) the arbiter.

By splitting the challenge into two parts and sending one
portion using a helper node, the adversary who eavesdrops
on the wireless link between the node and the server may
observe repetitive challenges with different responses. This
may give a hint that the PUF-challenge is more than the
M-Bit, intercepted by the adversary; otherwise, the response
would not be different. The adversary also may think that the
mismatch of the responses for the same challenge could be
due to transmission or measurement noise; we will discuss the
impact of the measurement noise later in this section. For the
sake of simplicity we have ignored the transmission noise here.
However, they can be taken care of by using Error Correction
Codes (ECC) [27].

The results shown in Fig. 5, represent the cases in which
some repetitive combinations of M bits with different re-
sponses may have been encountered. To avoid redundancies,
we do not show the results of modeling the 16-bit PUF when
only non-repetitive partial challenges are transferred. However,
we will show the results for such a case for the 64-bit PUF later
in the section. Note that the results in Fig. 5 assume that the
attacker does not know the size of the embedded PUF (i.e., N),
and guesses the size based on the partial challenge; thereby,
the adversary trains the machine learning model based on the
guessed, rather than the actual, PUF size. The case where the
PUF size is known to the attacker will be discussed in the next
experiments.

100

L SB Non-Repetitive CRP(SVM)
90 - [IMSB Non-Repetitive CRP(SVM)
Il LSB Non-Repetitive CRP(NN)
80] MSB Non-Repetitive CRP(NN)

Accuracy (%)

16 24 32 40 48 56 64
The Width of Eavesdropped Bits (M)

Figure 6. PUF modeling accuracy using SVM and NN, when the CSP protocol
is being applied. The adversary does not know the PUF size N (=64) and
intercepts M LSB or MSB bits of each challenge bit-stream.

Fig. 6 shows the FPGA implementation results for a 64-bit
PUF modeling with SVM and NN. Here, the splitting scenario
is similar to the one discussed for the 16-bit PUF. This figure
confirms our previous observations that if the adversary has
only access to the LSB part of the challenge, regardless of the
employed ML scheme the PUF cannot be accurately modeled
even with access to 48 out of the 64 bits, where the modeling
accuracy is ~ 50%. However, the trend is different when
having access to the MSB part, where the accuracy grows
with the increased number of intercepted challenge bits. For
instance, the accuracy of 57.4%, 61.5%, and 68.5% can be

achieved via access to 16, 32, 48 non-repetitive MSB bits,
when SVM is used to model the PUF. The accuracy grows
to 97% in case of no-splitting (M=64). Using NN for the
modeling attack results in a very similar outcome; as shown
the accuracy is 57%, 61%, and 67.15% when intercepting 16,
32, 48 non-repetitive MSB bits when the PUF is modeled with
NN.

The results shown earlier are based on the involvement of
one helper node. We have also conducted experiments while
engaging two helper nodes. When the adversary intercepts one
of the 21 LSB, 21 Middle or 22 MSB bits of the challenge,
the modeling accuracy was found to be 50.35%, 51.25%, and
60.65%, respectively, while using SVM that is trained with
2000 CRPs. Using NN with the same dataset gave very similar
results. In these experiments the PUF size is unknown to the
attacker while factoring in, rather than filtering out, repetitive
CRPs. Generally, a larger helper node count makes it harder
for an attacker as more links are to be monitored, as we show
through analysis in Section VI.

Fig. 6 reports the performance when a set of distinct (non-
repetitive) challenge bit-streams are used to model the PUF.
Repetitive challenges refer to the cases in which some of
the intercepted M (out of IN) challenge bits are similar and
correspond to different responses. The presence of repeti-
tive challenge bit-streams is found not to yield noteworthy
variations in the results, mainly because of the size of the
challenge-response dataset used in the modeling (i.e., 2000
CRPs). To better capture the effect of repetitive challenges
on the performance of CSP, we rerun the experiments where
SVM is applied to model the PUF using only 200 CRPs.
The results shown in Fig. 7 correspond to the case where 56
MSB bits (out of 64 bits) of each challenge are intercepted
by the adversary. As expected, repetitive challenges diminish
the modeling accuracy. For example having 5% repetitive
challenges (out of 200) results in the accuracy of 72.15%,
while with 30% and 60% repetitive challenges, the accuracy
drops to 70.6% and 67.85%, respectively.

100

90

80

70 -

Accuracy (%)

60 -

50

40
0 5 15 30 45 60 75 90

Repetition Percentage (%)

Figure 7. PUF modeling accuracy using SVM while CSP is being applied.
The adversary does not know the PUF size N (=64) and intercepts 56 MSB
bits of each challenge bit-stream when X% of the intercepted challenge bit-
streams are repetitive, X€ {0, 5, 15, 30, 45, 60, 75, 90}.

Note that the repetitive cases (similar challenges with dif-
ferent responses) that an adversary may observe is due to the
splitting scheme. Assume that two different challenges C'; and
C», with different responses, are splitted to (C1,9, C1,1) and

IEEE INTERNET OF THINGS JOURNAL

(Ca,0, C3,1), respectively. Although C; and Cs are not similar,
yet C10 and C5 ¢ may be similar. In this case, the adversary
who can only intercept the C1 and Cy o portions as well
as the PUF response is misled due to having two similar
challenges with different responses. Accordingly, such data
results in lower modeling accuracy.

2) The impact of knowing the actual PUF size: In our
approach, only one portion of the CRPs may be captured,
specifically M bits; hence the adversary will not have access
to the whole challenge to model the PUF, even with knowledge
of the actual PUF size. The adversary may fill the remaining
N-M part of the challenge with random bits during training.
To build the whole challenge, there are two options, namely,
assuming that the available M bits are the MSB or LSB parts
of the challenge bit pattern, albeit if the adversary has learned
about our splitting scheme.

Figures 8(a) and 8(b) depict the results for the case where
the adversary knows the PUF size, but obviously does not
know whether the captured M bits are the LSB or MSB
portion of the original challenge. As the results indicate, the
highest prediction accuracy is when the obtained bits are from
MSB bits and are also treated as the MSB portion during
training (shown by gray bars in Fig. 8(a) and Fig. 8(b)). In this
case, the accuracy is 56.15%, 61.55%, 61.5%, 63.7%, 66.4%,
and 75.2% using the SVM scheme while accessing the 16,
24, 32, 40, 48, and 56 MSB bits, respectively. Meanwhile,
applying NN achieves 54.8%, 57.9%, 62.85%, 63.95%, 66.1%,
and 76.95% for intercepting 16, 24, 32, 40, 48, and 56 MSB
bits, respectively. The first take away point from these results
is that even with using a relatively more sophisticated ML
scheme, namely, NN, the attacker is not successful in modeling
the PUF without having access to the full challenge bit-
streams. These results are very similar to the related case
in Fig. 6 where the PUF size is assumed to be unknown.
Interestingly, when only the LSB is captured, learning the PUF
size degrades the modeling accuracy.

3) The efficacy of challenge scrambling: In this set of ex-
periments, bit scrambling has been applied along with splitting
the challenge bits. The results reveal a significant decrease in
modeling accuracy. Fig. 9 depicts the results for the case in
which the challenge bits are first scrambled randomly, and then
the scrambled challenge is split into 2 parts, where one part is
sent via a helper node. These results were obtained using both
SVM and NN. As shown in the figure, even if the adversary
has access to the full challenge (i.e., no splitting; M=64),
the PUF cannot be modeled accurately, where the accuracy
is ~ 51.92% for SVM and 51.85% for NN. The take away
point from such an observation is that the challenge scrambling
scheme is highly powerful in thwarting the modeling attack
regardless of the ML scheme used for modeling.

Note that in these experiments, for all cases of M, the
accuracy of the modeling attack is around 50%, i.e., the slight
differences observed across the bars in this figure relate to
the randomness of the ML schemes and do not have much
implication.

4) The effect of challenge padding: This set of results
measures the efficacy of the CSP-P scheme in thwarting PUF
modeling attacks. The results are based on the 64-bit PUF.

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES 11

100

Il Eavesdropped LSB used as LSB
90 - [Eavesdropped LSB used as MSB
[Eavesdropped MSB used as LSB
80 r | Eavesdropped MSB used as MSB

70

Accuracy (%)

60 -

50

16 24 32 40 48 56 64
The Width of Eavesdropped Bits (M)

(a) SVM.

100

Il Eavesdropped LSB used as LSB
90 | [Eavesdropped LSB used as MSB
[Eavesdropped MSB used as LSB
I Eavesdropped MSB used as MSB

80 -

70 -

Accuracy (%)

60 [

50

40

16 24 32 40 48 56 64
The Width of Eavesdropped Bits (M)

(b) Neural Network.

Figure 8. PUF modeling accuracy when launching attack using (a) SVM,
and (b) NN, while applying CSP. The adversary is assumed to know the size
of PUF, and intercept M LSB or MSB bits of each challenge bit-stream.

60

B svm
I Neural Network

Accuracy (%)

16 24 32 40 48 56 64
The Width of Eavesdropped Bits (M)

Figure 9. Modeling accuracy using SVM and NN while the CSP-S protocol
is being applied. Here M (out of 64) bits of the scrambled challenges are
intercepted. Since scrambling is applied before challenge splitting, access to
MSB or LSB bits doesn’t lead to any meaningful variations.

Again, we split the challenge into two parts, and the adversary
can only intercept one of them. Note that in this case, the
packet size is fixed. However, the partial challenge size can
be varied from one packet to another.

Fig. 10 shows the accuracy of PUF modeling when SVM
and NN models are applied. Each packet includes a full
challenge (or part of a challenge) as well as information about
the location of challenge bits within the packet payload. Based
on the packet size, the payload is further padded with some
random bits to mislead the adversary. For example, an 80-
bit packet includes between 1 (65) and 64 (2) of challenge
(padded) bits and the remaining 14 bits are devoted to specify
the size of the included challenge partition along with the

starting location within the packet payload (7 bits for each
of “Challenge Size” and “Challenge Start Point” fields in this
example as shown in Fig. 3).

60

I svm
[Neural Network

55 -

50 -

Accuracy (%)

45

80 88 96 104 112 120 128
Size of Packet (N)

Figure 10. The effect of the CSP-P scheme on the modeling accuracy when
using SVM and NN to launch the attack.

When using either of SVM and NN schemes, the modeling
accuracy is under 52% for all considered cases. Since the
packet size is fixed during the challenge transfer, the adversary
is misled and considers the packet payload size as the PUF
size. Thus, the CSP-P scheme makes the PUF modeling attack
almost impossible where the modeling accuracy is around
50%.

5) The effect of the training set size: For the results shown
in Figures 5 - 10, we used 2,000 samples for training the
ML model unless otherwise mentioned. In order to capture
the effect of training set size on the achieved results, we have
repeated the experiments for the 64-bit PUF using different
numbers of training samples. Fig. 11 reports the results for the
case where the adversary intercepts 32 (out of 64) challenge
bits, knows the PUF size yet does not know whether the
captured bits are the LSB or MSB portion of the original
challenge, and uses NN for modeling. This figure shows the
modeling accuracy when up to 60,000 challenge response pairs
were used for training. As shown, with intercepting 50% (32
out of 64) of each challenge bit-stream, the accuracy of the
modeling attack in presence of the splitting scheme does not
exceed 67%. In this case, increasing the training size beyond
20,000 samples does not result in a meaningful increase of
the attack success. Note that to decrease the attack success,
we can split the challenge bit-stream into more partitions, as
we analyze in Section VI.

Figures 12 and 13 capture the effect of training set size
on the resilience of the scrambling and padding schemes,
respectively, when all challenge bits are intercepted. As shown
even with a training set of 60,000 challenge-response pairs
the attacker does not have any success in modeling the PUF.
These results are without applying any challenge splitting.
Note that in our threat model, the adversary does not have
physical access to the PUF itself and only eavesdropping on
the communication links is feasible. Hence, the adversary has
to monitor the links for a long time to be able to getaccess to
60,000 challenge response pairs; let alone being able to capture
all challenge partitions and know their order when helper
nodes are engaged. In summary, combining the three proposed

schemes is highly effective in thwarting the modeling attacks.

80

I Eavesdropped LSB used as LSB

75 | Eavesdropped LSB used as MSB
[Eavesdropped MSB used as LSB
70 - | I Eavesdropped MSB used as MSB

65

Accuracy (%)
=1
o

2000

10000 20000 30000 40000 50000 60000
Training Size

Figure 11. PUF modeling accuracy using Neural Network with different sizes

of the training dataset while CSP is applied. The adversary is assumed to know
the PUF size, and intercept 32 (out of 64) challenge bits.

70

Accuracy (%)
o [+1]
(2] o

o
=}
T

2000

10000 20000 30000 40000 50000 60000
Training Size

Figure 12. PUF modeling accuracy using Neural Network with different
training data sizes when the CSP-S protocol is used. The adversary captures
all 64 bits of the scrambled challenges.

70

Accuracy (%)
(5. o
(=} (4]

'y
[

2000

10000 20000 30000 40000 50000 60000
Training Size

Figure 13. The effect of the training data size on PUF modeling accuracy
using Neural Network when the CSP-P is employed. The packet size is 80
bit, and the adversary captures all challenge bits.

6) Resiliency Against the State-of-the-art PUF Attacks:
To validate the resiliency of the proposed schemes, we have
considered the two most prominent PUF modeling attacks. The
first is based on the Logistic Regression (LR) model [30],
while the second is the CMA-ES attack proposed by G. T.
Becker [56]. We have realized these attacks on full CRP bit-
streams as well as when employing the challenge splitting, bit
scrambling and padding.

IEEE INTERNET OF THINGS JOURNAL

Fig 14 depicts the results when using the LR model for the
attack. In these experiments 60,000 challenge-response pairs
are used for training. As shown, the accuracy of this attack is
67.75% when CSP is employed and the adversary intercepts
the 32-Bit MSB part of challenge. Here, the adversary knows
the PUF size yet does not know whether the captured bits are
the LSB or MSB portion of the challenge. One helper node is
employed in CSP; by increasing the number of helper nodes,
the accuracy of modeling is expected to diminish even further
as demonstrated by the security analysis in Section VI. The
results of applying LR model in the presence of CSP-S and
CSP-P schemes (depicted in Fig. 14) confirm that even when
all challenge-bits are intercepted, bit-scrambling and padding
are highly effective in thwarting the modeling attacks; each
experiment resulted in 50% modeling accuracy.

The CMA-ES based attacks deploy the Covariance Ma-
trix Adaptation Evolution Strategy machine learning algo-
rithm [69] along with reliability information obtained from
the repeated measurements of challenge-response pairs. Such
noise-induced reliability information is used as a side channel
to assess the relative delay of the multiplexers used in the
different stages of the arbiter-PUF families, and in turn to
model the behavior of the PUF. We used the open source
code of the CAM-ES attack in [70], [71] and integrated our
three schemes, i.e., splitting, scrambling, and padding. The
results of applying the CMA-ES attack in the presence of our
protection schemes are shown in Fig. 14. In these experiments,
the training set size is 60,000. As indicated by the results, in
the presence of each of our proposed schemes, the accuracy
does not exceed 54%. As a reference point, we also depict
the accuracy of the LR and CMA-ES attacks in absence of
our protection schemes. As shown, these attacks are highly
successful (Accuracy =~ 100%) when our protection schemes
are not applied.

100

Il Logestic Regression
I cmMA-ES 1

920

80 -

70

Accuracy (%)

60 [

50 -

40

No Protection CSP

CSP-s
Method

CSP-P

Figure 14. PUF modeling accuracy using Logestic Regression and CMA-
ES while CSP, CSP-S, and CSP-P are employed. For CSP, the adversary is
assumed to know the PUF size, and intercepts 32 (out of 64) challenge bits.
For CSP-S, the adversary captures all 64 bits of the scrambled challenges. For
the CSP-P scheme, the packet size is 80 bit, and the adversary captures all
bits. The title "No-Protection" reflects the case where none of our proposed
schemes is employed.

7) Implementation Robustness and Overhead : Uniqueness,
uniformity, reliability, and randomness are important metrics
based on which PUFs are evaluated [72]. The randomness
is the basis for the unpredictability of PUF responses, while
the uniqueness shows how well a single PUF is differentiated

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES 13

from other PUFs based on its CRPs. Uniformity reflects the
distribution of zeros and ones in the PUF response, and
reliability shows how stable the PUF response is in different
environmental conditions (e.g., change in temperature). We
have implemented five 64-bit arbiter-PUFs (each with an 16-
bit response) in our FPGA and evaluated the randomness,
uniformity, and uniqueness of each PUF via 5,000 randomly
chosen challenges. It has been observed that on average, the
uniformity is about 49.36%, and the uniqueness among the 5
samples is 42.24%. By increasing the number of challenges,
uniqueness grew to around 50%. Both metrics ideally should
be 50%.

To evaluate the reliability of the proposed architecture in
different temperatures, we applied 5,000 randomly generated
challenges to our 64-bit arbiter PUFs and measured the
hamming distance of the responses when a similar challenge
is applied. We considered the base temperature as 30°C and
repeated the experiments in 0°C, 60°C and 90°C, where on
average the discrepancy was 0.65%, 0.92% and 1.78% in these
temperatures, respectively. This demonstrates the reliability of
our design. Moreover, the noise effect in the same temperature
resulted in a negligible (0.25%) discrepancy in response,
which confirms the viability of our design for PUF-based
authentication schemes.

The 64-bit implemented arbiter-PUFs was further evaluated
using 15 statistical tests offered by NIST for assessing the
randomness of true random generators [73] with 5,000,000
randomly selected challenge bit-streams. The responses were
divided into 100 blocks each including 50,000 responses, and
we applied the NIST tests to each block. Table II shows the
results. Note that some of the tests (e.g., Universal) need larger
blocks so we partitioned our responses accordingly. As shown
our PUF structure passed almost all tests. This confirms the
randomness of our implemented PUF.

To assess the power consumption overhead, the embedded
PUF is isolated from the underlying circuit. The power con-
sumption of a 64-bit PUF with 16 response bits was measured
by the Xilinx Power Estimator (XPE) tool and found to be
0.002W.

Table 1I
NIST RANDOMNESS TEST RESULT
Test Passed/Total | P-value
Frequency 99/100 0.54
Frequency Block 100/100 0.51
Runs 98/100 0.50
The Longest Run 99/100 0.49
Binary Matrix Rank 33/33 0.50
FFT 99/100 0.50
Non-overlap. Template 99/100 0.51
Universal 5/5 0.99
Linear Complexity Test | 4/4 0.70
Serial 98/100 0.49
Approx. Entropy 100/100 0.51
Cumulative Sums 99/100 0.54
Random exc. 2/2 0.57
Random exc. var. 2/2 0.40

VI. SECURITY AND PERFORMANCE ANALYSIS

There is a tradeoff between the security and the imposed
overhead using the proposed methods. The overhead is fun-

damentally due to the increased processing and number of
transmitted bits, which in turns affect power and delay. The
additional processing is due to forming and decoding more
packets in case of CSP or longer packets for CSP-P, and due
to unscrambling in case of CSP-S. In addition, in all three
schemes, building the challenge bit sequence based on the
received data imposes a small delay. Moreover, there could
be a little storage overhead to receive a longer packet in case
of CSP-P. In the balance of this section we analyze the over-
head and the security of the proposed schemes against PUF
modeling attacks as well as conventional attacks against IoT.

A. CSP Overhead and Resilience to Modeling Attacks

1) CSP resilience to modeling attacks: To gauge the ro-
bustness of CSP, we analyze the difficulty of successful PUF
modeling when engaging helper nodes. Assume that the server
engages X — 1 helper nodes to authenticate D;. As mentioned
in Section IV-A, the decision on how the full challenge bit-
stream is formed at node D, after receiving all partitions is
made at the time D; is enrolled in the system (before D;
actually joins the network). Based on the communication range
and the position of nodes, typically the adversary may be
able to eavesdrop only one or a limited subset of challenge
partitions. Nonetheless, we analyze the worst case scenario
when all partitions are uncovered.

Lemma 1: When engaging K —1 helper nodes, the probability
of capturing all individual partitions of the challenge bit-
stream for a node D; is pX, where p is the probability
of successful interception and decoding of a single packet
transmission in the vicinity of the server.

Proof: Given the independence among the K packet transmis-
sions, the probability of intercepting the challenge packets to
D; and its helpers will be p . pX—1=pX.

Since p is a fraction, Lemma 1 implies that increasing K
is beneficial. For example, for an 80% packet interception
probability, the engagement of two helper nodes makes the
success rate for capturing all challenge partitions to be 51%.
Such a rate drops to 41% when using three helper nodes.

Lemma 2: When engaging K — 1 helper nodes and dividing
the challenge into disjoint partitions, the complexity for an
adversary to know the intended challenge bit-stream, C', for a
node is K.

Proof: Let c¢; refers to the ¢ partition, where C' =
c1]lez2]l. .. ||ex. We consider three properties: (i) distinction,
where ¢; # ¢ # # cg, (i) asymmetry, where
cille; # ¢jllei, Vi # j, and (iii) non-overlapping, where
c¢i ¢ c¢j,Vi # j. The complexity of guessing C' is the
highest when the distinction, asymmetry and non-overlapping
properties hold since the adversary will have to try all possible
combinations for ordering the K challenge partitions, for a
total of K! combinations.

th

In essence, Lemma 2 provides guidelines for comparing the
various partitioning options. When any of the properties stated
in Lemma 2 are violated, some of the partition ordering com-
binations become similar and fewer than K! iterations would

be needed. While it is not generally possible to achieve the
distinction, asymmetry and non-overlapping properties for all
challenge bit-streams, using unequal partition sizes definitely
helps. On the other hand, picking a large K increases the
probability that either of the three properties will be violated;
thus large K increases the number of combinations yet with
a trend less than K'!. The case with maximum similarity and
symmetry corresponds to when each partition is just one bit,
i.e., N partitions. In such a case, the number of dissimilar
partition combinations is m,x+'_m, where m is the number
of “0” (or “1”) bits in C. The analysis in the balance of
this subsection assumes that the challenge partitions hold the
properties of Lemma 2.

Theorem 1: In the worst-case, the probability for uncovering
K
the challenge bit-stream for a node D; is L.

Proof: When applying CSP, the best case scenario for the ad-
versary (worst case vulnerability) is being able to successfully
find the correct challenge bit-stream. To do so, the adversary
needs to: (1) intercept all challenge related packets; based on
Lemma 1 such probability is p, and (2) find the right order
of the partitions by considering all possible combinations
based on Lemma 2, the probability of that is K, Thus, the

probability of the worst-case scenario is .

Theorem 2: In the worst-case, the runtime complexity of
launching a successful modeling attack against a node D;
when CSP is applied is ¢ K|, where p is the average runtime
complexity of the underlying ML scheme.

Proof: The worst-case vulnerability for CSP, is when the
adversary successfully uncovers all K challenge partitions. In
such a case, the adversary will have to try all possible partition
orderings and for each a ML model has to be established.
Based on Lemma 2, the adversary will have to form K! distinct
ML models, and thus the runtime complexity is puK!.

Based on Theorem 1, even if the adversary has access to
all the challenge partitions, by not knowing how to sort them
out the probability of successful PUF modeling is quite low.
Noting that p is a fraction, the probability of a successful
attack in fact exponentially diminishes with increasing K, i.e.,
the number of helpers. Similarly, the runtime complexity is
prohibitive and grows with K, as indicated by Theorem 2.
Finally, we stress that missing some of the challenge partitions
will hinder the modeling process all together as demonstrated
by the results in Section V.

2) CSP-related Overhead: Increasing resilience to attacks
comes at a price of increased overhead. Here we analyze
the overhead imposed by our CSP scheme. The more helper
nodes are involved in the process of sending a challenge bit-
stream, the higher the traffic overhead, and in turn the total
energy consumption, becomes. To formulate the traffic (or
energy) overhead, assume that each packet ¢ consists of H;
bits header and W; bits data. The header size (H;) is constant
for all packets (referred to as H hereafter) while the length of
W; varies based on the number of challenge bits the packet
includes. In an IoT framework with an N-bit PUF embedded
in each IoT device, N + H bits are transferred per challenge.

IEEE INTERNET OF THINGS JOURNAL

However, when CSP engages K-1 helper nodes, the total
number of transferred bits is shown in equation (1), where
the first term relates to the bits transferred between the server
and the helper nodes (including node D); itself) and the second
term shows the number of bits transferred between the K-1
helper nodes and the target device, i.e., D;.

K-—1 —1
Total # of Bits= Y (H+ W) +Z (H +W;)
1=0 =1 (1)
K—1
=QK-1)H+Wo+2) W,
=1

Equation (2) represents the case where the N-bit chal-
lenge bit-stream is divided into K equally-sized partitions. As
shown, the greater the number of helper nodes is, the higher
the overhead becomes. However, note that with involving
more helper nodes, the probability that the adversary can
successfully eavesdrop on multiple channels diminishes and
thus the system is more secure as confirmed by Theorems 1
and 2, above.

N
Wi== ie{0,1,2,. K

K -

N &N

Total # of Bits = 2K —1)H + - +2 ;)
N
= (2K -)(H +)

= (2K — 1)H + (2N — %)

B. CSP-S Security and Overhead Analysis

1) CSP-S resilience to modeling attacks: To analyze the
resiliency of CSP-S against modeling attacks, we recall that the
order of bits in a challenge bit-stream is highly influential for
predicting the response of some PUF-types, e.g., the arbiter-
PUF family considered in this paper. Here, we focus on
the scenario when the attacker intercepts all challenge bits
and opts to overcome the bit scrambling scheme by trying
all possible combinations (i.e., brute force). We note that
when scrambling is combined with CSP, the modeling attack
complexity will substantially grow since the aforementioned
analytical results would apply as well.

Lemma 3: Fixed (static) scrambling of the challenge bits
degrades the PUF modeling attack if a PUF-design mapping
function is used.

Proof: Modeling the PUF fundamentally opts to determine a

function f : N — 1 for each bit in the PUF response, where N
is the size of the challenge bit-stream. If the design of the un-
derlying PUF, e.g., arbiter, is not factored in, fixed scrambling
will simply yield a consistent style of bit reshuffling and will
not impact the ML scheme. However, considering the PUF
design, may enable modeling it via using significantly smaller
training data. For such a case, fixed scrambling will disturb
the design mapping function and diminish the accuracy of the
PUF model for the same training dataset.

It is noteworthy that the use of the mapping function of [28]
to facilitate the modeling of the arbiter PUF is quite common;

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES 15

hence the attacker’s application of such a mapping function
is expected. For the sake of comparison, we have studied the
modeling of a 64-bit PUF using neural networks with and
without exploiting the mapping function. The results show that
a modeling accuracy of ~ 97% could be achieved with as
little as 2,000 challenges when the mapping function is taken
into account; without the mapping function the accuracy is
52% even with using 2,000,000 CRPs. Hence, without the
mapping function the PUF modeling is ineffective regardless
whether scrambling is used or not. Nonetheless, CSP degrades
the modeling attack as confirmed by Lemma 3.

Lemma 4: Dynamic (varying) scrambling of the PUF chal-

lenge bits boosts the complexity of the modeling attack by
N S|
m!xX(N—m)!
challenge bit pattern, and .S is the set of challenge-response
pairs used for training the ML scheme, and m is the average

number of “0” (or “1”) bits in C' € S.

Proof: Assume that the average runtime complexity of the
underlying ML technique is p. Scrambling the N bits of
the individual challenges using inconsistent patterns, e.g.,
time varying patterns, will necessitate the consideration of all
possible ordering options ¥, which has been shown earlier to
be W'—m)' for a challenge with m zero bits. Thus using
a training dataset of size S requires the adversary to consider
!SI different combinations of challenges taking into account
that each challenge bit-stream may have been scrambled in
a different way (using dynamic scheduling scheme). Building
an ML model for each possible option results in W!S! trials in
the worst case. This implies elevating the runtime complexity
of the modeling attack to ;!SI

a factor of where N is the size of the

Theorem 3: When employing CSP-S with K —1 helper r}1<0des,
the probability of successful PUF modeling attack is % for
time-variant scheduling, where NN is the PUF size, and S is the
size of database used for training, and ¥ = W’_m), with
m being the average number of “0” (or “1”) bits in C' € S.

Proof: Based on Lemma 4, the adversary has to consider all
possible WIS| bit orderings. Thus, the probability of having
the correct bit pattern is ﬁ A successful attack will be the
conditional probability of having the right challenge pattern
given the interception of all K challenge packets, which has
the probability of p*. Assuming statistical independence, the
overall probability of a successful modeling attack is the

K
product and is thus L.

2) CSP-S Overhead: The overhead imposed by bit scram-
bling depends on whether fixed or dynamically-changing pat-
terns are being pursued. Applying a fixed pattern does not im-
pose any processing or transmission overhead since the pattern
does not vary after both the server and device agree on during
device enrollment. On the other hand, dynamic scrambling
could impose some processing overhead. As stated in Sec-
tion I'V-C, in the dynamic case, the scrambling function can be
sequential or time-dependent using the timestamp and/or the
sequence number in the authentication packet header. Again
the inclusion of a timestamp and a sequence number is quite
conventional in practice in order to detect packet loss, and

hence would not constitute an overhead for CSP-S.

C. CSP-P Overhead and Modeling Attack Resilience

1) CSP-P resilience to modeling attacks: Recall that
padding adds a few extra bits to the payload of the challenge
packet in order to mislead the adversary about the real size of
PUF as well as which bits among the packet payload relates to
the challenge. Let’s assume that for padding and the associated
control bits a total of F extra bits are added to packet payload.

Lemma 5: In the worst-case, the probability of uncovering a
challenge bit-stream for a device D; that is applying CSP-P
is E%rl when the PUF size, N, is known to the adversary.
Proof: When the adversary does not know the size of PUF, all
N + E bits will be used for modeling. As in our method the
padding is dynamically changed, i.e., the place of the IV bit
challenge may change in the N + F bit-stream, PUF modeling
would be highly difficult, if not impossible. However, in case
of knowing the PUF size, the adversary has to select NV
consecutive bits from the NV + E bits packet payload. In that
case ¥ 4+ 1 possible combinations have to be tried for each
challenge bit-stream, i.e., the probability of uncovering each
challenge is E%rl We assume that the adversary knows how
to distinguish between the payload and packet header and can
extract the N 4+ F from the intercepted packet.

Theorem 4: When combining CSP-P with scrambling,
the probability of revealing each challenge bit-stream C' is
m, where N is the PUF size, and ¥V = W’—m)’
with m being the average number of zeros in C.

Proof: As mentioned in Lemma 5, the probability of revealing
the challenge bit-stream in CSP-P is E%rl When the challenge
bit-stream is scrambled before padding, based on Lemma 4
there may result in W different combinations. Thereby, if CSP-
P is applied to such a scrambled bit-stream, the probability of

uncovering the challenge would be m

2) CSP-P Overhead: When CSP-P is applied, instead of
transferring H + N bits for sending each challenge bit-stream
to node D;, H + N + E bits are sent. The bigger E gets, the
larger the overhead becomes, yet the higher security of the
system is. If padding is combined with our challenge splitting
scheme, i.e., sending the padded challenge bit-stream using
K-1 helper nodes, the overhead can be computed by using
Equation (1) where W; includes the challenge bits along with
padding bits (F;) in each packet ¢. If the N-bit challenge is
divided into K equally-sized partitions, the same number of
padding bits (E) are needed for each packet, consequently the
total number of bits exchanged to send an N-bit challenge bit-
stream can be estimated based on Equation (2) to be: (2K —
1) x (H + % + E). In case of combining scrambling with
padding, the former does not impose any extra overhead.

D. Resiliency against Conventional Attacks

1) Defeating the splitting scheme: Splitting the challenge
bit-stream makes it almost impossible for an attacker to collect
challenge-response pairs for an IoT device (say D;), even with

intercepting all inbound packets. Basically, the adversary can-
not determine whether a packet is intended for D; or D, acts
as a helper node. In addition, to rebuild the full challenge from
its portion, the adversary should know the splitting algorithm
(recall the effects of MSB and LSB portions).

2) Preventing replay attacks: As mentioned above, there is
little possibility that an adversary can rebuild a full challenge
from its portions even with intercepting all the incoming pack-
ets to the node that is being authenticated (D;). Accordingly,
our approach prevents replaying a response packet from D).

3) Countering impersonation attacks: IoT frameworks are
vulnerable to impersonation attacks, where a malicious node
claims the identity of a legitimate one by eavesdropping on the
communication traffic and replaying authentication messages.
However, our approach counters such an attack, as even when
the server uses the same challenge for authenticating a specific
node, the packet is split dynamically to two packets (or more
in case of multiple helper nodes), each of which is potentially
sent via a different route. Thus, to conduct impersonation, the
adversary not only has to eavesdrop on all routing paths but
also needs to know the splitting algorithm, which is almost
impossible without excessive resources, as shown earlier in
this section.

E. Effect of Eavesdropping Range

Modeling the PUF requires the adversary to capture a
sufficiently large number of challenge-response pairs in order
for the employed ML technique to yield high accuracy. In
our system model, we assume that the adversary eavesdrops
on the targeted device to intercept the transmissions from
the server and extract the exchanged challenge-response pairs.
CSP counters such an attack by splitting the challenge bits
among different packets that are routed to the targeted device
through helper nodes, and employing bit scrambling and
padding. Here we direct our attention to the interception range
of the adversary, particularly what happens if the adversary
can eavesdrop on multiple nodes. This issue is related to the
node density, the underlying wireless transmission technology,
and the employed communication protocols. For example,
WiFi supports ranges of up to 92 meters, which enables
an adversary to capture packets sent by the server to quite
a few nodes, some of which may be playing the role of
helpers during device authentication. Analyzing these packets
collectively could be pursued by the adversary in order to
infer the operation of CSP and uncover the challenge response
pairs. Such a concern grows in scope with increased node
density since the probability of having both the device and its
helpers within the interception range increases. The underlying
networking protocol could further assist the adversary by
embedding identifiers in the packet header that distinguishes
among packet receivers.

Nonetheless, assuming an attacker intercepts all packets
related to the CSP protocol, analyzing these packets requires
trying all combinations (i.e., brute force) causing the runtime
complexity to be exponential, as we have shown earlier in
this section. By appropriate setting of the various parameters,

IEEE INTERNET OF THINGS JOURNAL

the system designer can diminish the risk of such an attack
scenario. For example, as indicated by Theorem 4, engaging
multiple helpers and employing a large PUF would massively
degrade the attack success probability. In Section 5, we have
demonstrated that modeling the PUF using a subset of the
challenge bit-stream will not be beneficial either. Moreover,
applying anti-traffic analysis measures, e.g., the use of time
varying pseudonyms in the packet headers, will mitigate the
threat of packet correlation and identifying helper nodes.
With that said, if the details of the CSP configuration is
discovered and the attacker can intercept all traffic and infer
relationships between nodes, i.e., identify helpers of a device,
the attacker could eventually uncover the challenge-response
pairs. However, we deem such a scenario to be very improb-
able with appropriate CSP parameter settings and employing
contemporary traffic analysis countermeasures. The latter is a
well-studied topic and is out of the scope of this paper.

F. Comparing CSP with Conventional Cryptosystems

Here, we compare our CSP protocol with the alternative
approach of using packet encryption to protect the challenge
bit-stream. We consider the conventional symmetric and asym-
metric cryptosystems and compare the performance in terms
of energy consumption and delay for transferring the data
between server and the IoT device to be authenticated. To
have a baseline for our comparison, we consider the Jennic
JN5139 communication model [74], which employs an IEEE
802.15.4/ZigBee transceiver that operates on 2.3v-3.6v and has
output power of 2.5dbm. Considering the typical proximity
among IoT nodes, we can assume an output power of 1dbm,
which corresponds to ~1.2mW. The following discussion
shows the estimation for the energy consumption of IoT nodes.
Energy: In the IN5139 module, the drawn current during data
transmission (7},) and reception (R,) are 15mA and 17.5mA,
respectively. By assuming a supply voltage of 2.9V:

T, Power = (2.9 x 15) + 1.2 = 44.7 mW
R, Power = (2.9 x 17.5) = 50.75 mW

The maximum raw data throughput for the IEEE
802.15.4/ZigBee transceiver is 250k bits per second; hence:

3)

44.7 mW
250,000 bit/s
50.75 mW
250,000 bit/s

As an example, let’s consider the case where a 64-bit PUF
is embedded in each IoT device and CPS employs three helper
nodes during the authentication. By splitting the challenge
equally among the device and helpers, each CPS packet will
have 2-byte payload. Assuming a 4-byte packet header, the
energy per transmitted and received CPS packet would be:

Energy per T, Bit = ~ 179 nJ/bit
4)

Energy per R, Bit = ~ 203 nJ/bit

179 x 8 x (4 +2)

Ene T, = ~ 0.
nergy |/ T, packet 1000 0.009 mJ
203 x 8 442
Energy | R; packet = x8x(4+2) 0.01 mJ
1000 5)

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES 17

During authentication, the IoT device will receive 4 packets
with transmission energy of 0.04 mJ (0.01 mJ for each), and
each helper node receives and sends one packet with a total
energy overhead of 0.019 m.J. Therefore the overall consumed
energy is 3 x 0.019 4+ 0.04 = 0.1m.J.

Rather than using CSP with plain text, let’s assume that
encryption is used. Kim et al. [75] have compared the energy
consumed by asymmetric and symmetric encryption algo-
rithms. Specifically, they have considered an Elliptic Curve
Integrated Encryption Scheme (ECIES) for private-public key
encryption and the Advanced Encryption Standard (AES)
algorithm for symmetric encryption. To suit the resource-
constrained devices such as the Jennic IN5139 module, small
key sizes, specifically, 256 and 128 bits, were picked for
ECIES and AES, respectively. The results have shown that
ECIES consumed 1,230 times and 250 times more energy
than AES-128 during encryption and decryption, respectively.
Meanwhile, according to the infamous BearSSL library [76],
cryptographic hash has close execution time to AES, and
consequently they have similar energy consumption profile.
Hence, it is sufficient to focus only on AES in our analysis.

Assuming a 128-bit key, an encrypted packet will have a
128-bit payload and 4 Bytes header; thus, the device will
consume 203 x (128 + 32) = 32,480nJ =~ 0.032m.J in
communication. A recent study of various implementations
of AES on IoT devices has shown that the energy consumed
in applying AES decryption is in range of 5mJ to 34mJ,
depending on the implementation [77]. In other words, the
use of a lightweight cryptosystem imposes at least 5.032m.J
(5+0.032=5.032m.J), on the device to retrieve the challenge
sent by a server. Note that in CSP, the energy would be around
0.04 m.J for receiving the challenge packets since only simple
operations, such as basic bit truncation and concatenation,
are needed for modulo operation and challenge reconstruction
from the received packets. Even when considering the overall
energy consumed by all involved nodes collectively, the total
energy overhead stands at 0.1 mJ (as computed earlier), which
is still insignificant compared to the case of AES. The gap
between CSP and an AES-based implementation is so wide
that the superiority of our approach holds even if the AES
energy consumption is significantly reduced.

Similarly, deploying lightweight LFSR-based stream ciphers
such as Trivium to encrypt the challenge bits before transmis-
sion is not appropriate considering their energy consumption.
As reported in [78], Trivium consumes around 81 m.J on
a single-board micro-controller IoT platform, which is still
very high compared to CSP. It is noteworthy to mention that
using single LFSR, instead of the multiple LFSRs deployed
by Trivium, is not recommended as it can be vulnerable to
attacks [79].

Latency: Fundamentally our CSP protocol splits the challenge
bit-stream among K packets and does not embed any addi-
tional control information. Hence, the delay overhead is mainly
due to sending (K — 1) packet headers corresponding to the
helper nodes. Assuming A is the time for sending a packet
header, the delay overhead equals (K — 1)A. The alternative
to our approach is to use packet encryption, where the delay

Table III

COMPARING CSP WITH CONVENTIONAL CRYPTOSYSTEMS
Authentication Energy Authentication
Method Consumption (mJ) | Time (mS)
CSP-Based
Authentication 0.1 0.768
AES-Based
Authentication [77] 5.03 29.24
LFSR-Based
Authentication [78], [80] 81 28

is due to: (i) the increased packet load since the encryption
key is usually longer than the challenge bit-stream, and (ii)
the relatively long execution time at the device to decrypt the
packet and retrieve the challenge bits. Particularly the latter
typically dominates (given the limited computational capacity
of IoT devices) and makes the CSP delay overhead to be
insignificant compared to the use of packet encryption.

In order to further illustrate the superiority of CSP in terms
of latency, we compare the delay imposed when AES is used
to secure the transmitted challenges with the case that CSP is
employed. We again consider the time for sending a challenge
partition of 2 bytes along with a 4-byte packet header (as
discussed earlier), which requires % = 0.192ms. Hence,
it will take 0.768ms for a device to receive all 4 partitions.
Reassembling the challenge is through simple concatenation
operation and would be in the nano seconds range. Meanwhile,
B. Tsao [77] has measured the execution time of AES with
a 128-bit block size on a Raspberry Pi based IoT platform
and reported that it takes between 28.6ms and 108.5ms to
decrypt a message depending on the AES algorithm imple-
mentation. As an encrypted challenge packet by AES will
have a 128-bit payload, by assuming a 4-Byte packet header,
the encrypted challenge packet will need%(g&f) = 0.64ms
to be transmitted over a Zigbee link. Thus,yin the baseline
case where the challenge is sent in an encrypted form, it will
take a device at least 28.6 4+ 0.64 = 29.24ms to retrieve the
challenge. Obviously, our CSP protocol is very advantageous
by protecting the challenge without the use of a cryptosystem.

Finally, a recent study has reported the execution time
of popular lightweight LFSR-based stream ciphers for IoT,
such as Lizard, Fruit, Plantlet, and Espresso [80]; the latter
is developed for 5G systems. The study is conducted by
implementing these ciphers on an Arduino platform that has a
16MHz ATmega 328P microcontroller and 32KB RAM. The
reported results indicate that these ciphers take around 76ms to
encrypt 256 Bytes. Assuming the best case scenario that there
is no setup time for the stream cipher and that the execution
time is just proportional to the data size, it would take about
2.4ms for a 64-bit PUF challenge. The packet will consist
of 64-bit payload and 4 bytes overhead and consequently
will take % = 0.38ms to be transmitted. Thus, the
latency for any7 of the aforementioned LFSR-based techniques
would be 2.4+0.38 ~2.8ms, which is about 4 times worse
than the latency for CSP. If we factor in the cipher setup
time, the performance advantage of our methods over stream
ciphers will just grow in significance. Table III summarizes
the discussed comparison.

VII. CONCLUSION

In this paper, we have developed an effective and
lightweight PUF-based authentication protocol for IoT de-
vices. The protocol employs three novel schemes, namely,
challenge splitting, scrambling and padding, that hinder the
adversary’s ability in retrieving the challenge bits of the PUF
without reliance on cryptosystems. Along with introducing
variability in the packet format and not embedding any control
information, the proposed schemes achieve resiliency against
an adversary that intercepts the exchanged packets and opts to
model the PUF behaviors using machine learning techniques.
Through analysis and simulation, we have shown that engaging
helper nodes to exchange the embedded PUFs’ signatures,
makes the modeling attacks very difficult. Moreover, the
validation results have confirmed that via scrambling and/or
padding the exchanged PUF challenge the success of the
modeling attack diminishes further. As future work, we plan
to develop PUF-based data integrity solutions and devise the
associated key management protocols.

[1]
[2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

REFERENCES

R. Taylor et al., “The world in 2025 - predictions for the next ten years,”
in IMPACT, 2015, pp. 192-195.

T. A. Ahanger and A. Aljumah, “Internet of things: A comprehensive
study of security issues and defense mechanisms,” IEEE Access, vol. 7,
pp. 11020-11028, 2019.

Y. Yang et al., “A survey on security and privacy issues in internet-of-
things,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1250-1258,
2017.

T. Idriss et al., “A PUF-Based Paradigm for IoT Security,” in World
Forum on Internet of Things (WF-10T), 2016, pp. 700-705.

M. Aman et al., “Position Paper: Physical Unclonable Functions for IoT
Security,” in int’l W. on IoT Privacy, Trust, and Sec., 2016, pp. 10— 13.
U. Guin et al., “Counterfeit Integrated Circuits: A Rising Threat in the
Global Semiconductor Supply Chain,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1207-1228, 2014.

J. R. Wallrabenstein, ‘“Practical and Secure IoT Device Authentication
using Physical Unclonable Functions,” in FiCloud, 2016, pp. 99-106.
T. Xu et al., “Security of IoT Systems: Design Challenges and Oppor-
tunities,” in ICCAD, 2014, pp. 417-423.

X. Liu et al., “A Security Framework for the Internet of Things in the
Future Internet Architecture,” Future Internet, vol. 9, p. 27, 06 2017.
X.-W. Wu et al., “Lightweight security protocols for the internet of
things,” in IEEE PIMRC, 2017, pp. 1-7.

N. Hong, “A security framework for the internet of things based on
public key infrastructure,” in Advanced Materials Research, vol. 671.
Trans Tech Publ, 2013, pp. 3223-3226.

D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” SIAM journal on computing, vol. 32, no. 3, pp. 586615, 2003.
S. W. Jung and S. Jung, “Personal oauth authorization server and push
oauth for internet of things,” International Journal of Distributed Sensor
Networks, vol. 13, no. 6, p. 1550147717712627, 2017.

U. Chatterjee et al., “Building PUF Based Authentication and Key
Exchange Protocol for IoT Without Explicit CRPs in Verifier Database,”
IEEE TDSC, vol. 16, no. 3, pp. 424-437, 2019.

Y. Atwady and M. Hammoudeh, “A survey on authentication techniques
for the internet of things,” in proceedings of the international conference
on future networks and distributed systems, 2017.

Y. Zou et al., “A Survey on Wireless Security: Technical Challenges,
Recent Advances, and Future Trends,” Proceedings of the IEEE, vol.
104, no. 9, pp. 1727-1765, 2016.

K. Eldefrawy et al., “Smart: Secure and minimal architecture for
(establishing dynamic) root of trust.” in Ndss, vol. 12, 2012, pp. 1-15.
G. Dessouky et al., “Litehax: lightweight hardware-assisted attestation
of program execution,” in ICCAD, 2018, pp. 1-8.

C. Shepherd et al., “Secure and trusted execution: Past, present, and
future-a critical review in the context of the internet of things and cyber-
physical systems,” in Trustcom/BigDataSE/ISPA, 2016, pp. 168-177.
G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in DAC, 2007, pp. 9-14.

[21]

[22]

(23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]
[31]

[32]

[35]
[36]

[37]

(38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]
[47]

(48]

[49]

[50]

IEEE INTERNET OF THINGS JOURNAL

“Physically Unclonable Function,” “https://www.secure-ic.com/
solutions/security-ips/physically-unclonable-function/”(last ~ accessed
March 2021).

“What makes PUF technology one of the best protections in
cryptography?” “https://www.maximintegrated.com/en/design/blog/
what-makes- puf-technology-one- of-the-best- protections-in-cryptography.
html”(last accessed March 2021).

A. Shamsoshoara et al., “A survey on physical unclonable function (puf)-
based security solutions for internet of things,” Computer Networks, vol.
183, p. 107593, 2020.

O. Giinlii, “Multi-entity and multi-enrollment key agreement with corre-
lated noise,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 1190-1202, 2021.

L. Kusters and F. M. J. Willems, “Secret-key capacity regions for
multiple enrollments with an SRAM-PUF,” [EEE Transactions on
Information Forensics and Security, vol. 14, no. 9, pp. 2276-2287, 2019.
H. Yildiz et al., “Plgakd: A puf-based lightweight group authentication
and key distribution protocol,” IEEE Internet of Things Journal, pp. 1-1,
2020.

U. Chatterjee et al., “A PUF-Based Secure Communication Protocol for
IoT,” TECS, vol. 16, no. 3, p. 67, 2017.

U. Rithrmair ef al., “Modeling attacks on physical unclonable functions,”
in CCS, 2010, pp. 237-249.

J. Kong et al., “Pufatt: Embedded Platform Attestation Based on Novel
Processor-Based PUFs,” in DAC, 2014, pp. 1-6.

C. Gu et al, “A modeling attack resistant deception technique for
securing PUF based authentication,” in AsianHOST, 2019, pp. 1-6.

C. Gu et al, “A modeling attack resistant deception technique for
securing lightweight-puf based authentication,” in JEEE TCAD, 2020.
M. Khalafalla and C. Gebotys, “PUFs deep attacks: Enhanced modeling
attacks using deep learning techniques to break the security of double
arbiter PUFs,” in DATE, 2019, pp. 204-209.

Y. Gao et al., “PUF-FSM: A controlled strong PUF,” TCAD, vol. 37,
no. 5, pp. 1104-1108, 2017.

J. Delvaux, “Machine-learning attacks on polypufs, ob-pufs, rpufs, lhs-
pufs, and puf—fsms,” IEEE Transactions on Information Forensics and
Security, vol. 14, no. 8, pp. 2043-2058, 2019.

R. Hsu et al., “Reconfigurable Security: Edge-Computing-Based Frame-
work for 10T,” IEEE Network, vol. 32, no. 5, pp. 92-99, 2018.

M. Aman et al., “Secure Data Provenance for the Internet of Things,”
in Int’l W. on IoT Privacy, Trust, and Security, 2017, pp. 11-14.

M. Majzoobi et al., “Slender PUF Protocol: A Lightweight, Robust,
and Secure Authentication by Substring Matching,” in S&P, 2012, pp.
33-44.

U. Kocabas et al., “Converse PUF-Based authentication,” in Int’l Conf.
on Trust and Trustworthy Computing. Springer, 2012, pp. 142-158.
S. Schulz et al., “Boot Attestation: Secure Remote Reporting with Off-
The-Shelf IoT Sensors,” in ESORICS, 2017, pp. 437-455.

Y. Lao et al., “Reliable PUF-Based Local Authentication with Self-
Correction,” TCAD, vol. 36, no. 2, pp. 201-213, 2016.

M. Barbareschi et al., “Authenticating IoT Devices with Physically
Unclonable Functions Models,” in 3PGCIC, 2015, pp. 563-567.

M. Aman et al., “Mutual Authentication in IoT Systems Using Physical
Unclonable Functions,” IEEE IoT J., vol. 4, no. 5, pp. 1327-1340, 2017.
C. J. Huth et al.,, “Securing Systems on the Internet of Things via
Physical Properties of Devices and Communications,” in IEEE Systems
Conf. (SysCon), 2015, pp. 8-13.

M. A. Qureshi and A. Munir, “Puf-rake: A puf-based robust and
lightweight authentication and key establishment protocol,” IEEE Trans.
on Dependable and Secure Computing, pp. 1-1, 2021.

F. Ganji et al., “PUFmeter a property testing tool for assessing the ro-
bustness of physically unclonable functions to machine learning attacks,”
IEEE Access, vol. 7, pp. 122513-122521, 2019.

——, “Having no mathematical model may not secure pufs,” Journal
of Cryptographic Engineering, vol. 7, no. 2, pp. 113-128, 2017.

——, “Rock’n’roll pufs: Crafting provably secure pufs from less secure
ones,” in J. Cryptographic Eng., vol. 11, 2019, pp. 33-48.

M. Barbareschi et al., “A PUF-based hardware mutual authentication
protocol,” Journal of Parallel and Distributed Computing, vol. 119, pp.
107-120, 2018.

S. S. Zalivaka et al., “Reliable and modeling attack resistant authen-
tication of arbiter puf in fpga implementation with trinary quadruple
response,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 4, pp. 1109-1123, 2019.

P. Gope et al., “Lightweight and practical anonymous authentication
protocol for RFID systems using physically unclonable functions,” IEEE

https://www.secure-ic.com/solutions/security-ips/physically-unclonable-function/
https://www.secure-ic.com/solutions/security-ips/physically-unclonable-function/
https://www.maximintegrated.com/en/design/blog/what-makes-puf-technology-one-of-the-best-protections-in-cryptography.html
https://www.maximintegrated.com/en/design/blog/what-makes-puf-technology-one-of-the-best-protections-in-cryptography.html
https://www.maximintegrated.com/en/design/blog/what-makes-puf-technology-one-of-the-best-protections-in-cryptography.html

EBRAHIMABADI et al.: A PUF-BASED MODELING-ATTACK RESILIENTAUTHENTICATION PROTOCOL FOR 10T DEVICES 19

[51]

[52]

(53]

[54]

[55]

[56]
(571

[58]

[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]

[70]

(711

[72]

(73]

(741

(751

[76]

[(77)

[78]

(791

(80]

Transactions on Information Forensics and Security, vol. 13, no. 11, pp.
2831-2843, 2018.

M. A. Qureshi and A. Munir, “Puf-ipa: A puf-based identity preserving
protocol for internet of things authentication,” in IEEE Annual Consumer
Communications Networking Conference (CCNC), 2020, pp. 1-7.

F. Farha et al., “SRAM-PUF based entities authentication scheme for
resource-constrained iot devices,” IEEE Internet of Things Journal, pp.
1-1, 2020.

M. Barbareschi et al., “A PUF-based mutual authentication scheme for
cloud-edges iot systems,” Future Generation Computer Systems, vol.
101, pp. 246-261, 2019.

P. Gope and B. Sikdar, “Lightweight and privacy-preserving two-factor
authentication scheme for iot devices,” IEEE Internet of Things Journal,
vol. 6, no. 1, pp. 580-589, 2019.

M.-D. Yu et al., “A lockdown technique to prevent machine learning on
PUFs for lightweight authentication,” TMSCS, vol. 2, no. 3, pp. 146-159,
2016.

G. T. Becker, “The gap between promise and reality: On the insecurity
of xor arbiter PUFs,” in CHES, 2015, pp. 535-555.

E. L. Vatajelu et al., “On the encryption of the challenge in physically
unclonable functions.”

O. Giinlii ef al., “Code constructions for physical unclonable functions
and biometric secrecy systems,” TIFS, vol. 14, no. 11, pp. 2848-2858,
2019.

B. Chen et al., “A robust sram-puf key generation scheme based on
polar codes,” in Global Communications Conf., 2017, pp. 1-6.

O. Giinlii er al., “Secure and reliable key agreement with physical
unclonable functions,” Entropy, vol. 20, no. 5, p. 340, 2018.

E. Ozturk et al., “Towards Robust Low Cost Authentication for Pervasive
Devices,” in Pervasive Computing and Comm., 2008, pp. 170-178.
S.-J. Wang et al., “Adversarial attack against modeling attack on PUF,”
in DAC, 2019, pp. 1-6.

B. Gassend et al., “Silicon Physical Random Functions,” in CCS, 2002,
pp. 148-160.

S. S. Zalivaka et al., “Reliable and modeling attack resistant authenti-
cation of arbiter PUF in FPGA implementation with trinary quadruple
response,” IEEE TIFS, vol. 14, no. 4, pp. 1109-1123, 2018.

S. Yue et al., “SVM Classification: its Contents and Challenges,” Applied
Mathematics-A J. of Chinese Univ., vol. 18, no. 3, pp. 332-342, 2003.
K. Gurney, An Introduction to Neural Networks. Taylor&Francis, 1997.
A. A. Adewuyi et al., “Ctrust: A dynamic trust model for collaborative
applications in the internet of things,” IEEE Internet of Things Journal,
vol. 6, no. 3, pp. 5432-5445, 2019.

“Xilinx ARTIX-7 FPGA,” “https://digilentinc.com”.

N. Hansen, “The cma evolution strategy: a comparing review,” in
Towards a new evolutionary computation. Springer, 2006, pp. 75-102.
“CMA-ES Attack,” “https://github.com/scluconn/DA_PUF_Library”.

P. H. Nguyen et al., “The interpose PUF: Secure PUF design against
state-of-the-art machine learning attacks,” CHES, pp. 243-290, 2019.
Y. Hori et al., “Quantitative and statistical performance evaluation
of arbiter physical unclonable functions on FPGAs,” Int’l Conf. on
Reconfigurable Computing and FPGAs, pp. 298-303, 2010.

L. E. Bassham et al, NIST SP 800-22: A statistical test suite for random
& pseudorandom number generators for cryptographic applications.
NIST, 2010.

“Product brief-jn5148 module (jennet,zigbee pro and ieee802.15.4 mod-
ule),” https://www.glynstore.com/content/docs/jennic/JN5148-MO-PB _
Ivl.1.pdf, 2010.

J. M. Kim et al., “Power adaptive data encryption for energy-efficient
and secure communication in solar-powered wireless sensor networks,”
Journal of Sensors, vol. 2016, 2016.

“On performance,” https://www.bearssl.org/speed.html#
measuring-speed, 2018.

B. Tsao et al., “Analysis of the duration and energy consumption of
aes algorithms on a contiki-based iot device,” in Proceedings of the
16th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, 2019, pp. 483-491.

L. Ertaul and A. Woodall, “IoT security: Performance evaluation of
Grain, MICKEY, and Trivium - lightweight stream ciphers,” in /[EEE
Conf. on Security and Management, 2017, pp. 32-38.

C. Paar and J. Pelzl, Understanding Cryptography — A Textbook for
Students Practitioners. Springer, 2010.

B. B. S. Deb, “Performance analysis of current lightweight stream
ciphers for constrained environments,” Sadhana, the Indian Academy
of Sciences, vol. 45, no. 256, 2020.

Mohammad Ebrahimabadi (GSM’21) received the
B.Sc. degree in electrical engineering from Zanjan
University, Zanjan, Iran, in 2008, and the M.Sc.
degree in electrical engineering from the Sharif
University of Technology, Tehran, Iran, in 2011.
He is working towards the Ph.D. degree in the
Department of Computer Science and Engineering at
the University of Maryland Baltimore County, MD,
USA since 2019. He is a member of the SECure,
REliable and Trusted Systems (SECRETS) research
lab. His current research focus is on hardware se-
curity, and in particular side-channel analysis and fault injection attacks
and countermeasures, sensor-assisted secure and reliable design, as well as
developing PUF-based authentication and secure communication protocols in
IoT frameworks.

Dr. Mohamed Younis (SM’97) is currently a pro-
fessor in the department of computer science and
electrical engineering at the university of Maryland
Baltimore County (UMBC). He received his Ph.D.
degree in computer science from New Jersey Insti-
tute of Technology, USA. Before joining UMBC,
he was with Honeywell International Inc., where
he led multiple projects for building integrated fault
tolerant avionics and dependable computing infras-
tructure. He also participated in the development of
the Redundancy Management System, which is a
key component of the Vehicle and Mission Computer for NASA’s X-33 space
launch vehicle. Dr. Younis’ technical interest includes network architectures
and protocols, wireless sensor networks, embedded systems, fault tolerant
computing, secure communication and distributed real-time systems. He has
published about 300 technical papers in refereed conferences and journals.
Dr. Younis has seven granted and three pending patents. In addition, he
serves/served on the editorial board of multiple journals and the organizing
and technical program committees of numerous conferences. Dr. Younis is a
senior member of the IEEE and the IEEE communications society.

Naghmeh Karimi (M’05) received the B.Sc., M.Sc.,
and Ph.D. degrees in Computer Engineering from
the University of Tehran, Iran in 1997, 2002, and
2010, respectively. She was a visiting researcher
at Yale University, USA between 2007 and 2009,
and a post-doctoral researcher at Duke University,
USA during 2011-2012. She has been a visiting
A assistant professor at New York University and
Rutgers University between 2012 and 2016. She
joined University of Maryland Baltimore County as
an assistant professor in 2017 where she leads the
SECure, REliable and Trusted Systems (SECRETS) research lab. She has
published three book chapters and authored/co-authored more than 60 papers
in referred conference proceedings and journal manuscripts. She serves as
an Associate Editor of the Springer Journal of Electronic Testing: Theory
and Applications (JETTA). She is also the corresponding guest editor of the
Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS);
special issue in Hardware Security in Emerging Technologies. Her current
research interests include hardware security, VLSI testing, design-for-trust,
design-for-testability, and design-for-reliability. She is a recipient of the
National Science Foundation CAREER Award in 2020.

https://digilentinc.com
https://github.com/scluconn/DA_PUF_Library
https://www.glynstore.com/content/docs/jennic/JN5148-MO-PB_1v1.1.pdf
https://www.glynstore.com/content/docs/jennic/JN5148-MO-PB_1v1.1.pdf
https://www.bearssl.org/speed.html#measuring-speed
https://www.bearssl.org/speed.html#measuring-speed

	sheet2
	IOT_2021_Send_To_Journal
	Introduction
	Related work
	System Model and Preliminaries
	System and Threat Models
	Preliminaries
	Arbiter-PUF
	Machine Learning

	Proposed Methodology
	Challenge SPlitting (CSP)
	 Ordering of Challenge Partitions in CSP
	Challenge Scrambling (CSP-S)
	Challenge Padding (CSP-P)
	Guidelines for Protocol Selection

	Experimental Results and Discussions
	Experimental Setup
	Experimental Results
	The effect of challenge splitting
	The impact of knowing the actual PUF size
	The efficacy of challenge scrambling
	The effect of challenge padding
	The effect of the training set size
	Resiliency Against the State-of-the-art PUF Attacks
	Implementation Robustness and Overhead

	Security and Performance Analysis
	CSP Overhead and Resilience to Modeling Attacks
	CSP resilience to modeling attacks
	CSP-related Overhead

	CSP-S Security and Overhead Analysis
	CSP-S resilience to modeling attacks
	CSP-S Overhead

	CSP-P Overhead and Modeling Attack Resilience
	CSP-P resilience to modeling attacks
	CSP-P Overhead

	Resiliency against Conventional Attacks
	Defeating the splitting scheme
	Preventing replay attacks
	Countering impersonation attacks

	Effect of Eavesdropping Range
	Comparing CSP with Conventional Cryptosystems

	Conclusion
	References
	Biographies
	Mohammad Ebrahimabadi
	Dr. Mohamed Younis
	Naghmeh Karimi

