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A B S T R A C T   

The 2017–2027 National Academies’ Decadal Survey, Thriving on Our Changing Planet, recommended Surface 
Biology and Geology (SBG) as a “Designated Targeted Observable” (DO). The SBG DO is based on the need for 
capabilities to acquire global, high spatial resolution, visible to shortwave infrared (VSWIR; 380–2500 nm; ~30 
m pixel resolution) hyperspectral (imaging spectroscopy) and multispectral midwave and thermal infrared 
(MWIR: 3–5 μm; TIR: 8–12 μm; ~60 m pixel resolution) measurements with sub-monthly temporal revisits over 
terrestrial, freshwater, and coastal marine habitats. To address the various mission design needs, an SBG Algo-
rithms Working Group of multidisciplinary researchers has been formed to review and evaluate the algorithms 
applicable to the SBG DO across a wide range of Earth science disciplines, including terrestrial and aquatic 
ecology, atmospheric science, geology, and hydrology. Here, we summarize current state-of-the-practice VSWIR 
and TIR algorithms that use airborne or orbital spectral imaging observations to address the SBG DO priorities 
identified by the Decadal Survey: (i) terrestrial vegetation physiology, functional traits, and health; (ii) inland 
and coastal aquatic ecosystems physiology, functional traits, and health; (iii) snow and ice accumulation, 
melting, and albedo; (iv) active surface composition (eruptions, landslides, evolving landscapes, hazard risks); 
(v) effects of changing land use on surface energy, water, momentum, and carbon fluxes; and (vi) managing 
agriculture, natural habitats, water use/quality, and urban development. We review existing algorithms in the 
following categories: snow/ice, aquatic environments, geology, and terrestrial vegetation, and summarize the 
community-state-of-practice in each category. This effort synthesizes the findings of more than 130 scientists.   

1. Introduction 

The 2017–2027 Decadal Survey, Thriving on our Changing Planet, was 
released in January 2018 by the committee on the Decadal Survey for 
Earth Science and Applications from Space (ESAS) of the National 
Academy of Sciences, Engineering and Medicine (NASEM) Space Studies 
Board (NASEM, 2018). The report provides a vision and strategy for 
Earth observation that informs federal agencies responsible for the 
planning and execution of civilian space-based Earth-system programs 
in the coming decade, including the National Aeronautics and Space 
Administration (NASA), the National Oceanic and Atmospheric 
Administration (NOAA), and the U.S. Geological Survey (USGS). High- 
priority emphasis areas and targeted observables include global-scale 
Earth science questions related to hydrology, ecosystems, weather, 
climate, and solid earth. Notably, the Decadal Survey identified Surface 
Biology and Geology (SBG) as a Designated Observable (DO) to acquire 
concurrent global spectroscopic (hyperspectral) visible to shortwave 
infrared (VSWIR; 380–2500 nm) and multispectral midwave and ther-
mal infrared (MWIR: 3–5 μm; TIR: 8–12 μm) imagery at high spatial 
resolution (~30 m in the VSWIR and ~ 60 m in the TIR) and sub- 
monthly temporal resolution globally. An introduction to the mission 
and summary of the first community workshop is provided by Schneider 
et al. (2019). The final sensor characteristics will be determined during 
the mission formulation phase, but the Decadal Survey provides guid-
ance for a VSWIR instrument with 30–45 m pixel resolution, ≤16 day 
global revisit, SNR > 400 in the VNIR, SNR > 250 in the SWIR, and 10 
nm sampling in the range 380–2500 nm. It also recommends a TIR in-
strument with more than five channels in 8–12 μm, and at least one 
channel at 4 μm, ≤60 m pixel resolution, ≤3 day global revisit, and noise 
equivalent delta temperature (NEdT) ≤0.2 K (NASEM, 2018; Schimel 
et al., 2020). Alone, SBG will provide a comprehensive monitoring 
approach globally. Complemented with systems like Landsat and 
Sentinel-2, global change processes with faster than 16-day global 
change rates can be mapped—at lower spectral resolution—but high 

temporal revisit. Synergistic approaches to coexisting Earth observation 
missions are assumed to deliver additional science beyond the SBG 
promise (cf. Malenovsky et al., 2012). 

This unique combination of high spatial resolution VSWIR and TIR 
spectral imagery is intended to capture the hydrological, ecological, 
weather, climate, and solid earth dynamic states of the Earth’s surface 
and quantify uncertainties. The results will address a range of 
outstanding global Earth science questions and facilitate new applica-
tions that target pressing societal priorities. 

Spectral imaging has been employed since the earliest days of Earth 
remote sensing, originating with black and white, then color photog-
raphy from balloons, pigeons, and airplanes (Chuvieco, 2020). The first 
satellite imagery of the Earth was returned by NASA’s TIROS Program 
(Television Infrared Observation Satellite) in the early 1960s (Stroud, 
1960; Bandeen et al., 1961), demonstrating the power of space-based 
observations to improve global weather forecasts. Since then, space- 
based TIR and reflected solar spectral imagery has been acquired more 
or less continuously (Manna, 1985). 

Passive remote sensing techniques have expanded to span the elec-
tromagnetic spectrum from the ultraviolet to microwave, and active 
remote sensing such as radar and lidar has been used to provide addi-
tional information on forest structure, topography, oceanography, 
clouds, and many other areas, with applications in biomass estimation, 
earthquake monitoring, weather predictions, sea level rise, among many 
others (Thenkabail et al., 2018). Active and passive imaging in the mi-
crowave is often used in the monitoring of sea ice, snow and water 
content of soils and vegetation, alongside other applications (Thenkabail 
et al., 2018). All of these measurements are vital to understand the 
whole Earth surface and are covered in part by existing and other rec-
ommended missions in the Decadal Survey (NASEM, 2018). Here we 
focus on passive imaging in the visible to thermal wavelengths. We 
define panchromatic imagery as a single image acquired over a single 
(potentially broad) spectral channel; multispectral imagery as the 
simultaneous acquisition of tens of channels; and hyperspectral imagery 
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as the simultaneous acquisition of hundreds of channels. 
Multispectral instruments such as Landsat 8 Operational Land 

Imager, Sentinel-2 MultiSpectral Instrument, Terra and Aqua MODIS, 
Suomi National Polar-Orbiting Partnership VIIRS, and others are 
commonly used for applications such as landcover classification, wild-
fire detection, urban growth, volcanology, detection of harmful algal 
blooms and oil spills, estimation of chlorophyll concentration, primary 

production, water transparency, resuspended particles, among others 
(Chuvieco, 2020). However, additional information is to be gained by 
measuring contiguous swaths of the spectrum at high spectral resolution 
(usually 10 nm or less) (Schimel et al., 2020). We label this spectroscopy 
(Schaepman et al., 2009), which, alongside thermal multispectral ob-
servations, forms the key measurement of SBG. We anticipate that these 
data will be complementary to the existing suite of remote sensing 

Fig. 1. Examples of spectroscopic imagery for terrestrial applications. Top and third rows: true color composites acquired by airborne AVIRIS-Classic (VSWIR), 
AVIRIS-NG (VSWIR), PRISM (visible to near-infrared; VNIR, 350-1050 nm) and HyTES (TIR) instruments over different biomes. Second and fourth rows: A minimum- 
noise fraction (MNF; Green et al., 1988) transformation is applied to each spectroscopic image to illustrate the additional information that can be derived from the 
spectral content (MNF bands 2,3,4 as red, green, blue, respectively). Each image covers approximately 4 km2. The desert image was acquired by HyTES over Cuprite, 
Nevada, USA on 3 May 2015 (https://hytes.jpl.nasa.gov/order); the boreal forest image was acquired by AVIRIS-NG in the Northwest Territories, Canada on 11 
August 2018 (https://avirisng.jpl.nasa.gov/dataportal/); the mangrove scene was acquired by AVIRIS-NG in Louisiana, USA on 9 May 2015; the Great Barrier Reef, 
Australia was acquired by PRISM on 17 September 2016 (https://prism.jpl.nasa.gov/prism_data.html); the agricultural image was acquired by AVIRIS-NG in Zurich, 
Switzerland on 9 July 2018; the grasslands image was acquired by AVIRIS-NG in Oklahoma, USA on 14 June 2017; the temperate forest was acquired by AVIRIS-NG 
in Wisconsin, USA on 4 September 2015; and the snow image was acquired by AVIRIS-Classic over Senator Beck Basin, Colorado on 15 June 2011. For AVIRIS- 
Classic, AVIRIS-NG and PRISM, color images are shown using the channels closest to 640 nm, 550 nm, and 470 nm for red, green and blue, respectively. For 
HyTES, a false-color composite is shown using 11.04 μm, 9.35 μm, and 8.56 μm as red, green, and blue, respectively. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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instruments planned and currently in orbit. In many applications, such 
as the identification and quantification of the biochemical components 
of plant canopies, the Decadal Survey states that spectroscopic imagery 
is the “only” sufficient technology (NASEM, 2018; Schimel et al., 2020). 

Spectroscopic imagery contains far more information than can be 
seen by the human eye, as illustrated in Fig. 1, where a depiction of a 
small subset of the spectroscopic data reveals mineral types, vegetation 
species and health, water quality, and more. The VSWIR spectrum 
covers wavelengths that provide information about vegetation pig-
ments, structure, water content, and non-pigment biochemistry; mineral 
composition; snow grain size and dust; water quality; and other appli-
cations (Fig. 2). SBG observations in this range will also be critical to 
derive complementary and high spatial resolution (compared to heritage 
ocean color sensors) Essential Ocean Variables (EOVs) and Essential 
Biodiversity Variables (EBVs) that are the basis for new aquatic science 
and applications (Muller-Karger et al., 2018; O’Connor et al., 2020). The 
TIR measures wavelengths that enable identification of minerals that do 
not have absorption or reflectance features in the VSWIR and provides 
information about vegetation water content (Fig. 3). In addition to 
emissivity changes, the midwave infrared (MWIR, 3–5 μm) and TIR 
radiance can also be used to compute land surface temperature. This is 
important for monitoring fires and lava flows, as well as drought and 
vegetation stress (Fig. 4). 

The information content of each acquired scene is a function of the 
spatial and spectral resolution as well as the signal-to-noise ratio (SNR). 
Within hyperspectral imagery, there is often a tradeoff between noise 
and resolution, as finer division of pixels or channels results in fewer 
available photons per pixel per channel, whereas broad channels may 

return more photons but miss key identifying features. The intrinsic 
dimension (ID) of an image is the number of unique detectable classes 
within an image or the observable degrees of freedom within a partic-
ular electromagnetic range. A survey of dimensionality across space, 
time, and land cover types is shown for airborne hyperspectral imaging 
in Thompson et al. (2017a), and the fusion of VSWIR and TIR ranges has 
been shown to yield significantly more degrees of freedom than a single 
modality alone (Cawse-Nicholson et al., 2019). 

The Decadal Survey calls for specific products, including Earth sur-
face temperature and emissivity; VSWIR reflectance; vegetation traits; 
evapotranspiration; substrate composition; volcanic gases and plumes; 

Fig. 2. Example spectra of reflected light to illustrate processes at different 
wavelengths. For instance, vegetation pigments (e.g., chlorophyll) can be 
evaluated in groups of narrow channels in the range 400–700 nm, with 
different pigments expressing absorption features at a range of wavelengths, 
whereas structure (e.g., size and arrangement of leaves within a canopy or 
cellular structure within leaves) impacts the range 0.8–1.2 μm, and lignin, 
cellulose, proteins, and other non-pigment plant components impact the 
shortwave infrared wavelengths. Many diagnostic mineral features are found 
beyond 2 μm, and these can be small and require fine spectral resolution (<10 
nm) to distinguish. The boxes encompass the features of interest, and several 
spectral channels are required within each box to determine the feature shape. 
Snow grain size and dust impact the amplitude (denoted by arrows) of snow 
reflectance around 1 and 0.5 μm, respectively. Floating algae causes an increase 
in reflectance in a water spectrum between 0.7 and 1 μm (note that when algae 
do not aggregate at the surface, reflectance in this wavelength range is typically 
much lower than in the visible, and both reflectance shapes and magnitudes can 
vary substantially). In all applications, multiple absorption features throughout 
the visible to shortwave infrared shed light on important physical characteris-
tics and processes on the ground. 

Fig. 3. Silicates and feldspar minerals are difficult to detect using the VSWIR 
spectral range but can be identified by features in the TIR. Water content in 
vegetation also impacts the energy emitted in the thermal part of the spectrum, 
and thermal indicators of vegetation stress are used as an input into evapo-
transpiration models. A combination of VSWIR and TIR wavelength ranges 
yields complementary spectral information. 

Fig. 4. The Planck curve shows the radiation of a blackbody at different tem-
peratures across the electromagnetic spectrum. The radiation peaks at different 
wavelengths depending on temperature: extreme heat such as fires and lava are 
best detected in the midwave infrared (~4 μm), whereas typical Earth surface 
temperatures are best detected in the range 7–12 μm. Small changes in surface 
temperature can be used to detect the beginnings of plant stress, before the 
vegetation turns brown. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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high temperature features; water biogeochemistry; water biogeophysics; 
aquatic and terrestrial classification; and snow albedo. Here, we focus on 
the state-of-the-practice algorithms used to derive the products identi-
fied by the Decadal Survey. All of the overarching science and societal 
questions/goals assigned to the SBG DO were considered when selecting 
products. Decadal Survey questions are divided into the focus areas of 
the hydrological cycle (H), weather (W), terrestrial and aquatic eco-
systems and natural resource management (E), climate variability and 
change (C), and Earth surface and interior (S). These labels are used in 
tables henceforth, with the exact question codes provided in the Decadal 
Survey (NASEM, 2018). 

This paper is organized as follows: in Section 2, we survey the state- 
of-practice algorithms for SBG core products; in Section 3, we address 
caveats and other algorithm/product considerations; Sections 4 and 5 
follow with a discussion and conclusion, respectively. 

2. The diversity of surface imaging algorithms 

The SBG Algorithms Working Group surveyed more than 130 im-
aging spectroscopy researchers spanning the hydrology, ecosystems, 
weather, climate, and solid earth communities. This year-long inter-
disciplinary collaboration gathered information on algorithms and data 
products that address the SBG science questions. Section 2 summarizes 
22 potential product suites and nearly 100 subproducts contained 
therein, per the survey results. In section 2.1, we cover universal prod-
ucts, and in section 2.2, we detail products within each science and 
application domain. This work serves as a record of the state-of-the- 
practice as it represents a community of scientists interested in the 
SBG Designated Observable. We do not present the list of algorithms that 
will be implemented for SBG, but rather document the breadth of po-
tential algorithms suitable for SBG, with a focus on those that require 
measurements such as are proposed for SBG. 

2.1. Universal algorithms 

Several universal preprocessing steps are required to produce many 
of the products listed in Section 2.2, including atmospheric correction in 
the VSWIR and TIR, spectral unmixing and sometimes land cover 
classification. 

2.1.1. Atmospheric correction 
Most products described in this manuscript start from a foundation of 

atmospheric correction, which estimates atmospheric properties related 
to aerosols, trace gases, and water vapor as a basis to remove atmo-
spheric interference and convert data to surface reflectance or emissiv-
ity. The atmosphere varies at fine spatiotemporal scales, with the time 
scales of variation decreasing in duration at increasingly finer spatial 
resolutions. Thus, while climatological or model-based estimates may 
provide background constraints, it is important to estimate the atmo-
spheric contribution to the spectral and thermal signals directly from the 
targets being measured. Historically, different communities have 
applied algorithms developed for their specific domains and in-
struments. In the terrestrial domain, VSWIR and TIR retrievals have 
been treated separately due to the underlying differences in radiative 
transfer and physics between the two wavelength regions. 

2.1.1.1. Visible shortwave infrared (VSWIR). The SBG concept involves 
collection of imaging spectroscopy data with global coverage and pro-
vision of surface reflectance maps with per-spectral channel and per- 
pixel uncertainty estimates. Those uncertainties are of special signifi-
cance for global observations, as different biomes, atmospheric condi-
tions, observation geometries, and illumination geometries yield 
spatially and temporally varied retrieval accuracies (Thompson et al., 
2019a, 2019c). The primary objective of VSWIR atmospheric correction 
is the accurate retrieval of surface reflectance, removing effects of light 

absorption and scattering by aerosols, water vapor, ozone, and other 
gases, particularly in visible wavelengths and with variation in elevation 
and solar illumination. In addition to surface reflectance, atmospheric 
correction algorithms also yield useful maps of atmospheric column 
vapor content. 

In the VSWIR, recent algorithm surveys include Frouin et al. (2019) 
for ocean environments, and Thompson et al. (2019b) and Ientilucci and 
Adler-Golden (2019) for terrestrial environments. In aquatic and near- 
coastal environments, only a small fraction of sensor-reaching radi-
ance constitutes relevant information about water-column or benthic 
properties, requiring a more rigorous accounting of atmospheric signal 
than is necessary for terrestrial applications (Gordon and Wang, 1994; 
Gordon, 1997; Wang, 2007; Palacios et al., 2015). Generally, this ne-
cessitates high-performance instrumentation and calibration (Meister 
et al., 2011). Traditionally, aquatic algorithms are based on the as-
sumptions that reflectance at longer wavelengths—usually red, near- 
infrared (NIR), and shortwave infrared (SWIR) —is either negligible (i. 
e., below sensor noise) or well correlated to enable iterations. Such as-
sumptions are mostly applicable, with exceptions due to oil spills (Clark 
et al., 2010; Lu et al., 2019) or other types of floating matters on the 
water surface (Hu, 2009; Qi et al., 2016; Wang and Hu, 2016; Qi et al., 
2020). While hyperspectral algorithms developed for atmospheric 
correction in ocean environments have shown promise for coastal and 
inland waters (Ibrahim et al., 2018), other alternative methods have also 
been developed, such as curve-fitting algorithms (POLYMER; Steinmetz 
et al., 2011) and neural network models (OCSMART; Fan et al., 2017). In 
developed coastal areas, in addition to aerosols, highly variable 
absorbing trace gases such as NO2 introduce additional uncertainties in 
estimates of surface reflectance at wavelengths traditionally used for 
retrievals of phytoplankton pigments and dissolved organic carbon dy-
namics (Ahmad et al., 2007; Tzortziou et al., 2014). Regional/empirical 
algorithms (e.g., line height methods) have proven practical for the 
retrieval of some water quality parameters (e.g., chlorophyll-a) directly 
from top-of-atmosphere (TOA) radiance/reflectance, taking advantage 
of strong reflectance features that are prominent even in the presence of 
atmospheric effects (Stumpf et al., 2016; Binding et al., 2018). 

In general, atmospheric correction approaches fall into three cate-
gories: (1) empirical or scene-based approaches, which are not discussed 
here because they do not scale to global implementation, (2) sequential 
methods, which estimate atmospheric content from radiance data prior 
to inverting for surface reflectance, and (3) simultaneous approaches that 
fit atmospheric and surface properties simultaneously. Sequential 
methods are generally faster because they use fast algebraic solutions or 
pre-formulated lookup tables (LUTs) from cached sets of common op-
tical atmospheric conditions. The atmospheric state is estimated using 
features in the radiance spectrum, with reflectance then inverted from 
radiance as an algebraic function of atmospheric transmission and path 
radiance from the LUT (Thompson et al., 2019a). Examples include 
ATREM (Gao et al., 2009), ATCOR (Richter and Schläpfer, 2017), and 
FLAASH (Perkins et al., 2012) for the land, and different, long-standing 
algorithms for the ocean (Gordon and Wang, 1994; Gordon, 1997; 
Montes et al., 2001; Wang, 2007). Complex landscapes confound 
sequential methods (Thompson et al., 2019a). While some simultaneous 
methods are slower due to iterative computations (i.e., optimization), 
they fit the entire spectrum by concurrently solving for the atmosphere 
and surface; that is, they do not make assumptions about the atmosphere 
as sequential methods do. This provides the accuracy and flexibility to 
measure subtle atmospheric parameters lacking obvious visible cues. 
Statistical versions may incorporate background information for 
improved accuracy, and enable rigorous uncertainty accounting (e.g., 
Optimal Estimation in Thompson et al., 2018, 2019a, 2019b, 2019c; and 
Chomko et al., 2003; Steinmetz et al., 2011; Bayesian Methods in Frouin 
and Pelletier, 2015; Frouin and Gross-Colzy, 2016). This class of algo-
rithm has the flexibility to use diverse ancillary surface and atmosphere 
information where available, including multiple observations of the 
same location that can serve as a prior reflectance base map enabling 

K. Cawse-Nicholson et al.                                                                                                                                                                                                                     



Remote Sensing of Environment 257 (2021) 112349

6

improved accuracy. However, these methods often constrain the 
retrieved surface reflectance to known sets of spectra and may not 
accurately retrieve new spectral information, particularly because 
global hyperspectral data are lacking, especially in aquatic environ-
ments (Dierssen et al., 2020). Finally, atmospheric correction algorithms 
designed for terrestrial and aquatic applications often have fundamental 
differences in defining the atmospheric path radiance: terrestrial algo-
rithms typically do not include the surface reflected light, but aquatic 
algorithms include the light due to Fresnel reflection, a function of not 
only water’s refraction index and observing geometry, but also winds 
(for surface roughness calculations). 

2.1.1.2. Thermal infrared (TIR). Maximum radiometric emission for the 
typical range of Earth surface temperatures occurs in two infrared 
spectral “window” regions that have minimal interference from atmo-
spheric absorption and scattering—the 3–5 μm MWIR and the 8–12 μm 
TIR. The radiance measured in these windows includes emission, ab-
sorption and scattering by atmospheric constituents. As with VSWIR, the 
purpose of the atmospheric correction for TIR data is to remove the 
atmospheric effects and isolate those features of the observation that are 
intrinsic to the surface. Only after accurate atmospheric correction can 
reliable surface temperatures and spectral emissivity be retrieved. 

For TIR, a sequential approach is generally used by first estimating 
atmospheric profiles, then inputting these into a radiative transfer 
model such as MODTRAN (Berk et al., 1999) or Radiative Transfer for 
TOVS (RTTOV; where TOVS is the TIROS Operational Vertical Sounder, 
and TIROS is the Television Infrared Observation Satellite) (Matricardi 
et al., 2001) to estimate the necessary atmospheric parameters, and then 
inverting to obtain surface radiance. Even with perfect knowledge of the 
atmospheric properties, the problem of separating surface temperature 
and emissivity from multispectral TIR measurements is a non- 
deterministic problem. This is because the total number of measure-
ments available (N channels) is always less than the number of variables 
to be solved for (emissivity in N channels, and one surface temperature 
= N + 1). If the emissivity is assumed a priori from a land-cover classi-
fication or over water, then the problem becomes deterministic with 
only the surface temperature being the unknown variable, and various 
split-window formulations can be used (Price, 1984; Prata, 1994; Wan 
and Dozier, 1996; Coll and Caselles, 1997; Yu et al., 2008; Minnett et al., 
2019). Non-deterministic approaches can be applied to multispectral 
sensors with three or more channels in the TIR (e.g., ASTER, ECO-
STRESS, MODIS) so that spectral variations in the retrieved emissivity 
can be related to surface composition and cover, in addition to retrieving 
surface temperatures. In non-deterministic approaches, the temperature 
and spectral emissivity are solved using an additional constraint or extra 
degree of freedom that is independent of the data source. These types of 
solutions are able to account for dynamic land surface changes such as 
those due to wildfires or surface soil moisture since the emissivity 
retrieval is based on spectral variance in the observed radiances. 
Example non-deterministic approaches include the MODIS day/night 
algorithm (Wan and Li, 1997), the temperature-independent spectral 
indices (TISI) algorithm (Becker and Li, 1990), Kalman filter (KF) 
(Masiello et al., 2013), and the Temperature Emissivity Separation (TES) 
algorithm (Gillespie et al., 1998; Kealy and Hook, 1993). Of these, the 
TES algorithm is currently used operationally for a number of NASA TIR 
sensors in low-Earth orbit, including VIIRS (VNP21) in Version 1, 
MODIS land surface temperature (LST) (MOD21/MYD21) products in 
Collection 6 (Hulley et al., 2012; Islam et al., 2017; Malakar and Hulley, 
2016), and the ECOSTRESS Level-2 standard products (Hulley and 
Hook, 2018). 

2.1.2. Spectral Unmixing and surface cover 
Precursor steps are necessary for some algorithms in all application 

areas, such as partitioning pixels into cover fractions (Roberts et al., 
1998; Asner and Heidebrecht, 2002; Painter et al., 2003; Asner et al., 

2009; Jones et al., 2018) or pre-classification of surface cover necessary 
for implementation of surface-type dependent algorithms (e.g., view- 
angle dependent corrections where surface vertical structure affects 
model parameterization; Jensen et al., 2018). Likewise, some down-
stream algorithms may require fractional cover to correct for non- 
vegetation proportions of pixels (Serbin et al., 2015). Here, we do not 
exhaustively review the range of classification approaches available for 
generation of categorical maps from SBG data, but we note that (1) basic 
cover type classifications will likely be necessary for some algorithms for 
every scene that is acquired to reduce issues with geometric misalign-
ment or change that would result from using stock classification layers, 
and (2) a range of methods are available for classifying imagery based on 
reference (training) data (e.g., random forests, support vector ma-
chines), and that VSWIR and TIR data offer opportunities for improved 
detail and accuracy in surface cover classification compared to multi-
spectral imagery (Pande and Tiwari, 2013; Loncan et al., 2015). 

Fractional cover algorithms allow for mapping of subpixel surface 
composition by finding the best-fit combination and fraction of pure 
“endmembers” that represent a pixel spectrum. Spectral features caused 
by chemical and/or particle size differences between different surfaces 
are essential for distinguishing endmembers and modeling their frac-
tional contributions to mixed pixels. The fine resolution and contiguous 
spectra provided by VSWIR instruments are able to resolve the spectral 
features needed to “unmix” pixel spectra using spectral mixing models. 
Example applications include fractional snow cover and grain size 
(Painter et al., 2003), fractional cover of substrate and photosynthetic 
and non-photosynthetic vegetation (Dennison et al., 2019), forest cover, 
deforestation, and disturbance (e.g., Asner et al., 2005), burn proportion 
and recovery (Tane et al., 2018), fractional cover of impervious surfaces 
and vegetation in urban environments (Roberts et al., 2015), fire frac-
tional area (Dennison et al., 2006), fractional cover of coral, algae, and 
sand (Hochberg and Atkinson, 2003), and fractional coverage of floating 
materials like vegetation (Wang et al., 2019) and plastic debris (Bier-
mann et al., 2020). In the aquatic community, spectroscopic methods 
have been demonstrated for numerous retrievals related to water surface 
and column composition (Roesler et al., 2003; Bracher et al., 2009) and 
were recommended for spaceborne spectrometers (Devred et al., 2013), 
but approaches have not been widely tested across diverse aquatic re-
gimes (Muller-Karger et al., 2018). Various methods have been proposed 
to unmix phytoplankton groups from hyperspectral reflectance with the 
majority focused on decomposing reflectance and/or absorption fea-
tures related to pigments (Palacios et al., 2015; Wang et al., 2016; Chase 
et al., 2017; Mouw et al., 2017), with others focused on statistical 
methods using eigenvalue-eigenvector decomposition (Ortiz et al., 
2019) or neural networks (Hieronymi et al., 2017). Fractional cover of 
various floating algae on the water surface has been explored by Hu 
et al. (2009), Qi et al. (2016), and Wang and Hu (2016). 

2.2. Focused products and algorithms 

Once the reflectance and emissivity are estimated from radiance 
data, a large number of specific algorithms exist to answer the science 
questions laid out in the Decadal Survey. In this section, we cover the 
algorithms used in snow/ice, aquatic environment, geology, and 
terrestrial vegetation applications. For all of the algorithms reported, we 
also note dependencies, which are intermediate algorithms or products 
necessary for implementation of an algorithm. An example is BRDF 
(bidirectional reflectance distribution function) and topographic 
correction for sun-sensor-target geometry that is sometimes needed for 
vegetation studies (Ma et al., 2020; Vögtli et al., 2021). In fact, these 
intermediate algorithms may result in products for distribution them-
selves, but an exhaustive list of potential intermediate algorithms is 
beyond the scope of this paper; such information can be found in indi-
vidual references associated with specific products. 

K. Cawse-Nicholson et al.                                                                                                                                                                                                                     



Remote Sensing of Environment 257 (2021) 112349

7

2.2.1. Snow 
Monitoring of snow is important because large populations rely on 

snowmelt for water availability. In addition, snow has associated im-
plications for water resources, weather, climate, flooding, and drought. 
The melt rate of snow is affected by snow grain size, presence of algae 
and particulates, surface temperature, and albedo. In addition, it can be 
difficult to separate snow from clouds in optical imagery, presenting 
challenges to the determination of the fractional area occupied by snow. 
Historically, MODIS data have been used to provide global maps of snow 
cover (Rittger et al., 2013). However, MODIS is a discontinuous multi- 
band radiometer with isolated 50–100 nm wide spectral bands, 
whereas the SBG VSWIR instrument is envisioned to provide continuous 
spectral coverage from 400 to 2500 nm with ~10 nm spectral resolution. 
The combination of improved spectral resolution and continuous spec-
tral coverage provides dramatically increased information content/ 
spectral dimensionality (Thompson et al., 2018). Hyperspectral data 
leverage the entire spectrum to more accurately determine snow albedo, 
grain size, cloud cover over snow, and unmix pixels containing both 
vegetation and snow (Painter et al., 2013). A model developed by 
Painter et al. (2013) compares the observed snow reflectance (scaled by 
a hemispherical-directional reflectance factor; HDRF) to a library 
spectrum. The absorption feature at 1.03–1.06 μm can be used to derive 
snow grain size, and the difference between the observed snow spectrum 
and a library spectrum of the same grain size can be used to determine 
light absorbing impurities (Painter et al., 2013). Table 1 lists the snow 
subproducts with their dependencies and heritage, while Table 2 lists 
the algorithms typically used to derive these subproducts. 

2.2.2. Aquatic environment 
The aquatic environment comprises inland seas, lakes and rivers; 

nearshore coastal, estuarine and oceanic waters; and the margins of 
water bodies near shorelines or the edges of ice. Study areas include 
emergent wetland and submerged benthic habitats; floating biotic and 
abiotic materials; water column ecology, water quality and biochemistry 
properties; and coastline mass flux and dynamics (Turpie et al., 2015a). 
The nature of the aquatic environment inherently presents additional 
challenges to retrieving information from the recorded signal. Besides 
atmospheric effects mentioned in 2.1.1.1, the recorded signal is also 
affected by glint (Wang and Bailey, 2001; Hochberg et al., 2003; Hedley 
et al., 2005; Goodman et al., 2008; Kay et al., 2009; Hu, 2011), and 
bubbles and whitecaps (Frouin et al., 1996; Dierssen, 2019). The ne-
cessity to correct for these effects depends on the particular algorithm 
used to retrieve a data product (Hochberg et al., 2011). Moreover, the 
added optical complexity of the water column itself often requires the 
generation of subproducts such as inherent optical properties (Lee et al., 
2009) and bathymetry (Lee et al., 1998; Lee et al., 1999; Goodman and 
Ustin, 2007; Dekker et al., 2011; Thompson et al., 2017b; Barnes et al., 
2018; Garcia et al., 2020) as intermediate outputs for retrieval of water 
column and benthic properties. Spectral techniques can provide 

characterization of various types of floating algae and other floating 
matter (Qi et al., 2020), carbon:chlorophyll ratios for kelp (e.g., Bell 
et al., 2015) or changes in fluorescence yielding satellite-derived esti-
mates of phytoplankton physiology (e.g., Behrenfeld et al., 2009). Im-
aging spectroscopy, combined with thermal imagery, was recommended 
for estimating ecological conditions in the water column (Devred et al., 
2013). The combination of imaging spectroscopy and thermal imagery 
can also offer new insight to aquatic processes along the margins of the 
sea, including the effects of freshwater discharge to benthic ecosystem 
distribution and composition (Jo et al., 2019). Imaging spectroscopy is 
also expected to provide useful data for assessment of inland water 
quality (Dekker and Hestir, 2012), provided the instrument can suffi-
ciently resolve water bodies from surrounding terrain (Hestir et al., 
2015), and with reduced uncertainty of targeted spectral data support-
ing algorithms utilizing in-water and near-surface validation (Guild 
et al., 2020). Table 3 lists the aquatic subproduct suites with their de-
pendencies and heritage, while Tables 4-10 list the algorithms typically 
used to derive these subproducts. 

2.2.2.1. Water biogeochemistry. Water biogeochemistry (Table 4) and 
water quality (section 2.2.2.2, Table 5) comprise overlapping areas of 
application for which differences in visible to near infrared (VNIR) ab-
sorption, scattering, and reflectance of water column constituents 
enable their retrieval. Water biogeochemistry also overlaps with entries 
under the water column environment (section 2.2.2.5, Table 8). Over-
lapping spectral features can confound explicit discrimination among 
some constituents in both categories, necessitating grouping of re-
trievals of some products (e.g., sediments and organic particulate mat-
ter). Note that entries on Tables 4 and 5 are not necessarily mutually 
exclusive; an important need for the imaging spectroscopy community 
moving forward is for an agreed upon terminology and set of definitions 
and an understanding of the overlaps among retrieved parameters. 

2.2.2.2. Water quality. In our survey, the term “water quality” refers to 

Table 1 
Snow products possible from SBG, including their dependencies, requirements for solar zenith angle (SZA; degrees), view zenith angle (VZA; degrees), and heritage.  

Products Dependencies External Max 
SZA 

Max 
VZA 

VSWIR MWIR TIR Mission/ 
Instrument 
Heritage 

Spatial Areas 

Snow fraction Cloud Filter, Reflectance  75 45 X  X ASO, AVIRIS-C, 
AVIRIS-NG, 

Terrestrial 
cryosphere 

Snow albedo Cloud filter, HDRF reflectance, TOA 
radiance, surface temp, snow algae 

Snow/sea ice 
discriminator 

75 45 X   ASO, AVIRIS-C, 
AVIRIS-NG, 

Terrestrial 
cryosphere 

Snow/ice surface 
temperature 

Cloud filter, thermal radiance      X ECOSTRESS Terrestrial 
cryosphere 

Snow - light 
absorbing particles 

Cloud filter, HDRF corr. Reflectance  75 45 X   ASO, AVIRIS-C, 
AVIRIS-NG 

Terrestrial 
cryosphere 

Snow algae 
concentration 

Cloud filter, HDRF corr. Reflectance  75 45 X   ASO, AVIRIS-C, 
AVIRIS-NG 

Terrestrial 
cryosphere 

Snow grain size Cloud filter, HDRF corr. Reflectance  75 45 X   ASO, AVIRIS-C, 
AVIRIS-NG 

Terrestrial 
cryosphere  

Table 2 
Examples of algorithms used to produce snow products.  

Subproduct Citations 

Light absorbing 
particles 

Painter et al. (2013); Painter et al. (2016); Khan et al. (2017) 

Snow albedo Stamnes et al. (2007); Painter et al. (2013); Painter et al. 
(2016) 

Snow algae 
abundance 

Painter et al. (2001) 

Snow algae 
composition 

Khan et al. (2020) 

Grain size Painter et al. (2013); Painter et al. (2016) 
Snow cover fraction Hall et al. (2002); Painter et al. (2003); Metsämäki et al. 

(2005); Q. Zhang et al. (2020a, 2020b)  
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constituents of the water column that are detectable using imaging 
spectroscopy and for which some level of value could be assessed (e.g., 
sediment concentrations due to erosion and runoff or chlorophyll con-
centrations as a result of eutrophication). Some of the water quality 
subproducts are reformulations of biogeochemistry (Table 4) or water 
surface environment (Table 7) subproducts, and can be utilized inde-
pendent of value judgment as measures of biological composition of the 
water column habitat (e.g., different pigment concentrations represen-
tative of different taxa present). 

2.2.2.3. Benthic environment. Benthic habitats include optically shallow 
ecosystems that reside on the seafloor, such as coral reefs and seagrass. 
In this domain, the signal at the water surface includes a combination of 
reflectance from both the benthic surface and the water column (e.g., 
Maritorena et al., 1994), so algorithms typically resolve this intercon-
nectedness by either simultaneously or sequentially deriving the three 

Table 3 
Aquatic products possible from SBG, including their dependencies, requirements for solar zenith angle (SZA; degrees), view zenith angle (VZA; degrees), and heritage.  

Product Suites Dependencies External Data Max 
SZA 

Max 
VZA 

VSWIR MWIR TIR Mission/Instrument Heritage Spatial Areas 

Water 
biogeochemistry 

Water Spectral 
Reflectance 

Stratification/species 
composition/nutrient/ 
CDOM/salinity/depth 

70 60 X   AVIRIS-C, AVIRIS-NG, SeaWIFS, 
MERIS, (Hyperion) 
MODIS, PRISM, HICO, HSI,OLCI, 
Landsat 8/OLI 

Global open 
and coastal 
oceans, inland 
lakes, rivers 

Water quality Water Spectral 
Reflectance 

Stratification/species 
composition/nutrient/ 
CDOM/salinity/depth 

70 60 X  X AVIRIS-C, AVIRIS-NG, SeaWiFS, 
HICO, MERIS, MODIS, OLCI, 
PRISM, HSI, Landsat 8/OLI 

Global open 
and coastal 
oceans, inland 
lakes, rivers 

Benthic 
environment 

Water Spectral 
Reflectance, water 
column environment 

Spectral libraries 70 60 X   HICO, Landsat, PRISM, AVIRIS- 
C, Sentinel-2, WorldView 

Coastal ocean 

Water surface 
environment and 
hazards 

Water Spectral 
Reflectance, Rayleigh- 
corrected spectral 
reflectance 

Wind, water depth, 
surface feature spectral 
libraries 

70 60 X   AVIRIS-NG, CASI, DMSC, HICO, 
HSI,HJ-1 A/B, Landsat, SeaWiFS, 
MERIS, MODIS, PRISM, 
QuickBird, Sentinel-2-3, SPOT, 
WorldView 

Global open 
and coastal 
oceans, inland 
lakes 

Water column 
environment 

TIR radiance, LST, 
Water Spectral 
Reflectance    

X  X HICO, MERIS, MODIS, 
OLCI, ECOSTRESS  

Water-volcanic TIR radiance, LST, 
Water Spectral 
Reflectance, emissivity 

Stratification, species, 
composition, turbidity, 
nutrient, salinity, depth 

70 60 X  X AVIRIS-C, AVIRIS-NG, PRISM, 
HSI, Landsat, MASTER, HyTES, 
ASTER 

Inland lakes 
and ocean 
island lakes 

Wetlands Terrestrial Spectral 
Reflectance  

70 60 X   AVIRIS-C, Landsat, Sentinel-2, 
WorldView   

Table 4 
Water biogeochemistry subproducts.  

Subproduct Citations (including, but not limited to) 

Dissolved Organic Carbon (DOC) Mannino et al. (2008); Fichot et al. (2015);  
Cao et al. (2018); Li et al. (2018) 

Particulate Organic Carbon (POC) Stramski et al. (2008); Mouw et al. (2016); Le 
et al. (2018) 

Particulate Inorganic Carbon (PIC) Sadeghi et al. (2012); Mitchell et al. (2017) 
Suspended particulate matter 

(SPM) 
Nechad et al. (2010); Han et al. (2016); Novoa 
et al. (2017); Balasubramanian et al. (2020) 

Dissolved Organic Matter (DOM) Dong et al. (2013) 
Absorption for SPM and DOM Dong et al. (2013) 
Chromophoric (or colored) 

Dissolved Organic Matter 
(CDOM):   

- Spectral CDOM absorption Mannino et al. (2008); Zhu et al. (2011); Zhu 
and Yu (2013); Li et al. (2017); Cao et al. 
(2018); Hooker et al. (2020); Housekeeper 
et al. (2021)  

- CDOM spectral slope Aurin et al. (2018); Cao et al. (2018) 
Phytoplankton net primary 

production (NPP) 
Behrenfeld et al. (2005); Westberry and 
Behrenfeld (2014); Silsbe et al. (2016); Kahru 
(2017) 

Partial pressure of carbon dioxide 
(pCO2) 

Lohrenz and Cai (2006); Friedrich and 
Oschlies (2009); Chen et al. (2019)  

Table 5 
Water quality subproducts.  

Subproduct Citations (including, but not limited 
to) 

Water column constituents (simultaneous 
retrieval of algal and cyanobacterial 
pigments, suspended minerals, and 
pigment degradation products) 

Lee et al. (2002); Maritorena et al. 
(2002); Ortiz et al. (2013); Ali et al. 
(2014); Lekki et al. (2017); Ortiz et al. 
(2017); Avouris and Ortiz (2019);  
Ortiz et al. (2019) 

Chlorophyll-a concentration Gilerson et al. (2010); Gurlin et al. 
(2011); Matthews (2011); Moses et al. 
(2012); Odermatt et al. (2012a, 
2012b); Pahlevan et al. (2020) 

Phytoplankton accessory pigment 
concentration 

Chase et al. (2017); Bracher et al. 
(2015); Devred et al. (2013); Qi et al. 
(2014); Wang et al. (2016) 

Algal bloom indicators (general), and 
specifically: 

Stumpf (2001); Frolov et al. (2013);  
Dierssen et al. (2015b); Kudela et al. 
(2015); Smith and Bernard (2020)  

− Noctiluca Qi et al. (2019a, 2019b); Qi et al. 
(2020)  

− Trichodesmium Hu et al. (2010); Dupouy et al. (2011);  
McKinna (2015)  

− Karenia sp. Harmful Algal Blooms (red 
tides) 

Hu et al. (2005); Wynne et al. (2005);  
Craig et al. (2006); Soto et al. (2016)  

− High biomass event detection 
(indicator of eutrophication) 

Klemas (2012); Ryan et al. (2014)  

− Pseudo-nitzschia Anderson et al. (2016)  
− Floating algae and other floating 

matters 
See Table 8  

− Red tide - Cochlodinium polykrikoides Ahn and Shanmugam (2006); Kim 
et al. (2016) 

Algal bloom indicator (common methods):   
− Red Band difference Amin et al. (2009); Freitas and 

Dierssen (2019)  
− Adaptive reflectance peak height Ryan et al. (2014); Smith and Bernard 

(2020) 
Phytoplankton spectral classifiers Bracher et al. (2009); Odermatt et al. 

(2012a, 2012b); Palacios et al. (2015); 
Xi et al. (2015) 

Spectral CDOM absorption See Table 4 
Dissolved Organic Carbon (DOC) See Table 4  
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basic unknowns: water depth, water optical properties, and bottom 
reflectance. Algorithms typically generate either an indication of pro-
portional benthic composition (e.g., percent coral, sand, algae) or a 
measure of benthic reflectance to which standard classification methods 
can be applied. 

2.2.2.4. Water surface environment and hazards. Various types of mac-
roalgae can float on the water surface, and some microalgae can also 
form surface scums (Qi et al., 2020). These include cyanobacterium 

Microcystis, Trichodesmium, green Noctiluca scintillans, red Noctiluca 
scintillans, Sargassum fluitans, Sargassum natans, Sargassum horneri, Ulva 
prolifera, dead seagrass, and other aquatic plants, which includes several 
subproducts also listed in Table 5. Surface algae can be detected by VNIR 
reflectance but can be confounded by surrounding absorbing water 
optical properties and reflecting water column constituents. Other 
floating materials such as oil slicks, pumice rafts and water hazards such 
as flotsam have also been observed from spectral imagery (Hu et al., 
2009; Clark et al., 2010; Jutzeler et al., 2014; Lu et al., 2020; Qi et al., 
2020). Of particular importance are marine microplastics, macro-
plastics, and other forms of marine debris, yet due to their small size 
(relative to an image pixel), remote sensing detection is still at its in-
fancy (Garaba et al., 2018; Biermann et al., 2020; Kikaki et al., 2020). 

2.2.2.5. Water column environment. Water column environment refers 
to physical parameters affecting retrievals from the water column, with 
turbidity constituting a reformulation of entries in Tables 4 and 5. 

2.2.2.6. Water – Volcanic and Glacier Lakes. Volcanic lakes (water 
lakes) often form in craters even in arid environments and can mask 
measurement of volcanic gas and ash emissions. Retrievals of turbidity, 
lake surface temperature, surface composition, albedo, stratification, 
biotic changes including algal blooms, and other changes of surface 
compositional characteristics, facilitate inference of volcanic emissions 
that are otherwise hidden from direct observation. 

Glacier lakes are particularly sensitive to climate change and are 
useful indicators since many are spatially distant from direct anthro-
pogenic influences. The changes in glacier lake surface area and tem-
perature have been linked to regional climate changes and can be used 
to better understand glacial melting (Zhang et al., 2020a). In addition, 
surface algae biomass and biodiversity can also be an indicator of 
environmental and biochemical change (Ghunowa et al., 2019). 

2.2.2.7. Wetlands. Remote sensing has been used to map wetland 
covers and differentiate wetland types for several decades (e.g., Town-
send and Walsh, 2001; Simard et al., 2006; Han et al., 2018). Of these, 
statistical classification approaches are widely used and, as well, 
spectra-based pixel unmixing has been shown effective in quantifying 
wetland cover types at sub-pixel scale (Han et al., 2018). Many imaging 
spectroscopy and thermal imaging techniques used for terrestrial vege-
tation can be applied to emergent wetlands (Turpie et al., 2015b); 
however, the presence of water can complicate some methods, including 
nonlinear spectral mixing with an aquatic substrate affecting red-edge 
position (Turpie, 2013), the mixing between open water and emergent 
vegetation spectra suggesting finer spatial resolution, and the combined 
effect of specular reflectance (glint) and the emergent canopy BRDF 
(Turpie et al., 2015b). Approaches based on the use of the first or second 
order derivative of surface reflectance can effectively remove the effect 
of mild glint in wetlands. In forested wetlands, synergisms with syn-
thetic aperture radar (SAR) can also aid with identification and 
correction for sub-canopy inundation (Lang et al., 2008; Lamb et al., 
2019). 

2.2.3. Geology 
Over the past four decades, VSWIR imaging spectroscopy has been 

successfully applied to geologic and mineral deposit studies in well- 
exposed, mid-latitude areas at local scale (Coulter et al., 2007; Goetz, 
2009; van der Meer et al., 2012; Swayze et al., 2014; Cudahy, 2016). 
VSWIR spectroscopy is key to identifying iron-rich minerals (e.g., 
goethite, hematite, and jarosite) and hydrous minerals (e.g., micas and 
clays) and defining mineral distribution patterns that are often products 
of hydrothermal alteration and which may be indicative of geologic 
processes and potential for mineral resources (Clark, 1999; Clark et al., 
2003). Mineral maps can also be used to assess surface pH and metal 
leachability of mine waste and the potential of these materials to 

Table 6 
Benthic habitat subproducts.  

Subproduct Citations (including, but not limited to) 

Benthic visible/NIR 
spectral reflectance 

Lee et al. (1998, 1999); Mobley et al. (2005);  
Goodman and Ustin (2007); Dekker et al. (2011);  
Torres-Pérez et al. (2012); Torres-Perez et al. (2015);  
Thompson et al. (2017b); Barnes et al. (2018); Garcia 
et al. (2018, 2020) 

Benthic cover classification Lee et al. (1998, 1999); Hochberg and Atkinson 
(2003); Mobley et al. (2005); Goodman and Ustin 
(2007); Dekker et al. (2011); Torres-Perez et al. 
(2015); Asner et al. (2017a, 2017b); Thompson et al. 
(2017b); Barnes et al. (2018); Garcia et al. (2018, 
2020); Li et al. (2019a, 2019b)  

Table 7 
Water surface environment subproducts.  

Subproduct Citations (including, but not limited to) 

FAI (floating algal index) or FVI (floating 
vegetation index) to identify water 
surface anomalies 

Hu et al. (2009); Dierssen et al. (2015a);  
Gao and Li (2018) 

Floating biota classification Hu et al. (2015); Qi et al. (2020) 
η (% cover) of floating macroalgae Qi et al. (2016); Wang et al. (2016) 
σ (biomass density, g m-2) of floating 

macroalgae 
Hu et al. (2017); Wang et al. (2018) 

Flotsam, including micro- and 
macroplastics 

Garaba and Dierssen (2018); Garaba 
et al. (2018); Biermann et al. (2020);  
Kikaki et al. (2020) 

Floating pumice rafts Jutzeler et al. (2014); Qi et al. (2020) 
Oil type and thickness Clark et al. (2010); Sun and Hu (2019);  

Lu et al. (2019, 2020) 
Water surface skin temperature (see Section 2.1.1.2); Minnett et al. 

(2019)  

Table 8 
Subproducts for water column environments.  

Subproduct Citations (including, but not limited to) 

Inherent and Apparent Optical 
Properties (IOPs and AOPs such as 
absorption and scattering coefficients, 
diffuse attenuation coefficients) 

Lee et al. (1999, 2002, 2009); Loisel 
et al. (2018); Twardowski and Tonizzo 
(2018); Grunert et al. (2019); Pahlevan 
et al. (2021) 

Bathymetry Lee et al. (1999, 2010); Dekker et al. 
(2011); Thompson et al. (2017b) 

Salinity Palacios et al. (2009); Urquhart et al. 
(2012); Chen and Hu et al. (2017) 

Turbidity Dogliotti et al. (2015); Knaeps et al. 
(2015)  

Table 9 
Volcanic and glacier lakes are represented by the following subproducts.  

Subproduct Citations (including, but not limited to) 

Volcanic lake color 
composition 

Oppenheimer (1997) 

Volcanic and glacier lake 
temperature 

Oppenheimer (1996); Oppenheimer (1997); Trunk 
and Bernard (2008); Ramsey and Harris (2013);  
Zhang et al. (2020a)  
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contribute to acid mine drainage (Swayze et al., 2000). While VSWIR 
data are not effective in identifying rock forming minerals such as 
quartz, feldspars, and pyroxenes, multispectral TIR data are effective for 
making discriminations between these minerals (Hubbard et al., 2018). 
Airborne VSWIR imaging spectrometer and TIR multispectral data have 
been collected in diverse geologic terranes across the globe and appli-
cations have been expanding (Tukiainen and Thomassen, 2010; Bedini, 
2012; Kokaly et al., 2013, 2018; Rogge et al., 2014; Black et al., 2016; 
Laakso et al., 2016; Graham et al., 2018). 

2.2.3.1. Mineral mapping. Spectral feature comparison methods, such 
as Tetracorder (Clark et al., 2003; Swayze et al., 2003) and MICA (Ma-
terial Identification and Characterization Algorithm; Kokaly, 2011) 
identify the spectrally dominant mineral(s) in each pixel of a data cube 
by comparing spectral features in its reflectance spectrum to absorption 
features in a reference spectral library of minerals. Continuum removal 
is the technique used to isolate diagnostic absorption features from 
background spectral variations (Clark and Roush, 1984; Clark, 1999) in 
both the pixel and reference spectra. Following continuum removal, the 
coefficient of determination (r2) of a linear regression of these 
continuum-removed values is used as the metric to judge the degree of 
match (or fit) between the two spectra. In addition to identifying min-
eral components, estimation of mineral fractional abundance using im-
aging spectroscopy can be made using the spectral feature comparison 
methods outlined above. These methods produce a relative measure of 
absorption feature depth that has been interpreted as a proxy for mineral 
abundance or aerial fraction in a pixel (Clark, 1999; Clark et al., 2003). 
The EnGeoMAP 2.0 methodology (Mielke et al., 2016) extends the 

Tetracorder approach and the Processing Routines in IDL for Spectro-
scopic Measurements (PRISM) approach with the calculation of spatio- 
spectral gradients and the automated extraction of mineral anomalies 
according to geologic expert knowledge (Mielke et al., 2016). 

Linear mixture analysis has been applied to estimate intimate (e.g., 
fine scale mixtures including multiple scattering) mixtures of minerals 
and rocks in lunar samples (Johnson et al., 1985). Multiple scattering 
and particle size effects result in nonlinear mineral mixtures, but can be 
linearized by conversion to single scattering albedo using the Hapke 
(1981) as shown by Johnson et al. (1992) for a series of minerals mixed 
in the laboratory and particle size mixtures from desert alluvial fans 
(Shipman and Adams, 1987), where the grain size is known. In valida-
tion of spectral unmixing techniques for minerals identification and 
abundance estimation, Kerekes et al. (2003) demonstrate the effective-
ness of unconstrained linear demixing methods in comparison to an end- 
to-end radiometric transfer model, FASSP. 

Rock formations are assemblages of minerals, whose small features 
may be lost in combination. In cases where small features are suspected, 
it may be better to compare rock spectra before continuum removal, 
using standard target detection techniques such as a foreground/back-
ground analysis (Smith et al., 1994), spectral matched filter (Stocker, 
1990), constrained energy minimization (Farrand and Harsanyi, 1997), 
or an adaptive cosine estimator (Truslow et al., 2013). 

2.2.3.2. Soil characterization. Soil erosion and degradation significantly 
impact food production and vegetation health (Ben-Dor et al., 2009). 
These, as well as soil texture, soil organic carbon, soil water content, 
nutrient content, and a range of other soil applications have strong 

Table 10 
The geology products possible from SBG, including their dependencies, view zenith angle (VZA) requirements, and heritage (values are not shown where no studies 
were reported to quantitatively define said limits).  

Products Dependencies External Data Max SZA Max 
VZA 

VSWIR MWIR TIR Mission/ 
Instrument 
Heritage 

Spatial 
Areas 

Mineralogy 
(including 
mixtures) 

Terrestrial Spectral 
Reflectance, Fractional 
cover, emissivity 

Digital Elevation, 
Spectral libraries   

X X X AVIRIS, ASTER, 
Hyperion, 
Landsat, HyTES 
AHS 

Global 

Naturally occurring 
asbestos 

Terrestrial Spectral 
Reflectance, Fractional 
cover 

Lithologic and vegetation 
cover maps   

X   AVIRIS-C 
AVIRIS-NG 

Global 

Acid mine drainage Terrestrial Spectral 
Reflectance 

Digital 
Elevation, spectral 
libraries   

X   AVIRIS-C 
AVIRIS-NG 
Hyperion 

Global 

Soils 
(texture, organic 
carbon, water 
content, clay 
mineralogy, 
degradation) 

Terrestrial Spectral 
Reflectance, 
Fractional cover, 
emissivity 

Elevation, veg 
communities 
Spectral libraries   

X X X AVIRIS, ASTER, 
Hyperion, 
MODIS, 
Landsat, HyTES 
AHS 

Global 

Soil erosion Terrestrial Spectral 
Reflectance, 
Fractional cover, 
emissivity 

Elevation, veg 
communities 
Spectral libraries   

X X X AVIRIS, ASTER, 
Hyperion, 
Landsat. 

Global 

High-temperature 
volcanic and 
wildfire phenomena 
(thermal anomaly 
detection, fire and 
lava temperature 
and area) 

VSWIR and MWIR (~ 4 
μm) for high temps, TIR 
radiance for ambient 
temps, Terrestrial Spectral 
Reflectance, emissivity 

Historical reflectance/ 
emissivity, spectral 
libraries 

Night-time 
observations 
beneficial for 
VSWIR-based 
temperature 
estimation  

X X X AVIRIS, 
MASTER, HyTES, 
ASTER, MODIS, 
VIIRS, 
Hyperion 
PRISMA 

Global 

Volcanic SO2 and Ash 
Emissions 
(volcanic plumes 
and clouds, SO2 and 
ash content, CO2 

plumes) 

TIR radiance (7–12 mm) to 
measure SO2 and ash 
absorption/emission, 
-SWIR to measure aerosol 
scattering 

Surface elevation and 
emissivity, Plume 
thickness and altitude, 
Profiles of atmospheric 
temperature and water 
vapor   

X  X MASTER, HyTES, 
ASTER, MODIS, 
VIIRS, AIRS, 
SEVIRI, IASI 

Global 

Post-Event 
Monitoring 

Terrestrial Spectral 
Reflectance, emissivity, 
surface temperature 

Historical baseline   X X X    
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potential with imaging spectroscopy (Ben-Dor et al., 2009; Gupta, 
2017). While the VSWIR is important for detecting organic components 
in soil as well as clay mineralogy, the TIR and MWIR range is also sen-
sitive to soil organics (Hbirkou et al., 2012; Kopacková et al., 2017). Soil 
degradation such as wildfire-induced hydrophobicity (water repellent 
soils) has been mapped with imaging spectroscopy and spectral 
unmixing (Finley and Glenn, 2010). Numerous other studies have 
mapped bare soil properties (e.g., Lagacherie et al., 2008) relevant for 
agriculture and erosion monitoring. In some cases, strong narrow ab-
sorption features of minerals may be detected through significant 
vegetation cover, for example, Swayze et al. (2009) were able to detect 
serpentine mineral absorptions despite 80% vegetation cover. However, 
separating the soil signal from imaging spectrometers can often be 
complicated by the presence of vegetation or litter cover (including crop 
residue), soil moisture, or soil surface roughness. Thus, to estimate soil 
organic carbon, residual spectral unmixing has been used to separate 
vegetation from soil (Bartholomeus et al., 2011), and a shadow correc-
tion factor has been employed to minimize effects of surface roughness 
(Denis et al., 2014). Likewise, soil texture mapping with imaging spec-
troscopy was improved using spectral indices for soil moisture correc-
tions (Diek et al., 2019). Multi-temporal approaches (e.g., Diek et al., 
2016) may also provide better area-wide soil mapping and are promising 
in the context of global imaging spectroscopy missions. The effective-
ness of multi-temporal radiometric approaches using both VSWIR and 
TIR data in conjunction with DEM data was demonstrated by Dobos 
(1998) and Dobos et al. (2000). The Dobos work used AVHRR multi-
spectral data over large regions, but the methods are readily extensible 
to imaging spectroscopy data. In addition to spectral unmixing ap-
proaches, empirical techniques such as partial least squares regression 
(PLSR, e.g., Bartholomeus et al., 2011) or geostatistical techniques for 
regional calibration (e.g., Hbirkou et al., 2012) are typically employed 
in soil characterization studies. 

2.2.3.3. High-temperature phenomena. This suite includes algorithms 
targeting both wildfires and high-temperature volcanic phenomena, 
such as active/recent lava and pyroclastic flows. High temperature 
phenomena are characterized by high emitted radiance across the full 
range of wavelengths (VSWIR, MWIR, and TIR) covered by SBG. High 
temperature phenomena can be characterized by modeled temperatures, 
or through the modeled emittance quantity known as Fire Radiative 
Power (FRP; Wooster et al., 2003) or Volcanic Radiative Power (VRP; 
Coppola et al., 2013). FRP is essential for understanding biomass 
burning, combustion efficiency, and emissions (Roberts et al., 2005; 
Vermote et al., 2009; Kaiser et al., 2012), while lava temperature and 
VRP are linked to lava effusion and cooling rates (Wright et al., 2010; 
Coppola et al., 2013). Temperature has been typically retrieved from 
coarser (kilometer-scale) spatial resolution data using two-source mix-
ing models, which include a hot component representing fire or lava 
(assumed to be a blackbody emitting at a single temperature) and a 
background component (Dozier, 1981). Giglio and Kendall (2001) and 
Lombardo et al. (2012) examined the sensitivity of two-source temper-
ature retrievals to a variety of assumptions for fire and lava, 
respectively. 

An alternative approach for estimating fire or lava temperature is to 
rely on the magnitude and spectral shape of emitted radiance measured 
using imaging spectrometer data covering the VSWIR. Each measured 
pixel spectrum can be fit by a temperature dependent function or by a 
library of spectra modeled from a range of temperatures (Dennison et al., 
2006; Wright et al., 2011). Scaling of this approach from AVIRIS data to 
SBG spatial resolution has been examined for fire (Matheson and Den-
nison, 2012), and spectral temperature modeling approaches are 
extensible to MWIR and TIR channels (Dennison and Matheson, 2011). 

FRP and VRP, in contrast, are approximations of emittance inte-
grated over all wavelengths based on the relationship between emit-
tance and radiance for a channel near 4 μm (Wooster et al., 2003). FRP is 

a standard product for MODIS, VIIRS, Sentinel-3, and even geostationary 
satellites (Wooster et al., 2012; Wooster et al., 2015; Giglio et al., 2016). 
SBG 4 μm and TIR channels would allow calculation of FRP/VRP with 
more spatial detail and facilitate scaling with more frequently available 
products from coarser resolution sensors. Due to SBG’s relatively fine 
spatial resolution, saturation is a significant concern for measuring fires 
or lava flows that may compose most of a pixel (Realmuto et al., 2015). 
Saturation thresholds for 4 μm and TIR channels will have to be carefully 
considered to enable creation of radiative power products. 

2.2.3.4. Volcanic SO2 and ash emissions. The TIR spectra of sulfur di-
oxide (SO2) gas and volcanic ash (pulverized silicate rock) exhibit 
characteristic features that have long been used to map volcanic plumes 
and clouds (e.g., Prata, 1989a, 1989b; Realmuto et al., 1994, 1997; Wen 
and Rose, 1994; Prata and Bernardo, 2007; Prata and Prata, 2012; 
Realmuto and Berk, 2016; Prata and Lynch, 2019). In most situations, 
the plumes are detected in transmission, based on the attenuation of 
radiance passing through the plumes en route to the sensor. The origins 
of this radiance are the surface and atmosphere beneath the plume and, 
consequently, our estimations of gas and ash content require knowledge 
of the surface emissivity, topography, and profiles of atmospheric tem-
perature and water vapor. These parameters initialize models of atmo-
spheric emission and transmission radiative transfer models, which are 
then employed to estimate surface temperature and plume composition. 

2.2.3.5. Atmospheric CH4 and CO2 emissions. SWIR channels proposed 
for SBG are particularly promising for detecting and retrieving con-
centrations for CH4 and CO2 and point source plumes. Individual CH4 
(Thorpe et al., 2014; Frankenberg et al., 2016; Duren et al., 2019) and 
CO2 (Dennison et al., 2013; Thorpe et al., 2017) point source plumes 
have been mapped using airborne spectral imaging with moderate 
(5–10 nm) spectral resolution and high (1–16 m) spatial resolution. 
Thompson et al. (2016) mapped plumes from a natural gas well blowout 
using 10 nm spectral resolution and 30 m spatial resolution Hyperion 
data. Recent work has explored the potential for extending CH4 and CO2 
point source imaging and concentration retrieval to the upcoming suite 
of space-based sensors: PRISMA, EnMAP, EMIT, SBG, and CHIME 
(Ayasse et al., 2019; Cusworth et al., 2019). Preliminary results from 
PRISMA observations of strong CO2 and CH4 emissions plumes are 
consistent with the performance estimated by Cusworth et al. (2019). 

The OCO-2 atmospheric sounder measures fine spectral channels 
near 0.765 μm, 1.61 μm, and 2.06 μm. These data have been used to 
determine CO2 emitted by active volcanoes (Schwandner et al., 2017; 
Johnson et al., 2020; Queißer et al., 2019), fires (Heymann et al., 2017), 
and industrial emissions (Nassar et al., 2017). 

CO2 absorption features in the MWIR region have been less thor-
oughly investigated, but recent studies have been developed to under-
stand the capability to use the absorption band at 4.8 μm to detect and 
measure the CO2 emissions from different point sources at high tem-
perature as degassing from thermal active volcanoes (Romaniello et al., 
2020). 

2.2.4. Terrestrial vegetation 
Imaging spectroscopy (although limited in spatial and temporal ex-

tents) has long been promoted for its potential to characterize vegetation 
with greater detail than multispectral broadband imagery, starting with 
studies that showed the sensitivity to foliage biochemicals such as lignin 
and nitrogen (Wessman et al., 1988) and capacity to classify detailed 
species composition (Martin et al., 1998; Roberts et al., 1998). The po-
tential application of spectroscopic imagery for vegetation character-
ization grew out of a long and rich literature dating to the 1970s of using 
near-infrared spectroscopy (NIRS) to measure nutritional status of plant 
materials (Cotrozzi et al., 2018) and comprehensive reviews of features 
in plant spectra related to foliar biochemistry by Curran (1989) and 
Elvidge (1990). Imaging spectroscopy throughout the VSWIR and TIR 
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has extensive utility for characterizing and monitoring natural (Asner 
et al., 2017a), agricultural (Berger et al., 2020b) and managed (e.g., 
grazing lands) ecosystems (Knox et al., 2011), as well as in experimental 
studies (Z. Wang et al., 2019). 

Three main categories of algorithms for optical remote sensing of 
vegetation are (1) empirical methods that are based on the statistical 
relationship between full spectrum or a feature derived from spectrum 
(e.g., vegetation indices, derivatives), and include both parametric and 
nonparametric methods (often called “data-driven” methods) including 
machine learning, (2) physical methods based on the concept of radia-
tive transfer models (RTMs), and (3) hybrid methods that combine 
RTMs, empirical methods, and external models of biological functions 
(e.g., Penman-Monteith) to take advantage of the fidelity in physical 
models and flexibility of statistical approaches. Verrelst et al. (2019) 
provide a comprehensive taxonomy of retrieval methods for vegetation 
properties from imaging spectroscopy data. 

2.2.4.1. Preprocessing and intermediate transformations. Regardless of 
category, most vegetation retrieval algorithms require corrections for 
topography and BRDF, which varies with plant canopy architecture and 
light environment (Painter et al., 2013, 2016; Ustin, 2013; Gatebe and 
King, 2016; Wang et al., 2017). In particular, the retrieval of nadir 
BRDF-adjusted reflectance (or NBAR; Schaepman-Strub et al., 2006) is a 
necessary intermediate step for many vegetation algorithms. For 
example, models that utilize biophysical properties derived from im-
aging spectroscopy, such as vegetation albedo, need to minimize angular 
effects for accurate vegetation parameter estimation (Laurent et al., 
2014; Weyermann et al., 2014, 2015). There is a vast literature on 
methods for BRDF (Wanner et al., 1995; Collings et al., 2010; Colgan 
et al., 2012; Schlapfer et al., 2015; Weyermann et al., 2015; Jensen et al., 
2018) and topographic (Soenen et al., 2005) correction and their prac-
tical implementation (Singh et al., 2015). These corrections are neces-
sary to allow for broad application of the algorithms across different 
plant types, topographic features, and acquisition dates; a full descrip-
tion of preprocessing steps may be found in Serbin and Townsend 
(2020). 

Empirical methods for spectral quantification of vegetation attri-
butes range from physiologically based indices of vegetation function (e. 
g., NDVI, NIRv, PRI, CCI; Gamon et al., 1992, 2016; Campbell et al., 
2013) to statistical classifiers of plant distributions (Ustin and Gamon, 
2010; Fassnacht et al., 2016; Meerdink et al., 2019) and predictive 
models of continuous properties (Asner and Martin, 2015; Serbin et al., 
2015; Singh et al., 2015; R. Wang et al., 2019). Continuously measured 
spectra allow for descriptions of spectral shape which can be related to 
leaf or canopy characteristics. Of note, these approaches often involve 
the use of intermediate data transformations to either discriminate fine- 
detail spectral features (e.g., absorption features associated with a 
particular biochemical substance at a particular wavelength) or to 
describe spectral shape. Methods include first and second derivative 
reflectance (Blackburn, 1998; Campbell et al., 2013), pseudo-absorption 
(calculated as log(1/(R)), vector normalization (Feilhauer et al., 2010), 
and continuum removal (normalization of reflectance to local maxima 
across a spectral segment). For example, spectral feature analysis (SFA) 
uses continuum removal techniques to quantify characteristics of ab-
sorption features in the spectrum (Kokaly, 2011; Campbell et al., 2013; 
Huemmrich et al., 2017). 

The characteristics of vegetation canopy reflectance observed in 
imaging spectroscopy data are also influenced by internal canopy 
structural properties, including leaf shape, angle and distribution, larger 
canopy structure (e.g., crown size, shape, clumping), and background 
reflectance (e.g., soil, litter layer). These effects can obscure or confound 
the signal of leaf properties of interest. For empirical methods in 
particular, the same set of intermediate transformations also can 
dampen the effect of brightness variations in the data associated with 
structural differences in the canopy or background reflectance that may 

be a source of noise (Hall et al., 1990; Elvidge and Chen, 1995; Feilhauer 
et al., 2010; Singh et al., 2015). Likewise, the directional area scattering 
factor (DASF) correction of Knyazikhin et al. (2013) uses the concept of 
recollision probability to reduce canopy-structure effects in imaging 
spectroscopy data. However, in either case, development of models that 
capture the larger range of trait and structural complexity can also help 
to overcome these issues by accounting, empirically, for the various 
possible drivers of spectral variation (Schweiger, 2020) and allow the 
algorithm to separate influences on spectral albedo driven by structure 
from the changes related to the leaf functional trait of interest. 

2.2.4.2. Plant functional traits. Plant functional traits, such as pigment 
and nutrient concentrations, metabolic capacity, and leaf/canopy 
morphology, may be retrieved from spectral observations at various 
scales (Serbin and Townsend, 2020). Imaging spectroscopy has been 
proposed for detecting many traits, and Table 12 provides a subset of 
traits that have been suggested for SBG, grouped by their functional 
roles. At the leaf scale, a narrow set of biochemical and morphological 
traits (especially pigments and water content) can be estimated by 
inversion of semi-mechanistic, physically based leaf radiative transfer 
models (RTMs; Di Vittorio, 2009; Shiklomanov et al., 2016; Féret et al., 
2017). These approaches are computationally intensive and, at present, 
not readily implementable for spectroscopic imagery collected at the 
volumes generated for global-scale mapping such as SBG. Many traits of 
interest are not in current formulations of RTMs due to, among other 
considerations, lack of distinctive spectral features, inclusion could 
dramatically increase model complexity, or simply because the dimen-
sionality of the data is poorly understood before the model run. Finally, 
RTMs can be limiting due to the ancillary information needed but not 
available to the models (such as estimates of leaf area index or soil 
background reflectance). However, the use of RTM emulators (Verrelst 
et al., 2017) or hybrid machine-learning methods (Berger et al., 2020a) 
may eventually reduce the computational limitation. 

Regression against vegetation indices is commonly used, especially 
for pigments and other traits with unique spectral absorption features 
(Gitelson and Solovchenko, 2018), but least squares regression is not 
normally recommended for traits that are expressed throughout the 
spectrum due to the potential for spurious correlations (Grossman et al., 
1996). More typically, partial least squares regression (PLSR, Wold 
et al., 2001), a chemometric method that utilizes the original spectral 
measurements (or transformed spectra), is designed for robust imple-
mentation where the number of predictors (spectral channels) relative to 
observations is high. PLSR methods derive model coefficients, or chan-
nel weights, based on a partial least squares regression between spec-
troscopic measurements and laboratory measurements of various 
chemical and constitutional traits of the same sample (Serbin et al., 
2014). The derived trait estimates can then be linked to imaging spec-
troscopy datasets for prediction and mapping (Singh et al., 2015). 
Additional methods gaining traction include Gaussian process regres-
sion (Verrelst et al., 2013; Z. Wang et al., 2019), which in comparison to 
PLSR has the benefit of directly estimating uncertainties, at the cost of 
higher computational needs and lower direct interpretability. 

A very large number of traits are commonly estimated through sta-
tistical techniques such as PLSR, most notably leaf mass per area (LMA) 
and nitrogen concentration (indicators of plant tradeoffs between in-
vestment in photosynthesis/growth vs. leaf structure), chlorophyll and 
other pigments, water and lignin (a structural compound) (Coops et al., 
2003; Townsend et al., 2003; Martin et al., 2018; Asner and Martin, 
2015; Singh et al., 2015; Wang et al., 2019; 2020). A wider range of 
plant compounds have also been mapped from imaging spectroscopy, 
including phenolics (Kokaly et al., 2003) and other plant defensive 
compounds (Madritch et al., 2014), macronutrients (e.g., Ca, Mg, K), 
nonstructural carbohydrates (Asner and Martin, 2015) and structural 
carbohydrates associated with plant growth and defense (Asner et al., 
2015; Singh et al., 2015), including in forests (Asner et al., 2015), 
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grasslands (Z. Wang et al., 2019) and across multiple physiognomic 
vegetation types (Wang et al., 2020). In addition, recent work has also 
illustrated the utility of combining passive optical imaging spectroscopy 
and active lidar for mapping total canopy estimates of nitrogen and LMA 
(e.g., Chlus et al., 2020; Kamoske et al., 2020). 

Imaging spectroscopy has also been used to map physiological traits 
that are not specific chemical or morphological characteristics of vege-
tation, but rather can be inferred from the spectra due to correlation 
with the traits hypothesized to control them. These include light use 
efficiency (Huemmrich et al., 2019), photosynthetic carboxylation ca-
pacity and its temperature sensitivity (Vcmax and Ev; Serbin et al., 
2015), and ecosystem production (Campbell et al., 2013; Huemmrich 
et al., 2017; Dubois et al., 2018). Imaging spectroscopy has been shown 
to be sensitive to δ13C and δ15N, measures of isotopic fractionation that 
are indicators of water and nitrogen availability, respectively (Singh 
et al., 2015; Wang et al., 2020). 

The range of traits and conditions of measurement that have been 
estimated using leaf level spectral data is much greater than what has 
been estimated from imaging data (e.g., Serbin et al., 2012, 2019; 
Couture et al., 2016; Wu et al., 2019), suggesting the need for additional 
data and research at the image scale to assess the full range of vegetation 
traits that can be reliably retrieved from SBG-like imagery. Note that 
traits can be estimated both at the top-of-canopy leaf level or the canopy 
level and can be measured on an area or mass basis. Different retrievals 
may have different assumptions about knowledge of canopy biomass or 
leaf area for accurate retrieval. 

While not strictly a trait, we have listed the fraction of Absorbed 
Photosynthetically Active Radiation (fAPAR) alongside them since this 
describes the photosynthetic processes by describing the light absorp-
tion over an integrated plant canopy, which is directly related to pri-
mary productivity (Q. Zhang et al., 2012). 

2.2.4.3. Plant species. With sufficient spatial resolution, certain plant 
species or genera can be mapped directly from the spectral features of 
grasses (Pottier et al., 2014), herbs, and tree canopies (Baldeck et al., 
2015; Fassnacht et al., 2016; Kattenborn et al., 2019). Species mapping 
has been extended to characterizing communities of mixes of species in a 
variety of ecosystems including grasslands (Feilhauer et al., 2011; Rossi 
et al., 2020), bogs/fens (Schmidtlein et al., 2007), temperate (Foster and 
Townsend, 2004; Gu et al., 2015) and tropical forests (Asner et al., 
2017a). Because of the rich spectral information in imaging spectros-
copy datasets, endmember analysis is widely used to map both species 
and communities (Roberts et al., 1998). Other methods use statistical 
methods such as conditional random forests (Pottier et al., 2014), and 
biased support vector machines (Baldeck et al., 2015) to map vegetation 
species. Approaches combining remote sensing and species distribution 
models are continuously emerging (Randin et al., 2020). While much of 
the fine spatial resolution airborne vegetation remote sensing has 
focused on species mapping, at larger spatial extents mapping plant 
functional types (PFTs; groups of species that are physiologically 
similar) becomes more feasible, for example, discrimination of C3 and 
C4 dominated grasslands (Huemmrich et al., 2018) or lianas within 
tropical forests (Foster et al., 2008; Marvin et al., 2016). Uncertainty in 
PFT distributions is also a critical source of uncertainty in Earth system 
models (ESMs) (Wullschleger et al., 2014; Poulter et al., 2015). As Earth 
system model representations of plant functional groups become more 
complex (Fisher et al., 2017), more nuanced mapping of PFTs will be 
essential (Wullschleger et al., 2014). With global coverage of imaging 
spectroscopy data, SBG will provide input for significant improvements 
in these models. 

2.2.4.4. Diversity. Indicators of spectral diversity derived from airborne 
and ground-based imaging spectrometers have proven useful in 
modeling multi-scale taxonomic, phylogenetic, and functional diversity 
of vegetation (Rocchini et al., 2010; Wang and Gamon, 2019; Cavender- 

Bares et al., 2020; Thonicke et al., 2020). Measures of diversity derived 
from imagery provide indirect metrics of diversity, and as such most 
approaches involve linkage of image-derived metrics to ground-based 
measures of diversity from field surveys via statistical methods. This 
points to the necessity of ground metrics to interpret image-derived 
diversity. There are two basic approaches to diversity mapping using 
spectroscopic data: (1) diversity metrics based on derived products, such 
as foliar traits (see 2.4.2.2) (e.g., Schneider et al., 2017; Zheng et al., 
2021) or (2) methods based on spectral dissimilarity (e.g., Féret and de 
Boissieu, 2020). The mapping of taxonomic diversity, which includes 
species richness and abundance-based diversity measures such as the 
Shannon index (H′), has been conducted across tropical forested land-
scapes (Féret and Asner, 2014), North American prairie landscapes 
(Wang et al., 2016), and regional environmental gradients (Somers 
et al., 2015). Given the large number of vascular plant species on Earth, 
there is increasing interest in characterizing functional diversity (e.g., 
evenness, divergence, richness) as a metric relevant to the prediction of 
ecosystem processes and taxonomic diversity (Schneider et al., 2017; 
Durán et al., 2019; Zheng et al., 2021), and as a basis for conservation 
planning (Asner et al., 2017b). Recent studies have also extended 
taxonomic diversity mapping to assess genetic and phylogenetic di-
versity in a variety of experimental settings, including aspen forests 
(Madritch et al., 2014), temperate forests (Czyz et al., 2020), temperate 
grasslands (Schweiger et al., 2018), tropical oak forests (Cavender-Bares 
et al., 2016), and at large scales across several biomes (Meireles et al., 
2020). 

While the inherent high dimensionality of imaging spectroscopy data 
enables characterization of multiple metrics of diversity, both species 
and diversity mapping are sensitive to the size of the organism of in-
terest, and hence the pixel size of imaging. There is an extensive liter-
ature examining the sensitivity of spectral diversity to spatial scales and 
species composition (Wang et al., 2018), sensor characteristics and 
multi-scale diversity mapping (Hakkenberg et al., 2018), and to validate 
spectral diversity hypotheses (Dahlin, 2016; Gholizadeh et al., 2019). 

2.2.4.5. Evapotranspiration. Evapotranspiration (ET) is a key biocli-
matic variable, linking water, energy, and carbon cycles (Fisher et al., 
2017). ET is controlled by water (soil moisture, atmospheric moisture), 
energy (net radiation, temperature), and plants (stomatal conductance, 
leaf area index, plant habit). As such, ET can be retrieved from space 
through the combination of observables related to water, energy, and 
plant canopies. Algorithms to retrieve ET synthesize thermal data to 
capture energy dynamics and infer water, and spectral data to charac-
terize crown characteristics. Tradeoffs among various models balance 
spatial and temporal scale of interests, which is particularly important 
because ET exhibits high diurnal variability. Existing remote sensing 
models of ET include: Priestley-Taylor Jet Propulsion Laboratory (PT- 
JPL) (Fisher et al., 2008); Global Land Evaporation Amsterdam Model 
(GLEAM) (Miralles et al., 2011); Disaggregated Atmosphere Land- 
Exchange model (DisALEXI) (Anderson et al., 2007); Penman- 
Monteith Mu (PM-Mu) (Mu et al., 2011); Mapping ET with high Reso-
lution and Internalized Calibration (METRIC) (Allen et al., 2007); Sur-
face Energy Balance System (SEBS) (Su, 2002); and Surface Energy 
Balance Algorithm over Land (SEBAL) (Bastiaanssen et al., 1998). 

For high accuracy, remote sensing algorithms for ET require ancil-
lary datasets to characterize interrelated drivers associated with 
weather, climate, and especially light availability. Remote sensing al-
gorithms to map ET at large scales are especially sensitive to estimates of 
net radiation, which is typically derived from radiative, atmospheric and 
surface data (Fisher et al., 2008, 2009; Jiménez et al., 2011; Polhamus 
et al., 2013; Badgley et al., 2015). Meteorological data are needed to 
define microclimates at medium scales (< 5 km) and are essential at high 
temporal resolution to capture rapidly changing weather (Anderson 
et al., 1997; Allen et al., 2007; Fisher et al., 2008; Allen et al., 2011). At 
the field scale (e.g., <100 m), land surface temperature captures fine 
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spatial dynamics over heterogenous land cover, which is important in 
the partitioning of energy. At all scales, vegetation dynamics are 
required and are especially important during rapid vegetation change, 
such as during green-up, crop harvest and senescence (Anderson et al., 
1997; Allen et al., 2007; Fisher et al., 2008; Allen et al., 2011; Polhamus 
et al., 2013). 

ECOSTRESS serves as a precursor to the SBG TIR instrument, 
acquiring imagery in five channels in the range 8–12 μm from the In-
ternational Space Station from 2018 to 2021. In combination with 
ancillary VNIR and meteorological data, it produces standard ET prod-
ucts, and studies have shown that high quality land surface temperature 
(<1 K) is required for an ET accuracy <10% (Cawse-Nicholson et al., 
2020; Fisher et al., 2020). 

2.2.4.6. Photo- and non-photosynthetic vegetation characterization (frac-
tional cover). Photosynthetic (green) vegetation can be discriminated 
from non-photosynthetic vegetation (i.e., senesced foliage as well as 
wood) primarily through detection of pronounced ligno-cellulose ab-
sorption features in the SWIR that are absent from soils (Roberts et al., 
1998; Nagler et al., 2000; Daughtry et al., 2006; Guerschman et al., 
2009; Dennison et al., 2019). Spectral fitting, mixture models, and 
spectral vegetation indices (for a review see Dennison et al., 2019) have 
been developed that facilitate accurate discrimination between crop 
residues and bare soil surfaces, better capturing differing agricultural 
practices, and carbon balance in agricultural landscapes (Daughtry 
et al., 2006). The ratio of non-photosynthetic vegetation to soil is also an 
important indicator of pasture quality in grazed landscapes in the tropics 
(Numata et al., 2008). 

2.2.4.7. Temporal unmixing. Different vegetation types display distinct 
temporal patterns as a function of photoperiod, season length, land-
scape, and spatiotemporal characterization (Sousa and Davis, 2020). 
The dense time series of multispectral instruments such as MODIS, 
Landsat, and Sentinel have enabled the characterization and subpixel 
unmixing of vegetation types using temporal signatures (Lobell and 
Asner, 2004; Ozdogan, 2010; Sousa and Davis, 2020; Garonna et al., 
2016). With the advances of SBG, a regular time series of spectroscopic 
information will enable similar analysis in both the spectral and tem-
poral domain, as well as combining simultaneous effects of the Earth 
system (e.g., snow and vegetation; Xie et al., 2018), previously treated 
separately. Chlus et al. (2019) have demonstrated relationships between 
environmental variables and spatiotemporal patterns in foliar traits 
derived from airborne spectroscopic data. 

3. Caveats and considerations 

A global suite of imaging spectroscopy and thermal imagery is 
needed to fully understand the composition, functioning, and health of 
ecosystems, including snow, volcanoes, aquatic environments, and 
terrestrial vegetation. In combination with active instruments, such as 
lidar and synthetic aperture radar, as well as passive radar and a range of 
multispectral data with high temporal or spatial resolution and long 
measurement legacies, the SBG mission will be an essential component 
of a multi-sensor system to fully characterize composition and structure 
of the Earth’s surface as well as the processes driving changes at the 
Earth’s surface. Future work is needed to optimally combine structural 
data from anticipated concurrent active sensors—such as NISAR, ROSE- 
L, BIOMASS, and the Surface Deformation and Change (SDC) Designated 
Observable—with SBG products such as vegetation chemistry, compo-
sition, and functional traits. The combination of products capturing 
coincident structure, function, and composition will enable an improved 
understanding of global ecosystems but will require algorithms that use 
both active and passive observations. 

In addition, other spectrometers and thermal radiometers may 
overlap with the SBG mission lifetime, including the European Space 

Agency’s (ESA) Copernicus Hyperspectral Imaging Mission (CHIME; 
Nieke and Rast, 2019) and Land Surface Temperature Monitoring 
(LSTM; Koetz et al., 2019), and the joint French and Indian Space 
Agencies’ Thermal InfraRed Imaging Satellite for High-resolution Nat-
ural resource Assessment (TRISHNA; Lagouarde et al., 2019), as well as 
multispectral instruments such as Landsat and Sentinel-2. The global 
Harmonized Landsat Sentinel-2 (HLS) dataset (Claverie et al., 2018) 
provides a significant improvement in revisit time—2-3 days for HLS 
compared to 16 days for Landsat—which will be significant for hazard 
monitoring and agricultural applications, and illustrates the benefit of 
harmonized datasets. Similarly, harmonization of CHIME and SBG- 
VSWIR could reduce the revisit period from 16 to 21 days to ~8 days 
while harmonization of LSTM, TRISHNA, and SBG-TIR could result in 
daily or sub-daily global revisits. The HLS workflow has to account for 
differences in solar and view geometry, as well as small differences in 
spectral bands, and the harmonization has to be done at radiance level. 
Coordination between missions during development will enable the 
implementation of complementary atmospheric, BRDF, solar zenith 
angle, and other corrections, and thus rapid harmonization of higher- 
level products such as a subset of products drawn from Tables 1-12. A 
proposed 16-day revisit for the SBG VSWIR could realistically return 
only one cloud-free observation per month, or significantly fewer in 
cloudy regions (Schimel et al., 2020), and harmonization with other 
instruments will enable increased revisit and improved science return. 

Scientists requiring hyperspectral spectroscopic data have typically 
relied on airborne data, and as a result we have large gaps in spatial 
coverage and limited capability to monitor changes over time (Schimel 
et al., 2020). A global mission such as SBG will produce large data 
volumes, and higher-level products encompassed by some of the algo-
rithms presented here will be needed to disseminate relevant informa-
tion to users. To that end, existing research code will need to be 
transferred to a robust processing workflow that will require algorithms 
that are many orders of magnitude faster than the current state of the 
art. This will likely require emulators or other forms of machine 
learning, and the accuracy and uncertainty of these compared to the 
physical or other foundational models need to be well quantified. While 
the community requires low-latency data processing, the data process-
ing pipelines will also need to plan for simultaneous reprocessing to 
account for algorithm improvements and updates. 

Despite the large overall data volumes, a 30 m pixel in the VSWIR 
and 60 m pixel in the TIR is several times larger than some of the features 
of importance to this mission. For example, individual tree crowns are 
generally much smaller than 30 m in breadth, and, as such, algorithms 
designed for high-resolution airborne data may no longer be applicable 
(Schimel et al., 2020). The algorithms that are to be developed and 
applied to SBG data will certainly start from the legacies of existing al-
gorithms but will likely need to be adapted to accommodate differences 
that arise from spaceborne acquisitions that are global in scope. A 
globally applicable algorithm must be free from geographic or lat-
itudinal bias and provide rigorous uncertainty quantification. This will 
require global calibration and validation. Certain region-specific algo-
rithms may be more accurate than a globally optimized product, but a 
global product will enable information to be transferred to community 
members without the technical ability to implement specialized algo-
rithms. SBG should provide a flexible processing system that (1) allows 
users to interact with the workflow at any stage, (2) allows researchers 
to test alternative approaches, and (3) accommodates users from all 
levels of technical expertise. 

Users in various communities need to become accustomed to SBG- 
scale data products and develop the tools to manipulate and analyze 
them efficiently. Early distribution of SBG-like products will accelerate 
community readiness to enable early exploitation of SBG data for science 
and applications as well as to provide critical feedback to the Algorithms 
Working Group on limitations of the products. Existing instruments such 
as DESIS, HISUI, EnMAP, EMIT, PACE, GLIMMR, and ECOSTRESS 
should be used as pathfinders and to establish the time series that will 
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allow SBG to address issues of decadal scale change. 
Despite these constraints, SBG will offer an unprecedented dataset 

for the understanding of the Earth’s surface, biology, and geology. 

4. Discussion 

We have compiled a list of algorithms developed by researchers 
specializing in VSWIR hyperspectral and multispectral thermal IR im-
agery that address the SBG core product needs. These algorithms vary in 
their maturity, including the geographic scope, the range of viewing 
conditions and sensor characteristics under which they work well. 
Following a survey of the maturity of the algorithms and their respon-
siveness to science questions listed as “most” and “very” important in the 
Decadal Survey, the SBG Algorithm team will recommend a subset of 
algorithms to operationalize. This will be subject to technical review and 
done in consultation with the community experts as the SBG mission 
develops. Given the number of potential algorithms for SBG—including 
the Level 1B (orthorectified radiance), Level 2 (reflectance, emissivity, 
and surface temperature), Level 2+ (L2 products corrected for view and 
solar geometry and other effects), Levels 3 and 4 (many of which are 
discussed in this manuscript), applications-specific products, and the 
range of potential higher-level algorithms identified by the communi-
ty—SBG will likely have to consider on-demand processing in order to 
generate products of interest to the user community. This will be 
necessitated by the large data volume of SBG, and additional consider-
ations, such as the availability of multiple plausible algorithms for many 
of the desired specific products. 

In addition, almost all of the proposed algorithms depend on atmo-
spheric corrections, and many require additional processing (such as 

HRDF or BRDF corrections) that have implicit assumptions and involve 
model fitting. SBG will require an adequate characterization of correc-
tion uncertainties to characterize derived and higher-level product un-
certainties (via error propagation), a practice that is currently not 
common, but which will be vital for downstream users of the data. 

Prior to the anticipated launch of SBG, there will be an intensive 
effort by the SBG Algorithm Team to further mature and operationalize 
several of the algorithms outlined in this review and their supporting 
workflows. A full description of the operational concept for SBG prod-
ucts is premature and beyond the scope of this paper, but a full end-to- 
end data system is envisioned, with accompanying calibration and 
validation in addition to the proposed product generation and uncer-
tainty quantification. 

5. Conclusions 

We have summarized the state-of-the-practice algorithms for a range 
of products that will answer the very important and most important 
science questions assigned to SBG in the Decadal Survey (NASEM, 
2018): 

− “How is the water cycle changing? Are changes in evapotranspira-
tion and precipitation accelerating, with greater rates of evapo-
transpiration and thereby precipitation, and how are these changes 
expressed in the space-time distribution of rainfall, snowfall, 
evapotranspiration, and the frequency and magnitude of extremes 
such as droughts and floods?”;  

− “How do anthropogenic changes in climate, land use, water use, and 
water storage, interact and modify the water and energy cycles 
locally, regionally and globally and what are the short- and long- 
term consequences?”;  

− “How does the water cycle interact with other Earth system processes 
to change the predictability and impacts of hazardous events and 
hazard chains (e.g., floods, wildfires, landslides, coastal loss, subsi-
dence, droughts, human health, and ecosystem health), and how do 
we improve preparedness and mitigation of water-related extreme 
events?”;  

− “How do spatial variations in surface characteristics (influencing 
ocean and atmospheric dynamics, thermal inertia, and water) modify 
transfer between domains (air, ocean, land, cryosphere) and thereby 
influence weather and air quality?”; 

− “What are the structure, function, and biodiversity of Earth’s eco-
systems, and how and why are they changing in time and space?”; 

− “What are the fluxes (of carbon, water, nutrients, and energy) be-
tween ecosystems and the atmosphere, the ocean, and the solid 
Earth, and how and why are they changing?”; 

Table 11 
Categories of algorithms for SBG measurements of vegetation.  

Products Dependencies External Data Max 
SZA 

Max 
VZA 

VSWIR MWIR TIR Mission/ 
Instrument 
Heritage 

Spatial Areas 

Vegetation Albedo BRDF-corrected reflectance    X   AVIRIS/NEON/ 
EO-1 Hyperion 

Global 

Evapotranspiration LST, emissivity, NDVI, LAI, 
Landcover, Albedo 

Meteorological   X  X ECOSTRESS Global 

Plant functional traits BRDF-corrected reflectance, 
topographic correction 

PLSR coefficients, spectral 
libraries for RTMs, 
vegetation indices   

X   AVIRIS/NEON/ 
GAO, 
EO-1 Hyperion 

Temperate US, 
Europe, Arctic, 
Tropics 

Vegetation species and 
communities, fractional 
cover 

BRDF-corrected reflectance, 
topographic correction, 
plant functional traits 

Biome stratification, 
spectral libraries   

X   EO-1 Hyperion, 
AVIRIS/GAO 
PRISMA 

Globally 
distributed 
localized studies 

Diversity [as above]    X   AVIRIS/GAO/ 
Apex 

[as above] 

fAPAR Terrestrial Spectral 
Reflectance 

RTM, spectral libraries   X   AVIRIS 
[HyspIRI] 

Global  

Table 12 
Categories of plant functional traits potentially detectable from imaging spec-
troscopy (see text for references and methods).  

Category Example Traits 

Photosynthetic processes and 
carbon uptake 

Pigments (chlorophyll a and b, carotenoids, 
anthocyanins), nitrogen, phosphorus, leaf mass per 
area (LMA), water (equivalent water thickness and 
concentration), carbon, nonstructural 
carbohydrates (sugars, starches), fAPAR 

Leaf structural compounds Cellulose, fiber, lignin, hemicellulose 
Defensive compounds Phenols, condensed tannins 
Macronutrients (multiple 

functions) 
Ca, B, Fe, K, Mg, S 

Metabolic traits (typically 
inferred) 

δ13C, δ15N (isotopic ratios, measures of water (13C) 
and nitrogen (15N) availability, Vcmax, Ev, Jmax 
(measures of photosynthetic capacity), light use 
efficiency 

Productivity Gross primary and/or ecosystem production (GPP)  
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− “What are the fluxes (of carbon, water, nutrients, and energy) within 
ecosystems, and how and why are they changing?”;  

− “How large are the variations in the global carbon cycle and what are 
the associated climate and ecosystem impacts in the context of past 
and projected anthropogenic carbon emissions?”;  

− “How can large-scale geological hazards be accurately forecast in a 
socially relevant time frame?”; and  

− “How do geological disasters directly impact the earth system and 
society following an event?”. 

This effort has involved the synthesis of the findings of more than 
130 scientists. While the list is comprehensive, it is not complete. 
However, it provides a framework for additional algorithm development 
and maturation activities in the lead up to the SBG and other planned 
global missions such as ESA’s CHIME and LSTM and the French-Indian 
multispectral and multi-band thermal mission, TRISHNA. 
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Chase, A.P., Boss, E., Cetinić, I., Slade, W., 2017. Estimation of phytoplankton accessory 
pigments from hyperspectral reflectance spectra: toward a global algorithm. 
J. Geophys. Res. Oceans 122, 9725–9743. https://doi.org/10.1002/2017JC012859. 

Chen, S., Hu, C., Barnes, B.B., Wanninkhof, R., Cai, W.-J., Barbero, L., Pierrot, D., 2019. 
A machine learning approach to estimate surface ocean pCO2 from satellite 
measurements. Remote Sens. Environ. 228, 203–226. https://doi.org/10.1016/j. 
rse.2019.04.019. 

Chlus, A., Singh, A., Kruger, E.L., Townsend, P.A., 2019. Patterns and drivers of 
interannual variation in canopy biochemistry: An analysis of the 27-year record of 
imaging spectroscopy data over Blackhawk Island, WI (1992–2019). In: American 
Geophysical Union, Fall Meeting. 

Chlus, A., Kruger, E.L., Townsend, P.A., 2020. Mapping three-dimensional variation in 
leaf mass per area with imaging spectroscopy and lidar in a temperate broadleaf 
forest. Remote Sens. Environ. 250 (11204) https://doi.org/10.1016/j. 
rse.2020.112043. 

Chomko, R.M., Gordon, H.R., Maritorena, S., Siegel, D.A., 2003. Simultaneous retrieval 
of oceanic and atmospheric parameters for ocean color imagery by spectral 

optimization: A validation. Remote Sens. Environ. 84, 208–220. https://doi.org/ 
10.1016/S0034-4257(02)00108-6. 

Chuvieco, E., 2020. Fundamentals of Satellite Remote Sensing: An Environmental 
Approach, Third edition. CRC Press. 

Clark, R.N., 1999. Chapter 1 spectroscopy of rocks and minerals, and principles of 
spectroscopy. In: Rencz, A. (Ed.), Manual of remote sensing, Volume 3, Remote 
Sensing for the Earth Sciences, 3rd ed. John Wiley and Sons, pp. 3–58. 

Clark, R.N., Roush, T.L., 1984. Reflectance spectroscopy: quantitative analysis 
techniques for remote sensing applications. J. Geophys. Res. Solid Earth 89 (B7), 
6329–6340. JB089iB07p06329.  

Clark, R.N., Swayze, G.A., Livo, K.E., Kokaly, R.F., Sutley, S.J., Dalton, J.B., McDougal, R. 
R., Gent, C.A., 2003. Imaging spectroscopy: earth and planetary remote sensing with 
the USGS Tetracorder and expert systems. J. Geophys. Res. 108 (E12), 5131. https:// 
doi.org/10.1029/2002JE001847. 

Clark, R.N., Swayze, G.A., Leifer, I., Livo, K.E., Kokaly, R., Hoefen, T., Lundeen, S., 
Eastwood, M., Green, R.O., Pearson, N., Sarture, C., McCubbin, I., Roberts, D., 
Bradley, E., Steele, D., Ryan, T., Dominguez, R., the Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) Team, 2010. A method for quantitative mapping of 
thick oil spills using imaging spectroscopy. U.S. Geol. Sur. Open-File Rep. 51, 1167. 
http://pubs.usgs.gov/of/2010/1167/. 

Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.C., Skakun, S.V., 
Justice, C., 2018. The harmonized landsat and sentinel-2 surface reflectance data set. 
Remote Sens. Environ. 219, 145–161. https://doi.org/10.1016/j.rse.2018.09.002. 

Colgan, M.S., Baldeck, C.A., Feret, J.B., Asner, G.P., 2012. Mapping savanna tree species 
at ecosystem scales using support vector machine classification and BRDF correction 
on airborne hyperspectral and LiDAR data. Remote Sens. 4 (11), 3462–3480. 
https://doi.org/10.3390/rs4113462. 

Coll, C., Caselles, V., 1997. A split-window algorithm for land surface temperature from 
advanced very high resolution radiometer data: validation and algorithm 
comparison. J. Geophys. Res.-Atmos. 102, 16697–16713. https://doi.org/10.1029/ 
97JD00929. 

Collings, S., Caccetta, P., Campbell, N., Wu, X., 2010. Techniques for BRDF correction of 
hyperspectral mosaics. IEEE Trans. Geosci. Remote Sens. 48 (10), 3733–3746. 
https://doi.org/10.1109/TGRS.2010.2048574. 

Coops, N.C., Smith, M.L., Martin, M.E., Ollinger, S.V., 2003. Prediction of eucalypt 
foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans. 
Geosci. Remote Sens. 41 (6), 1338–1346. https://doi.org/10.1109/ 
TGRS.2003.813135. 

Coppola, D., Laiolo, M., Piscopo, D., Cigolini, C., 2013. Rheological control on the 
radiant density of active lava flows and domes. J. Volcanol. Geotherm. Res. 249, 
39–48. https://doi.org/10.1016/j.jvolgeores.2012.09.005. 

Cotrozzi, L., Townsend, P.A., Pellegrini, E., et al., 2018. Reflectance spectroscopy: A 
novel approach to better understand and monitor the impact of air pollution onv 
Mediterranean plants. Environ. Sci. Pollut. Res. 25, 8249–8267. https://doi.org/ 
10.1007/s11356-017-9568-2. 

Coulter, D.W., Hauff, P.L., Kerby, W.L., 2007. Airborne hyperspectral remote sensing. In: 
Milkereit, B. (Ed.), Proceedings of Exploration 07: Fifth Decennial International 
Conference on Mineral Exploration, pp. 375–386. http://www.dmec.ca/ex07-dvd 
/E07/pdfs/22.pdf. 

Couture, J.J., Singh, A., Rubert-Nason, K.F., Serbin, S.P., Lindroth, R.L., Townsend, P.A., 
2016. Spectroscopic determination of ecologically relevant plant secondary 
metabolites. Methods Ecol. Evol. 7, 1402–1412. https://doi.org/10.1111/2041- 
210X.12596. 

Craig, S.E., Lohrenz, S.E., Lee, Z., Mahoney, K.L., Kirkpatrick, G.J., Schofield, O.M., 
Steward, R.G., 2006. Use of hyperspectral remote sensing reflectance for detection 
and assessment of the harmful alga, Karenia brevis. Appl. Opt. 45, 5414–5425. 
https://doi.org/10.1364/AO.45.005414. 

Cudahy, T., 2016. Mineral mapping for exploration: an Australian journey of evolving 
spectral sensing technologies and industry collaboration. Geosciences 6 (4), 52. 
https://doi.org/10.3390/geosciences6040052. 

Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote Sens. Environ. 30 (3), 
271–278. https://doi.org/10.1016/0034-4257(89)90069-2. 

Cusworth, D.H., Jacob, D.J., Varon, D.J., Chan Miller, C., Liu, X., Chance, K., Thorpe, A. 
K., Duren, R.M., Miller, C.E., Thompson, D.R., Frankenberg, C., 2019. Potential of 
next-generation imaging spectrometers to detect and quantify methane point sources 
from space. Atmos. Measur. Techn. 12, 10. https://doi.org/10.5194/amt-12-5655- 
2019. 

Czyz, E.A., Guillen Escriba, C., Wulf, H., Tedder, A., Schuman, M.C., Schneider, F.D., 
Schaepman, M.E., 2020. Intraspecific genetic variation of a Fagus sylvatica 
population in a temperate forest derived from airborne imaging spectroscopy time 
series. Ecol. Evolut. 10, 7419–7430. https://doi.org/10.1002/ece3.6469. 

Dahlin, K., 2016. Spectral diversity area relationships for assessing biodiversity in a 
wildland-agriculture matrix. Ecol. Appl. 26, 2758–2768. https://doi.org/10.1002/ 
eap.1390. 

Daughtry, C.S.T., Doraiswamy, P.C., Hunt, E.R., Stern, A.J., McMurtrey, J.E., Prueger, J. 
H., 2006. Remote sensing of crop residue cover and soil tillage intensity. Soil Tillage 
Res. 91, 101–108. https://doi.org/10.1016/j.still.2005.11.013. 

Dekker, A.G., Hestir, E.L., 2012. Evaluating the Feasibility of Systematic Inland Water 
Quality Monitoring with Satellite Remote Sensing. Commonwealth Scientific and 
Industrial Research Organization. https://doi.org/10.5072/83/58499fa75c2c9. 

Dekker, A.G., Phinn, S.R., Anstee, J., Bissett, P., Brando, V.E., Casey, B., Fearns, P., 
Hedley, J., Klonowski, W., Lee, Z.P., Lynch, M., Lyons, M., Mobley, C., Roelfsema, C., 
2011. Intercomparison of shallow water bathymetry, hydro-optics, and benthos 
mapping techniques in Australian and Caribbean coastal environments. Limnol. 
Oceanogr. Methods 9. https://doi.org/10.4319/lom.2011.9.396. 

K. Cawse-Nicholson et al.                                                                                                                                                                                                                     

https://doi.org/10.5194/bg-6-779-2009
https://doi.org/10.1016/j.rse.2015.05.003
https://doi.org/10.1016/j.rse.2015.05.003
https://doi.org/10.1016/j.rse.2008.09.019
https://doi.org/10.1016/j.jag.2020.102174
https://doi.org/10.1016/j.jag.2020.102174
https://doi.org/10.1016/j.rse.2020.111758
https://doi.org/10.1117/12.366388
https://doi.org/10.1038/s41598-020-62298-z
https://doi.org/10.1038/s41598-020-62298-z
https://doi.org/10.1016/j.jglr.2018.04.001
https://doi.org/10.1016/j.rse.2016.01.022
https://doi.org/10.1080/014311698215919
https://doi.org/10.5194/bg-6-751-2009
https://doi.org/10.5194/bg-6-751-2009
https://doi.org/10.5194/os-11-139-2015
https://doi.org/10.1109/JSTARS.2013.2246139
https://doi.org/10.1016/j.rse.2017.11.014
https://doi.org/10.1016/j.rse.2017.11.014
https://doi.org/10.3390/rs8030221
https://doi.org/10.3390/rs8030221
https://doi.org/10.1007/978-3-030-33157-3
https://doi.org/10.1109/JSTARS.2019.2938883
https://doi.org/10.1109/JSTARS.2019.2938883
https://doi.org/10.1016/j.jag.2020.102088
https://doi.org/10.1002/2017JC012859
https://doi.org/10.1016/j.rse.2019.04.019
https://doi.org/10.1016/j.rse.2019.04.019
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0275
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0275
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0275
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0275
https://doi.org/10.1016/j.rse.2020.112043
https://doi.org/10.1016/j.rse.2020.112043
https://doi.org/10.1016/S0034-4257(02)00108-6
https://doi.org/10.1016/S0034-4257(02)00108-6
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0290
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0290
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0295
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0295
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0295
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0300
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0300
http://refhub.elsevier.com/S0034-4257(21)00067-5/rf0300
https://doi.org/10.1029/2002JE001847
https://doi.org/10.1029/2002JE001847
http://pubs.usgs.gov/of/2010/1167/
https://doi.org/10.1016/j.rse.2018.09.002
https://doi.org/10.3390/rs4113462
https://doi.org/10.1029/97JD00929
https://doi.org/10.1029/97JD00929
https://doi.org/10.1109/TGRS.2010.2048574
https://doi.org/10.1109/TGRS.2003.813135
https://doi.org/10.1109/TGRS.2003.813135
https://doi.org/10.1016/j.jvolgeores.2012.09.005
https://doi.org/10.1007/s11356-017-9568-2
https://doi.org/10.1007/s11356-017-9568-2
http://www.dmec.ca/ex07-dvd/E07/pdfs/22.pdf
http://www.dmec.ca/ex07-dvd/E07/pdfs/22.pdf
https://doi.org/10.1111/2041-210X.12596
https://doi.org/10.1111/2041-210X.12596
https://doi.org/10.1364/AO.45.005414
https://doi.org/10.3390/geosciences6040052
https://doi.org/10.1016/0034-4257(89)90069-2
https://doi.org/10.5194/amt-12-5655-2019
https://doi.org/10.5194/amt-12-5655-2019
https://doi.org/10.1002/ece3.6469
https://doi.org/10.1002/eap.1390
https://doi.org/10.1002/eap.1390
https://doi.org/10.1016/j.still.2005.11.013
https://doi.org/10.5072/83/58499fa75c2c9
https://doi.org/10.4319/lom.2011.9.396


Remote Sensing of Environment 257 (2021) 112349

18

Denis, A., Stevens, A., Van Wesemael, B., Udelhoven, T., Tychon, B., 2014. Soil organic 
carbon assessment by field and airborne spectrometry in bare croplands: accounting 
for soil surface roughness. Geoderma 226, 94–102. https://doi.org/10.1016/j. 
geoderma.2014.02.015. 

Dennison, P.E., Matheson, D.S., 2011. Comparison of fire temperature and fractional area 
modeled from SWIR, MIR, and TIR multispectral and SWIR hyperspectral airborne 
data. Remote Sens. Environ. 115, 876–888. https://doi.org/10.1016/j. 
rse.2010.11.015. 

Dennison, P.E., Charoensiri, K., Roberts, D.A., Peterson, S.H., Green, R.O., 2006. Wildfire 
temperature and land cover modeling using hyperspectral data. Remote Sens. 
Environ. 100 (2), 212–222. https://doi.org/10.1016/j.rse.2005.10.007. 

Dennison, P.E., Thorpe, A.K., Pardyjak, E.R., Roberts, D.A., Qi, Y., Green, R.O., Funk, C., 
2013. High spatial resolution mapping of elevated atmospheric carbon dioxide using 
airborne imaging spectroscopy: Radiative transfer modeling and power plant plume 
detection. Remote Sensing of Environment 139, 116–129. https://doi.org/10.1016/ 
j.rse.2013.08.001. 

Dennison, P.E., Qi, Y., Meerdink, S.K., Kokaly, R.F., Thompson, D.R., Daughtry, C.S., 
Numata, I., 2019. Comparison of methods for modeling fractional cover using 
simulated satellite hyperspectral imager spectra. Remote Sensing 11 (18), 2072. 
https://doi.org/10.3390/rs11182072. 

Devred, E., Turpie, K.R., Moses, W., Klemas, V.V., Moisan, T., Babin, M., Toro-Farmer, G., 
Forget, M.H., Jo, Y.H., 2013. Future retrievals of water column bio-optical properties 
using the hyperspectral infrared imager (HyspIRI). Remote Sens. 5 (12), 6812–6837. 
https://doi.org/10.3390/rs5126812. 

Di Vittorio, A.V., 2009. Enhancing a leaf radiative transfer model to estimate 
concentrations and in vivo specific absorption coefficients of total carotenoids and 
chlorophylls a and b from single-needle reflectance and transmittance. Remote Sens. 
Environ. 113 (9), 1948–1966. https://doi.org/10.1016/j.rse.2009.05.002. 

Diek, S., Schaepman, M.E., De Jong, R., 2016. Creating multi-temporal composites of 
airborne imaging spectroscopy data in support of digital soil mapping. Remote Sens. 
8 (11), 906. https://doi.org/10.3390/rs8110906. 

Diek, S., Chabrillat, S., Nocita, M., Schaepman, M.E., de Jong, R., 2019. Minimizing soil 
moisture variations in multi-temporal airborne imaging spectrometer data for digital 
soil mapping. Geoderma 337, 607–621. https://doi.org/10.1016/j. 
geoderma.2018.09.052. 

Dierssen, H.M., 2019. Hyperspectral measurements, parameterizations, and atmospheric 
correction of whitecaps and foam from visible to shortwave infrared for ocean color 
remote sensing. Front. Earth Sci. 7, 14. https://doi.org/10.3389/feart.2019.00014. 

Dierssen, H.M., Chlus, A., Russell, B., 2015a. Hyperspectral discrimination of floating 
mats of seagrass wrack and the macroalgae Sargassum in coastal waters of greater 
Florida bay using airborne remote sensing. Remote Sens. Environ. https://doi.org/ 
10.1016/j.rse.2015.01.027. 

Dierssen, H.M., McManus, G., Chlus, A., Qiua, D., Gao, B., Lin, S., 2015b. Space station 
image captures a red tide ciliate bloom at high spectral and spatial resolution. Proc. 
National Academy Sci 112 (48), 14783–14787. https://doi.org/10.1073/ 
pnas.1512538112. 

Dierssen, H., Bracher, A., Brando, V., Loisel, H., Ruddick, K., 2020. Data needs for 
hyperspectral detection of algal diversity across the globe. Oceanography 33, 74–79. 
https://doi.org/10.5670/oceanog.2020.111. 

Dobos, E., 1998. Quantitative Analysis and Evaluation of AVHRR and Digital Terrain 
Data for Small-Scale Soil Pattern Recognition [PhD Thesis, Purdue University. UMI 
Number 9914481]. https://docs.lib.purdue.edu/dissertations/AAI9914481/. 

Dobos, E., Micheli, E., Baumgardner, M., Biehl, L., Helt, T., 2000. Use of combined digital 
elevation model and satellite radiometric data for regional soil mapping. Geoderma 
97 (3–4), 367–391. https://doi.org/10.1016/S0016-7061(00)00046-X. 

Dogliotti, A.I., Ruddick, K.G., Nechad, B., Doxaran, D., Knaeps, E., 2015. A single 
algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine 
waters. Remote Sens. Environ. 156, 157–168. https://doi.org/10.1016/j. 
rse.2014.09.020. 

Dong, Q., Shang, S., Lee, Z., 2013. An algorithm to retrieve absorption coefficient of 
chromophoric dissolved organic matter from ocean color. Remote Sens. Environ. 
128, 259–267. https://doi.org/10.1016/j.rse.2012.10.013. 

Dozier, J., 1981. A method for satellite identification of surface temperature fields of 
subpixel resolution. Remote Sens. Environ. 11, 221–229. https://doi.org/10.1016/ 
0034-4257(81)90021-3. 

DuBois, S., Desai, A.R., Singh, A., Serbin, S.P., Goulden, M.L., Baldocchi, D.D., Ma, S., 
Oechel, W.C., Wharton, S., Kruger, E.L., Townsend, P.A., 2018. Using imaging 
spectroscopy to detect variation in terrestrial ecosystem productivity across a water- 
stressed landscape. Ecol. Appl. 28, 1313–1324. https://doi.org/10.1002/eap.1733. 

Dupouy, C., Benielli-Gary, D., Neveux, J., Dandonneau, Y., Westberry, T.K., 2011. An 
algorithm for detecting Trichodesmium surface blooms in the South Western 
Tropical Pacific. Biogeosciences 8, 3631–3647. https://doi.org/10.5194/bg-8-3631- 
2011. 

Durán, S.M., Martin, R.E., Diaz, S., Maitner, B.S., Malhi, Y., others, 2019. Informing trait- 
based ecology by assessing remotely sensed functional diversity across a broad 
tropical temperature gradient. Sci. Adv. 5. https://doi.org/10.1126/sciadv. 
aaw8114. 

Duren, R.M., Thorpe, A.K., Foster, K.T., Rafiq, T., Hopkins, F.M., Yadav, V., Bue, B.D., 
Thompson, D.R., Conley, S., Colombi, N.K., Frankenberg, C., 2019. California’s 
methane super-emitters. Nature 575 (7781), 180–184. https://doi.org/10.1038/ 
s41586-019-1720-3. 

Elvidge, C.D., 1990. Visible and near infrared reflectance characteristics of dry plant 
materials. Int. J. Remote Sens. 11 (10), 1775–1795. https://doi.org/10.1080/ 
01431169008955129. 

Elvidge, C.D., Chen, Z., 1995. Comparison of broad-band and narrow-band red and near- 
infrared vegetation indices. Remote Sens. Environ. 54 (1), 38–48. https://doi.org/ 
10.1016/0034-4257(95)00132-K. 

Fan, Y., Li, W., Gatebe, C.K., Jamet, C., Zibordi, G., Schroeder, T., Stamnes, K., 2017. 
Atmospheric correction over coastal waters using multilayer neural networks. 
Remote Sens. Environ. 199, 218–240. https://doi.org/10.1016/j.rse.2017.07.016. 

Farrand, W.H., Harsanyi, J.C., 1997. Mapping the distribution of mine tailings in the 
Coeur d’Alene River valley, Idaho, through the use of a constrained energy 
minimization technique. Remote Sens. Environ. 59 (1), 64–76. https://doi.org/ 
10.1016/S0034-4257(96)00080-6. 
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Twilley, R.R., Rodriguez, E., 2006. Mapping height and biomass of mangrove forests 
in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote. 
Sens. 72 (3), 299–311. https://doi.org/10.14358/PERS.72.3.299. 

Singh, A., Serbin, S.P., McNeil, B.E., Kingdon, C.C., Townsend, P.A., 2015. Imaging 
spectroscopy algorithms for mapping canopy foliar chemical and morphological 
traits and their uncertainties. Ecol. Appl. 25, 2180–2197. https://doi.org/10.1890/ 
14-2098.1. 

Smith, M.E., Bernard, S., 2020. Satellite ocean color based harmful algal bloom 
indicators for aquaculture decision support in the Southern Benguela. Front. Mar. 
Sci. 7, 61. https://doi.org/10.3389/fmars.2020.00061. 

Smith, M.O., Roberts, D.A., Hill, J., et al., 1994. A new approach to determining spectral 
abundances of mixtures in multispectral images. IEEE Trans. Geosci. Remote Sens. 
https://doi.org/10.1109/IGARSS.1994.399741. Proc. IGARSS ‘94.  

Soenen, S.A., Peddle, D.R., Coburn, C.A., 2005. SCS+C: A modified Sun-Canopy-Sensor 
topographic correction in forested terrain. IEEE Trans. Geosci. Remote Sens. 43 (9), 
2148–2159. https://doi.org/10.1109/TGRS.2005.852480. 

Somers, B., Asner, G.P., Martin, R.E., Anderson, C.B., Knapp, D.E., et al., 2015. Mesoscale 
assessment of changes in tropical tree species richness across a bioclimatic gradient 
in Panama using airborne imaging spectroscopy. Remote Sens. Environ. 167, 
111–120. https://doi.org/10.1016/j.rse.2015.04.016. 

Soto, I., Muller-Karger, F.E., Hu, C., Wolny, J., 2016. Characterization of Karenia brevis 
blooms on the West Florida shelf using ocean color satellite imagery: implications for 
bloom maintenance and evolution. J. Appl. Remote. Sens. 11 (1), 012002. https:// 
doi.org/10.1117/1.JRS.11.012002. 

Sousa, D., Davis, F.W., 2020. Scalable mapping and monitoring of Mediterranean-climate 
oak landscapes with temporal mixture models. Remote Sens. Environ. 247 (11193), 
7. https://doi.org/10.1016/j.rse.2020.111937. 

Stamnes, K., Li, W., Eide, H., Aoki, T., Hori, M., Storvold, R., 2007. ADEOS-II/GLI snow/ 
ice products—part I: scientific basis. Remote Sens. Environ. 111 (2–3), 258–273. 
https://doi.org/10.1016/j.rse.2007.03.023. 

Steinmetz, F., Deschamps, P.-Y., Ramon, D., 2011. Atmospheric correction in presence of 
sun glint: application to MERIS. Opt. Express 19, 9783–9800. https://doi.org/ 
10.1364/OE.19.009783. 

Stocker, A.D., 1990. Multi-dimensional signal processing for electro-optical target 
detection. In: Signal and Data Processing of Small Targets 1990, Vol. 1305. 
International Society for Optics and Photonics, p. 218. https://doi.org/10.1117/ 
12.2321763. 

Stramski, D., Reynolds, R.A., Babin, M., Kaczmarek, S., Lewis, M.R., Röttgers, R., 
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Vögtli, M., Schläpfer, D., Richter, R., Hueni, A., Schaepman, M.E., Kneubühler, M., 2021. 
About the transferability of topographic correction methods from spaceborne to 
airborne optical data. IEEE J. Selected Top. Appl. Earth Observat. Remote Sens. 14, 
1348–1362. https://doi.org/10.1109/JSTARS.2020.3039327. 

Wan, Z.M., Dozier, J., 1996. A generalized split-window algorithm for retrieving land- 
surface temperature from space. IEEE Trans. Geosci. Remote Sens. 34, 892–905. 
https://doi.org/10.1109/36.508406. 

Wan, Z.M., Li, Z.L., 1997. A physics-based algorithm for retrieving land-surface 
emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote 
Sens. 35, 980–996. https://doi.org/10.1109/36.602541. 

Wang, M., 2007. Remote sensing of the ocean contributions from ultraviolet to near- 
infrared using the shortwave infrared bands: simulations. Appl. Opt. 46, 1535–1547. 
https://doi.org/10.1364/AO.46.001535. 

Wang, M., Bailey, S.W., 2001. Correction of sun glint contamination on the SeaWiFS 
ocean and atmosphere products. Appl. Opt. 40, 4790–4798. https://doi.org/ 
10.1364/AO.40.004790. 

Wang, R., Gamon, J., 2019. Remote sensing of terrestrial plant biodiversity. Remote 
Sens. Environ. 231, 1–15. https://doi.org/10.1016/j.rse.2019.111218. 

Wang, M., Hu, C., 2016. Mapping and quantifying Sargassum distribution and coverage 
in the central West Atlantic using MODIS observations. Remote Sens. Environ. 183, 
350–367. https://doi.org/10.1016/j.rse.2016.04.019. 

Wang, G., Lee, Z., Mishra, D.R., Ma, R., 2016. Retrieving absorption coefficients of 
multiple phytoplankton pigments from hyperspectral remote sensing reflectance 
measured over cyanobacteria bloom waters. Limnol. Oceanogr. Methods 14 (7), 
432–447. https://doi.org/10.1002/lom3.10102. 

Wang, Z., Skidmore, A.K., Wang, T., Darvishzadeh, R., Heiden, U., Heurich, M., Latifi, H., 
Hearne, J., 2017. Canopy foliar nitrogen retrieved from airborne hyperspectral 
imagery by correcting for canopy structure effects. Int. J. Appl. Earth Obs. Geoinf. 
54, 84–94. https://doi.org/10.1016/j.jag.2016.09.008. 

Wang, M., Hu, C., Cannizzaro, J., English, D., Han, X., Naar, D., et al., 2018. Remote 
sensing of Sargassum biomass, nutrients, and pigments. Geophys. Res. Lett. 45 (22), 
12359–12367. https://doi.org/10.1029/2018GL078858. 

Wang, Z., Townsend, P.A., Schweiger, A.K., Couture, J.J., Singh, A., Hobbie, S.E., 
Cavender-Bares, J., 2019. Mapping foliar functional traits and their uncertainties 
across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416. 
https://doi.org/10.1016/j.rse.2018.11.016. 

K. Cawse-Nicholson et al.                                                                                                                                                                                                                     

https://doi.org/10.1109/TGRS.2018.2876091
https://doi.org/10.1021/es990046w
https://doi.org/10.1029/2002JE001975
https://doi.org/10.1029/2002JE001975
https://doi.org/10.1130/G30114A.1
https://doi.org/10.2113/econgeo.109.5.1179
https://doi.org/10.3390/rs10030389
https://doi.org/10.3390/rs10030389
https://doi.org/10.1201/9781315159331
https://doi.org/10.1002/2016GL069079
https://doi.org/10.1364/OE.25.009186
https://doi.org/10.1016/j.rse.2017.07.030
https://doi.org/10.1016/j.rse.2018.07.003
https://doi.org/10.1016/j.rse.2019.111258
https://doi.org/10.1016/j.rse.2019.111258
https://doi.org/10.1016/j.rse.2019.05.017
https://doi.org/10.1016/j.rse.2019.05.017
https://doi.org/10.1007/s10712-018-9488-9
https://doi.org/10.1111/jbi.13809
https://doi.org/10.5194/amt-7-491-2014
https://doi.org/10.5194/amt-7-491-2014
https://doi.org/10.5194/amt-10-3833-2017
https://doi.org/10.3390/rs4123813
https://doi.org/10.1371/journal.pone.0143709
https://doi.org/10.1371/journal.pone.0143709
https://doi.org/10.1023/A:1013999513172
https://doi.org/10.1023/A:1013999513172
https://doi.org/10.1016/j.jvolgeores.2008.06.020
https://doi.org/10.1016/j.jvolgeores.2008.06.020
https://doi.org/10.1109/JSTARS.2013.2272697
https://doi.org/10.34194/geusb.v20.4982
https://doi.org/10.2112/JCOASTRES-D-12-00209.1
https://doi.org/10.2112/JCOASTRES-D-12-00209.1
https://hyspiri.jpl.nasa.gov/downloads/reports_whitepapers/HASG_White_Paper_Report_20150226_v3.pdf
https://hyspiri.jpl.nasa.gov/downloads/reports_whitepapers/HASG_White_Paper_Report_20150226_v3.pdf
https://doi.org/10.1016/j.rse.2015.05.008
https://doi.org/10.1016/j.rse.2015.05.008
https://doi.org/10.3390/app8122684
https://doi.org/10.3390/app8122684
https://doi.org/10.1002/2014JC009803
https://doi.org/10.1002/2014JC009803
https://doi.org/10.1016/j.rse.2012.04.008
https://doi.org/10.1016/j.rse.2012.04.008
https://doi.org/10.1073/pnas.1219393110
https://doi.org/10.1111/j.1469-8137.2010.03284.x
https://doi.org/10.1016/j.jag.2011.08.002
https://doi.org/10.1029/2008JD011188
https://doi.org/10.1109/JSTARS.2012.2222356
https://doi.org/10.1109/JSTARS.2012.2222356
https://doi.org/10.3390/rs9090927
https://doi.org/10.3390/rs9090927
https://doi.org/10.1007/s10712-018-9478-y
https://doi.org/10.1007/s10712-018-9478-y
https://doi.org/10.1109/JSTARS.2020.3039327
https://doi.org/10.1109/36.508406
https://doi.org/10.1109/36.602541
https://doi.org/10.1364/AO.46.001535
https://doi.org/10.1364/AO.40.004790
https://doi.org/10.1364/AO.40.004790
https://doi.org/10.1016/j.rse.2019.111218
https://doi.org/10.1016/j.rse.2016.04.019
https://doi.org/10.1002/lom3.10102
https://doi.org/10.1016/j.jag.2016.09.008
https://doi.org/10.1029/2018GL078858
https://doi.org/10.1016/j.rse.2018.11.016


Remote Sensing of Environment 257 (2021) 112349

25

Wang, Z., Chlus, A., Geygan, R., Ye, Z., Zheng, T., Singh, A., Couture, J.J., Cavender- 
Bares, J., Kruger, E.L., Townsend, P.A., 2020. Foliar functional traits from imaging 
spectroscopy across biomes in eastern North America. New Phytol. 228, 494–511. 
https://doi.org/10.1111/nph.16711. 

Wanner, W., Li, X., Strahler, A.H., 1995. On the derivation of kernels for kernel-driven 
models of bidirectional reflectance. J. Geophys. Res.-Atmos. 100 (D10), 
21077–21089. https://doi.org/10.1029/95JD02371. 

Wen, S., Rose, W.I., 1994. Retrieval of sizes and total masses of particles in volcanic 
clouds using AVHRR bands 4 and 5. J. Geophys. Res. 99 (D3), 5421–5431. https:// 
doi.org/10.1029/93JD03340. 

Wessman, C., Aber, J., Peterson, D., et al., 1988. Remote sensing of canopy chemistry and 
nitrogen cycling in temperate forest ecosystems. Nature 335, 154–156. https://doi. 
org/10.1038/335154a0. 

Westberry, T.K., Behrenfeld, M.J., 2014. Oceanic net primary production. In: Biophysical 
Applications of Satellite Remote Sensing. Springer, pp. 205–230. 

Weyermann, J., Damm, A., Kneubühler, M., Schaepman, M.E., 2014. Correction of 
reflectance anisotropy effects of vegetation on airborne spectroscopy data and 
derived products. IEEE Trans. Geosci. Remote Sens. 52, 616–627. https://doi.org/ 
10.1109/TGRS.2013.2242898. 
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