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Abstract

Visual scene understanding is the core task in making
any crucial decision in any computer vision system. Al-
though popular computer vision datasets like Cityscapes,
MS-COCO, PASCAL provide good benchmarks for several
tasks (e.g. image classification, segmentation, object de-
tection), these datasets are hardly suitable for post disas-
ter damage assessments. On the other hand, existing natu-
ral disaster datasets include mainly satellite imagery which
have low spatial resolution and a high revisit period. There-
fore, they do not have a scope to provide quick and effi-
cient damage assessment tasks. Unmanned Aerial Vehicle
(UAV) can effortlessly access difficult places during any dis-
aster and collect high resolution imagery that is required for
aforementioned tasks of computer vision. To address these
issues we present a high resolution UAV imagery, FloodNet,
captured after the hurricane Harvey. This dataset demon-
strates the post flooded damages of the affected areas. The
images are labeled pixel-wise for semantic segmentation
task and questions are produced for the task of visual ques-
tion answering. FloodNet poses several challenges includ-
ing detection of flooded roads and buildings and distin-
guishing between natural water and flooded water. With the
advancement of deep learning algorithms, we can analyze
the impact of any disaster which can make a precise under-
standing of the affected areas. In this paper, we compare
and contrast the performances of baseline methods for im-
age classification, semantic segmentation, and visual ques-
tion answering on our dataset.

1. Introduction

Understanding of a visual scene from images has the
potential to advance many decision support systems. The
purpose of scene understanding is to classify the overall
category of scene as well as constituting interrelationship
among different object classes at both instance and pixel
level. Recently, several datasets [19, 48, 23] have been pre-
sented to study different aspects of scenes by implement-
ing many computer vision tasks. A major factor in success
of most of the deep learning algorithms is the availability
of large-scale dataset. Publicly available ground imagery
datasets such as ImageNet[19], Microsoft COCO[48], PAS-
CAL VOC[23], Cityscapes[15] accelerate the advanced de-
velopment of current deep neural networks, but the annota-
tion of aerial imagery is scarce and more tedious to obtain.

Aerial scene understanding dataset are helpful for urban
management, city planning, infrastructure maintenance,
damage assessment after natural disasters, and high def-
inition (HD) maps for self-driving cars. Existing aerial
datasets, however, are limited mainly to classification [29,
44] or semantic segmentation [29, 60] of few individual
classes such as roads or buildings. Moreover, all of these
datasets are collected in normal conditions and computer
vision algorithms are mainly developed for normal looking
objects. Most of these datasets do not address the unique
challenges in understanding post disaster scenarios as a task
for disaster damage assessment. For quick response and re-
covery in large scale after a natural disaster such as hurri-
cane, wildfire, and extreme flooding access to aerial images
are critically important for the response team. To fill this
gap we present FloodNet dataset associated with three dif-
ferent computer vision tasks namely classification, semantic
segmentation, and visual question answering.
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Real Image Ground Truth Segmented Image  QA Pair

 
Image Class: Non-Flooded

What is	the	overall	condition	of	the	
given	image?			Non-Flooded

How many buildings are non flooded? 6

How many buildings are in this image? 6

Is the entire road flooded? No
What is the condition of the 
road in this image? Non-Flooded

Image Class: Flooded

Image Class: Flooded

Background

How many buildings are in this image? 19
Is the entire road flooded? No

What is the condition of the 
road in this image? Flooded and Non-Flooded

How many buildings are flooded? 19

What is the condition of the road
in this image? Flooded

How many buildings are in the image? 5

How many non flooded buildings can be seen 
in this image? 3

Background

Building-flooded

Building-non-flodded

Road-flooded

Road-non-flooded

Water

Tree

Vehicle

Pool

Grass

Figure 1. FloodNet dataset overview for Classification, Semantic Segmentation and Visual Question Answering

Although several datasets [8, 7, 30, 66] are provided for
post disaster damage assessments, they have numerous is-
sues to tackle. Most of those datasets contain satellite im-
ages and images collected from social media. Satellite im-
ages are low in resolution and captured from high altitude.
They are affected from several noises including clouds and
smokes. Moreover, deploying satellites and collecting im-
ages from these are costly. On the other hand, images
posted on social media are noisy and not scalable for deep
learning models. To address this issues, our dataset, Flood-
Net, provides high resolution images taken from low alti-
tude. These characteristics of FloodNet brings more clar-
ity to scenes and thus help deep learning models in making
more accurate decisions regarding post disaster damage as-
sessment. In addition, most of tasks considering natural dis-
aster datasets are restricted to mainly classification and ob-
ject detection. Our dataset offers advanced computer vision
challenges namely semantic segmentation and visual ques-
tion answering besides classification. All these three com-
puter vision tasks can provide assistance in complete under-
standing of a scene and help rescue team to manage their
operation efficiently during emergencies. Figure 1 shows
sample annotations offered by FloodNet.

Our contribution is two folds. First we introduce a high
resolution UAV imagery named FloodNet for post disas-
ter damage assessment. Secondly, we compare the perfor-
mance of sevral classification, semantic segmentation and
visual question answering on our dataset. To the best of
our knowledge, this is the first VQA work focused on UAV

imagery for any disaster damage assessment.
The reminder of this paper is organized as follows: it be-

gins with highlighting the existing datasets for natural disas-
ter, semantic segmentation, and visual question answering
in section 2. Next, section 3 describes the FloodNet dataset
including its collection and annotation process. Section 4
describes the experimental setups for all three aforemen-
tioned tasks along with complete result analysis of corre-
sponding tasks. Finally section 5 summarizes the results
including conclusion and future works.

2. Related Works
In this section we provide an overview of datasets de-

signed for natural disasters damage analysis, followed by
a survey of techniques targeting aerial and satellite image
classification, segmentation, and VQA.

2.1. Datasets

Natural disaster dataset can be initially classified into
two classes: A) Non-imaging dataset (text, tweets, social
media post) [35, 58] and B) Imaging datasets [60, 29, 12].
Based on the image capture position existing imaging nat-
ural disaster datasets can be further classified into three
classes: B1) Ground-level images [54], B2) Satellite im-
agery [12, 29, 22, 17, 14, 60], and B3) Aerial imagery
[44, 78, 25]. Recently several datasets have been intro-
duced by researchers for natural disaster damage assess-
ment. Nguyen et al. proposed an extension of AIDR system
[53] to collect data from social media in [54]. AIST Build-
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Table 1. A brief summary of existing datasets.
Dataset Types of Images UAV imagery Post Disaster Resolution of Images Classification Semantic Segmentation VQA

ImageNet [19] Real-world images No No average 400 × 350 X 7 7

Cityscapes [48] Real-world images No No 1280 × 720 7 X 7

DAQUAR [51] Real-world images No No 640 × 480 7 7 X
COCO-QA [57] Real-world images No No 640 × 480 7 7 X
COCO-VQA [4] Real world images, abstract cartoon images No No 640 × 480 7 7 X

Visual Genome [40] Real-world images No No varies in size 7 7 X
Visual7W [79] Real-world images No No varies in size 7 7 X
TDIUC [37] Real-world images No No varies in size 7 7 X
CLEVR [36] Geometrical Shape No No 320 x 240 (in default settings) 7 7 X

PATHVQA [33] Medical Images No No Varies in size 7 7 X
VQA-MED [2] Medical Images No No Varies in size 7 7 X

Nguyen et al. [53] Post Disaster Images No Yes Varies in size X 7 7

ABCD [25] Pre and Post Disaster Images No Yes Varies in size X 7 7

SpaceNet + Deepglobe [22] Pre and Post Disaster Images No Yes Varies in size 7 X 7

Chen et al. [12] Post Disaster Images No Yes Varies in size 7 7 7

OSCD [17] Urban Change Images No No Varies in size 7 7 7

fMoW [14] Pre and Post Disaster Images No Yes Varies in size X 7 7

AIDER [44] Post Disaster Images Yes Yes Varies in size X 7 7

Rudner et al. [60] Post Disaster Images No Yes Varies in size 7 X 7

xBD [29] Pre and Post Disaster Images No Yes Varies in size X X 7

ISBDA [78] Post Disaster Images Yes Yes Varies in size 7 7 7

FloodNet (Ours) Post Disaster Images Yes Yes 4000× 3000 X X X

ing Change Detection (ABCD) dataset has been proposed in
[25] which includes aerial post tsunami images to identify
whether the buildings have been washed away. A combi-
nation of SpaceNet [16] and DeepGlobe [18] was presented
in [22] and a segementation model was proposed to detect
changes in man-made structures to estimate the impact of
natural disasters. Chen et al. in [12] proposed a fusion
of different data resources for automatic building damage
detection after a hurricane. The dataset includes satellite
and aerial imageries along with vector data. Onera Satel-
lite Change Detection (OSCD) dataset was proposed in [17]
which consists of multispectral aerial images to detect ur-
ban growth and changes with time. A collection of images
of buildings and lands named Functional Map of the World
(fMoW) was introduced by Christie et al. in [14]. Aerial
Image Database for Emergency Response (AIDER) is pro-
posed by Kyrkou et al. in [44] for classification of UAV
imagey. Rudner et al. [60] propose a satellite imagery col-
lected from Sentinel-1 and Sentinel-2 satellites for semantic
segmentation of flooded buildings. Gupta et al. proposed
xBD [29] which have both pre- and post-event satellite im-
ages in order to assess building damages. Recently ISBDA
(Instance Segmentation in Building Damage Assessment)
is created by Zhu et al. in [78] for instance segmentation
while images are collected using UAVs.

A comparative study among different disaster and non
disaster datasets is shown in Table 1. As you can see in Ta-
ble 1, our dataset is the only high resulting UAV dataset col-
lected after a hurricane which contains all computer vision
tasks including classification, semantic segmentation, and
VQA. Although several pre- and post-disaster datasets have
been proposed over the years, these datasets are primary
satellite imageries. Satellite imageries, including those
with high resolution, do not provide enough details about
the post disaster scenes which are necessary to distinguish

among different damage categories of different objects. On
the other hand the primary source of the ground-level im-
ageries is social media [54]. These imageries lack geo loca-
tion tags [78] and suffers from data scarcity for deep learn-
ing training [66]. Although some aerial datasets [44, 78] are
prepared using UAVs, these datasets lack low altitude high
resolution images. AIDER [44] dataset collected images
from different sources for image classification task and con-
tains far more examples of normal cases rather than dam-
aged objects; therefore lacks consistency and generaliza-
tion. ISBDA [78] provides only building instance detection
capability rather than inclusion of other damaged objects
and computer vision tasks like semantic segmentation and
VQA. To address all these issues, FloodNet includes low
altitude high resolution post disaster images annotated for
classification, semantic segmentation, and VQA. FloodNet
provides more details about the scenarios which help to esti-
mate the post disaster damage assessment more accurately.

2.2. Algorithms

Here we review the related algorithms and some of their
applications in disaster damage assessment.

2.2.1 Classification

The utility of Deep Neural Networks was realized when
they achieved high accuracy in categorizing images into dif-
ferent classes. This was given a boost mainly by AlexNet
[43] which achieved state-of-the-art performance on the Im-
ageNet [20] dataset in 2012. As this is arguably the most
primitive computer vision task, a lot of networks were pro-
posed subsequently which could perform classification on
public datasets such as CIFAR[42, 41], MNIST[47], and
FashionMNIST [67].

This led to a rise in networks such as [63], [32], [64],
[13], [34] etc., where the network architectures were exper-
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imented with different skip connections, residual learning,
multi-level feature extraction, separable convolutions, and
optimization methods for mobile devices. Although these
networks achieved good performance on day to day images
of animals and vehicles, they were hardly sufficient to make
predictions on scientific datasets such as those captured by
aerial or space borne sensors.

In this regard, some image classification networks have
been explored for the purpose of post-disaster damage de-
tection [45, 53, 5, 61, 76]. [53] used crowd sourced images
from social media which captured disaster sites from the
ground level. [5] used a Support Vector Machine on top of
a Convolutional Neural Network (CNN) followed by a Hid-
den Markov Model post-processing to detect avalanches.
[61] compared [63] and [32] for fire detection, but then
again the dataset used contained images taken by hand-held
cameras on the ground. [76] developed a novel algorithm
which focused on wildfire detection through UAV images.
[45] have done extensive work by developing a CNN for
emergency response towards fire, flood, collapsed build-
ings, and crashed cars. Our paper can contribute in this
domain by providing multi feature flooded scenes that can
inspire the efficient training of more neural networks.

2.2.2 Semantic segmentation

Semantic segmentation is one of the prime research area in
computer vision and an essential part of scene understand-
ing. Fully Convolutional Network (FCN) [49] is a pioneer-
ing work which is followed by several state-of-art mod-
els to address semantic segmentation. From the perspec-
tive of contextual aggregation, segmentation models can be
divided into two types. Models, such as PSPNet [74] or
DeepLab [9, 10] perform spatial pyramid pooling [28, 46] at
several grid scales and have shown promising results on sev-
eral segmentation benchmarks. The encoder-decoder net-
works combines mid-level and high-level features to obtain
different scale global context. Some notable works using
this architecture are [10, 59]. On the other hand, there are
models [75, 73, 24] which obtain feature representation by
learning contextual dependencies over local features.

Besides proposing natural disaster datasets many re-
searchers have also presented different deep learning mod-
els for post natural disaster damage assessment. Authors
in [22] perform previously proposed semantic segmenta-
tion [21] on satellite images to detect changes in the struc-
ture of various man-made features, and thus detect areas of
maximal impact due to natural disaster. Rahnemoonfar et
al. present a densely connected recurrent neural network in
[56] to perform semantic segmentation on UAV images for
flooded area detection. Rudner et al. fuse multiresolution,
multisensor, and multitemporal satellite imagery and pro-
pose a novel approach named Multi3Net in [60] for rapid

segmentation of flooded buildings. Gupta et al. propose a
DeepLabv3 [10] and DeepLabv3+ [11] inspired RescueNet
in [31] for joint building segmentation and damage classi-
fication. All these proposed methods address the semantic
segmentation of specific object classes like river, buildings,
and roads rather than complete scene post disaster scenes.

Above mentioned state-of-art semantic segmentation
models have been primarily applied on ground based im-
agery [15, 52]. In contrast we apply three state-of-art se-
mantic segmentation networks on our proposed FloodNet
dataset. We adopt one encoder-decoder based network
named ENet [55], one pyramid pooling module based net-
work PSPNet [74], and the last network model DeepLabv3+
[11] employs both encoder-decoder and pyramid pooling
based module.

2.2.3 Visual Question Answering

Many researchers proposed several datasets and methods
for Visual Question Answering task. However, there are
no such datasets apt for training and evaluating VQA algo-
rithms regarding disaster damage assessment tasks.

To find the right answer, VQA systems need to model the
question and image (visual content). Substantial research
efforts have been made on the VQA task based on real nat-
ural and medical imagery in the computer vision and nat-
ural language processing communities [4, 69, 38, 27] us-
ing deep learning-based multimodal methods [50, 68, 26, 3,
70, 72, 6, 39, 71]. In these methods, different approaches
for the fined-grained fusion between semantic features of
image and question have been proposed. Most of the re-
cent VQA algorithms have trained on natural image based
datasets such as DAQUAR[62], COCO-VQA [4], Visual
Genome[40], Visual7W [79]. In addition Path-VQA [33]
and VQA-MED [2] are medical images for which VQA
algorithms are also considered. In this work, we present
FloodNet dataset to build and test VQA algorithms that can
be implemented during natural emergencies. To the best
of our knowledge, this is the first VQA dataset focused on
UAV imagery for disaster damage assessment. To evaluate
the performances of existing VQA algorithms we have im-
plemented baseline models, Stacked Attention network[69],
and MFB with Co-Attention[71] network on our dataset.

3. The FloodNet Dataset
The data is collected with small UAV platform, DJI

Mavic Pro quadcopters, after Hurricane Harvey. Hurricane
Harvey made landfall near Texas and Louisiana on August,
2017, as a Category 4 hurricane. The Harvey dataset con-
sists of video and imagery taken from several flights con-
ducted between August 30 - September 04, 2017, at Ford
Bend County in Texas and other directly impacted areas.
The dataset is unique for two reasons. One is fidelity: it con-
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tains imagery from sUAV taken during the response phase
by emergency responders, thus the data reflects what is the
state of the practice and can be reasonable expected to be
collected during a disaster. Second: it is the only known
database of sUAV imagery for disasters. Note that there
are other existing databases of imagery from unmanned and
manned aerial assets collected during disasters, such as Na-
tional Guard Predators or Civil Air Patrol, but those are
larger, fixed-wing assets that operate above the 400 feet
AGL (Above Ground Level), limitation of sUAV. All flights
were flown at 200 feet AGL, as compared to manned assets
which normally fly at 500 feet AGL or higher. Such images
are very high in resolution, making them unique compared
to other data sets for natural disasters. The post-flooded
damages to affected areas are demonstrated in all the im-
ages. There are several objects (e.g. construction, road) and
related attributes ( e.g. state of an object such as flooded or
non-flooded after Hurricane Harvey) represented by these
images. For the preparation of this dataset for semantic seg-
mentation and visual question answering, these attributes
are considered.

3.1. Annotation Tasks

After natural disasters, the response team first need to
identify the affected neighborhoods such as flooded neigh-
borhoods (classification tasks). Then on each neighborhood
they need to identify flooded buildings and roads (seman-
tic segmentation) so the rescue team can be sent to af-
fected areas. Furthermore, damage assessment after any
natural calamities done by querying about the changes in
object’s condition so they can allocate the right resources.
Based on these needs and with the help of response and
rescue team, we defined classification, semantic segmen-
tation and VQA tasks. In total 3200 images have been
annotated with 9 classes which include building-flooded,
building-non-flooded, road-flooded, road-non-flooded, wa-
ter, tree, vehicle, pool, and grass. A buildings is classified as
flooded when at least one side of a building is touching the
flood water. Although we have classes created for flooded
buildings and roads, to distinguish between natural water
and flood water, “water” class has been created which rep-
resents any natural water body like river and lake. For the
classification task, each image is classified either “flooded”
or “non-flooded”. If more than 30% area of an image is oc-
cupied by flood water then that area is classified as flooded,
otherwise non-flooded. Number of images and instances
corresponding to different classes are shown in Table 2. our
images are quite dense. On average, it take about one hour
to annotate each image. To ensure high quality, we per-
formed the annotation process iteratively with a two-level
quality check over each class. The images are annotated on
V7 Darwin platform [1] for classification and semantic seg-
mentation. We split the dataset into training, validation, and

test sets with 70% for training and 30% for validation and
testing. The training, validation, and testing sets for all the
three tasks will be publicly available.

Table 2. Number of images and instances corresponding to differ-
ent classes.

Object Class Images Instances
Building-flooded 275 3573
Building-non-flooded 1272 5373
Road-flooded 335 649
Road-non-flooded 1725 3135
Vehicle 1105 6058
Pool 676 1421
Tree 2507 25889
Water 1262 1784

3.2. VQA task

To provide VQA framework, we focus on generating
questions related to the building, road, and entire image as a
whole for our FloodNet dataset. By asking questions related
to these object we can assess the damages and understand
the situation very precisely. Attribute associated with afore-
mentioned objects can be identified from the Table 2. For
the FloodNet-VQA dataset,∼ 11, 000 question-image pairs
are considered while training VQA networks. All the ques-
tions are created manually. Each image has an average of
3.5 questions. Each of the questions is designed to provide
answers which are connected to the local and global regions
of images. In Figure 1, some sample questions-answer pairs
are presented from our dataset.

3.2.1 Types of Question

Questions are divided into a three-way question group,
namely “Simple Counting”, “Complex Counting”, and
“Condition Recognition”. In the Figure 2, distribution of
the question pattern based on the first words of the questions
is given. All of the questions start with a word belongs to
the set {How, Is, What}. Maximum length of question is
11.

In the Simple Counting problem, we ask about an ob-
ject’s frequency of presence (mainly building) in an image,
regardless of the attribute (e.g. How many buildings are in
the images?). Both flooded and non-flooded buildings can
appear in a picture in several cases (e.g. bottom image from
Figure 1).

The question type Complex Counting is specifically in-
tended to count the number of a particular building attribute
(e.g. How many flooded / non-flooded buildings are in the
images?) We’re interested in counting only the flooded or
non-flooded buildings from this type of query. In compar-
ison to simple counting, a high-level understanding of the
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Figure 2. VQA Data Statistics: Left figure represents the distribution of the question pattern based on starting word; Right-top, Right-
bottom figures describes the distribution of possible answers for different question types

the scene is important for answering this type of question.
This type of question also starts with the word “How”.

Condition Recognition questions investigate the condi-
tion of the entire image as a whole or the road. This type
of question is divided into three sub-categories. One cate-
gory deals with the condition of road by asking questions
such as “What is the condition of the road?”. Second one
seeks the condition of the entire image by asking ques-
tions like “What is the overall condition of the entire im-
age?”. “Yes/No” type question is categorised as the third
sub-category of the Condition Recognition. “Is the road
flooded?”, “Is the road non-flooded” are some of the ex-
amples from this sub-category. Starting word for this type
of question is either “Is” or “What”.

3.2.2 Types of Answer

Table 3. Possible Answers for Three Types of Questions

Question Type Possible Answer
Simple Counting {1,2,3,4...}

Complex Counting {1,2,3,4...}
Condition of Road

(sub-category of Condition Recognition) Flooded , Non-Flooded, Flooded & Non-Flooded
Condition of Entire Image

(sub-category of Condition Recognition) Flooded , Non-Flooded
Yes/No-Type Question

(sub-category of Condition Recognition) Yes, No

Both flooded and non-flooded buildings can exist in any
image. For complex counting problem, we only count either
the flooded or non-flooded buildings from a given image-
question pair. Roads are also annotated as flooded or non-
flooded. Second image from the Figure 1 depicts both
flooded and non-flooded roads. Thus, the answer for the
question like “What is condition of road?” for this kind

of images will be both ‘flooded and non-flooded’. Fur-
thermore, entire image may be graded as flooded or non-
flooded. Table 3 refers to the possible answers for three
types questions and from Figure 2, we can see the possi-
ble answer distribution for different types of question. Most
frequent answers for counting problem, in general, are ‘4, 3,
2, 1’ whereas ‘27, 30, 41, 40’ are the less frequent answers.
For Condition Recognition problem, ‘non-flooded, yes’ are
the most common answers.

4. Experiments
To understand the usability of these images for flood

detection, we majorly carry out three tasks, which are
Image Classification, Semantic Segmentation, and Visual
Question Answering (VQA). We begin with classifying the
FloodNet data into Flooded and Non-Flooded images, then
we detect specific regions of flooded buildings, flooded
roads, vehicles etc. through semantic segmentation net-
works. Finally, we carry out VQA on this dataset. For all
of our tasks, we use NVIDIA GeForce RTX 2080 Ti GPU
with an Intel Core i9 processor.

For image classification, we used three state-of-the-art
networks i.e. InceptionNetv3 [65], ResNet50 [32], and
Xception [13] as base models to classify the images into
Flooded and Non-Flooded categories. These networks have
significantly contributed to the field of Computer Vision by
introducing a unique design element, such as the residual
blocks in ResNet, the multi-scale architecture in Inception-
Net and depthwise separable convolutions in Xception. For
our classification task, the output from these base models
was followed by a Global Average Pooling Layer, a fully
connected layer with 1024 neurons having Relu Activation,
and finally by two neurons with Softmax activation. We
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Figure 3. Visual comparison on FloodNet test set for Semantic Segmentation.

Table 4. Per-class results on FloodNet testing set.

Method Building Flooded
Building Non

Flooded Road Flooded
Road Non
Flooded Water Tree Vehicle Pool Grass mIoU

ENet[55] 6.94 47.35 12.49 48.43 48.95 68.36 32.26 42.49 76.23 42.61
DeepLabV3+[11] 32.7 72.8 52.00 70.2 75.2 77.00 42.5 47.1 84.3 61.53
PSPNet[74] 68.93 89.75 82.16 91.18 92.00 89.55 46.15 64.19 93.29 79.69

initialized our networks with ImageNet [20] weights and
trained them for 30 epochs, with 20 steps for every epoch,
using binary cross entropy loss.

For semantic segmentation, we implemented three meth-
ods, i.e. PSPNet [74], ENet [55], and DeepLabv3+ [11];
and evaluate their performance on FloodNet dataset. For
implementing PSPNet, ResNet101 was used as backbone.
We used “poly” learning rate with base learning rate 0.0001.
Momentum, weight decay, power, and weight of the auxil-
iary loss were set to 0.9, 0.0001, 0.9, and 0.4 respectively.
For ENet we used 0.0005 and 0.1 for learning rate and learn-
ing rate decay respectively. Weight decay was set to 0.0002.
Similarly for DeepLabv3+ we used poly learning rate with
base learning rate 0.01. We set weight decay to 0.0001 and
momentum to 0.9. For image augmentation we used ran-
dom shuffling, scaling, flipping, and random rotation which
helped the models avoid overfitting. From different experi-
ments it was proved that larger “crop size” and “batch size”
improve the performance of the models. During training,
we resized the images to 713 × 713 since large crop size
is useful for the high resolution images. For semantic seg-
mentation evaluation metric we used mean IoU (mIoU).

For Visual Question Answering, simple baselines
(concatenation/element-wise product of image and text fea-
tures) and Multimodal Factorized Bilinear (MFB) with co-

attention [71], Stacked Attention Network [69] have been
considered for this study. All of these models are config-
ured according to our dataset. For image and question fea-
ture extraction, respectively, VGGNet (VGG 16) and Two-
Layer LSTM are taken into account. Feature vector from
last pooling layer of the VGGNet and 1024-D vector from
the last word of Two-Layer LSTM are considered as the
image and question vectors respectively. Dataset is splited
into training, validation and testing data. All the images are
resized to 224 × 224 and questions are tokenized. By con-
sidering cross-entropy loss, all the models are optimized by
stochastic gradient descent ( SGD) with batch size 16. In the
training phase, models are validated by validation dataset
via early stopping criterion with patience 30.

4.1. Image Classification Analysis

The classification accuracies of the three networks are
shown in Table 6. From this table, it can be seen that
the highest performance on the test set was given by
ResNet. The residual architecture of ResNet has success-
fully helped in classifying the test images into Flooded and
Non-Flooded, as compared to the other networks. Even
though Xception and InceptionNet have a much wider ar-
chitecture and show higher classification accuracy on Ima-
geNet data, this is not the case for FloodNet dataset.
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Table 5. Accuracy table for Baseline VQA Algorithms

Counting Problem Condition Recognition

Method Data Type Overall Accuracy Accuracy for
’Simple Counting’

Accuracy for
’Complex Counting’

Accuracy for
’Yes/No’

Accuracy for
”Entire Image

Condition”

Accuracy for
”Road

Condition”

Concatenation of Features [77] Validation 0.41 0.04 0.03 0.017 0.86 0.9
Testing 0.42 0.04 0.03 0.17 0.86 0.9

Element-wise Multiplication of Features [4] Validation 0.69 0.28 0.27 0.86 0.96 0.97
Testing 0.68 0.25 0.21 0.84 0.96 0.97

SAN [69] Validation 0.63 0.34 0.28 0.51 0.95 0.97
Testing 0.63 0.26 0.24 0.54 0.94 0.97

MFB with Co-Attention [71] Validation 0.72 0.31 0.28 0.98 0.96 0.97
Testing 0.73 0.29 0.26 0.99 0.97 0.99

Therefore, networks which give high accuracy on every-
day images such as those of ImageNet can not really be used
to detect image features from aerial datasets which contain
more complex urban and natural scenes. Thus, there is a
need to design separate novel architectures which can ef-
fectively detect urban disasters.

Table 6. Classification accuracy of three state-of-the-art networks
on FloodNet dataset

Model Training Accuracy Test Accuracy
InceptionNetv3[65] 99.03 % 84.38%

ResNet50[32] 97.37% 93.69%
Xception[13] 99.84 % 90.62%

4.2. Semantic Segmentation Performance Analysis

Semantic segmentation results of ENet, DeepLabv3+,
and PSPNet are presented in Table 4. From the segmen-
tation experiment it is evident that detecting small objects
like vehicles and pools are the most difficult tasks for
the segmentation networks. Then flooded buildings and
roads are the next challenging tasks for all three models.
Among all of the segmentation models, PSPNet performs
best in all classes. It is interesting to note that although
DeepLabv3+ and PSPNet collect global contextual infor-
mation, still their performance on detecting flooded build-
ing and flooded roads are still low, since distinguishing be-
tween flooded and non-flooded objects heavily depend on
respective contexts of the classes.

4.3. Visual Question Answering Performance Anal-
ysis

From the Table 5, we can identify that counting problem
(simple and complex) is very challenging compare to task of
condition recognition. Many objects are very small which
makes it very difficult even for human to count. Accuracy
for ‘Condition Recognition’ category is high. This is be-
cause it is not difficult to recognize the condition of whole
images as well as roads as they are pictured in a larger ratio
given the overall size of an image. MFB with co-attention
[71] outperforms all the other methods for all types of ques-
tion.

5. Discussion and Conclusion
In this paper, we introduce the FloodNet dataset for post

natural disaster damage assessment. We describe the dataset
collection procedure along with different features and statis-
tics. The UAV images provide high resolution and low alti-
tude dataset specially significant for performing computer
vision tasks. The dataset is annotated for classification,
semantic segmentation, and VQA. We perform three com-
puter vision tasks including image classification, semantic
segmentation, and visual question answering and in-depth
analysis have been provided for all three tasks.

Although UAVs are cost effective and prompt solution
during any post natural disaster damage assessment, several
challenges have been posed by FloodNet dataset collected
using UAVs. Among all the existing classes, vehicles and
pools are the smallest in shape and therefore would be dif-
ficult for any network models to detect them. Segmentation
results from Table 4 supports the task difficulty in identify-
ing small objects like vehicles and pools. Besides detecting
flooded building is another prime challenge. Since UAV
images only include top view of a building, it is very diffi-
cult to estimate how much damages are done on that build-
ing. Segmentation models do not perform well in detecting
flooded buildings. Similarly flooded roads pose challenge
in distinguishing them from non-flooded roads and results
from segmentation models prove that. Most importantly
distinguishing between flooded and non-flooded roads and
buildings depends on their corresponding contexts and cur-
rent state-of-art models are still lacking good performance
in computer vision tasks performed on FloodNet. To the
best of our knowledge this is the first time where these
three crucial computer vision tasks have been addressed in
a post natural disaster dataset together. The experiments
of the dataset show great challenges and we strongly hope
that FloodNet will motivate and support the development of
more sophisticated models for deeper semantic understand-
ing and post disaster damage assessment.
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