

TOWSON UNIVERSITY

COLLEGE OF GRADUATE STUDIES AND RESEARCH

MICROWORLDS TO IMPROVE LEARNING IN

INTRODUCTORY COMPUTER SCIENCE COURSES

by

James A. Robertson

A Dissertation

Presented to the faculty of

Towson University

in partial fulfillment

of the requirements for the degree

Doctor of Education

May 2010

Towson University

Towson, Maryland 21252

ii

TOWSON UNIVERSITY

COLLEGE OF GRADUATE STUDIES AND RESEARCH

DISSERTATION APPROVAL PAGE

This is to certify that the dissertation prepared by James A. Robertson

entitled Microworlds to Improve Learning in Introductory Programming Courses

has been approved by his or her committee as satisfactory completion of the dissertation

requirement for the degree Doctor of Education.

Jeffrey Kenton, PhD Date

Chair, Dissertation Committee

William Sadera, PhD Date

Committee Member

Liyan Song, PhD Date

Committee Member

Gabriele Meiselwitz, EdD Date

Committee Member

Marilyn Nicholas, PhD Date

Committee Member

Chao Lu, PhD Date

Dean, College of Graduate Studies and Research

iii

Acknowledgements

 There are number of people that contributed significantly to the contents and

organization of this study. Without their kind, patient and dedicated support, this research

would have not been possible. I am grateful for my dissertation advisor, Dr. Jeff Kenton

whose recommendations and excellent support guided this study from its inception to

conclusion. His insight and contributions throughout the entire process added value and

quality to the research and this dissertation.

I appreciate the technical support, guidance provided by Dr. Scott Mcnary in the areas

of research design and statistical analysis techniques. Dr. Mcnary‟s technical direction

helped me align the proper analysis techniques with each instrument used in this research.

Special thanks goes to Dr. Nick Duchon for agreeing to pilot and conduct the full

study over two semesters at the university. Dr. Duchon contributed significant insight

into the programming environments and the students over several months while still

maintaining his other teaching and duties at the university.

Finally, a special thanks to all of my dissertation committee members for patience,

leadership and technical guidance throughout this process. Each member provided

feedback that shaped and improved this study.

iv

Abstract

MICROWORLDS TO IMPROVE LEARNING IN

INTRODUCTORY COMPUTER SCIENCE COURSES

James A. Robertson

Novice programmers often struggle when attempting to learn how to write code while

reducing the number of programming errors. This study investigates tools and techniques

that can be used to reduce some of the obstacles many students face when learning to

write a computer program. Specifically, this research aims to evaluate if entry-level

programming students who use the Alice 2.0 programming environment demonstrate a

better understanding of fundamental programming concepts than students who use a

traditional C++ programming environment. Approximately 70 students from two face-to-

face CS0 sections taught by the same instructor participated in this research. The

instruments used in this research included a pre-test, demographic questionnaire, three

programming assignments, a post-test, course evaluations, and final course grades. A

rubric was used for the instructor to grade each programming assignment. Each

assessment activity was carefully aligned with one or more course learning objectives.

Results of this study showed students who used the Alice programming environment

consistently scored higher in the layout (visual appeal) grading component for all

programming assignments. There were no differences found between the two

programming environments in regards to code functionality or design, or in the pre- and

post-test scores between the two groups. A larger percentage of students from the group

v

that used the Alice programming environment successfully passed the course. However,

students in the Alice group rated the instructor and overall course significantly lower than

students who used the C++ programming environment.

.

vi

Table of Contents

List of Tables .. xi

Chapter I. Introduction ... 1

Background .. 1

Statement of the Problem ... 9

Purpose of Research ... 9

Significance of Research .. 10

Research Overview .. 12

Research Questions .. 12

Limitations ... 13

Definition of Terms.. 13

Chapter II. Literature Review .. 16

Programming within a Computing Curriculum ... 16

CS0. .. 18

CS1. .. 19

CS2. .. 20

Constructivist Learning .. 21

Adult Learner Theory .. 23

Types of programming environments .. 25

Text-based programming environments. ... 27

Visual programming environments. ... 29

IDEs. .. 32

Microworlds ... 33

Characteristics of microworlds. ... 35

Teaching with microworlds. .. 36

Issues with microworlds. ... 38

Examples of microworlds for learning how to program. ... 39

Why Alice for this study? .. 42

Adoption by universities and industry. .. 42

vii

Designed for novice programmers. .. 44

Previous results using Alice. .. 45

Easy-to-use. .. 46

Motivating and fun to use. ... 47

Increased academic performance. .. 48

Increased retention and success. .. 49

Increased self-efficacy. .. 50

Strengths and Limitations of Alice. ... 51

Strengths. ... 51

Limitations. .. 52

Summary .. 53

Contributions of this Research ... 55

Chapter III. Methods and Materials ... 56

Research Questions .. 56

Participants ... 58

Instruments ... 59

Pre-test. .. 59

Demographic questionnaire. .. 59

Programming assignments. .. 60

Grading rubric. ... 61

Post-test. ... 62

End-of-course evaluation. .. 62

Time-on-task survey. ... 62

Final course grades. ... 63

Schedule of assessment instrument application. .. 63

Threats to Validity ... 64

Internal threats to validity. ... 65

Instrumentation. ... 65

Differential selection of participants. ... 67

viii

Attrition. ... 67

External threats to validity. .. 67

Research Design .. 68

Procedures .. 68

Analysis ... 69

Demographics questionnaire. ... 69

Pre-test. .. 70

Programming assignments. .. 70

End-of-course evaluations. .. 71

Time-on-task survey. ... 71

Post-test. ... 72

Final grades. ... 72

Limitations and Key Assumptions ... 73

Summary .. 75

Chapter IV. Results .. 77

Demographics Questionnaire ... 77

Pre-test ... 78

Programming Assignment 1 .. 79

Programming Assignment 2 .. 81

Programming Assignment 3 .. 83

Post-test .. 84

Pre-post Gain ... 86

Student End-of-course Evaluations .. 87

Time-On-Task Survey Results ... 88

Grade Distributions .. 92

Research Questions .. 92

Research question 1. .. 93

Research question 2 ... 93

Research question 3 ... 94

ix

Research question 4 ... 94

Summary .. 95

Chapter V. Conclusions ... 96

Research Overview .. 96

Research Questions Findings Discussion .. 98

Research question 1. .. 98

Research question 2. .. 100

Research question 3. .. 101

Research question 4. .. 102

Other Findings Discussion ... 103

General code testing deficiency. .. 103

Weak repetition control structures prerequisite knowledge. .. 105

Alice interface concerns. .. 106

Study population. ... 109

Male learners. ... 109

Adult learners. .. 110

Student end-of-course evaluations. .. 112

Use of rubrics. .. 113

General Summary .. 114

Recommendations .. 115

Appendix A. Pilot Study .. 119

Appendix B. Questionnaire .. 120

Appendix C. Pre-test and Post-test Questions ... 123

Appendix D. Experimental Group Programming Assignments ... 128

Appendix E. Control Group Programming Assignments ... 133

Appendix F. Course Evaluation Form (Page 1) ... 138

Appendix F. Course Evaluation Form (page 2) ... 139

Appendix G. Time-on-task Collection Form ... 140

Appendix H. Cross-tabulation Results for Questionnaire .. 141

x

Appendix I. Pre-Test Chi-square and t test Results ... 146

Appendix J. Project 1 Statistics ... 154

Appendix K. Project 2 Cross-tabulation and Chi-square statistics .. 155

Appendix L. Project 3 Cross-tabulation and Chi-square statistics ... 156

Appendix M. Post-Test Chi-square and T test results ... 158

Appendix N. Pre- and Post-test Analysis of Covariance Results... 165

Appendix O. Student Evaluation Average Weekly Study Hours .. 166

Appendix P. IRB Approval .. 167

Appendix Q. Informed Consent Form ... 168

Appendix R. Programming Assignment Grading Rubric .. 169

References .. 170

Curriculum Vita ... 184

xi

List of Tables

Table 1 Control and Experimental Group Activities ... 64

Table 2 Programming Assignment 1Rubric Component Counts for Control (C), Experimental (E),

and Total (T) Groups ... 80

Table 3 Programming Assignment 2 Rubric Component Counts for Control (C), Experimental

(E), and Total (T) Groups .. 82

Table 4 Group Statistics for Programming Assignment 2 Total Points ... 82

Table 5 Programming Assignment 3 Rubric Component Counts for Control (C), Experimental

(E), and Total (T) Groups .. 83

Table 6 Group Statistics for Programming Assignment 3 Total Points ... 84

Table 7 Post-test Question 4 Counts for Control (C), Experimental (E), and Total (T) Groups ... 85

Table 8 Post-test Question 4 chi-square Tests ... 85

Table 9 Group Statistics for Pre- Post-test Gain .. 87

Table 10 Group Statistics for Overall Instructor and Course Evaluations 88

Table 11 Group Statistics for Programming Assignment Time-on-Task 89

Table 12 Programming Assignment 1 Programming Environment Comments from Control and

Experimental Groups ... 90

Table 13 Grade Distribution Counts for Control (C), Experimental (E), and Total (T) Groups ... 92

1

Chapter I. Introduction

 The purpose of this chapter is to explore the challenges computer science

educators are currently facing and how this research may help mitigate some of these

challenges. These challenges include high attrition and failure rates in introductory

programming courses where students of all ages find learning to program very difficult.

Understanding the fundamental computer programming concepts at the beginning of a

degree program help a student establish self-efficacy for future courses. This chapter

discusses the background of these challenges followed by subsections discussing the

statement of the problem, purpose of the research, significance of the research, research

overview, research questions, study limitations, and definitions of key terms.

Background

 Network systems and data communications analysts, computer software

engineers, computer systems analysts, and database administrators are included in the top

30 fastest-growing occupations for the years 2006 through 2016 (Bureau of Labor

Statistics, 2008). The President‟s Information Technology committee report (2005)

stressed the need for good software engineering practices and the importance of the

development of these best practices through education. These sources suggest a strong

immediate and future demand for qualified computer scientists requiring educational

institutions to help students learn and prepare for these jobs.

 Educational institutions help provide a workforce trained with skills to develop

software that is easy-to-use and effective for multiple applications. Understanding how to

write computer programs is vital for most computer-related fields but of particular

2

importance to those who pursue careers as software engineers and computer systems

analysts as they routinely write code for computer programs and applications.

 For those students pursuing an undergraduate degree in computer science or a

related field, several programming courses are required in a specific order (Computer

Curricula, 2001). This sequence of programming courses often includes three courses

referred to as CS0, CS1 and CS2. Although each course has specific learning objectives,

the overall goal of the sequence is to help students establish a fluency in a programming

language that will assist students in obtaining jobs and enhancing their careers in

computer programming and software engineering.

 Although each of the courses in this sequence is important in helping students

become proficient in writing computer programs, CS0 is critical as foundational design

concepts and control structures, allowing students to understand how to logically

construct a program, are introduced. For example, within a CS0 course, students learn

fundamental programming constructs such as if/else control structures, for/while control

structures and functions. These control structures are used in subsequent CS1 and CS2

courses as well as many additional computer programming courses.

 Despite the programming sequence present in most educational institutions,

learning to program can be very difficult for beginners of all ages (Kelleher & Pausch,

2005). Beginning programmers often become overwhelmed with syntax, logic,

nomenclature, and design as they struggle to understand how to build a computer

program. In addition, many schools have reported high attrition and failure rates

preventing students from completing their degrees in computer science. Seymour and

Hewitt (1997) reported that 50 percent of undergraduate students majoring in computer

3

science either dropped out of school or changed to another major during their freshman

year. Seymour and Hewitt determined the factors most contributing to this attrition

included lack or loss of interest in science, poor teaching by faculty, and feeling

overwhelmed by the pace and load of courses. Although all of the factors contributing to

this attrition rate are not known, higher than desired attrition rates have prompted

researchers to analyze the processes, students, and other factors to better understand and

mitigate these issues.

 As educators study attrition, failure and learning difficulties in computer science

undergraduate students, four contributing factors have been identified: 1) selecting and

using control structures, 2) visualizing the steps a computer takes as it executes a

program, 3) writing error-free programs, and; 4) motivating students (Areias & Mendes,

2007; Bishop-Clark, Courte & Howard, 2006; Cooper, Dann & Pausch, 2003; Moskal,

Lurie & Cooper, 2004; Kelleher & Pausch, 2005; Winslow, 1996).

 Cooper et al. (2003), Lahtinen, Ala-Matka and Järvinen (2005), Kelleher and

Pausch (2005), and Winslow (1996) found students had difficulty in selecting and using

control structures in beginning computer programming classes. The abundance of control

structures (including if/else and for/while structures) with differing functionality and

syntax, added to the complexity and depth of materials that computer science students

must learn. Lahtinen et al. (2005) surveyed over 550 students and 34 teachers and

determined understanding how to design a program to solve a certain task and organizing

code into subsets were challenging for students. Soloway and Spohrer (1989) and

Winslow (1996) noted students may understand the syntax and semantics of individual

4

statements but still have difficulty composing these components into valid and fully

functional programs.

 Bishop-Clark et al. (2006) and Cooper et al. (2000) expressed concern that many

programming environments lacked the ability for students to visualize the results and

execution steps of a computer program. This lack of visualization left students with

vague, text-based interfaces without the ability to debug to identify and fix errors within

their code. Even though many of these environments provided the ability to report values

of variables while the program runs, the results and underlying visualization of those

results were often misleading for a beginning programmer (Cooper et al., 2000).

 The use of graphics and visual display may assist students to better understand

programming concepts and enhance learning by helping them to see results quicker

through a more intuitive interface. Conway (1997) found that students preferred a visual

tool that allowed selecting, dragging and then dropping control structures into their

programs as opposed to having to type in each command or statement. Conway also

found a well-designed interface reduced the text-entry related errors many novice

programmers made within their programs.

 Kelleher and Pausch (2005) suggested that programming languages usually

contain confusing rules increasing the number of errors in students‟ code. Students often

had difficulty remembering the names of commands as well as any required command-

specific syntax. Students encountered steep learning curves and difficulty finding

program errors while using non-visual, text-based programming environments. Bishop-

Clark et al. (2006) shared this concern and added students may become frustrated

attempting to create their code and eventually leave the course without really

5

understanding the fundamental concepts. For example, many students complained about

the length of time text-based environments required before they were able to produce

functional code. Novice programmers became frustrated as the number of programming

errors grew without seeing real progress in the functionality of the application.

 Sharing the same concern over the number of programming errors and the

frustration associated with those errors, Garner, Haden and Robins (2005) gathered data

over a one year period for over 250 CS1 students documenting the types of programming

errors they generated. After analyzing over 11,000 errors, the top two were categorized as

“basic mechanics” and “stuck on program design”. Basic mechanics errors included

syntax related errors such as the proper use of braces, brackets, semi-colons and naming

conventions. Stuck on program design errors included understanding the task and

creating a correct solution to the given task.

 Additional complexities associated with programming errors have been attributed

to the use of math in graphical display systems and functions or sub-routines designed to

help isolate programming functionality into smaller more reusable components.

 Conway, Audia, Burnette, Cosgrove, and Christiansen (2000) observed students

did not like to use complicated math or coordinate systems to tell how or where an image

should move. Instead of using 3-dimensional x-, y-, and z-axis notations and complicated

syntax to move an image from point A to point B, students preferred to use familiar terms

such as move forward two steps.

 Functions are introduced in CS0 courses but students are often confused by their

use and design. Historical results from one institution showed students earned on average

20 percent fewer points on function assignments compared to assignments on for/while

6

control structures (Robertson, 2007). Additional issues have been reported in the

literature indicating that learning functions can be challenging. Ruehr (2008) noted how

difficult the concept of functions can be for beginning programmers. Students with some

math background tried to incorrectly equate math and computer functions only to be

confused when attempting to print or compare functions on a computer. Xing (2008)

identified several issues with students learning functional programming including

properly identifying and naming functions and higher-order functions. Turning to a

strongly-typed functional programming language, Xing was able to demonstrate

increased understanding of functions through additional hands-on practice using an

interactive programming environment.

 Cheung, Ngai, Chan and Lau (2009) observed a gap in programming instruction

between graphical or iconic programming environments often used in elementary

schools, and the conventional, text-based programming environment appropriate for more

advanced high school and university students. Cheung et al. combined the use of a

graphical-based programming environment that reduced syntax issues and a text-based

editor to gently expose students to the programming syntax to better prepare the students

for more powerful programming environments that used both visual and text-based

approaches.

 Student motivation has been recognized as a concern in computer science

programs as indicated by increased attrition (Seymour & Hewitt, 1997) and decreased

enrollments. Not only are students leaving the program, the number of declared computer

science majors has dropped. For example, the number of new computer science majors in

fall 2006 was half of what it was in fall 2000 (Vesgo, 2007). Recently, the decline seems

7

to be slowing indicating the numbers are beginning to stabilize (Markoff, 2009). Another

indication that educators are concerned about this apparent lack of motivation is the

proliferation of programs and activities related to increasing interest in computer related

programs in general. Many universities are working to improve their program by adding

game courses in order to motivate students and increase the number of students interested

in pursuing careers in computer science (Garris, Ahlers, & Driskell, 2002; Kelleher et al.,

2007).

 Attempting to increase enrollments while filling gaps in diverse groups, educators

are also reaching out to underrepresented groups such as females and minorities through

summer camps and other recruiting approaches (Anewalt, 2008; Hu, 2008; Kelleher et

al., 2007). Continued outreach to strengthen gender and ethnic diversity in computer

related programs increases the pool of students who may become interested and

motivated to pursue careers in computing.

 Seymour Papert (1980) quickly recognized students struggled learning how to

program and introduced the concept of a microworld. Papert created a visual

environment to assist students in learning how to program. This environment was

designed to help students concretize difficult programming concepts, such as learning to

use selection and decision control structures, and increase motivation and enjoyment.

 Through Papert‟s inspiration, researchers (e.g. Conway, 1997) began to develop

new microworlds taking advantage of the enhanced processing and 3-dimensional

graphical and visualization capabilities of modern computers. The goal of Conway‟s

research was to increase the understanding of fundamental programming concepts and

increase retention in programming classes. With their rich, visualization features, some

8

microworlds have great potential for increasing student motivation. A beginning

programming student is less likely to become frustrated if the environment provides the

capability to quickly see progress while creating their programs and reduce the

dependence on difficult rules of a programming language (Conway, 1997).

 Although many publications exist that explore programming environments

designed to help students learn how to program, there is a scarcity of quantitative

research that address all of these areas. After a review of publications of several

programming environments, Gross and Powers (2005) determined that research questions

were frequently answered using insufficient evidence. Many times only anecdotal

evidence was provided supporting the position that students preferred using a specific

programming environment but details were not provided to validate the approach.

Assessments of the environments were often performed by the developers of the

programming environment and not from a third party. These findings suggest that

additional researchers are needed to further validate hypothesis and add additional

insights to the initial research.

 In addition to the shortages Gross and Powers (2005) refer, much of the research

using microworlds to date is on traditional-age students in the K-16 range. Adult learners

have some unique characteristics including: 1) Self-concept 2) experience; 3) readiness to

learn; and 4) orientation to learn (Knowles, 1970). More research is needed to determine

if a sample consisting of largely adult learners will yield different results than existing

studies on more traditional learners.

 This research has the potential to provide educators with details on how to learn to

program, the strengths and weaknesses of programming environments, and the learning

9

characteristics of a unique, relatively under-studied population. All of these can possibly

be used by educators to help meet the demand for employers who are in need of better

and larger numbers of computer programmers and software engineers.

 Accrediting organizations also recognize the challenges associated with teaching

introductory programming and suggest a wide range of strategies is needed to help

students learn. The Computer Curricula (2001) final report encourages institutions and

individual faculty members to continue experimentation in this area believing that

“pedagogical innovation is necessary for continued success” (Computer Curricula, 2001,

p. 22).

Statement of the Problem

 The computer science field has a critical need for qualified and well-trained

computer programmers. However, traditional training methods have led to high attrition

and failure rates among students in computer science programs. These issues arise, in

part, due to programming environments that make it difficult for students to: select and

use appropriate control structures; visualize the steps a computer takes as it executes a

program; write error-free programs, and; complete the computer science curriculum.

Because of these issues and the shortage of quantitative research in this area, there is a

need to determine if newer programming environments have an effect on grades, success

rates, and motivation to learn within introductory programming courses.

Purpose of Research

 The purpose of this research is to evaluate if CS0 students who use a microworld

environment demonstrate a better understanding of programming concepts than students

who use a traditional C++ programming environment.

10

 The CS0 course provides a foundation for future programming courses by

preparing the student to construct simple applications using logical design processes and

programming constructs. If these critical concepts are not understood and retained early,

a student may have difficulties in future programming courses that build on these

fundamental concepts and challenge the student to design and build larger and more

complex applications.

 Within a microworld, students use trial and error to explore concepts and ideas in

a simplified computational environment. Students who find their assignments fun or

engaging are far more likely to proceed beyond the basic requirements (Mullins,

Whitfield, & Conlon, 2009). When using a traditional C++ environment, students type

their code into a text editor and then compile, run and debug as needed. Carlisle, Wilson,

Humphries, and Hadfield (2005) found text-based environments distracted attention from

the teaching of problem solving as instructors spent valuable class time attempting to

resolve syntax issues instead of teaching fundamental program design.

Significance of Research

 This research will provide additional quantitative and qualitative findings related

to students learning how to develop computer programs using a popular microworld

programming environment. Focusing on novice programmers from a population

consisting of a large percentage of ethnic-minority, adult-learners this research will

provide details about a student‟s ability to use selection and repetition control structures,

create and use functions, and the motivational characteristics for a relatively understudied

population.

11

 This research will also employ grading rubrics, programming assignments and

other assessment activities aligned with course learning objectives designed to reveal

details and challenges associated with learning how to program that may have not

previously been reported. Grading rubrics provide additional details into crucial aspects

of programming such as design, layout, testing, and functionality that may allow

educators to better differentiate and identify specific strengths and weaknesses of

programming environments. Being able to determine the major contributions from each

learning environment, may provide developers of these environments a blueprint to

improve existing or build new programming environments. Aligning assignments with

specific learning objectives will provide insight into challenges at the course and program

levels. This information could be used to assist curriculum designers and instructors

focus on problem areas while deemphasizing areas where knowledge and learning appear

to be more successful.

 Finally, this research has the potential to partially answer the call from computing

organizations and government agencies suggesting a need for more qualified computer

programmers and software engineers by providing insight into specific issues associated

with learning how to program. These insights could help developers improve

programming environments and instructors focus on challenging programming areas

allowing more students to successfully complete their degree requirements.

 Students and teachers agree that even though the theory behind programming is

important, students need practical experience to understand the concepts (Lahtinen et al.,

2005). Additional research in microworlds as applied to learning how to program may

provide instructors reasonable alternatives to today‟s traditional programming

12

environments while possibly providing more hands-on experience, motivation and

success.

Research Overview

 At a high level, this research will compare learning results of two sections of a

CS0 course delivered in face-to-face format at a large accredited university on the east

coast of the United States. The experiment is designed to determine if significant

differences exist in the learning outcomes of these two groups under similar conditions

with each group using a different programming environment to build and run code. The

control group used a standard C++ Integrated Development Environment to build and run

their code. The experimental group used a popular microworld programming

environment. Each selected assessment method was aligned with one or more course

specific learning objectives. With this approach it should be possible to determine if one

group performs better than the other group with respect to specific course learning

objectives.

Research Questions

 The approach of this research will help answer several questions related to the use

of a microworld to improve grades and student motivation compared to a traditional C++

programming environment. Specific questions to be answered through this research

include:

1) Is there an increase in grades for CS0 students who use the Alice programming

environment compared to those who use a C++ IDE on if/else control structure

related exercises?

13

2) Is there an increase in grades for CS0 students who use the Alice programming

environment compared to those who use a C++ IDE on for/while control structure

related exercises?

3) Is there an increase in grades for CS0 students who use the Alice programming

environment compared to those who use a C++ IDE on function related

exercises?

4) Is there an increase in the time devoted to a CS0 course for students who use the

Alice programming environment compared to those who use a C++ IDE?

Limitations

 This research has a number of limitations. The sample population is small. Only

two sections with approximately 35 students in each section will be used. In addition, the

typical withdrawal and failure rate for a CS0 class is 30 percent or more during most

semesters. In addition, only one semester of data was gathered. This further reduces the

number of samples for analysis reducing the strength and generalization potential of the

study.

 There is the possibility both the instructor and researcher could introduce some

biases into this study. The same instructor taught both sections of the class but he was

very aware of the purpose of the study and could potentially have added some biases

towards the microworld when grading or reporting results during interviews and

discussions with the researcher.

Definition of Terms

 This section provides definitions of several key terms related to this research and

used often throughout this document.

14

Control structure. Basic constructs for creating a program or an algorithm including

sequence, selection and repetition (Venit, 2009).

CS0. Computer programming 0. An introductory course in computer programming

focusing on problem solving methods and algorithm design (Computer Curricula, 2001).

CS1. Computer programming I. The second course in the recommended introductory

sequence of programming courses focusing on high-level programming languages and

teaching students how to design, code, debug and document programs. (Computer

Curricula, 2001).

CS2. Computer programming II. The last course in the recommended introductory

sequence of programming courses focusing on data structures and more advanced

programming topics. (Computer Curricula, 2001).

Function. A special type of subprogram that can be assigned a value (Venit, 2009).

Integrated Development Environment (IDE). An IDE is a programming environment

that provides an easy-to-use interface to integrate the coding and execution environments

(Kelleher & Pausch, 2005).

Microworld. A microworld is a graphical, visual computational environment that may

help increase motivation to learn (Cooper, Dann, & Pausch, 2000; Papert, 1980). Papert

(1980b) defined a microworld as “a subset of reality or a constructed reality whose

structure matches that of a given cognitive mechanism so as to provide an environment

where the latter can operate effectively “ (p. 204).

Repetition control structure. A loop structure containing a branch to a previous

statement in a program module which results in a block of statements that can be

executed many times (Venit, 2009).

15

Selection control structure. A decision structure where there is a branch forward at

some point which causes a portion of the program to be skipped (Venit, 2009).

Text-based Programming Environment. Text-based programming environments allow

users to type text and commands into a simple editor to create programs (Kelleher &

Pausch, 2005).

Visual Programming Environment. A visual programming environment refers to any

system that allows a user to specify a program in two or more dimensions (Myers, 1986).

16

Chapter II. Literature Review

 The purpose of this chapter is to review the existing literature related to the use of

tools and techniques that help students learn fundamental computer programming and

design concepts. After providing curricula standards supporting the inclusion of

programming fundamentals into computer science programs, the foundational work by

constructivist theorists such as Seymour Papert and Jean Piaget will be discussed. An

overview of adult learner theory and teaching practices will be presented to support the

non-traditional age students present in this group. Next, a taxonomy of various

programming tools will be presented. This taxonomy will define, differentiate and

provide examples of simple text-based processors, visual environments, integrated

development environments (IDEs), and microworlds. Since microworlds are a major

focus of this research, in-depth discussions of this topic will be provided including

examples of existing microworlds applied to learning computer programming, general

issues associated with using microworlds and a detailed justification of the specific

microworld selected as the experimental programming environment for this research.

Finally, a summary of this chapter along with contributions of this research will be

provided.

Programming within a Computing Curriculum

 Standards help define the curricula for schools and the path of students enrolled in

these schools. The Computing Curricula 2001 project was a joint undertaking of the

Computer Society of the Institute for Electrical and Electronic Engineers (IEEE) and the

Association for Computing Machinery (ACM) to develop curricular guidelines and

standards for undergraduate programs in computing (Computer Curricula, 2001). Within

17

these guidelines, a typical undergraduate computer science student is expected to

complete several programming courses in a specific sequence to demonstrate fluency in a

programming language. The computer science final report from this project listed a

number of knowledge focus groups including programming fundamentals, discrete

structures, operating systems, programming languages, and others that are highly

recommended for inclusion into computer science curricula.

 Knowledge focus groups are used to build a series of courses in an institution‟s

computing curriculum. The programming fundamentals knowledge focus group includes

core topics consisting of fundamental programming constructs, algorithms and problem-

solving, data structures, recursion and event-driven programming. Each of these core

topic areas includes specific learning objectives and goals. For example, fundamental

programming constructs include learning basic syntax and semantics of a higher-level

language, variables, types, expressions and assignment, simple input and output,

conditional and iterative control structures, functions and parameter passing, and

structured decomposition. Each of these topics can be used by instructional designers

and facilitators to build a course and a set of assessment materials closely aligned with

learning objectives.

 In 1978 most educational institutions used a two-course programming sequence,

generally referred to as CS1 and CS2 (Computer Curricula, 1978) to fulfill the

programming fundamentals knowledge focus group requirements. In 2001, the Computer

Curricula final report strongly endorsed moving to a three-course introductory

programming sequence to satisfy the programming fundamentals knowledge focus group

requirements. This sequence usually includes a course in problem solving and design

18

(CS0), followed by a course in introductory programming (CS1) and a course in data

structures (CS2). Each course in this three-course sequence builds on the materials of the

previous courses preparing students for more advanced courses as well as possible

employment in the computer field.

 CS0.

 CS0 students are expected to fulfill a number of requirements covering the topics

of fundamental programming constructs and problem solving including being able to: 1)

analyze and explain the behavior of simple programs; 2) modify and expand short

programs that use standard conditional and iterative control; 3) design, implement, test,

and debug a program that uses each of the following fundamental programming

constructs: basic computation, simple I/O, standard conditional and iterative structures,

and the definition of functions; 4) choose appropriate conditional and iteration constructs

for a given programming task; 5) apply the techniques of structured (functional)

decomposition to break a program into smaller pieces; 6) describe the mechanics of

parameter passing; 7) create algorithms for solving simple problems; and, 8) use

pseudocode or a programming language to implement, test, and debug algorithms for

solving simple problems (Computer Curricula, 2001).

 Programming constructs provide critical functionality supporting logical decisions

and iterative processes used in computer applications as they help students understand

how to make computers perform important yet basic operations such as sorting a list of

words or calculating the results of mathematical equations and operations. Pseudocode

remains important for a CS0 class as students learn to use an English-like language to

19

document the important steps in solving the problem. Problem solving remains a critical

skill for all computer programmers and is introduced early in a program.

 CS1.

 The CS1 course builds on the basic design skills provided to students in CS0

while also teaching a language-specific implementation. In a CS1 class, students increase

their knowledge of programming by implementing their designs in a specific language.

For example, a design used to solve a problem developed in CS0 can now be

implemented, or actually coded, in a modern programming language such as Java, C++,

or C#. More advanced skills, debugging strategies and complex algorithms help

differentiate the CS0 from the CS1 class. Students continue to advance their skills as they

are challenged to write larger, more sophisticated programs.

 The choice of language to use in CS1 and other programming courses will most

likely remain controversial. Java, C++ and C are criticized for being too verbose,

enforcing notational overhead that has little to do with learning to write structured

programs (Pears et al., 2007). Studies have found that market appeal and industry demand

are often the most important factors determining language choice in computer science

education (Dingle & Zander, 2000; de Raadt, Watson, & Toleman, 2004).

 For CS0, the focus is on design and fundamental constructs with the programming

language choice not being critical. CS1 students usually become comfortable using a

programming language although additional courses and training are required to obtain

proficiency due to the size and complexity of most modern programming languages. In

addition to students strengthening their design skills to develop solutions to more

20

challenging problems, CS1 students often write and test applications in a popular and

current object-oriented programming language.

 CS2.

 The CS2 course is the final course in the recommended sequence of courses

covering the programming fundamentals knowledge focus group. Students in a CS2

course use a modern programming language to understand and develop more advanced

programming structures to efficiently solve challenging scientific and engineering

problems. Most CS2 students become confident with a programming language and how

to design and implement solutions. A CS2 student is expected to become proficient using

data structures and recursion algorithms. Examples of CS2 learning outcomes from the

Computer Curricula 2001 include students being able to: 1) describe how data structures

are allocated and used in memory; 2) describe common applications for each data

structure; 3) implement user-defined data structures in a high-level language. 4) write

programs that use arrays, records, strings, linked lists, stacks, queues, and hash tables; 5)

choose the appropriate data structure for modeling a given problem; 6) describe the

concept of recursion and give examples of its use; 7) implement, test, and debug simple

recursive functions and procedures; and, 8) determine when a recursive solution is

appropriate for a problem. Meeting these expectations results in CS2 students being able

to design fast, efficient solutions that are scalable to larger applications. As students

continue to participate in programming courses beyond the CS2 level they acquire

additional design and programming skills which help them better prepare for computer

related jobs.

21

 CS0, CS1 and CS2 courses designed in accordance with the 1978 and 2001

Computer Curricula documents will help meet the expectations of the fundamental

programming knowledge focus group. After successfully completing these courses,

students should be proficient in using functional decomposition to design, code, and

implement the application in at least one modern programming language. Students will

be able to use fundamental programming concepts and basic data structures, and design

efficient algorithms as they build and test programs.

Constructivist Learning

 Constructivist theory assumes knowledge is constructed as learners attempt to

make meaning of their experiences (Driscoll, 1999). According to Jonassen (2002)

constructivist learning approaches assist in making meaning through personal or socially

constructed knowledge. Key to constructivist approaches is that knowledge is built upon

the foundation provided by previous learning. With constructivism, knowledge is

constructed by individuals by the combination of sensory input data with existing

knowledge the learner already possesses to create new cognitive structures (Ben-Ari,

1998). Another key factor in constructivism is learning is active rather than passive.

Learning should be active allowing students to construct knowledge assisted by guidance

by facilitators and feedback from other students.

 Compared to behaviorist, more traditional teaching approaches where learning is

thought to be the result of the passive transmission of information from one individual to

another, constructivist teaching philosophy allows students to test the accuracy of their

current understanding (Hoover, 1996). In addition, instructors and facilitators using

constructivist approaches need to provide learning environments that allow students to

22

discover differences in their current understanding and any new experiences found within

these environments. Facilitators emphasize these new experiences and foster group

discussions and knowledge comparison with other students. Students within a

constructivist teaching environment need time to reflect upon their experiences and how

they build and enhance or modify existing knowledge.

 Constructivist teachers often adapt and modify their curriculum based on their

current students needs (Brooks & Brooks, 1999). In this manner, instructors can use

students existing knowledge as a foundation for learning in a semester. Also,

constructivist facilitators may assess differently than traditional approaches by looking

beyond correct and incorrect answers to better understand their current understanding and

knowledge to help students increase their knowledge.

 Constructionism can be thought of as subset of Jean Piaget‟s (1973)

constructivism. The simplest definition of constructionism includes the idea of “learning-

by-making” (Papert, 1991, p. 6). Papert (1991) differentiated constructionism and

constructivism as follows:

Constructionism – the N word as opposed to the V word – shares

constructivism‟s connotation of learning as “building knowledge

structures” irrespective of the circumstances of learning. It then adds the

idea that this happens especially felicitously in a context where the learner

is consciously engaged in constructing a public entity, whether it‟s a sand

castle on the beach or a theory of the universe. (p. 1)

Both theories share the idea of building knowledge structures through the exploration of

an environment. Although the terms constructionism and constructivism are often

interchanged, the former can be thought of as a constructivist approach to making

meaning through the use of technologies (Bers, 2007). In addition, constructionism

23

approaches often include a social component, suggesting that learning can involve a

collective generation of meaning (Crotty, 1998).

 Constructionism has the potential to assist designers of tools dedicated to

learning computer programming. A learning environment that uses graphical or visual

images as opposed to text may help students discover programming bugs and issues

quickly, thereby removing some of the learning curve associated with program debugging

(Bishop-Clark et al., 2006). Roussou (2004) argued that interactivity, engagement, and

learning are strongly connected. A visual learning environment can promote this

interactivity and engagement.

Adult Learner Theory

 How adults learn is critical for this research as the median age for undergraduate

students for this university is 31, with 80 percent identifying themselves as working

fulltime (University data). Adults are often working professionals who select an area of

study or enter a learning situation when they feel the need to acquire new knowledge or

fit a particular need (Kieran-Greenbush, 1991). Taking a closer look at how teachers

work with traditional-age students compared to adults will help understand the

differences in these groups and assist in the design of a program more suitable for this

group.

 Pedagogy is defined as the art of teaching children (Scott,1987). This teaching

model assumes that the student will learn what they have been told and that the teacher

takes responsibility for making decisions about what will be learned and how it will be

learned. Andragogy is based on a set of assumptions that describe how adults learn

(Koski, Kurhila, & Pasanen, 2008). Unlike pedagogy, andragogy realizes that the lecturer

24

does not possess all the knowledge and students are encouraged to participate in the

classroom (McGrath, 2009).

 Additional differences between pedagogy and andragogy have been identified in

the areas of need to know, self concept, experience, readiness to learn and motivation

(Scott, 1987). In terms of need to know, pedagogy learners do not need to know how

what they learn will impact their lives whereas adult learners need to know why it is

important for them to learn the topic prior to learning it. In terms of self-concept,

pedagogy learners are dependent whereas adult learners are independent and self-

directed. The role of a learner‟s experience is also a differentiator. In pedagogy, learners

rarely have topic-related experiences to be able to share with the class. However, adult

learners are often older, more mature students that have rich experiences to share. With

experiences, learners can contribute significantly to the learning of others in the class.

For pedagogy learners, students become ready to learn because they need to pass an exam

or an assignment that determines if they successfully complete the class. For adult

learners, students become ready to learn because they need to know the concept to cope

with or solve a real-world problem. Finally, motivational factors are often different

between these two types of learners. Pedagogy learners are motivated by extrinsic factors

such as parents, teachers and grades. Adult learners are motivated by intrinsic factors

including self-esteem and quality of life.

 Baker (2009) provided additional insight into the motivation of adult learners for

those in the computing field. Baker suggested motivations of older software engineers to

learn and retain new skills have both intrinsic factors such as recognition, feedback and

pride and extrinsic factors such as pay and their desire to continue their careers. These

25

motivational factors can help an adult learner persist and successfully complete a course.

Ellis (2002) agreed that adult learners are highly motivated and goal-driven. He also

suggested hands-on application of material and the incorporation of real-world examples,

case studies, and work-related projects in computer education related classes support the

motivation and goal-driven needs of adult learners.

Types of programming environments

 Students have a number of programming environment options to consider when

beginning to program. Kelleher and Pausch (2005) developed an approach to classify

systems based on the programming problems the environment was attempting to mitigate.

In general, these programming systems have been built for novice programmers and

focus on simplifying the mechanics of programming by removing unnecessary syntax

and typing, making languages more English-like, and using visible or graphical contexts

so students can immediately see results of their code. These are some of the very issues

referred to in chapter 1 that need to be mitigated to improve student success in computer

programming.

 Kelleher and Pausch (2005) defined two categories of programming

environments: 1) empowering and; 2) teaching systems. Empowering systems allow

students to build applications and solutions specific to their own needs. These systems

allow programmers to develop code efficiently without being frustrated with difficult

language syntax or interfaces. Empowering systems help to hide many of the details of

the underlying language in a user-friendly interface. Empowering systems are subdivided

into mechanics of programming and activities enhanced by programming. Mechanics of

programming systems attempt to improve programming languages and provide

26

alternative approaches to creating programs. These systems attempt to improve the

student‟s interaction with the language and the environment. Integrated Development

Environments (IDEs) fall into this category. An IDE provides an easy-to-use interface to

integrate the coding and execution environments. In this manner, these systems allow

users to build, test and debug as they experiment.

 Teaching systems help students learn to program by focusing on areas that are

often considered difficult for novice programmers. Areas that students consider to be

difficult include selecting and using programming structures (Cooper et al., 2000;

Kelleher & Pausch, 2005), visualizing the steps a computer takes as it executes the

program (Bishop-Clark et al., 2006; Cooper et al., 2000; Kelleher & Pausch, 2005),

programming syntax (Bishop-Clark et al.,2006; Kelleher & Pausch, 2005), and typing

large amounts of code without errors (Bishop-Clark et al.,2006; Conway,1997; Conway

et al., 2000). Teaching systems are further grouped by Kelleher and Pausch (2005) into

systems that concentrate on the mechanics of programming and systems that provide

additional learner support. Mechanics of programming systems help students understand

syntax (the rules and semantics of code), how to organize the syntax, and how the

computer executes the syntax. For example, a mechanics of programming system may

provide a way for students to reduce the amount of code typed by providing an interface

allowing the selection of the code from a group of symbols. These environments provide

the correct syntax without the student having to type code, possibly reducing the amount

of coding errors. Alice is an example of a programming environment that falls into this

category.

27

 In addition to Kelleher and Pausch‟s (2005) taxonomy to categorize programming

environments a number of general types of programming environments exist based on the

method students use to enter code including text-based programming environments,

visual programming environments, IDEs, and microworlds. The following sections

describe each of these programming environments.

 Text-based programming environments.

 Text-based programming environments allow users to type text and commands

into a simple editor to create programs (Kelleher & Pausch, 2005). Text-based

programming environments and editors do not fall into any of the categories suggested by

Kelleher and Pausch (2005) because most do not provide any features helping the student

to learn how to program.

 Text-based programming environments allow students to enter their code

character by character, save their file, and then use programming language tools to

compile and run the resulting program. Within a text editor, programmers are provided a

text area where they can type in code and programming constructs. Most editors provide

highlighting or color coding of certain types of code but it is usually up to the student to

make sure what they type into the editor is correct. Once created in the text editor and

saved as an operating system file, the programmer compiles the file to check for errors

using the available language specific program tools. If errors exist, the programmer must

use a text editor to debug and then compile and test until the program runs as expected. If

the program has many errors, the programmer must resolve each error adding time to the

project and possibly increasing frustration.

28

 Though students often use text editors to write their programs (Cheung et al.,

2009), most text editors are not designed for students to learn how to program. Many text

editors provide unrestricted entry of text with minimal syntax checks making it difficult

for a novice programmer to write even small applications (Pears et al., 2007). Students,

using only a simple text editor, often experience frustration when editing, compiling and

running a program. In most cases, students need an environment more sophisticated than

a text editor to understand the fundamental constructs and processes associated with

programming. However, if the environment is too complicated, students may become

frustrated with learning how to use the environment (Pears et. al, 2007).

 Cheung et al. (2009) found that in text-based environments, the logical thinking

behind programming is introduced simultaneously with the constraints of the language

syntax. This, combined with learning a specific language such as C, C++, or Java,

resulted in the course focusing on the programming language syntax as opposed to

learning how to solve problems and use fundamental programming constructs. Carlisle et

al. (2005) ran into similar issues where learning a language within a text-based

environment distracted attention from teaching problem solving skills and approaches.

Instructors spent valuable class time devoted to syntax issues instead of on design and

programming fundamentals. Masterson and Meyer (2001) suggested that visual

programming systems can hide some of the confusing details in the background allowing

the student to better understand the programming fundamentals.

 Although text-based programming environments are popular and readily available

as most operating systems come bundled with a tool for editing text, researchers look for

29

additional solutions and more optimal environments in an attempt to remove some of the

obstacles novice programmers face.

 Visual programming environments.

 A visual programming environment refers to any system that allows a user to

specify a program in two or more dimensions (Myers, 1986). A dimension is a geometric

measure in one direction. A visual programming environment would use objects that at a

minimum have length and width measurements. These environments often have

interfaces that resemble traditional programming flow charts where a set of symbols are

connected to represent an application or simple program (Kahn, 1996). Unlike text

editors where students enter commands to represent loops, variables and other

programming structures, visual programming environments use graphics and images to

symbolize these programming structures. Programmers create code by connecting these

images together (Masterson & Meyer, 2001). Visual programming environments are

often included in Kelleher and Pausch‟s (2005) taxonomy under teaching systems in the

sub-category of mechanics of programming.

 Visualization environments attempt to take advantage of the human visual

processing potential (Gomes & Mendez, 2007). The human visual system and human

visual information processing is optimized for multi-dimensional data (Myers, 1986).

Visual environments enable programmers to use color to support learning (Meyer &

Masterson, 2000). For example, blue could be used to represent control logic and green to

represent variables. The graphical symbols and icons within a visual environment are

used as building blocks in an algorithm without the constraints of a specific programming

language. This allows students to focus on design and not on syntax. This higher-level

30

description of the programming actions makes the task of programming easier even for

professionals (Myers, 1986). Many visualization tools also have an execution feature

allowing the algorithm to run so students may observe the results and debug, and modify

the program as needed.

 Compared to text-based programming environments, researchers have determined

visual programming environments increase productivity, engagement and learning.

McKinney (2003) concluded user-friendly interfaces that include icons, menus, and drag-

and-drop features within a visual programming environment often required less

instruction than their text-based predecessors and increased productivity. Fischer,

Giaccardi, Ye, Sutcliffe, and Mehandjiev (2004) suggested that, as with human

languages, programming language syntax must be learned from scratch, making text-

based languages more challenging to learn than visual programming languages. Visual

environments helped students by allowing them to become actively involved and interact

with the environment. The more an environment makes a student feel they are

participating in and doing actual computer programming the better the student will be

prepared for more complex and challenging real-world computer programming projects.

Hundhausen and Brown (2005) found activities involving visualization technology

improved performance and active engagement in the course.

 Masterson and Meyer (2001) suggested since some students are able to grasp

programming concepts and methodologies using traditional text-based environments the

fault may not be with the code itself as much as the way in which the code is presented

on the computer screen. This suggests visual programming should be used in conjunction

31

with other teaching environments including textual and IDEs to help novices learn

programming.

 There are many examples of visual programming environments. RAPTOR allows

students to create algorithms by combining basic graphical symbols while using a

flowchart based presentation of the program‟s control flow. RAPTOR was developed to

improve student problem solving skills and reduce syntax issues. User-defined functions

are supported and made visible in the flowchart representation on the computer screen.

Students can run their algorithms in the environment using step-by-step or continuous

play mode (Carlisle et al., 2005).

 Carlisle et al., (2005) provided some preliminary results using RAPTOR and

compared the results to other programming environments. Final exam analysis showed

students who used RAPTOR had significantly higher scores than those that used other

programming language environments for two out of the three sections. When surveyed,

students preferred to express their algorithms visually as opposed to within a text-based

programming environment.

 BACCII++ is another example of a visual programming environment that

emphasizes graphical icons. The environment was developed at Texas Tech University

for teaching procedural and object-oriented programming concepts and languages

(Calloni & Bagert, 1997). Experimental results comparing BACCII++ to C++ text-based

programming environments showed students performed significantly better on final

exams and overall course grades when they used BACCII++.

 Some weaknesses and issues of visual programming environments have been

identified. Visual programming environments do not lend themselves to displaying all of

32

the possible connections and programming structures required for large complex

programs (Fry, 1997; Myers, 1986). Therefore, these environments are often limited to

smaller, simple programs. Petre (1995) and Myers (1986) listed additional weaknesses of

visual, graphical programming including: slowness of response compared to text-based,

graphics are not always intuitive or clear, and the inability to add comments to a program.

Although not perfect, visual programming environments can be effective for helping

novice programmers write simple programs.

 IDEs.

 An IDE provides an interface to integrate the coding, debugging and execution

environments (Kelleher & Pausch, 2005). Programmers create code through a

combination of typing code and selecting, dragging and then dropping graphical icons

into a sophisticated text-editing area. Differing from other visual programming tools

discussed earlier, IDEs provide access to advanced capabilities including the ability to

organize multiple files into a project, automatically complete code segments, debug, and

automatically generate documentation. Most popular programming languages have one

or more commercially available IDEs designed for creating applications. Experienced

programmers and professionals use an IDE to enhance productivity (Pears et al., 2007).

Novice programmers often struggle using these more advanced tools as in addition to the

programmer having to learn programming structures and a language specific syntax, they

must also learn how to use a tool that provides features that may be difficult to use and

understand for beginners(Cheung et al., 2009).

 IDEs support visual programming languages like Microsoft‟s Visual Basic, and

Visual C++. Visual programming languages are really just an IDE wrapped around a

33

specific programming language that uses visual design elements to assist programmers in

efficiently creating and testing complex code. Meyer and Masterson (2000) classified

these languages as a specific type of visual programming languages that use a graphical

user interface (GUI) to help programmers to design and test applications.

 The term IDE has also been used in reference to microworlds. Pears et al. (2007)

defined two broad categories of IDEs specific for novice programmers that included

programming support tools and microworlds. Programming support tools assist learners

in the creation of programs within an environment that supports running of the

application or code. Microworlds provide environments based on physical metaphors

with program execution reflected by the visual state of objects within the environment.

Microworlds may help with the gap between the purely graphical programming

environments appropriate for elementary school students and the conventional, textual

programming languages appropriate for more advanced high school and university

students (Cheung et al., 2009).

Microworlds

 Microworlds may help students learn how to program by providing graphical

interfaces, interactivity and the ability for students to construct meaningful knowledge.

Papert (1980b) defined a microworld as “a subset of reality or a constructed reality whose

structure matches that of a given cognitive mechanism so as to provide an environment

where the latter can operate effectively “ (p. 204). In computer science, this is analogous

to a simplified computational environment allowing students to experiment with

programming constructs. Designers of microworlds use key components of

constructivism as students actively construct their knowledge through meaningful hands-

34

on experiences. Within a microworld, students have the ability to play and experiment.

Constructivist learning theorist Jean Piaget (1973) believed that playing supports

learning. As students discover and play within the microworld, existing cognitive

structures can be modified based on new knowledge obtained within the environment.

 Researchers have provided multiple, yet similar definitions for a microworld

within the construct of computer technology. Clements (1989) defined a microworld as a

“playground of the mind” (p. 86). Similarly, Hogle (1995) defined microworlds as

“interactive environments allowing learners to explore and manipulate the logic, rules

and relationships of the modeled concept” (p. 5). diSessa (2000) defined a microworld

as:

A genre of a computational document aimed at embedding important ideas

in a form that students can readily explore. The best microworlds have an

easy to understand set of operations that can be used to engage tasks of

value to them, and in doing so, they come to understand powerful

underlying principles. (p. 47)

 Microworlds help motivate students to learn programming in a fun environment

rich in visual information that facilitates learning better than text-based (non-visual)

systems (Dougherty, 2007). Through trial and error a student explores concepts and ideas

in a simplified computational environment that may not be possible in a classroom

setting. Students who find their assignments fun or engaging are more likely to proceed

beyond the basic requirements (Mullins, Whitfield, & Conlon, 2009). Programming

environments that excite and engage may allow students to make more meaning, build

more knowledge, and actually learn more as they experiment.

 Although many similar definitions of a microworld exist, for the purposes of this

research, a microworld is defined as an interactive, computer-based environment

35

allowing students to explore fundamental programming constructs using an engaging

interface. With this definition, together with characteristics of microworlds, available

microworlds suitable for this research can be identified.

 Characteristics of microworlds.

 Edwards (1995), Hogle (1995) and Reiber (2004) provided several characteristics

of microworlds including: 1) supports discovery and making of meaning through

interesting and motivating activities; 2) introduces domain specific knowledge to

novices; 3) assists users in learning challenging difficult concepts; 4) supports movement

to new ideas and concepts based on current understanding; and 5) provides feedback

allowing students to learn from their mistakes.

 Microworlds support Jonassen‟s (2002) constructivist learning as activity theory

where students make meaning through personal or socially constructed knowledge as

they use and participate in activities within the environment. Similarly, a microworld

supports the concept that interactivity, engagement, and learning are strongly connected

(Roussou, 2004).

 Microworlds help students understand concepts which on the surface may appear

too difficult or abstract. Papert used microworlds to allow students to connect and

understand through concrete, qualitative means (Rieber, 2004). In reference to the

challenge of students learning Newton‟s laws, Papert suggested microworlds can serve as

“genetic stepping stones” allowing learners to move from their current understanding to

new ideas and concepts (Papert, 1980b, p. 206).

 Edwards (1995) suggested a microworld provided an entry to a domain for a

person in a way that captures the person‟s interest. Students should be motivated to enter

36

and stay to learn within a microworld. Students are expected to manipulate the objects

and features of a microworld “with the purpose of inducing or discovering their

properties and the functioning of the system as a whole” (Edwards, 1995, p.144).

Microworlds help students learn from their mistakes. Students should also be able to

correctly interpret the feedback from the microworld. This process, known as debugging,

is fundamental in computer programming. Edwards (1995) also noted students should be

able to “use the objects and operations in the microworld either to create new entities or

to solve problems or challenges” (p. 144).

 Edwards (1995) provided a set of functional characteristics of a microworld

including discovering properties of objects and overall functioning of the microworld

through the manipulation of objects, interpreting feedback and debugging the system to

achieve specific goals, and creating new objects to solve problems. A critical

characteristic in microworlds is being able to connect new and old ideas and experiences

in the spirit of constructivist learning (Riebel, 2004). This characteristic leads to the

power of microworlds as learning tools (Hogle, 1995). Microworlds seek for learners to

find equilibrium when confronted with discrepancies between the environment and their

understanding. However, a microworld is not the only resource used in a successful

learning model. An instructor and other resources and tools may serve to support student

learning and modeling. (Reiber, 2004).

 Teaching with microworlds.

 Rieber (2004) differentiated microworlds from other educational software by the

instructional model used by each. According to Reiber, microworlds are based on the

underlying principles of invention, play and discovery whereas other educational

37

software is usually based on the paradigm of explain, practice and test. Jonassen (1991)

explained how the epistemology underlying microworlds is constructivism. This

alignment of microworlds with constructivism is critical to understanding how it may be

possible to increase motivation and learning with the use of tools that allow students to

become actively engaged as they learn how to write computer programs.

 Computer science education does have some documented use of constructivist

approaches to teaching (Lui, Kwan, Poon, & Cheung, 2000; Hadjerrouit, 1998) but

overall many institutions use traditional approaches with an occasional use of a learning

environment such as a microworld (Ben-Ari, 1998). Often computer science textbooks

and materials follow a serial and pre-defined approach to teaching topics such as

variables and functions, flow control, lists and arrays, and objects. However, microworlds

have been used within courses for students to play and discover knowledge in addition

and in support of traditional learning environments (Conway, 1997; Seidman, 2009;

Sykes, 2007).

 To fully utilize a constructivist learning model, the instructor would include more

reflection, group and socially influences, self-assessment, and more authentic tasks with

specific goals driven by the student (Open World Learning; Hoover, 1996). However,

microworlds can and have been applied to more traditional structured learning

approaches (Open World Learning). With the incorporation of microworlds into a

classroom, some constructivism is introduced allowing the discovery of knowledge and

the possibility for interaction and reflection among other students.

38

 Issues with microworlds.

 Researchers have noted several issues with microworlds including restriction to

simple scenarios, ill-defined learning goals, time consuming, and portability to different

computer platforms and systems.

 Henriksen and Kölling (2004) expressed concern that microworlds are restricted

to simple scenarios. For novices who are just beginning to learn how to program, this is

probably not a major issue. For students who would like to develop more complex

models and programs, some frustration from this limitation may result.

 Rigas, Carling and Brehmer (2002) noted students are not always aware of the

learning goals associated with a microworld. Since many different solutions are possible

to develop students may not be sure if their solution was correct or if they fulfilled a

specific learning objective. Brouwer, Muller, and Rietdijk (2007) supported this concern

when they determined only 23 percent of the faculty felt their students succeeded in

creating visible results and learning using a microworld.

 Kato (2006) determined there were disadvantages in applying microworlds to

XML modeling. Specifically he determined several semesters and significant effort

would be required to develop a complex model within a microworld environment.

 Finally, Muhlhauser and Gecsei (1996) suggested that microworlds were not

portable to different computing platforms thereby limiting and restricting their usefulness

to a smaller set of users. The ability for a microworld to effectively run on a variety of

operating systems and machines is vital for technology adoption. Strong concerns were

expressed in terms of implementing applications over heterogeneous distributed

39

platforms. Distributed platforms are designed to improve scalability by distributing the

computational demands over multiple computers supporting complex applications.

 Examples of microworlds for learning how to program.

 Many microworlds exist that offer some potential to enhance learning in the area

of computer programming. Logo, Karel the Robot, and Alice are often referenced as

microworlds and used by educators. Each of these environments introduces basic

programming constructs through an easy-to-use environment, where simple commands

are used to control movements and other behaviors of an object. The objects used for

visualization often include simple shapes like a turtle, robot, ice-skater, or a sheep.

 Seymour Papert‟s Logo (1980) remains the inspiration for most microworlds

designed and developed by researchers. The Logo environment allows students to enter

commands that manipulate a turtle displayed on the computer screen. Papert used the

concept of Piaget‟s transitional objects to help to connect what a student already knows to

the new domain of geometry or math (Reiber, 2004). Logo helps students learn geometry

as they issue commands to move the turtle about the screen. Students can immediately

see the results of their commands while forming geometric shapes or exploring and

solving other problems. Students do not have to worry about understanding a multi-

dimensional display axis using complicated x- and y-axis coordinate systems. Instead, the

turtle can be directed around the screen to create geometric shapes using simple, easy to

understand commands such as forward, backward, left and right. Students can learn from

the turtle movements and debug as needed.

 Pattis (1981) developed a microworld called Karel the Robot for introducing

computer programming to students. The robot simulator provides similar functionality as

40

the Logo turtle. Karel the Robot‟s 2D microworld is composed of horizontal streets and

vertical avenues. Students use simple commands such as move, turn right, and turn left to

navigate through the world. Visualization of the graphics is limited to a 2-dimensional

top-down view showing the robots path in relation to bounding walls and other obstacles

within the environment.

 Conway (1997) designed a 3-dimensional graphical programming environment,

known as Alice, to help students learn introductory programming concepts in computer

science. The goal of Alice was to make it easy for novices to develop and explore 3-

dimensional computer programming environments. In Alice, 3-dimensional models of

objects inhabit a virtual world where users can control their appearance and behavior

through a visual interactive interface. Students are immediately able to see and interact

with their animated programs. Similar to Papert‟s (1980) Logo, Alice users do not have to

worry about complicated coordinate system. Instead of x-,y-, and z-axis coordinates,

students move their objects about the computer screen using command such as forward,

backward, left, right, up, and down. Alice provides an editor allowing students to write

code by using a mouse to select and then drag-and-drop commands which significantly

reduces the required keyboard typing and associated text-entry errors. Templates are

available within Alice to assist in program construction by allowing students to generate

code segments (Pears et al., 2007). Alice is an environment in which algorithmic

thinking, design and basic object-oriented constructs are introduced (Lorenzen & Sattar,

2008).

 Many other microworlds have been developed and used in computer science

education. Henriksen and Kölling (2004) created an environment called Greenfoot for

41

introducing object-oriented programming to beginners. Object-oriented programming has

become more popular with the introduction of languages such as C++, Java, and C#.

With object-oriented programming, developers define operations associated with a

specific data structure. For example, a programmer may create a car object that has an

operation called drive that changes the position of the car based on certain criteria.

Greenfoot provides interaction, visualization, and experimentation to enhance student

engagement and learning related to object-oriented programming. Greenfoot includes the

ability for students to visualize the relationships between objects and their associated

methods. This feature helps students understand how objects interact with one another.

Included within Greenfoot is the ability to use a robot and a turtle with similar

functionality as provided by Karel the Robot (Pattis, 1981) and Logo (Papert, 1980).

Greenfoot also provides the ability to integrate into other learning environments and IDEs

for future development.

 Anderson and McLoughlin (2007) developed a 3-dimensional game-like world

for designing and executing programs called C-Sheep. In this world, a programmer can

modify the position and behavior of a sheep in a simulated meadow. C-Sheep supports

computer visualization and animation courses. A basic set of control structures and

functions are available for students to experiment and discover. Similar to Papert‟s Logo

(1980) C-Sheep includes commands for turning left and right, forward and backward, and

up and down, removing some of the mathematical complexity associated with 3-

dimensional coordinate systems. Differing from Alice, C-sheep commands are usually

text-based instead of graphical or visual. However, once an object is within the world,

mouse clicks and short-cut commands can be used to move it about the world.

42

Why Alice for this study?

 As noted in the previous sections, many programming environments exist that

have been used for students and professionals for developing computer programs. These

range from simple text-editors to microworlds and advanced IDEs. From all of the

possibilities, Alice was selected as the experimental programming environment for this

research. This section discusses the process and justification for this decision.

 Factors used in determining the selection of the programming environment

included adoption by universities and industry, application to novice programmers to

build fundamental programming skills transferrable to other programming languages,

previous scientific research and findings, and strengths and weakness documented in the

literature.

 Adoption by universities and industry.

 To determine the adoption of programming environments by universities and

industry several factors and resources were used including the Tiobe community

programming index, the adoption of Alice by universities, corporate and agency sponsors

of Alice, and funding organizations supporting the programming environment .

 The Tiobe community programming index (Tiobe, 2009) provides a monthly

report of programming language adoption, popularity and use. Derived using world-wide-

web search engines, the Tiobe community programming index represents a composite of

programming language use by skilled engineers, educational courses and vendors.

Although programming languages such as Java, C and C++ are listed as being the most

popular in the April 2009 index, Alice and Logo are also listed in the top 50. In fact,

besides Logo, Alice is the only microworld listed. The fact that Alice and Logo are on the

43

list of widely used environments is a good indication that adoption has occurred beyond

the initial researchers who developed the environment.

 Researchers have expressed concerned that novices do not have the background to

learn popular languages such as C++, C# and Java while learning about problem solving

and design (Hadjerrouit, 1998; Biddle & Tempero, 1998; Close, Kopec, & Aman, 2000).

In addition, unlike microworlds such as Logo and Alice, popular languages such as C++,

C# and Java have not been designed for educational purposes (Pears, et al., 2007).

 Literature searches also revealed many universities are using Alice in their

courses. Mullins et al. (2009) noted that programming using the Alice microworld has

become widely adopted for CS0 and CS1 in particular for courses that are shared in

departments offering both computer science and information technology programs.

Several colleges and universities have used Alice in summer camps for middle school

students, including Carnegie Mellon, the Colorado School of Mines, Georgia Tech, and

Westminister (Hu, 2008). This level of adoption of Alice indicates a general consensus

the programming environment is stable and considered useful for novice programmers.

Other environments considered for this research were rarely adopted beyond the

developer‟s home institution (Powers, Ecott, & Hirschfield, 2007).

 Other indicators of Alice‟s adoption include the number of grants, sponsors, and

publications and presentations at popular computer science education conferences such as

ACM‟s Special Interest Group on Computer Science Education (SIGCSE) and

Innovation and Technology in Computer Science Education (ITiCSE). Alice has had the

support and funding to develop and maintain a user-friendly environment. Carnegie

Mellon, the developer‟s of Alice, has received multiple grants from the National Science

44

Foundation and Defense Advanced Research Projects Agency in support of Alice. In

addition, Alice is sponsored by companies including Microsoft, Sun Microsystems,

Electronic Arts, Hearst Foundation, Google, Disney, and Hyperion (Alice, 2009). With so

many sponsors from so many organizations, many of which who are actively involved in

information technology, the credibility, user-base, and future support of Alice appears

promising making Alice a viable learning platform for researchers.

 Alice has also advanced to the point where a number of textbooks have been

written and adopted by universities for their curricula. Alice publications are current and

have specific titles associated with learning how to program.

 Designed for novice programmers.

 Alice was developed for introductory students with no previous programming

experience. This makes it useful for university students who may not be computer

science majors who are taking CS0 or an introductory programming course to satisfy

another major (Cooper et al., 2003). The demographics for the target audience are

discussed in chapter 3, however; it should be noted that many of the students in this

research are true beginners with little or no programming experience that can potentially

benefit from the use of Alice. Other environments may not have been developed for the

same target audience. For example, Greenfoot was developed to introduce students to

objects and their behavior early in their studies. Although no Java or other object-

oriented language is required in Greenfoot, the interface assumes some knowledge of

objects which may cause issues for many novice programmers. It assumes baseline

knowledge of classes, methods and other object-oriented terminology that many novices

may not have been exposed.

45

 Commercially available IDEs may be too complex for beginning students. They

are packed with features and sophisticated debugging capabilities. For introductory

courses, the advantages of professional IDEs may be outweighed by their complexity.

With an IDE, students have to spend large amounts of time learning the tool (Pears et al.,

2007).

 Alice also provides a reasonable transition to other programming languages as it

introduces students to the fundamental programming constructs and provides a gentle

introduction to the use of objects. Cooper et al. (2003) observed students that used Alice

developed not only a strong sense of design and incremental program construction

approach using programming constructs but also a contextualization of objects, classes

and object-oriented programming. These skills transfer over to programming languages

such as C++, Java and C# that are popular languages for industry and universities (Tiobe,

2009).

 Previous results using Alice.

 With the popularity of the Alice, many researchers have published results of their

studies in computer science and education related publications. Several common

challenges associated with learning how to program were noted as justification for using

Alice including 1) selecting and using programming structures (Cooper et al., 2000;

Kelleher & Pausch,2005); 2) visualizing the steps a computer takes as it executes the

program (Bishop-Clark et al. ,2006; Cooper et al., 2000; Kelleher & Pausch, 2005); 3)

programming syntax (Bishop-Clark et al., 2006; Kelleher & Pausch, 2005) and; 4)

aversion to typing (Bishop-Clark et al., 2006; Conway,1997; Conway et al., 2000). Each

of these issues may be mitigated by the use of Alice.

46

 Researchers who have used Alice have noted several attractive features of the

programming environment including 1) easy-to-use; 2) motivating and fun to use; 3)

increases academic performance; 4) increases retention and success; and 5) increases

self-efficacy. The following sub-sections group related research that aligns closely to

each of these features.

 Easy-to-use.

 The 3D graphical programming environment of Alice allows students to select,

drag and then drop programming structures for use in their programs providing

visualization of the steps the computer takes in executing a program. This significantly

reduces syntax errors and the amount of typing required by students because syntax is

automatically created as the selected programming structure is dropped to the work area.

For example, to make an object named Bird print the word “Hello” to the screen, the

Bird‟s “say method” is selected and dropped into the work area. This results in the

appropriate code being added without the student having to type or introduce any syntax

errors. In Alice, the following text would be generated for this scenario:

Bird say Hello

 The Alice environment reduces some of the math complexity associated with

visual programming environments such as Microsoft‟s Visual C++ IDE that require 3-D

math coordinates using x, y and z coordinates to provide object positions. Alice uses

simple Logo-style commands including forward, backward, right, left, up and down to

provide object positions. Students that have weaker Math skills are more likely to be

successful using simple commands as opposed to programming using 3-D coordinate

systems (Cooper et al., 2000; Moskal et al., 2004).

47

 Motivating and fun to use.

 According to Papert (1980), microworlds helped motivate students to take up

programming by providing an enjoyable experience. Doughtery (2007) suggested visual

information rich environments facilitated learning better than text-based systems.

Researchers who have worked with Alice discovered a high level of student interest and

involvement (Cooper et al., 2000; Dougherty,2007; Rodger, 2002). Visual programming

environments introduced programming constructs in an appealing way which aided

student understanding (Anewalt, 2008).

 Sykes (2007) found students who used the Alice programming environment self-

reported spending up to four times as much time as control groups. Although increased

time could be related to increased frustration, more time-on-task could be an indication of

a motivating programming environment and may be beneficial for learning. Students who

used Alice as their programming environment were found to enjoy programming

(Bishop-Clark et al., 2006; Bishop-Clark, et al., 2007). When comparing Alice to text-

based environments for design and problem solving in a CS0 course, Dougherty (2007)

found students enjoyed creating and putting significant time into their worlds. Students

were reported to be more engaged and motivated to design and inclined to continue into

the next programming course (CS1).

 Rodger (2002) compared different microworlds to determine which environment

was the most appealing for students who worked in pairs while learning to program.

Using a class evaluation questionnaire, comparisons of Alice with Karel++ (an updated

version of Karel the robot that uses C++ as the programming language), and Starlogo (a

variant of Logo) showed Alice was the clear class favorite with 100 percent reporting

48

they liked the unit. Students indicated it was the easiest to use with the most interactive

programming interface and included the clearest tutorial.

 Anewalt (2008) showed students in a CS0 class had a positive reaction to Alice

and the activity-based style of the course. A survey provided five weeks into the term

revealed the favorite element of the course so far was programming with Alice. All of the

students (n=21) stated they would recommended the course to a friend.

 Rodger et al. (2009) and Adams (2007) used Alice to help motivate middle school

students to become interested in computer science and technology fields. During summer

camps for middle school students were very engaged with Alice and were always asking

for more free time to work on their own worlds.

 Increased academic performance.

 Cooper et al. (2003) found students who used the Alice environment often

outperformed control groups who used a text-based environments. Although the number

of students in the study was small (n=21), students of similar background who used the

Alice environment in CS0 performed better in CS1 than those who were not exposed to

Alice.

 Microworlds, in particular Alice, offer features and outcomes relevant to this

research study. Cooper et al. (2003) demonstrated how students who built their programs

using Alice were better designers resulting in higher quality computer programs. Students

using the Alice environment favored design. Those students who created good designs

prior to coding usually produced higher quality programs. Students who used Alice also

adopted an incremental, step-wise approach to constructing their programs. The Alice

environment promoted building programs in small steps while students visually observed

49

the results. They also found students performed better in subsequent classes such as CS1

and persisted further into more advanced classes. Moskal et al. (2004) found similar

results in terms of better performance for students who used Alice.

 Alice also introduces students to object-oriented programming through the use of

internal objects allowing for student‟s interpretation, analysis and construction of

knowledge (Mullins et al., 2009). This becomes important as follow-on courses such as

CS1 and CS2 usually use an object-oriented approached. Alice provides a gentle

introduction as it is considered object-based rather than object-oriented. Alice uses

objects, properties, methods, but does not include more challenging object-oriented

concepts such as inheritance and polymorphism.

 Studying students enrolled in CS1 classes, Sykes (2007) showed those in an

experimental group that used the Alice environment outperformed students in control

groups by scoring ten to twenty percent higher on post-tests. These results were found to

be statistically significant.

 Increased retention and success.

 Students using Alice as the programming environment concurrently within a CS1

course or in a CS0 course had higher retention rates than the control group that did not

use Alice (Moskal et al., 2004). Students who were identified as being high-risk with low

math and computer science skills and used the Alice environment showed 70 percent

higher retention. 91 percent of students who used Alice in CS0 went on to CS2 class

compared to only 10 percent in the control group.

 Mullins et al. (2009) compared student success rates of students who used Alice

(n=414) environment and those that used C++(n=735). Alice resulted in a four percent

50

increase in the number of students that passed and a four percent decrease in withdrawals.

It was also noted that Alice increased the popularity of the course for students who were

not majoring in computer-related programs. Those majoring in computing showed a five

percent increase in successfully passing the class and an eleven percent drop in

withdrawal. These results suggest Alice may mitigate the learning curve and issues

related to student retention.

 Increased self-efficacy.

 Another indicator supporting Alice as a good selection for this study is the

increase in self-efficacy and confidence in programming following a course that included

Alice as the programming environment (Adams, 2007; Bishop-Clark et al., 2006; Bishop-

Clark et al.,2007; Moskal et al., 2004). Undergraduate students enrolled in an

introductory computer programming course (CS1), had more confidence in programming

after participating in a one-week session of Alice programming (Bishop-Clark et al.,

2006). Bishop-Clark et al. (2007) showed students were more confident in programming

after their experience using Alice during a short 2.5 week introductory computer

programming course (CS1). In this study, a five question survey was completed by

students before and after the course to measure confidence in programming. The

questions measured attitude associated with their programming confidence and included

questions such as “I have a lot of self-confidence when it comes to programming” and “I

am no good at programming”. In reflective essays, 90 percent of students reported an

increased knowledge and understanding of the programming process.

 Powers et al. (2007) and Adams (2007) found the impact of Alice on student

perceptions and attitudes towards programming seemed largely positive. Alice was

51

successful at increasing their weaker students‟ self confidence in their programming

abilities. However, Powers et al., found the confidence applied primarily to programming

within the Alice environment and this confidence did not continue when the student

moved from Alice to a textual programming language.

 Cooper et al. (2003) observed students who used Alice demonstrated an ability to

collaborate. Alice students were observed working on their own objects and characters

individually and later having the confidence and ability to combine them to build virtual

worlds and animations in group projects.

 Strengths and Limitations of Alice.

 Strengths.

 A number of researchers have documented strengths of using the Alice

programming environment for their introductory programming courses. One of the most

attractive strengths of Alice is that introductory students can achieve immediate success

(Goldweber, Bergin, Lister, & McNally, 2006). This strength is often associated with the

built-in features of Alice such as the drag-and-drop interface that essentially eliminates

syntax errors (Brown, 2008). Brown also found through informal midterm and final

course evaluation questionnaires students recognized and appreciated the ability of the

Alice programming environment to allow students to develop code quickly with minimal

errors.

 Alice‟s interface also supports graphical programs that manipulate 3-D objects in

a 3-D virtual world (Powers et al., 2007). The ability to add interesting animations and

visualization of programs often leads to increased student motivation and effort which in

52

turn may lead to increased student success and self-efficacy. Visualization of common

programming techniques like looping makes the concepts easier to master (Brown, 2008).

 Alice has been mentioned as being very effective in a CS0 environment where

students need the time to understand fundamental programming constructs that support

future programming courses. (Adams, 2007; Brown, 2008; Dougherty, 2007; Kelleher et

al., 2007).

 Limitations.

 Alice is not without its limitations. Data structures are limited to one-dimensional

arrays (Goldmeyer, Bergin, Lister, & McNally, 2006). This is probably fine for most

novice students, but not being able to demonstrate or experiment with more complex data

structures may limit some students. Many instructors are concerned that some object-

oriented techniques are not available such as inheritance and polymorphism. For

programmers who go on to CS1 and CS2 object-oriented techniques become quite

important. Powers et al. (2007) suggested improvement is needed in Alice to increase

confidence during the transition from Alice to object-oriented programming IDEs. They

observed the initial shift to object-oriented programming was easier, but as students

began exploring more advanced object-oriented concepts difficulty arose.

 Another concern about Alice is its lack of real-world applications (Mullins et al.,

2009). When creating assignments instructors must be careful that the task can be

accomplished with the Alice environment. Powers et al. (2007) also observed students

who learned to use Alice did not pay attention to syntax. This could be problematic when

students move onto professional IDEs and other possible non-graphical programming

environments.

53

 Finally, Klassen (2006) suggested adult learners did not like the Alice

programming environment as much as a traditional C++ environment. Klassen concluded

adult learners did not need the motivational capabilities of the Alice environment as they

were already motivated to learn. The adult learners in Klassen‟s study also expressed

concern about the user interface as it seemed more appropriate for much younger

students.

Summary

 The Computer Curriculum 2001 ACM report established the need for computing

courses to help students build a fluency in computer programming. CS0 is the first and

foundational course in a sequence of programming related courses designed to provide

students with fundamental programming constructs and problem solving skills. Because

of the importance of this course for students who decide to major in computer science or

a related field, the focus of this research study will take place within the CS0 course.

 As students transition from typing in code in simple text-editors to more advanced

integrated development environments (IDEs), programming constructs remain important.

In addition, what programming environments students use to learn these programming

constructs may also be key (Kelleher & Pausch, 2005) and is a focus of this research

study. Programming environments that are easy to use and contain features that motivate

and engage students to learn may provide some benefit to novice programmers.

 Theoretical foundations supporting this study include constructivist learning and

adult learner theories. Teaching models based on constructivist learning principles focus

on approaches allowing students to construct knowledge by combining new input data

with existing knowledge to form new meaning and understanding. In constructivist

54

learning the student takes a very active role in their learning with the teacher facilitating

this process. Adult learner characteristics become crucial for this study because of the

large number of adult learners enrolled at the university participating in this study. This

implies students may already be ready to learn, focused on specific learning needs and

motivated. Knowing the characteristics of adult learners and the underlying definitions

and approaches to constructivist learning environments will help in the design and

interpretation of the results of this study.

 The statement of the problem summarized in chapter 1stated there was a critical

need for qualified and well-trained computer programmers and current approaches to

teaching computer programming have led to high attrition and failure rates. Although

many factors can attribute these issues, researchers have shown significant contributors to

the problems include difficulty in selecting and using control structures, visualizing the

steps a computer takes as it executes a program, and writing error-free programs. In

addition, instructors and facilitators have been challenged motivating students to

complete the curriculum. The program environment and approach to this research were

selected to help mitigate these problems. Alice was selected as the programming

environment due to its popularity as indicated by its high rate of adoption and use by

universities and its potential to mitigate issues associated with learning to program. Alice

is designed on constructivist principles allowing students to construct new knowledge as

they experiment and play in the microworld. Research suggests that Alice is easy-to-use,

increases motivation, academic performance, retention and self-efficacy. All of these

features and possible benefits have the possibility of increasing the number of students

55

successfully completing the program which may begin to reduce the shortage of

computer programmers needed in today‟s job market.

Contributions of this Research

 Although an impressive set of research is available that supports Alice to enhance

skills and capabilities for novice programmers, more work is needed to determine how

learning is affected in the areas of control structures, functions, and time-on-task. This

research delves deeper into the learning potential Alice offers by using assignments

carefully aligned with course learning objectives and assessment tools such as grading

rubrics to determine specific programming skills that may be enhanced using Alice as the

programming environment.

 The focus for this research will be on the students enrolled in CS0 classes as this

course provides the foundation for all additional programming courses. Students within a

CS0 course learn fundamental problem solving skills and how to apply specific

programming constructs such as if/else control structures, for/while control structures and

functions. These constructs continue to be used as students move on to CS1, CS2 and

other related computer science courses. This study will also focus on novice

programmers from a relatively understudied population consisting of a large percentage

of ethnic-minority, adult learners.

56

Chapter III. Methods and Materials

 This chapter describes the research questions, participants, instruments, and

threats to the validity of this study. The overall research design, procedures and analysis

techniques used to answer the research questions are also discussed. Finally, the

limitations and key assumptions associated with this study are described followed by a

chapter summary.

 Although the literature review supports using the Alice programming

environment to improve academic performance, motivation, and retention in

programming courses, more work remains to confirm its impact on specific learning

objectives for a CS0 class and to measure differences between a traditional C++ learning

environment and Alice. Quantitative analysis providing additional statistical validation is

needed (Gross & Powers, 2005).

 A CS0 course provides a foundation in programming fundamentals supporting

future programming classes. Students in a CS0 course are provided opportunities to

design programs using step-wise refinement and build problem-solving skills.

Determining which code components to use can be challenging for beginning

programmers (Cooper et al., 2000; Kelleher & Pausch, 2005). These skills must be taught

early in the curriculum to support more complex programming tasks in the future to

improve success rates in computer-related disciplines to support the growing need for

programmers by industry and the government (Bureau of Labor Statistics, 2008).

Because of these critical needs, a number of research questions have been formed.

Research Questions

 This study was designed to answer the following four research questions:

57

1) Is there an increase in grades for CS0 students who use the Alice programming

environment compared to those who use a C++ IDE on if/else control structure

related exercises?

2) Is there an increase in grades for CS0 students who use the Alice programming

environment compared to those who use a C++ IDE on for/while control structure

related exercises?

3) Is there an increase in grades for CS0 students who use the Alice programming

environment compared to those who use a C++ IDE on function-related

exercises?

4) Is there an increase in the time devoted to a CS0 course for students who use the

Alice programming environment compared to those who use a C++ IDE?

 The first three research questions will provide detailed comparisons of Alice and a

traditional C++ IDE in terms of specific CS0 learning objectives. Although an IDE does

have some advanced editing and debugging features, most novice programming students

use an IDE in a non-graphical manner (Pears et al., 2007). For these students, code is

often entered directly into an editor. Previous research has shown that tools and

approaches that help a student better understand how to build a program will help the

student be more confident in their current programming courses and more prepared for

future programming courses (Adams, 2007; Bishop-Clark et al., 2006; Moskal et al.,

2004). Focusing on the course learning objectives may provide some insight into

strengths and weaknesses of programming environments for specific programming

constructs and tasks allowing designers and developers of programming environments to

improve their products.

58

 The final research question addresses the potential motivation factors associated

with the use of an interactive visual environment for a CS0 class. Sykes (2007),

Dougherty (2007) and Rodger (2002) indicated students who used Alice demonstrated an

increased motivation and ease-of-use resulting in more dedicated study and time-on-task

compared to traditional text-based approaches. A student who enjoys and is satisfied with

a course is more likely to stay in the class and be more motivated to learn. This research

question will help determine if microworlds inspire students to spend more time learning

the materials which in turn may impact student success.

Participants

 The students participating in this research were enrolled in one of two face-to-face

sections of an undergraduate CS0 class taught by the same instructor. Approximately 35

students were enrolled in each section. The instructor was an experienced collegiate

professor who has taught CS0 for more than ten years at this university making him very

familiar with the learning objectives, goals, materials and assessment methods of the

course.

 The university is a State university on the east coast of the United States

accredited by the Middle States Accreditation Agency. The median age for

undergraduate students for this university is 31, with 80 percent identifying themselves as

working fulltime (University data). A typical student at this university is an adult learner

taking more than one course and working fulltime (CITE Demographic Data, 2009).

Historical retention data over the period from 2003 to 2008 for the CS0 face-to-face

classes showed 61 percent of the students successfully completed this course with a D or

59

higher, 17 percent failed the course and 22 percent withdrew (CITE Grade Distribution

Data, 2008).

Instruments

 The instruments used for this research included a pre-test, demographic

questionnaire, three programming assignments, a post-test, end-of-course evaluations,

and final course grades.

 Pre-test.

 The pre-test was used to detect pre-existing differences between the two groups

that could impact the experimental results. It contained multiple choice and short answer

technical questions aligned with course learning objectives in the specific areas of if/else

control structures, for/while control structures and functions. The pre-test consisted of

thirteen questions pulled from an exam database developed and reviewed by a team of

faculty peers who had taught CS0 in previous semesters and by external program

reviewers. The test included four if/else questions (questions 1, 3, 6 and 7), three for loop

questions (questions 2, 9 and 11), two while loop questions (questions 8 and 10) and four

function questions (questions 4, 5, 12 and 13).

 Students were provided approximately 30 minutes to complete the pre-test and the

demographics questionnaire on the first day of class. Appendix C shows the pre-test for

this research study.

 Demographic questionnaire.

 The demographic questionnaire included survey questions gathering age, gender,

and ethnicity information. Additional questions on the survey included the student‟s

current major and questions related to the number of previous math and computer

60

programming courses students had taken previously. These last questions were included

based on the findings of Moskal et al. (2004) who discovered success rates differed for

students who were identified as having weak math and problem solving skills.

 The questionnaire was also given to the students on the first day of class.

Appendix B shows the questionnaire used for this research.

 Programming assignments.

 The programming assignments were designed to assess comprehension of control

structures and functions. In the first programming assignment, students created a

program that returned the letter grade based on the course final numerical value. For

example, if a user entered a numeric value of 95, the program should return a letter grade

of an “A”. The assignment allows the students to demonstrate their understanding of

if/else control structures and properly create and test code representative of the

assignment requirements.

 The second programming assignment challenged the students to create an

application using for/while control structures to calculate the greatest common divisor for

two positive numbers. The steps to solve the problem were provided to the students in the

form of pseudocode. If successfully implemented, when a user entered the numbers 18

and 21, the number 3 would be returned. Additional test cases were provided to the

students.

 The third programming assignment required students to create two simple

functions for calculating the area of a trapezoid and the perimeter of a rectangle. Students

were provided the mathematical formulas for these functions and they had to write and

test the code to properly implement the formulas.

61

 Appendix D shows each of the programming assignments for the experimental

(Alice environment) group. Appendix E shows each of the programming assignments for

the control (C++ environment) group. The only difference in the assignments between the

control and experimental groups was the programming environment where the students

were asked to develop and test the code.

 Grading rubric.

 A rubric was used for the instructor to grade each programming assignment. A

rubric provides fair and consistent grading for each student. Grading rubrics have

traditionally been applied to many disciplines (Andrade, 2005). Becker (2003) was one of

the first to apply a rubric to grade computer programs students submitted. She used

specific grading areas including design, style and functionality. Each area had three levels

of rating including unacceptable, meets standards and exceeds standards. The institution

conducting this research established grading rubrics for each of its CS1 and CS2

programming courses over five years ago. This rubric was refined by faculty peers and

adopted for use in the CS0 for this research. Appendix R shows this rubric as it was

applied for assessment of each of the programming assignments.

62

 Post-test.

 The post-test consisted of a course comprehensive exam that included the same 13

questions found on the pre-test as well as other questions related to CS0 learning

objectives that were not part of this specific research project.

 The post-test was administered on the last day of class. Students were provided

approximately 180 minutes to complete the entire post-test. The questions on the post-

test related to this research are shown in Appendix C.

 End-of-course evaluation.

 The course evaluations used were the standard end-of-course student evaluations

many universities use to gather anonymous feedback about the course and instructor. The

evaluations included information concerning overall course and instructor satisfaction,

and the self-reported hours per week of study. Appendix F shows the end-of-course

evaluation form used for this research.

 Time-on-task survey.

 In conjunction with research question four, each student was asked to estimate the

number of hours they used during the development of each programming assignment. In

addition, students were asked to answer questions regarding the use of the programming

environment and if any additional resources were used in support of completing the

assignment. This data may provide a more accurate estimate for time-on-task related to

each programming assignment as opposed to the weekly estimates on the end-of-course

evaluation form. The additional questions helped to capture issues and strengths of the

programming environment along with other tools that might help further explain success

in the course. Appendix G shows the time-on-task collection forms used for this research.

63

 Final course grades.

 The final course grades were used to assist in answering all of the research

questions at a high level. Student performance in terms of their final grade may indicate a

trend and is worth evaluating to identify additional differences in the programming

environments from an overall course perspective.

 Schedule of assessment instrument application.

 Table 1 shows the weekly schedule of events for both the control and

experimental groups that occurred during the semester. Activities show the delineation

of events between the two sections and when specific instruments were applied. For

example, in week 6, the control group downloaded and installed the C++ IDE

environment and created their first C++ program whereas the experimental group

downloaded and installed the Alice environment and created their first Alice program.

Beginning in week 7, each group had identical readings in the textbook and course

modules but read documents specific to their programming environment. These

documents provided each group how to use their programming environment to

implement control and selection statements in C++ or Alice. The preparation documents

were similar in nature in that they included code samples and explanations for students to

produce a functional program.

 The programming assignments were identical for each group. The only difference

between the groups was the programming environment that was required. For the control

group, C++ was utilized whereas the experimental group used Alice. Each group was

allowed the same amount of time for preparing the programming assignments.

64

Table 1

Control and Experimental Group Activities

Week
Group Activities

Control Experimental

1 Pre-test and Questionnaire Pre-test and Questionnaire

6 Download and install C++

 create your first C++ program

Download and install Alice

 create your first Alice program

7 Read C++ structure and selection

documents

 Submit Programming assignment 1

Read Alice structure and selection

documents

 Submit Programming assignment 1

8 Read C++ repetition loop document

Submit Programming assignment 2

Read Alice repetition loop document

Submit Programming assignment 2

11 Read C++ functions document Read Alice functions document

12 Submit Programming assignment 3 Submit Programming assignment 3

15 Post-test and course evaluation Post-test and course evaluation

Threats to Validity

 Gay and Airasian (2003) determine an experiment to be valid if the results

obtained are due to manipulation of the independent variables and if they are

generalizable beyond the current participants. Specifically, internal threats to validity are

threats other than those that can be attributed to the independent variables whereas

external threats to validity are threats that prevent the results from being applied to other

groups and settings.

 It is challenging to control for both internal and external validity as a highly

controlled experiment with maximum internal validity may not generalize to other

settings (Gay & Airasian, 2003). The following sub-sections discuss possible threats to

internal and external validity for this experiment and how each threat has been mitigated.

65

 Internal threats to validity.

 The threats to internal validity believed to be present in this study fall into the

general categories defined by Gay and Airasian (2003) of instrumentation, differential

selection of participants, and attrition. Instrumentation threats occur due to possibly

unreliable or inconsistent measuring device. Differential selection of participants threats

occur when predetermined groups are part of the study that could potentially have very

different characteristics from one another. Attrition threats are caused by students who

drop out of the study and do not participate in many of the activities and events of the

research study.

 Instrumentation.

 There were a number of assessment instruments used in this research study

including the pre- and post-tests, and three programming assignments. To reduce the

threats to validity for the pre- and post-tests a number of actions took place. To ensure

the questions were valid and appropriate for the course learning objective the exam

questions were extracted from a common exam database. This database has been in place

for several years for the CS0 course at this institution. To be included as a question in the

database, each question must be aligned with one or more course learning objectives. The

exam database is reviewed each semester by faculty peers, the CS0 course chair, and the

academic program directors to ensure the quality of questions available is acceptable and

that each question is properly aligned with at least one course learning objectives. The

exam database is also placed on our secure administrative website for review and

comments by overseas divisions of the university, and external program reviewers.

Overseas faculty contributed to the database by providing additional questions and using

66

questions for their own courses in Europe and Asia. External program reviewers are

given visitor access to the administrative site and may comment and discuss the process

and the quality of the exam questions.

 The programming assignments were developed with a similar process to the pre-

and post-test questions. A group of faculty peers, who have previously taught the course,

designed the assignments based on specific course learning objectives. Each project is

refined over time to make them current and in-line with any changing program and

course objectives. Contribution and comments from overseas divisions and external

academic program reviewers are also used to shape the content and improve validity of

the programming assignments.

 The review process includes faculty meetings dedicated to discussing statistical

results for each question and programming assignment. At the end of each meeting

recommendations are made for modifying the exam database, the programming

assignments and the course study materials to help best prepare students for successful

completion of the course.

 Cronbach‟s alpha statistical analysis was also performed for the pre- and post-test

results to ensure test reliability.

 The grading rubric used to provide consistent grading for each of the

programming assignments had been refined from use in several semesters at the

university and was based on the rubric by Becker (2003). The rubric was reviewed

internally by faculty who had taught the CS0 course and other programming courses. The

rubric was reviewed externally by members of the Java educator‟s group formed out of

the JavaOne developer‟s conference.

67

 Differential selection of participants.

 Participants registered for a specific section of the CS0 based on their personal

decision and their availability. The researcher had no control of placement of students

into specific sections. To ensure the two classes were equivalent and to reduce this threat

to validity, a pre-test and demographics questionnaire was administered to each group.

These instruments will be used to document any significant differences between the

groups.

 Attrition.

 Historical retention results for this course showed approximately showed 61

percent of the students successfully completed this course with a D or higher, 17 percent

failed the course and 22 percent withdrew (CITE Grade Distribution Data, 2008). This

implies approximately 40 percent of the students will likely not complete all of the

assignments for this course. Although the threat to external validity will increase, to

reduce this internal threat to validity, only participants who completed all of the

assessment instruments will be included in the data analysis.

 External threats to validity.

 The predominant external threat to validity for this study was the small sample

size and the unrepresentative nature of the sample. The sample size was less than 70.

After attrition has been taken into account the sample size was less than 50. In addition,

the demographic composition of this small sample was composed primarily of adult-

learners from ethnic minority origins. These factors limit the result generalization to a

small subset of adult, minority learners. Future study replication at other universities

would help mitigate this threat to validity.

68

Research Design

 The study is based on a quasi-experimental design as participants were not truly

randomly selected and assigned to a section. Instead, participants registered for a section

and a coin was tossed to randomly assign which section would receive the experimental

treatment.

 The independent variables included the use of the C++ or Alice programming

environment for the control and experimental groups respectively. Dependent variables

measured included the question and grade results from the pre- and post-tests,

demographics questionnaire, programming assignments, time-on-task survey, final course

grades, and the end-of-course evaluations.

Procedures

 All students in one of the face-to-face sections were assigned to use the Alice

programming environment. The students in the remaining face-to-face section served as

the control group where all of their programming assignments were to be implemented

using a traditional IDE programming environment (Microsoft Visual C++). The

institution where this research was conducted has used the Microsoft Visual C++ IDE

programming environment for over six years.

 Both sections used the same instructor and textbook and met once a week for

approximately three hours during a 15-week semester. Programming materials, examples,

and instructions were provided to students on how to use C++ or Alice environments

based on the section in which they were enrolled. In this manner, students were provided

similar preparation materials to reduce the learning curve for each environment allowing

students to concentrate on their assignments.

69

Analysis

 Each of the instruments was analyzed using statistical techniques to assist in

answering one or more of the research questions. Chi-square analysis and t tests were

used on the data from most of the instruments to look for relationships between variables

and the experimental or control groups. Chi-square analysis was used when categorical

variables were evaluated whereas t test analysis was selected when continuous variables

needed to be evaluated.

 Demographics questionnaire.

 Data from the questionnaire were entered into an Excel spreadsheet for each of

the sections. Data fields included a unique student identification number, student group

(control or experimental), and categorical results from each of the seven questions. The

data were entered once and then double checked for any possible entry errors. Variable

names were included at the top of the spreadsheet. The final spreadsheet was saved as a

comma-delimited file and imported into SPSS for analysis. Once imported into SPSS,

labels and categorical values were created for each of the seven questions and the

grouping variable. Analysis performed was a cross-tabulation on each of seven questions

by the group variable with the chi-square statistics and percentages reported for the

categorical outcomes.

 Similarly, data were entered into spreadsheets, double-checked for accuracy,

imported into SPSS and labeled as appropriate for each of the remaining data collection

instruments.

70

 Pre-test.

 The pre-test data consisted of thirteen technical programming questions aligned

with the research question. The thirteen questions were also aligned with specific

learning objectives of the course including learning how to use if/else control structures,

for/while control structures and functions. Summing each of the related questions

provided a total score, and subscales corresponding to three of the course learning

objectives (if/else, for/while, and functions).

The analysis for the pre-test data included cross-tabulations for each of the thirteen

questions against the student group variable with chi-square statistics and column

percentages calculated. A t test analysis was performed on the total score and the

subscales.

 Programming assignments.

 Each of the programming assignments used the same rubric to assign points.

Layout, design, test, and functionality were included as major components of the rubric

with possible scores of 1, 2 or 3 representing “does not meet expectations”,” meets

expectations” and “exceed expectations”, respectively. The maximum rubric score for

each programming assignment was 12 points. The spreadsheet created for each

programming assignment included a unique student number, group (control or

experimental) and values from the rubric for the layout, design, test, functionality and

total points. After the spreadsheet was prepared and verified for accuracy, data were

imported into SPSS for analysis. Similar to the pre-test, all programming assignment

analysis included cross-tabulations for each of the four individual rubric components

71

questions with chi-square statistics and column percentages calculated with t test analysis

performed on the total score.

 End-of-course evaluations.

 The student end-of-course evaluation data were used to determine how much time

students were studying in the course. Data from the student end-of-course evaluation

surveys were provided in spreadsheet form from the institutions research group for each

of the two classes. Data extracted were used to determine if there were differences in

reported time spent on class studies, and overall course and instructor satisfaction.

Overall instructor satisfaction was determined by calculating the mean of instructor

satisfaction related items [items 5-11].Similarly, overall course satisfaction was

determined by calculating the mean of the course satisfaction related items [items 12-31].

 Data extracted from the student end-of-course evaluation forms were entered into

a spreadsheet containing the student group (control or experimental), self-reported

weekly study time, average instructor satisfaction, and average course satisfaction. After

importing the file into SPSS, a cross-tabulation with chi-square statistics and column

percentages was performed on the categorical study time variable. A t test was performed

on the average instructor and course satisfaction data.

 Time-on-task survey.

 Students were also asked to submit a time-on-task survey associated with each

project assignment throughout the semester. These data were entered into a spreadsheet

and included student identification, group, and time-on-task. The spreadsheet was then

imported into SPSS and a t test was performed. The time- on-task surveys also contained

some responses that were more qualitative in nature including use of additional tools or

72

resources and comments about the process. These results were reviewed for trends and

patterns using visual inspection.

 Post-test.

 The post-test data included the same thirteen questions as the pre-test. Therefore,

analysis was identical to that performed on the pre-test including cross-tabulations for

each of the thirteen questions against the student group variable with chi-square statistics

and column percentages calculated. A t test analysis was performed on the total scores

and subscale variables.

 In order to compare the programming environments for learning gain, a pre-post

test analysis was performed. To determine the gain for each group, the post-test scores

total points and subscales were subtracted from the corresponding pre-test scores. The

results of these differences were imported into SPSS and a t test was performed. For

completeness, a univariate analysis was performed to compare post-test results for each

group while accounting for the pre-test results. Both of these approaches test the same

hypothesis but from a different perspective.

 Final grades.

 The final course grades were entered into a spreadsheet containing student

identification number, group and final grade. Once imported into SPSS, cross-tabulations

for the final grade variable with chi-square statistics and column percentages were

calculated.

 Finally, to determine overall pre- and post-test reliability, Cronbach‟s alpha was

calculated on each of the thirteen test questions.

73

Limitations and Key Assumptions

 Some initial limitations to this study were listed in the introduction chapter and

included a small population, instructor and researcher biases, and the duration of the

study. The total number of students at the beginning of this study was 71. At the end of

the semester, approximately 30 percent of the students had withdrawn or stopped

participating in the class. The total number of students participating in the study was

further limited by restricting the analysis to only those students who completed and

submitted each of the assessment instruments. The final number of students participating

was 40.

 The instructor and researchers are always possible sources of biases and therefore

limitations within any research study. These potential biases were reduced by the

introduction of programming assignment grading rubrics and a dissertation oversight

committee. Rubrics helped to reduce variations of grading between the instructor and

grading practices. A second or even third reviewer/grader for each assignment and

assessment activity would have eliminated most of this possible bias; however, these

additional resources were unavailable. The dissertation committee and advisor provided

overarching guidance and served as an additional deterrent from possible researcher bias.

 Extending into multiple semesters would have added more students and strength

to the study. However; this would also have added more variables such as additional

instructors, term lengths and student demographics for consideration that might have

been more challenging to control.

 Some additional limitations became apparent during the analysis of the data. Even

though the questions on the pre- and post-test along with the programming assignments

74

were prepared by a team of instructors, the questions may not fully represent each

learning objective. The alignment of each question or programming assignment with

specific course learning objectives was used to better identify specific problem areas in

learning how write computer programs. However, additional questions and a different

variety of questions could have been used to better represent each course learning

objective. Selecting the appropriate number of assessment activities to demonstrate

mastery or even understanding of a course learning objective may need more

consideration.

 With the exception of the end-of-course evaluations, all assessment instruments

had a student identifier allowing tracking trends, comments and results throughout the

semester for each student. However, since the end-of-course evaluation data were

anonymous it was not possible to align these results with other findings. In addition,

students who dropped the course prior to the administration of the course evaluation, or

who opted to not participate in the course evaluation survey were missing from this

dataset. The use of the time-on-task survey mitigated some of this limitation but many

students opted to submit detailed comments or information on their time-on-task surveys.

 One final limitation is related to the teaching style used for this research. The

traditional approach used by the instructor for teaching the control class was also used for

the experimental class. Both sections were taught in a traditional, behaviorist style. The

advantage to this approach is that both sections did use the same teaching style and

paradigm. There was no additional training required and this approach is used by most

computer science programs (Ben-Ari, 1998). The disadvantage to this approach is there

might have been a mismatch between the selection of the constructivist learning

75

environment of Alice and the teaching style used within the classroom. Another study is

needed that would attempt to use a constructivist teaching style in addition to Alice may

have yielded different results and revealed additional strengths of the Alice programming

environment.

 It was assumed that both sections were similar in demographic and technical

background. This is a key assumption and will be shown to be true in the next chapter.

Summary

 Traditional approaches to teaching introductory programming concepts have

suffered high attrition rates with students struggling in specific areas such as selecting

and using control structures, visualizing programming steps, producing error-free code

and motivation. Several research questions were developed to address these problems

centered on comparing traditional and microworld programming environments to

determine if increased grades and motivation resulted from the use of microworlds.

 The approach to this research compared two face-to-face CS0 sections, taught by

the same experienced instructor using Alice as the programming environment for the

experimental group and Microsoft Visual C++ IDE for the control group. Programming

materials, examples, and instructions were provided to students on how to use the

programming environments based on the section in which they were enrolled. The

instruments used for this research included a pre-test, demographic questionnaire, three

programming assignments, a post-test, end-of-course evaluations, and final course

grades.

 Each of the instruments was analyzed using different statistical techniques to

assist in answering one or more of the research questions. Chi-square and t test analysis

76

were used on the data from most of the instruments to look for relationships between

variables and the groups. Chi-square tests were used when categorical variables were

evaluated whereas t tests were used when continuous variables needed to be evaluated.

 Although a number of limitations have been identified including sample size, use

of only one grader, and teaching style, the research design and processes helped mitigate

these limitations and potential threats to validity by employing grading rubrics, aligning

programming assignments and other assessment activities with course learning objectives

and working closely with the instructor and outside reviewers in an attempt to reveal

details and challenges associated with learning how to program that may have not been

previously reported on a population of adult learners.

77

Chapter IV. Results

 This chapter provides results for each of the analysis techniques listed in the

Methods and Materials chapter. The first sub-sections of this chapter provide results for

each of the statistical analysis conducted on the demographics questionnaire, pre-test,

three programming assignments, end-of-course student evaluations, time-on-task survey,

post-test and grade distribution data. The final sub-section summarizes the results as they

relate to the four research questions.

 With the exception of the anonymous end-of-course evaluations, where it was not

possible to align student identifiers with other activities, and the time-on-task surveys,

where many students did not complete the surveys, a total of 40 students participated in

all remaining assessment activities. This resulted in N=40 for most of the analysis

conducted on the instruments for this research study.

Demographics Questionnaire

 The demographics questionnaire consisted of seven questions providing age,

gender, major area of study, ethnicity, semester course workload, number of previous

math courses and number of previous computer programming courses for each student.

This data provided a baseline comparison between the groups in terms of demographic

make-up and previous experience in math and computer science to determine if any

significant differences existed between the groups that could possibly account for

disparities in the study results.

 There were no significant differences found between the control and experimental

groups in terms of gender, age, ethnicity, declared major, number of courses currently

78

enrolled, number of previous mathematic courses and number of previous computer

courses.

 The cross-tabulation results for each of the questionnaire variables are shown in

Appendix H. The chi-square statistics for all these questions had values greater than .05

indicating no association between these variables and the groups. The chi-square results

for each questionnaire item are also listed in Appendix H.

Pre-test

 The pre-test contained questions assessing the prerequisite knowledge of if/else

control statements, for/while control structures and functions. Data were collected

including the total score for all of the questions on the pre-test and sub-scales for each of

the questions grouped by if/else control structures, for/while control structures, and

functions. The pre-test established a baseline of prerequisite programming knowledge for

each group so that any differences discovered on the post-test could be attributed to

activities occurring within the semester.

 The chi-square statistics for each of the 13 pre-test questions indicated there were

no significant differences between the control and experimental groups. There were no

significant differences found between the control and experimental groups in the subscale

scores for the if/else control structures, for/while control structures, functions, or total

points earned as calculated from the t test results. The reliability for all of the pre-test

questions was calculated using Cronbach‟s alpha (α= 0.862).

 Appendix I lists the chi-square and t test results from the pre-test analysis.

79

Programming Assignment 1

 Programming Assignment 1 assessed a student‟s ability to create a simple

program that used if/else control statements in their code. The instructor used a rubric

(see table 1) to grade each assignment and reported results based on four area including

layout, design, test data, and functionality and the total points. For each of these areas,

grading criteria was based on the student fulfilling certain expectations with descriptors

including “does not meet expectations”, “meets expectations”, and “exceeds

expectations”.

 As shown in Table 2, a larger percentage of the experimental group exceeded

expectations for the layout component compared to the control group. However, for the

design and functionality components, the control group had a larger percentage of

students who exceeded expectations. For students in the experimental group, Alice

allowed most students to exceed the layout expectation as the environment properly

formats the code without any additional effort by the student.

80

Table 2

Programming Assignment 1Rubric Component Counts for Control (C), Experimental (E),

and Total (T) Groups

Grading Count % within Group

 C E T C E T

Layout Component

Does Not 0 0 0 0.0% 0.0% 0.0%

Meets 7 0 7 41.2% 0.0% 17.5%

Exceeds 10 23 33 58.8% 100.0% 82.5%

Total 17 23 40 100.0% 100.0% 100.0%

Design Component

Does Not 0 4 4 0.0% 17.4% 10.0%

Meets 0 5 5 0.0% 21.7% 12.5%

Exceeds 17 14 31 100.0% 60.9% 77.5%

Total 17 23 40 100.0% 100.0% 100.0%

Functionality Component

Does Not 0 1 1 0.0% 4.3% 2.5%

Meets 0 7 7 0.0% 30.4% 17.5%

Exceeds 17 15 32 100.0% 65.2% 80.0%

Total 17 23 40 100.0% 100.0% 100.0%

 Control and experimental groups were found to be different on the distribution of

outcomes for the layout (χ
2

(1) = 11.48 ρ <.05), design (χ
2

(2) = 8.58 ρ <.05) and

functionality (χ
2

(2) = 7.39 ρ <.05) grading components. The experimental group

performed better on the if/else control structures assignment than the control group for

the layout grading component whereas, the control group performed better on both the

design and experimental grading component than the experimental group.

 There were no significant differences found between the control and experimental

groups for the test data grading component or the total points earned for this assignment.

Most students in both the experimental and the control group did not meet the

expectations for the test data grading component.

81

 Appendix J shows the chi-square results for the test data component for

programming assignment 1 and the t test results for the total points earned for the control

and experimental groups.

Programming Assignment 2

 Programming assignment 2 assessed a student‟s ability to create a simple program

that used repetition control structures such as for or while loop statements. This

assignment also built on the knowledge programming assignment 1 provided in that some

use of if/else control statements was required.

 For this assignment the instructor also used a rubric (see Appendix R) to grade

each assignment reporting results based on four areas including layout, design, test data,

and functionality. For each of these areas, grading criteria was based on the student

fulfilling certain expectations with descriptors including “does not meet expectations”,

“meets expectations”, and “exceeds expectations”.

 As shown in Table 3 a larger percentage of the experimental group exceeded

expectations for the layout and testing components of the rubric than the control group.

82

Table 3

Programming Assignment 2 Rubric Component Counts for Control (C), Experimental

(E), and Total (T) Groups

Grading Count % within Group

 C E T C E T

Layout Component

Does Not 1 0 1 5.9% 0.0% 2.5%

Meets 12 0 12 70.6% 0.0% 30.0%

Exceeds 4 23 27 23.5% 100.0% 67.5%

Total 17 23 40 100.0% 100.0% 100.0%

Test Component

Does Not 17 17 34 100.0% 73.9% 85.0%

Meets 0 0 0 0.0% 0.0% 0.0%

Exceeds 0 6 6 0.0% 26.1% 15.0%

Total 17 23 40 100.0% 100.0% 100.0%

 Control and experimental groups were found to be different on the distribution of

outcomes for layout (χ
2

(2) = 26.06 ρ <.05), test data (χ
2

(1) = 5.22 ρ <.05) and the total

points (t (38) = -3.55, ρ=.001) grading components. The experimental group performed

better on the for/while control structures assignment than the control group for the layout,

test data, and total points grading components.

 Table 4 shows the group statistics for total points earned for programming

assignment 2.

Table 4

Group Statistics for Programming Assignment 2 Total Points

Variable M SD SE

Control Group (n=17)

Total Points 8.94 .966 .234

Experimental Group (n=23)

Total Points 10.26 1.287 .268

83

 There were no significant differences found between the control and experimental

groups for the design or the functionality grading components for programming

assignment 2.

 Appendix K shows the results from the design and functionality grading

components that did not yield significant differences between the control and

experimental groups for programming assignment 2.

Programming Assignment 3

 Programming assignment 3 assessed a student‟s ability to create a simple program

that used functions. As in programming assignment 1 and programming assignment 2,

the instructor also used a rubric (see Appendix R) to grade each assignment and reported

results based on four areas including layout, design, test data, and functionality. For each

of these areas, grading criteria was based on the student fulfilling certain expectations

with descriptors including “does not meet expectations”, “meets expectations”, and

“exceeds expectations”.

 As shown in Table 5 a larger percentage of the experimental group exceeded

expectations for the layout component of the rubric than the control group.

Table 5

Programming Assignment 3 Rubric Component Counts for Control (C), Experimental

(E), and Total (T) Groups

Grading Count % within Group

 C E T C E T

Layout Component

Does Not 3 0 3 17.6% 0.0% 7.5%

Meets 10 0 10 58.8% 0.0% 25.0%

Exceeds 4 23 27 23.5% 100.0% 67.5%

Total 17 23 40 100.0% 100.0% 100.0%

84

 Control and experimental groups were found to be different on the distribution of

outcomes for the layout (χ
2

(2) = 26.06, ρ <.05) and the total points (t (38) = -2.41,

ρ=.021) grading components. The experimental group performed better on the functions

assignment than the control group for the layout grading component and the total points

earned.

 Table 6 shows the group statistics for total points earned for programming

assignment 3.

Table 6

Group Statistics for Programming Assignment 3 Total Points

Variable M SD SE

Control Group (n=17)

Total Points 9.12 1.495 .363

Experimental Group (n=23)

Total Points 10.00 .798 .166

 There were no significant differences found between the control and experimental

groups for the design, test, or the functionality grading components for programming

assignment 3.

 Appendix L shows the analysis results including the chi-square statistics for the

remaining design, test and functionality grading components for programming

assignment 3 for the control and experimental groups.

Post-test

 The post-test contained the same questions as the pre-test for the if/else control

structures, for/while control structures and function related questions. Data were collected

that included a total score for all of the questions on the post-test and sub-scales for each

of the questions grouped by if/else control structures, for/while control structures, and

85

functions. The post-test was used to determine learning gain at the end of the semester

compared to the prerequisite programming knowledge established at the beginning of the

course using the pre-test.

 With the exception of one of the function-related questions (question 4), no

significant differences were found between the control and experimental groups for the

individual post-test questions. For question 4, a larger percentage of students in the

experimental group earned zero points compared to the experimental group. Table 7

shows the cross-tabulation results for this question followed by the chi-square statistics in

Table 8.

Table 7

Post-test Question 4 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 2 16 18 11.8% 69.6% 45.0%

1 13 2 15 76.5% 8.7% 37.5%

2 0 0 0 0.0% 0.0% 0.0%

3 2 5 7 11.8% 21.7% 17.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table 8

Post-test Question 4 chi-square Tests

Method Value df p

Pearson chi-square 19.786*

 2 .000

Likelihood Ratio 21.834* 2 .000

Note: *p < .05

 Control and experimental groups were found to be different on the distribution of

outcomes for question 4 (χ
2

(2) = 19.79, ρ <.05) grading results. The control group

performed better on this question than the experimental group.

86

 The t test results for the post-test summation and total points variables showed no

significant differences between the control and experimental groups.

 The reliability for all of the post-test questions was calculated using Cronbach‟s

alpha (α= 0.839). Appendix M lists the remaining chi-square and t test results from the

post-test analysis.

Pre-post Gain

 To determine the gain in learning for each group, the post-test scores total points

and subscales were subtracted from the corresponding pre-test scores. The subscales

included the sum for each of the related questions on the topics of if/else, for, and while

control structures and functions. The for and while control structure questions were

summed to derive another variable that represented all repetition control structure related

questions. Measuring gain in this manner provided a detailed look at learning that took

place within the course for each major learning objective in a CS0 course and a

comparison between the two groups to determine if one group demonstrated better

performance in the course.

 The gains calculated for each summation variable between the post- and pre-test

are shown in Table 9. With the exception the if/else-related questions, students in the

control group had a slightly larger gain than the experimental group. However, none of

these differences were found to be statistically significant.

87

Table 9

Group Statistics for Pre- Post-test Gain

Variable M SD SE

Control Group (n=17)

if/else sum 7.47 5.625 1.364

for sum 3.41 2.320 .563

while sum 2.76 1.985 .481

rep sum 6.18 3.302 .801

functions sum 6.47 3.727 .904

Total Points 20.12 9.867 2.393

Experimental Group (n=23)

if/else sum 9.17 5.140 1.072

for sum 3.30 2.976 .621

while sum 2.30 2.401 .501

rep sum 5.61 3.940 .821

functions sum 4.83 3.774 .787

Total Points 19.61 9.272 1.933

 As an additional perspective from the post- pre-test gain analysis, the pre-post

analysis of covariance yielded similar results to the gain analysis for each of the total and

subscale scores. There were no significant difference found between the control and

experimental groups for the post-test results while adjusting for the pre-test results.

Appendix N provides the resulting analysis of covariance data.

Student End-of-course Evaluations

 The student end-of-course evaluations question related to the average number of

hours spent on the course provided four different categories for students to choose: 0-5,

6-10, 11-15 and >15 hours per week. Although the experimental group had more students

than the control indicating they studied 6-10 hours per week, there were no significant

differences between the groups. Appendix O shows the cross-tabulation for each category

88

and group for the average number of study hours for the class along with the chi-square

statistical analysis.

 When comparing the overall instructor and course evaluations results, the control

group showed higher average values for both the instructor and overall course values.

The group statistics for the overall instructor and course evaluations are shown in Table

10.

Table 10

Group Statistics for Overall Instructor and Course Evaluations

Variable M SD SE

Control Group (n=19)

Instructor 4.2100 .66241 .15197

Course 3.7953 .66240 .15196

Experimental Group (n=25)

Instructor 3.2816 .99882 .19976

Course 3.1916 .99382 .19876

 Overall, students in the experimental group were less satisfied with the instructor

(t (42) = 3.50, ρ=.001) and the course (t (42) = 2.29, ρ=.027).

Time-On-Task Survey Results

 Most students elected to not complete the time-on-task survey form. Table 11

shows the group statistics for each programming assignment for the students who

completed this survey. No significant differences were found between the control and

experimental groups for the average number of hours students reported working on a

programming assignment.

89

Table 11

Group Statistics for Programming Assignment Time-on-Task

Programming

Assignment

N M SD SE

 Control Group

1 5 3.000 1.9685 .8803

2 5 3.200 2.0187 .9028

3 2 3.500 0.7071 0.5000

 Experimental Group

1 9 3.000 2.6926 .8975

2 7 2.500 1.2583 .4756

3 8 3.313 3.0815 1.0895

 The time-on-task survey included two additional questions (see appendix G)

related to the overall experience on the programming assignment and use of tools or

additional resources to complete the programming assignment. Although the response

rate was low to the time-on-task survey in general, several comments were captured that

may provide some insight into some of the findings previously presented. A spreadsheet

was used to input the text gathered. A manual review of this data was conducted to

extract trends and patterns within the data. Table 12 provides several examples of the

types of comments that were captured related to the use of each programming

environment for programming assignment 1.

90

Table 12

Programming Assignment 1 Programming Environment Comments from Control and

Experimental Groups

Control Group Experimental Group

“It was a simple and straightforward

exercise.”

“The programming environment is okay

because it is animated.”

“Visual C++ programming is great.” “It was different from using UNIX but

because we covered how to use Alice

thoroughly in class it wasn‟t too hard.”

“I tried including a while loop but I was

missing something and I was unable to

figure it out.”

“My experience was challenging. I could

not make sense of the text output to

determine whether my world output was

accurate.”

“First I had to understand the syntax for

C++. Then I start entering the code. It took

me couple of steps before I could get a

hang of the language. After I get familiar

with the language it became easy and

before you know it I was done.”

“I hated learning the Alice environment; it

would have taken me 10 minutes to write

the code in C++. I feel like I learned to

ride my bike and took the training wheels

off.”

“Well, since this was my first programming

assignment I felt lost at first but then

slowly I picked up. I think as the semester

progresses and we do more assignments, I

should get better.”

“I think teachers should give a better

overview of the program (Alice) before

they assign any projects. I had never used

Alice before and was unsure of how to use

it.”

 “The main problem that I had was not

being able to see all of the arithmetic

operator options available when defining

values for variables (score>=).”

 For programming assignment 2, the comments related to both programming

environments tended to have a more positive flavor. For example, the control group

provided comments such as: “The programming environment was really easy.”; “The

programming environment is quite straightforward and simple to use.”, and “It was

easy.‟‟. Positive comments from the experimental group included: “It was a good

experience.”; “It was not anything difficult to complete.”; and “Using Alice in this

91

project helped me gain a better understanding of the role that flow control plays in

programming.” .

 Some usability issues and frustration continued with students in the experimental

group who used Alice for programming assignment 2 as indicated by comments such as:

“I don‟t really like Alice because of its many limitations and the whole visual aspect of

it.”; and, “This was a bit tougher to figure out because I had to discover how to make

Alice display integers through the objects.”

 The frustration with the Alice environment continued into programming

assignment 3 with students entering comments including: “Not good, not intuitive.”; and,

“My experience with this assignment was harder than the others. I struggled with

geometry and creating projects in Alice. ”. However, the remaining students who

participated in the survey provided favorable comments including: “I made the monkey

swing.”; “It was comfortable getting this Assignment done.”; “I am getting more

comfortable programming in Alice. As a result I was able to enhance the program beyond

its basic requirements to make it a little more interesting.”; and, “It was an easy

experience. ”.

 For all programming assignments, the students in the control and experimental

groups listed several tools and resources that were used in addition to the programming

environments. The tools and resources listed included Google web searches, course

materials such as programming guides, course modules, online conferences, and

discussions with the professor and other classmates. For programming assignments 2 and

3 some students mentioned using online math calculators to help verify the output of the

programs. For example, “I used an online GCD calculator to make sure that the results

92

that I got from my program where mathematically correct.”; and “The only additional

tool I used for this project was the calc.exe program in Windows. This tool helped me to

check my arithmetic and ensure that formulas in my functions had been programmed

correctly to get the proper output.”

Grade Distributions

 More students failed or withdrew from the class in the control group compared to

the experimental group. However, the differences were not found to be statistically

significant. Grouping the data into pass (students who earned a D or better) and fail

(students who earned an F, FN, or W) categories showed 66.7 percent of the experimental

group passed the course compared to only 45.7 percent of the control group. This

difference was not found to be significant (χ
2

(1) = 3.17, ρ =.075). The grade distribution

cross-tabulation is shown in table 13.

Table 13

Grade Distribution Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

A 1 3 4 2.9% 8.3% 5.6%

B 9 12 21 25.7% 33.3% 29.6%

C 4 7 11 11.4% 19.4% 15.5%

D 2 2 4 5.7% 5.6% 5.6%

F 8 4 12 22.9% 11.1% 16.9%

FN 3 4 7 8.6% 11.1% 9.9%

W 8 4 12 22.9% 11.1% 16.9%

Total 35 36 71 100.0% 100.0% 100.0%

Research Questions

 Based on the results shown in this chapter, answers can now be formed for each

of the four research questions.

93

 Research question 1.

 For the first research question: Is there an increase in grades for CS0 students who

use the Alice programming environment compared to those who use a C++ IDE on if/else

control structure related exercises?; the answer is no.

 This answer was determined by using the results of the post-test, the first

programming assignment total points and sub-scales for the layout, design, test data and

functionality grading components and the course final grades. The students in the

experimental group consistently exceeded expectations on the first programming

assignment in the area of layout. However, there were no significant differences found

between the control and experimental groups in the post-test, total points, test data sub-

scale or the final course grades. The control group performed better in the design and

functionality sub-scales of the first assignment then the experimental group. Because the

experimental group did not clearly outperform the control group in a majority of the

assessment areas, there was not sufficient evidence to answer this research question

positively.

 Research question 2

 For the second research question: Is there an increase in grades for CS0 students

who use the Alice programming environment compared to those who use a C++ IDE on

for/while control structure related exercises?; the answer is also no.

 The post-test scores showed no significant differences between the two groups in

for/while control structures performance. Students who used the Alice environment did

outperform the control group in the areas of layout, test data, and total points on this

programming assignment. However, there were no significant differences found between

94

the two groups for the sub-scales of design and functionality or for the final course

grades. Since the experimental group did not clearly outperform the control group for the

majority of the assessment instruments, there was not sufficient evidence to support a

positive answer to the second research question either.

 Research question 3

 For the third research question: Is there an increase in grades for CS0 students

who use the Alice programming environment compared to those who use a C++ IDE on

function related exercises?; the answer is no.

 The post-test scores showed no significant differences between the two groups in

function performance. Similar to the results found in the first two programming

assignment, students in the experimental group consistently exceeded expectations on the

third programming assignment in the area of layout. For this project the total points also

favored the experimental group. However, there were no differences found for the

remaining sub-scales of design, test and functionality for the third programming

assignment or for the course final grades. Insufficient evidence was found to support a

positive answer to the third research question.

 Research question 4

 For the final research question: Is there an increase in the time devoted to a CS0

course for students who use the Alice programming environment compared to those who

use a C++ IDE?, the answer is also no.

 Using the time-on-task surveys for each programming assignment and the end-of-

course evaluation, no evidence surfaced to indicate students in the Alice group spent

more time learning how to program by using the Alice tool. The numbers of hours

95

estimated by each group for the programming assignments and average weekly course

study time were essentially the same.

Summary

 Insufficient evidence was found to support positive responses to each of the four

research questions. Some significant differences were found in the layout grading

components for each of the programming assignments indicating students who used the

Alice programming environment did perform better when it came to the visual appeal and

formatting of their code. However, the majority of the findings suggested that Alice and

C++ programming environments yield similar performance for fulfilling CS0 course

learning objectives related to if/else control structures, for/while control structures, and

functions, and the amount of time spent on developing code.

 Some frustration was revealed from the experimental group as indicated in

comments on the time-on-task surveys and the results of end-of-course evaluations.

Students who used the Alice programming environment reported they were less satisfied

with the course and the instructor than the control group. These results suggest that a

closer look into the environment to determine what aspects caused this frustration and

what could be done to mitigate these concerns.

96

Chapter V. Conclusions

 The purpose of this chapter is to discuss the use of Alice in a computer

programming environment. The study results and implications for future research will be

discussed. This chapter contains five main sections covering the topics of research

overview, research questions discussion, other findings discussion, general summary, and

recommendations. The research overview provides a summary of the issues students face

when they learn to program, the importance of overcoming these obstacles, and how

Alice, a microworld programming environment, may help students learn how to write

computer programs. Within the research questions discussion section, findings and details

related to each research questions along with their relationships to previously published

research and specific implications are included. The others findings section provides

additional results not directly related to the research question but believed to be

significant and possibly useful for other researchers. Finally, the recommendations

section describes future research to continue this study and contribute to the improvement

of learning environments and approaches associated with teaching introductory

programming.

Research Overview

 Computer programming and computer science remain viable and important areas

of study with a strong demand from industry and government for personnel skilled in

these areas (Bureau of Labor Statistics, 2008). It is critical that colleges and universities

prepare students to pursue these fields. However; traditional approaches have led to

substantial attrition and difficulty as students attempt to learn fundamental programming

principles. Kelleher and Pausch (2005) found beginning programmers often became

97

overwhelmed with syntax, logic, nomenclature, and design making learning to program

very difficult for beginners.

 Microworlds offer some potential to help students learn by providing graphical

interfaces that improve interactivity and the ability for students to construct knowledge.

Designers of microworlds use key components of constructionism as students actively

construct their knowledge through meaningful hands-on experiences. Within a

microworld, students have the ability to play and experiment.

 This study focused on the first course in the programming sequence, CS0, as it

provides foundational concepts supporting future needs of computer science students.

CS0 is designed for students to learn essential programming fundamentals including

if/else control structures, for/while control structures and functions.

 This research aimed to evaluate if entry-level programming students who used a

microworld demonstrated a better understanding of fundamental programming concepts

than students who used a traditional C++ programming environment. To support this

goal, an approach was designed to compare two face-to-face CS0 sections, taught by the

same experienced instructor using Alice as the programming environment for one section

and the Microsoft Visual C++ IDE for the other section. Approximately 35 students were

enrolled in each section.

 Programming materials, examples, and instructions were provided to students on

how to use the programming environments based on the section in which they were

enrolled. The instruments used for this research included a pre-test, demographic

questionnaire, three programming assignments, a post-test, course evaluations, and final

course grades.

98

 Each of the instruments was analyzed using different statistical techniques to

assist in answering one or more of the research questions. Chi-square and t test analysis

were used on the data from most of the instruments to look for relationships between

variables and the groups. Chi-square tests were used when categorical variables were

evaluated whereas t tests were used when continuous variables needed to be evaluated.

 This research employed grading rubrics, programming assignments and other

assessment activities aligned with course learning objectives designed to reveal details

and challenges associated with learning how to program that may have not been

previously reported on a population that included a majority of adult learners.

Research Questions Findings Discussion

 This section discusses the major findings discovered during this study associated

with the four research questions, along with the relationship to other research studies and

possible implications.

 Research question 1.

 For the first research question: Is there an increase in grades for CS0 students who

use the Alice programming environment compared to those who use a C++ IDE on if/else

control structure related exercises?; the answer was no.

 There were no significant differences found between the control and experimental

groups using the post-test assessment activity, the if/else programming assignment total

points, or the course final grades. The students in the experimental group consistently

exceeded expectations on the first programming assignment in the area of layout and

outperformed the control group for this programming component area. However, because

the experimental group did not clearly outperform the control group in a majority of the

99

assessment areas, there was not sufficient evidence to answer this research question

positively.

 These results imply that students who use the Alice programming for if/else

control structures perform at least as good as students who use a traditional C++

programming environment. In addition, since a larger percentage of the experimental

group exceeded expectations for the layout grading component compared to the control

group for if/else control structures, students who use the Alice programming environment

have the potential to develop code that is better formatted and more visually appealing

than those who use the C++ environment. The proper formatting of code is critical in

software engineering disciplines as code would be easier to read and possibly easier to

maintain. Code that is easier to read is also easier to debug when students are trying to

find problems within their code. Students who struggle creating well-formatted code in a

traditional programming environment could use Alice to help them produce visually

appealing code.

 These results help validate findings by other researchers who suggested Alice

reduced programming syntax errors (Bishop-Clark et al., 2006; Kelleher & Pausch, 2005)

and a student‟s aversion to typing (Bishop-Clark et al., 2006; Conway,1997; Conway et

al., 2000). With the Alice programming environment, students can select, and then drag,

and drop programming structures into the coding area resulting in the code always being

properly formatted eliminating layout and code style formatting issues. For the group that

used the C++ programming environment, students had to type and format each line of

code making sure they effectively used white space and braces to improve code

readability and style.

100

 It is reasonable that the Alice group would consistently outperform the C++ group

as the Alice programming environment, by its very design, eliminates formatting errors

and mistakes. At the end of the semester, students in the C++ group were not able to

match the performance demonstrated by the Alice group for the layout grading

component as 50 to 75 percent in the control group still earned below the “exceeds

expectations” level. Using Alice in addition to a C++ environment may help students

develop code that is easier to debug and maintain reducing some of the frustration

introductory programmers experience.

 Research question 2.

 For the second research question: Is there an increase in grades for CS0 students

who use the Alice programming environment compared to those who use a C++ IDE on

for/while control structure related exercises?; the answer was also no.

 There were no significant differences found between the control and experimental

groups using the post-test assessment activity or the course final grades. The students in

the experimental group consistently exceeded expectations on the second programming

assignment in the areas of layout, test data and total points for the for/while programming

assignment. As with research question 1, there was not enough evidence to suggest Alice

outperforms C++ for students using for/while control structures.

 These results imply that students who use the Alice programming for for/while

control structures perform at least as good as students who use a traditional C++

programming environment. Similar to research question 1, since a larger percentage of

the experimental group exceeded expectations for the layout grading component

compared to the control group for for/while control structures, students who use the Alice

101

programming environment have the potential to develop code that is better formatted and

more visually appealing than those who use the C++ environment. Students who struggle

creating well-formatted code in a traditional programming environment could use Alice

to help them produce visually appealing code.

 These results help validate the findings of other researchers who suggested Alice

reduced programming syntax errors (Bishop-Clark et al., 2006; Kelleher & Pausch, 2005)

and a student‟s aversion to typing (Bishop-Clark et al., 2006; Conway,1997; Conway et

al., 2000).

 Research question 3.

 For the third research question: Is there an increase in grades for CS0 students

who use the Alice programming environment compared to those who use a C++ IDE on

functions?; the answer was also no.

 There were no significant differences found between the control and experimental

groups using the post-test assessment activity or the course final grades. The students in

the experimental group consistently exceeded expectations on the third programming

assignment in the areas of layout and total points for the functions programming

assignment. As with research questions 1 and 2, there was not enough evidence to

suggest Alice outperforms C++ for students using functions.

 These results imply that students who use the Alice programming for functions

perform at least as good as students who use a traditional C++ programming

environment. A clear theme emerged through the results of the first three research

question results: students who struggle creating well-formatted code in a traditional

programming environment could use Alice to help them produce visually appealing code.

102

 Research question 4.

 For the final research question: Is there an increase in the time devoted to a CS0

course for students who use the Alice programming environment compared to those who

use a C++ IDE?, the answer was also no.

 Using the time-on-task surveys for each programming assignment and the end-of-

course evaluation, no significant differences were found between the control and

experimental groups for the number of hours students reported working on each

programming assignment on the time-on-task surveys or on the end-of-course evaluation

forms.

 This implies that a programming environment, even if it is promoted as being

more motivating, may not result in increased study time for the students. Students,

particularly adult-learners, may not have large amounts of time to learn how to use a

programming environment. Additional materials with step-by-step guidelines for using

the environment may be needed to help optimize the time students put into their

programming assignments.

 These results differ from other researchers results. For example, Sykes (2007)

found that students in the Alice group reported spending up to four times as much time as

the control groups on their assignments. Dougherty (2007) found students in a CS0

course enjoyed creating and put significantly more time into their worlds than students

who used a text-based programming environment. The differences between the present

study and the findings of Dougherty and Sykes could partially be explained by taking a

closer look at each of these studies. The findings of both Sykes and Dougherty were

based on qualitative, not quantitative surveys. Also, the context of Sykes and Dougherty

103

was related to the motivation of using a fun, yet, at times frustrating environment. Their

students explained even though the Alice programming environment was frustrating to

use, it was also fun to use thereby increasing student motivation and time commitments

within the environment.

 Even though there were no differences found between the control and

experimental groups in the current research in terms of time-on-task, some qualitative

comments gathered did suggest some frustration resulted from using the Alice

programming environment. Comments such as “My experience was challenging. I could

not make sense of the text output to determine whether my world output was accurate”;

and “I hated learning the Alice environment; it would have taken me 10 minutes to write

the code in C++. ”, suggested that some increased time resulting from frustration using

the Alice programming environment may have been present.

Other Findings Discussion

 There were a number of other findings resulting from this research study that may

not be considered major but do have some implications on the field of computer

programming and computer science. The other findings have been grouped into the

following areas: general code testing deficiency, weak repetition control structures

prerequisite knowledge, Alice interface concerns, study population, student end-of-course

evaluations and the use of rubrics. The following sub-sections describe the findings,

related research, and implications for each of these areas.

 General code testing deficiency.

 For most programming assignments, the majority of students in both groups did

not even meet the expectations for properly testing their code throughout the semester.

104

All programming assignments described the importance of creating a test plan, yet more

than 80 percent of the students did not create a test plan or provide any evidence their

code was tested.

 This implies that, regardless of the programming environment used in a CS0

course, more emphasis is needed to ensure students properly test their code. Additional

examples and test cases could be provided during the lectures and discussions to improve

testing. Detailed feedback could also be given to students after each programming

assignment when a faculty member noticed testing of code was not properly conducted or

documented. In this manner, by the time the final programming assignment was given,

most students should have adapted better testing skills and habits regardless of the

programming environment used.

 The deficiency in testing of code is not new. Murphy, Lewondowski, McCauley,

Simon, Thomas and Zander (2008) found that, although novice computer science

students were conducting some testing, this testing was usually limited to a minimal

number of test cases. Olan (2003) suggested testing was rarely done as beginning

programmers often measured success by the fact that the code compiled without syntax

errors.

 Although a majority of students for the second programming assignment did not

meet the testing expectations, 25 percent of the students who used the Alice programming

environment exceeded expectation for testing their code compared to 0 percent of

students who used the C++ programming environment. The second programming

assignment required students to use for/ while control structures. Although more data

would be required to fully explain these findings, one possible explanation could be that

105

the graphical environment within the Alice programming environment may have

provided some additional ease-of-use for testing and debugging. Researchers (Calloni &

Bagert,1997; Carlisle et al., 2005; Myers, 1986) suggested that a graphical, easy-to-use

environment can help inspire students to learn and improve performance. Alice does have

a graphical interface where students can assign an image to perform repetitive tasks using

for/ while loops and other code development activities. However, in the current study no

comments were captured suggesting that testing was easier using the Alice environment.

In addition, one student in the experimental group mentioned that an online calculator

was used to help test their output for this programming assignment. It could be those

students who tested more thoroughly did so because of their resourcefulness and attention

to detail of the programming assignment requirements as opposed to the graphical and

visual interface within the Alice environment. Regardless of the reasons or justification

for this deficiency, more emphasis on testing of code by novice programmers is required

in any programming environment adopted for use in a CS0 class.

 Weak repetition control structures prerequisite knowledge.

 There were no significant differences found between the control and experimental

groups in the prerequisite knowledge areas of if/else control structures, for/while control

structures and functions. However, students demonstrated more prerequisite knowledge

using if/else statements than they did for functions and for/while repetition loops. On

average, students correctly answered 32 percent of the if/else questions, 22 percent of the

function questions, and only 6 percent of the for/while repetition loop questions on the

pre-test.

106

 These findings imply more emphasis should be placed on teaching for/while

control structures as students appear to have less prerequisite knowledge compared to

if/else control structures for this population in a CS0 course. Currently the CS0 course at

this institution dedicates one week to if/else control structures and one week to for/while

control structures. Adding an additional week to study the for/while control structures

may be needed to overcome this deficit present in student‟s prerequisite knowledge. The

course could be rearranged to compress some other topics such as the Web page

development or Unix commands to spend more time on the course content related to

learning for/while control structures.

 Other researchers have shown for/while control structures are more challenging

than if/else control structures. Ehlert and Schulte (2009) found selection control structures

(if/else control structures) were easier than looping control structures (for/while control

structures). Similarly, Dale (2006) found looping control structures were listed more

frequently than selection control structures as a difficult topic in an introductory

programming course.

 Alice interface concerns.

 The Alice interface, although very good for reducing syntax errors (Bishop-Clark

et al., 2006; Kelleher & Pausch, 2005), improving layout and visual appeal, and reducing

the amount of code students have to type (Bishop-Clark et al., 2006; Conway,1997;

Conway et al., 2000), may cause some issues for novice programmers. For the first

programming assignment, students needed to create nested if/else control structures as the

most efficient solution for the problem. Students who did not nest their if/else control

structures would have resulted in correct functionality (the program would work

107

properly) but a less than desirable design as the code would not run as quickly since more

selection control structures would have to be processed each time the code was executed.

Students who used the C++ programming environment consistently created nested if/else

control structures for the first programming assignment.

 Although no details were captured as to why some students struggled nesting their

if/else statements in the Alice programming environment and the users of the C++

programming did not, it is believed that the drag and drop interface of Alice may have

misled some students. The drag and drop feature of Alice provides a visual color code

indicating correct locations where components can be dropped. A green color indicates

the component can be dropped at the location whereas a red color indicates the

component cannot be dropped. When creating a nested structure, the Alice programming

environment considers both inside and outside of an existing if/else structure as valid

drop points. Some students could have seen the green color and dropped the component

at the wrong location resulting in less efficient coding. Students coding in the C++

environment could have also incorrectly typed their code in the wrong place, but did not

seem to do so for this study. In-depth student interviews after each project or focus group

discussions may have added some insight into this finding.

 The Alice interface could also have been the origin of another problem where

more students in the experimental group provided incorrect solutions for one of the

functions-related questions on the post-test compared to the control group. This question

provided the input parameters in the order of x, z, y where as the call to the function was

listed in the order of x, y, z. If a student was not paying attention to the order of the

parameters, the wrong answer would have been submitted even if the student understood

108

the overall process of using functions. More students in the experimental group reversed

two of the input parameters in their answer.

 Although no data were gathered that confirmed why more students in the

experimental group missed this problem, it is believed the Alice interface may have

contributed to this problem. Once a method or function is created in Alice, parameters are

input using an easy-to-use drop down selection menu. This prevents input entry errors in

terms of acceptable value and order of the parameters. The control group who used the

C++ programming environment had to type in every line and character of code. This may

have made them more aware of the details and importance of the order of the parameters

in a function call.

 This finding implies educators need to be aware of the trade-offs associated with

the easy-to-use interface of Alice and other programming environments. Although

students may produce code that has less syntax errors and involves less typing, exercises

and activities dedicated to typing and reviewing code may be needed to ensure students

are acquiring the level of detail needed to properly design efficient code and recognize

the importance of parameters and the order of those parameters in functions and sub-

routines.

 Other researchers have expressed concerns about the Alice interface restricting a

student‟s ability to learn how to correctly type code. Powers et al. (2007) observed

students who used the Alice programming environment did not pay attention to syntax.

Mullins et al. (2009) noted students who used Alice lacked the ability to successfully

transition to IDE‟s where more typing was required. A level of detail was lost as students

did not learn how to properly type their code as they progressed in courses.

109

 Most modern IDEs, including Microsoft Visual C++, have features that help

minimize code typing by completing code on common syntax as it is typed. Some drop

down menus and graphical icons that can be dragged and dropped to a location are also

available to help reduce typing. However, as Cheung et al. (2009) noted students often

struggle learning how to use these features of the IDE adding to the learning curve

associated with programming.

 Study population.

 Another set of findings and observations arose from the analysis of the

demographic questionnaire data. Analysis revealed a large percentage of male, adult

learners participated in this study. Each of these characteristics will be discussed as to

their uniqueness compared to other research studies and possible instructional

implications.

 Male learners.

 The demographics questionnaire showed 85 percent of the research population

were male. This statistic revealed a shortage of females in the computing programs at this

university. This finding is not new (Widnall, 1988; CRA Statistics) but remains a

problem.

 This finding implies that the shortage of females in the computer field must

continuously be addressed. This is a national problem that needs attention through

marketing and other approaches to attract more females to the program. Instructors must

encourage participation and openly welcome both females and males to the program.

Creating a positive atmosphere by including women to lead computer science meetings

and facilitate seminars would send a message that females are welcome and active

110

participants in university functions. Encouraging females to become teaching assistants

may help other female students in a classroom feel better represented. Staffing qualified

women to teach these courses may also help to inspire more women to pursue fields in

computing.

 Comparing the gender statistic from this institution to other institutions

conducting research using Alice showed many with similar gender demographics and a

few with different statistics. This differs from Conway (1997) and Rodger (2002) who

reported 58 percent female and 42 percent male, and 80 percent female and 20 percent

male, respectively. Studies by Hundhausen and Brown (2005), and Dodds, Libeskand-

Hadas, Alvarado and Kuenning (2008) reported male ratios similar to the current study.

Typically, the number of male students either pursuing or considering pursuing a degree

in computing is larger than female students (Cohoon, 2003).

 Adult learners.

 Over 70 percent of students in this study reported their age as greater than 25.

This finding implies that instructors, course designers and curriculum specialists should

be aware of the differences between adult learners and traditional learners to optimize

learning within the course. Knowles (1970) suggested adult learners are internally self-

motivated, self-directed, and have a readiness to learn skills and knowledge that are

immediately relevant to their personal needs. Adult students are problem-focused. Baker

(2009) referred to older software engineers as having both intrinsic and extrinsic

motivation. He stated the extrinsic motivation comes from their desire to continue in their

careers whereas the intrinsic motivation may occur because of their pride and desire to be

competitive with younger software engineers.

111

 The fact that adult learners are self-directed and motivated does not necessarily

rule out the use of a microworld. A microworld such as Alice still could be used to

demonstrate the visual layout, and use of graphics to assist with testing code. Instructors

and curriculum designers should use the known strengths of a microworld specifically

related to learning how to program and find other ways to engage adult learners such as

assigning projects aligned with their current or perspective careers. As suggested by Sung

and Shirley (2004) “courses designed for adult students should draw from the students'

life experience and strengths in real-world problem solving” (p. 2).

 Many other researchers using Alice as their programming environment reported

traditional college-aged students falling in the range from 18 to 22 (Anewalt, 2008;

Dougherty,2007; Conway, 1997; Moskal et al., 2004; Mullins et al., 2009; Rodger, 2002;

Sykes, 2007) or high school students typically less than 18 years old (Cooper et al.,

2000; Rodger et al., 2009; Adams, 2007). One exception was found in Klassen (2006)

where the computer science department at the California Lutheran University used Alice

for their CS0 courses for both traditional and adult learners. Klassen concluded adult

learners were already serious about their education and didn‟t need a tool like Alice to

motivate them. Although Klassen‟s research was limited to approximately 22 evening

students, the results do reflect some of the same concerns expressed by some Alice users

in this research. For example, the comments from one student such as “I hated learning

the Alice environment; it would have taken me 10 minutes to write the code in C++. I

feel like I learned to ride my bike and took the training wheels off”, reflected this

sentiment. The few students that were frustrated about the environment seemed to stay in

the course regardless of their concerns.

112

 These findings suggest caution should be used when selecting the programming

environment for adult learners. Adult learners want an environment that they can use in

their work environment and may feel frustrated to have to learn within an environment

which doesn‟t fit into their near or long term career goals.

 Student end-of-course evaluations.

 The results of the student evaluations were very telling. Students who used the

Alice programming environment gave both the instructor and the overall course a

significantly lower evaluation than students who used the C++ programming

environment.

 This finding implies that end-of-course evaluations remain a valuable resource for

determining strengths and weaknesses within a course or program. As programming tools

and course materials are modified, instructors and administrators should monitor the

evaluations closely and conduct focus groups or additional interviews as needed to

determine underlying causes of discontent. The lower course and instructor evaluations

from the students who used the Alice programming environment suggest a different

approach may be needed. Perhaps a blending of a microworld and a more traditional

programming environment may improve overall evaluations scores. However, more data

are needed to determine root causes of these findings.

 When survey results were provided from other literature reviewed for this study,

the presentation was usually qualitative in nature with a handful of questions about the

satisfaction with Alice or other aspects of the course being answered and summarized.

Many results of these surveys were favorable (Anewalt, 2008; Cooper et al., 2000;

Dougherty, 2007; Rodger, 2002; Sykes, 2007) although some (Klassen, 2006; Powers et

113

al, 2007) did provide some concerns and limitations about the environment. The

significantly lower course and instructor evaluations from this study for the Alice section

combined with the negative comments from a few students in the Alice section suggest

the experimental group did not like the Alice programming environment as much as the

control group liked the C++ programming environment.

 Use of rubrics.

 Through the use of a rubric, it was determined a larger percentage of control

group students exceeded expectations for the design and functionality grading

components compared to the experimental group students and a larger percentage of

experimental group students exceed expectation for the layout grading component for the

programming assignment that required the students to use if/else control structures. For

the second programming assignment that required the students to use for/while control

structures, a larger percentage of control group students exceeded expectations for the

layout and test grading components compared to the experimental group students. For the

third programming assignment that required the students to use functions, a larger

percentage of control group students exceeded expectations for the layout grading

components compared to the experimental group students.

 These findings imply variations may occur between programming environments

based on specific learning outcomes and specific types of skill sets such as layout, design,

functionality and testing. To capture these variations a rubric may be useful to help to

identify strengths of different programming environments by dividing the grading into

smaller, finer subscales. Continuing to collect and analyze this level of detail in future

research studies and in classrooms in general may help designers and developers of

114

introductory programming environments utilize the strengths from different programming

environments and integrate these features into an environment optimized for learning

how to program.

General Summary

 Several overall implications can be summarized and presented based on the

implications presented earlier. First, a variety of programming tools, and assessment

methods are required to optimize student learning in a CS0 class. The combination of a

microworld, like Alice and an IDE like Microsoft‟s visual C++ may be required to help

students properly format code and reduce syntax errors while also supporting the need of

students to practice typing code to build skills needed when migrating to professional

programming environments. The incorporation of assessment techniques such as using

rubrics to grade programming assignments help identify strengths and weaknesses of the

different programming environments available. Details provided from these rubrics may

help in the design and creation of future, more powerful programming environments.

 Second, instructors and administrators may need to be trained to support a

population that includes a large percentage of adult learners. To better prepare to teach

this diverse population, faculty need to be versed in approaches to teach self-directed,

motivated adult learners. This could result in the inclusion of more real-world projects

designed by the students or continuously presenting a positive atmosphere supporting and

welcoming female and minority students. Administrators can help in this area by

assigning qualified female and minority faculty to teach or serve as teaching assistants for

the courses.

115

 Third, a number of curriculum changes may be needed to address these findings.

In addition to adding more real-world projects into the course, additional time dedicated

to teaching for/while control structures is needed. Students had the least amount of

prerequisite knowledge in this area compared to if/else control structures or functions.

The additional time may allow students to gain more knowledge of for/while control

structures. Testing of code was also determined to be deficient overall. Because of this

finding, additional time and examples may be required so students fully understand and

demonstrate how to properly test the code they developed for a course.

 Finally, continuous monitoring of student success rates, end-of-course

evaluations, programming assignment rubrics, and retention in future courses are needed

to determine the impact of changes made in programming environments, course

materials, instructors and the curriculum. As changes are made to a course or program,

monitoring will help determine if the changes resulted in positive outcomes in student

learning.

Recommendations

 Based on these findings, the Alice programming environment will not solve all

issues associated with novice programmers learning how to use programming structures.

However; there are other tools including a new version of Alice that may be worth

conducting follow-up studies. Alice 3.0 adds additional features to include better

alignment with professional IDEs and object-oriented programming languages for

smoother transition to more advanced courses. This along with a graphical programming

tool such as Raptor may be worth reviewing and conducting a future follow-up study.

116

 The lessons learned from this research should also be incorporated in CS0 courses

to enhance learning. Instructors should work closely with students to identify issues with

control structures and testing. Materials could be extracted from the textbook and other

resources to allow more practice with fundamental programming concepts. More time for

capturing student reflection could also help improve the course. Focus groups and

detailed interviews could be incorporated into future research to capture details as to why

students did not like the Alice programming environment and where they specifically

struggled while learning control structures. Students also may need more practice

actually typing code as opposed to just selecting, dragging and then dropping control

structures. Having students practice more formatting code using an IDEs or text-editor is

also recommended to improve their visual layout of their code throughout the semester.

 Another area that needs to be researched is the impact of these environments and

other programming environments on online courses. This research used students enrolled

in face-to-face classes only. Multiple online sections with more students may provide

additional insight into differing platforms and possible advantages of visual and graphical

tools for a different population of students.

 How the selection and use of programming environment in a CS0 course impacts

student success and learning in subsequent programming courses needs to be considered

for this type of population. CS1 and CS2 often have a more object-oriented flavor to the

courses suggesting tools that prepare students for this jump may provide an advantage to

CS1 and CS2 students (Lorenzen & Sattar, 2008). Monitoring a cohort of students as they

move from CS0 to CS1 to CS2 is recommended.

117

 Recognizing other factors can greatly influence student success and retention,

more data are needed on Alice, other microworlds, and visual tools to provide additional

insight into trends in retention for introductory computer programming courses.

Retention and student success continue to be important factors driving an academic

program. The better we can determine the impact of the programming environment on

student success and retention the better we can predict student enrollments that in turn

help us justify the resources we need to run successful programs.

 Finally, the results of this study do add support that Alice is a good programming

environment for novice programmers. In particular, the Alice programming environment

does an excellent job of forcing students to prepare well-formatted code. It does not seem

to improve code design or functionality. As evidenced by the lower course and instructor

evaluations for this research population, novice programmers did not like the Alice

programming environment as much as they did the visual C++ environment. A small

number of students in the Alice group continued to be frustrated with the environment

throughout the semester. These users wanted to move beyond Alice to work in a

productive programming environment. Designers are needed to continue to improve

existing programming environments that support beginners entry into the computer

programming field as well as fully support their advancement to other courses and job

opportunities.

118

APPENDICES

Appendix A. Pilot Study

 The pilot study took place for the Fall 2008 semester directly prior to the full

study that was conducted in Spring 2009. The purpose of the pilot study was ensure the

programming assignments and the post-test questions were compatible with the Alice and

the C++ programming environments. It also helped the instructor become comfortable

using the Alice programming environment and review any associated hand-outs and

training materials. Some analysis on the programming assignments and post-test were

also performed to determine if the output data would be sufficient for answering the

proposed research questions.

 Approximately 70 students participated in the pilot with 35 using the Alice

programming environment and 35 using the C++ programming environment. Results of

the pilot showed the programming assignments were mostly compatible with Alice.

However, the second programming assignment directions were modified slightly to

include a revised Greatest Common Divisor algorithm. This was modified because Alice

did not support a modulus operator. The directions worked around this issue making sure

both groups of students used a repetition look in place of the modulus operator.

 The pilot also helped determine that additional resolution in grading the

programming assignments might be needed to better differentiate the strengths and

weaknesses of the two programming environments. It was decided to incorporate a

grading rubric with components of layout, design, test data and functionality. In addition,

results helped determine adding a pre-test and questionnaire would be useful to better

characterize each group and determine the learning gain.

120

Appendix B. Questionnaire

Instructions:

There are two sections to this pre-test. In section I, please circle the response that best describes your

demographic data. In section II, answer the question in the space provided.

 Section I: Demographic data.

1. What is your Gender?

a. Male

b. Female

2. What is your age?

a. <20

b. 20-25

c. 26-30

d. 31-40

e. >40

3. What is your major?

a. Computer and Information Science (CMIS)

b. Computer Science (CMSC)

c. Information Systems Management (IFSM)

d. Computer Information Technology (CMIT)

e. Computer Studies (CMST)

f. Other ___________________

4. What is your ethnicity?

a. African American

121

b. Asian

c. Caucasian

d. Hispanic

e. Native American

f. Other ___________________

5. How many courses, including this one, are you taking this semester?

a. 1

b. 2

c. 3

d. 4

e. >4

6. How many previous computer programming courses have you taken at this or any other higher

education institution within the last 5 years?

a. 0

b. 1

c. 2

d. 3

e. >3

7. How many previous math courses have you taken at this or any other higher education institution

within the last 5 years?

a. 0

b. 1

c. 2

122

d. 3

e. >3

123

Appendix C. Pre-test and Post-test Questions

Multiple Choice

Identify the choice that best completes the statement or answers the question.

____ 1. Given the following pseudocode, select the correct output after the segment is run.

 Set X = 4

 If X < 5 Then

 Write “Excellent Work”

 Else

 Write “Try again!”

 End if

Write “ Thanks”

a. Thanks c. Excellent Work

b. Try again! d. Excellent Work Thanks

Short Answer

 2. What is the output of the code corresponding to the following pseudocode?

 Set y = 0

 For i = 0 Step 3 to 6

 For j = 0 Step 5 to 15

 Set y = y + 1;

 End For (j)

 End For (i)

 Output y

 3. What is the output of the code corresponding to the following pseudocode?

124

 Set x = 4

 Set y = 2

 If (x > y) Then

 Output “big X”

 Else

 Output “big Y”

 End If

 4. What is the output when code corresponding to the following pseudocode is run?

 Main Program

 Set X = 1

 Set Y = 2

 Set Z = 3

 Call Display(X, Y, Z)

 End Program

 Subprogram Display(X, Z, Y)

 Write Z, X, Y

 End Subprogram

 5. What is the output when code corresponding to the following pseudocode is run?

Main

 Set X = 4

 Set Y = 10

 Set Z = Product(X, Y)

 Write Z

125

End Program

Function product (x, y) as Integer

 set Z = X * Y

end Function

 6. What is the output of code corresponding to the following pseudocode if Amount = -5?

 If Amount > 0 Then

 Write Amount

 End If

 Write Amount

 7. Using the code shown below, what will be displayed for each of the following input

numbers?

 a. 0 ____________

 b. 50 ___________

 c. -4 ___________

Input Number

If Number < 0 Then

 Write “1”

Else

 If Number = 0 Then

 Write “2”

 Else

 Write “3”

 End If

126

 End If

Write “Completed”

 8. What numbers will be displayed if code corresponding to the following pseudocode is

run?

Set Number = 1

While Number < 3

 Write 2 * Number

 Set Number = Number + 1

End While

 9. What numbers will be displayed when code corresponding to the following pseudocode is

run?

set N = 3

For K = N Step 1 To 5

 Write N, “ “, K

End For

 10. What numbers will be displayed if code corresponding to the following pseudocode is

run?

Set Number = 0

While Number < 4

 Write Number

 Set Number = Number + 1

End While

 11. What is the output of the following pseudocode?

127

For K = 2 Step 1 To 8

 Write K

End For

 12. What is the output of code corresponding to the following pseudocode?

Main

 Write F(2, 3)

 Write G(-2)

End Program

Function F(X, Y) As Integer

 Set F = 5 * X + Y

End Function

Function G(X) As Integer

 Set G = X * X

End Function

 13. Suppose a program contains the following function:

Function G(X, Y) As Integer

 Set G = X + Y

End Function

What is displayed when the following statement is called in the main program?:

Write G(4,12)

128

Appendix D. Experimental Group Programming Assignments

Programming Assignment 1: if/else programming assignment in Alice

Task Overview

Your task is to implement the algorithm below using Alice. In addition to the

algorithm below, you should prompt the user for their test score and display the resulting

letter grade. Pick an object of your choice to visually interact with. For example, you

could select a chicken, to ask the user for their score and then say their letter grade based

on the logic below.

Once you have a complete program, you should fully test and submit your Alice

world to your instructor using the WebTycho assignments folder as appropriate.

You should save your World using your name and Module3Assignment1. For example, if

your name is John Smith, you should save your World as

“JohnSmithModule3Assignment1.a2w”. Note the extension of “.a2w” is automatically

part of the name when you save using Alice version 2.

Please make sure you have successfully conducted all of the exercises and

readings leading up this assignment prior to attempting this exercise.

The Algorithm

The following algorithm, written in pseudocode, could be used determine a letter

grade based on a test score.

if (score >= 85) then

 Set grade = „A‟

else

 if (score >= 75) then

129

 Set grade = „B‟

 else

 if (score >= 65) then

 Set grade = „C‟

 else

 if (score >= 55) then

 Set grade = „D‟

 else

 Set grade = „F‟

 end if // score >= 55

 end if // score >= 65

 end if // score >= 75

end if // score >= 85

Test Plan

As previously noted, a test plan should accompany any code you submit. The plan

contains data and strategies you have used to test your code. Test your code with the

following numbers:

85.0, 65.0001, 54.99999, –33.3, 100, 90, 150

Programming Assignment 2: repetition loop programming assignment in Alice

Task Overview

Your task is to implement the algorithm below using Alice. This algorithm

determines the greatest common divisor of two positive integers. As in previous projects,

130

feel free to pick an object of your choice to visually interact with. For example, you could

select a mythical creature to ask the user for to input their two positive numbers.

Once you have a complete program, you should fully test and submit your Alice

world to your instructor using the WebTycho assignments folder as appropriate.

You should save your World using your name and Module3Assignment2. For example, if

your name is John Smith, you should save your World as

“JohnSmithModule3Assignment2.a2w”. Note the extension of “.a2w” is automatically

part of the name when you save using Alice version 2.

Make sure you have successfully conducted all of the exercises and readings

leading up this assignment prior to attempting this exercise.

The Algorithm

The following algorithm, written in pseudocode, could be used determine the

Greatest Common Divisor for two positive numbers.

 Declare a, b, gcd

 Input a

 Input b

 if a = 0

 gcd = b

 end if

 else

 while b != 0

 if a > b

 a = a – b

131

 else

 b = b – a

 end while

 gcd = a

 end else

 print gcd

Test Plan

As previously noted, a test plan should accompany any code you submit. The plan

contains data and strategies you have used to test your code. Please test your code with

the following numbers:

X Y Expected Answer

1 1

2 2

5 5

20 20

2 10

10 2

3 4

4 3

36 48

48 36

90 390

252 108

1024 256

23205 1638

Programming Assignment 3: functions programming assignment in Alice

Task Overview

You need to create and test two different functions in Alice. The first function

should be called traparea(). This function should take three numbers and return the area

of the trapezoid represented by the three numbers. Recall that given, a, b and h, where a

132

and b represent the lengths of the parallel sides and h represents the distance between

these sides, the formula for the area of a trapezoid is 0.5*(a+b) * h.

The second function should take two numbers and return the perimeter of a

rectangle. You should call this function rectperimeter(). Recall that given two numbers, a

and b, representing the sides of a rectangle, the perimeter is calculated from this formula:

 Perimeter = 2*a + 2*b.

You should test your functions by calling them from your World method. Make

sure you prepare at least 5 tests for each function.

 Once you have a complete program, you should fully test and submit your Alice world

to your instructor using the WebTycho assignments folder as appropriate. You

should save your World using your name and FunctionsAssignment. For example, if your

name is John Smith, you should save your World as

“JohnSmithFunctionsAssignment.a2w”. Note the extension of “.a2w” is automatically

part of the name when you save using Alice version 2.

Make sure you have successfully conducted all of the exercises and readings

leading up this assignment prior to attempting this exercise.

133

Appendix E. Control Group Programming Assignments

Programming Assignment 1: if/else programming assignment in C++

Task Overview

Your task is to implement the algorithm below using C++. In addition to the

algorithm below, you should prompt the user for their test score and display the resulting

letter grade

Once you have a complete program, you should fully test and submit your C++

code to your instructor using the WebTycho assignments folder as appropriate. You

should save your project using your name and Module3Assignment1. For example, if

your name is John Smith, you should save your program as

“JohnSmithModule3Assignment1.cpp.

Make sure you have successfully conducted all of the exercises and readings

leading up this assignment prior to attempting this exercise.

The Algorithm

The following algorithm, written in pseudocode, could be used determine a letter

grade based on a test score.

if (score >= 85) then

 Set grade = „A‟

else

 if (score >= 75) then

 Set grade = „B‟

 else

 if (score >= 65) then

134

 Set grade = „C‟

 else

 if (score >= 55) then

 Set grade = „D‟

 else

 Set grade = „F‟

 end if // score >= 55

 end if // score >= 65

 end if // score >= 75

end if // score >= 85

Test Plan

As previously noted, a test plan should accompany any code you submit. The plan

contains data and strategies you have used to test your code. Test your code with the

following numbers:

85.0, 65.0001, 54.99999, –33.3, 100, 90, 150

Programming Assignment 2: repetition loop programming assignment in C++

Task Overview

Your task is to implement the algorithm below using C++. This algorithm

determines the greatest common divisor of two positive integers.

Once you have a complete program, you should fully test and submit your C++

program to your instructor using the WebTycho assignments folder as appropriate.

You should save your program using your name and Module3Assignment2. For example,

135

if your name is John Smith, you should save your program as

“JohnSmithModule3Assignment2.cpp”.

Make sure you have successfully conducted all of the exercises and readings

leading up this assignment prior to attempting this exercise.

The Algorithm

The following algorithm, written in pseudocode, could be used determine the

Greatest Common Divisor for two positive numbers.

 Declare a, b, gcd

 Input a

 Input b

 if a = 0

 gcd = b

 end if

 else

 while b != 0

 if a > b

 a = a – b

 else

 b = b – a

 end while

 gcd = a

 end else

 print gcd

136

Test Plan

As previously noted, a test plan should accompany any code you submit. The plan

contains data and strategies you have used to test your code. Please test your code with

the following numbers:

X Y Expected Answer

1 1

2 2

5 5

20 20

2 10

10 2

3 4

4 3

36 48

48 36

90 390

252 108

1024 256

23205 1638

Programming Assignment 3: functions programming assignment in C++

Task Overview

You need to create and test two different functions in C++. The first function

should be called traparea(). This function should take three numbers and return the area

of the trapezoid represented by the three numbers. Recall that given, a, b and h, where a

and b represent the lengths of the parallel sides and h represents the distance between

these sides, the formula for the area of a trapezoid is 0.5*(a+b) * h.

The second function should take two numbers and return the perimeter of a

rectangle. You should call this function rectperimeter(). Recall that given two numbers, a

and b, representing the sides of a rectangle, the perimeter is calculated from this formula:

 Perimeter = 2*a + 2*b.

137

You should test your functions by calling them from your main method. Make sure you

prepare at least 5 tests for each function.

 Once you have a complete program, you should fully test and submit your C++ to your

instructor using the WebTycho assignments folder as appropriate. You should save

your World using your name and FunctionsAssignment. For example, if your name is

John Smith, you should save your C++ as “JohnSmithFunctionsAssignment.cpp”.

Make sure you have successfully conducted all of the exercises and readings

leading up this assignment prior to attempting this exercise.

138

Appendix F. Course Evaluation Form (Page 1)

139

Appendix F. Course Evaluation Form (page 2)

140

Appendix G. Time-on-task Collection Form

1. How many total hours would you estimate you spent on preparing this project for

submission to your instructor for grading? Please do you best to estimate the time it took

from when you first started working on the project to when you completed it.

2. Describe your experience using the programming environment during this project.

3. Describe any additional tools beyond the programming environment you used to help

complete this project.

141

Appendix H. Cross-tabulation Results for Questionnaire

Table H1

Gender Counts for Control (C), Experimental (E), and Total (T) Groups

Gender Count % within Group

 C E T C E T

Male 15 19 34 88.2% 82.6% 85.0%

Female 2 4 6 11.8% 17.4% 15.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table H2

Gender chi-square Tests

Method Value df p

Pearson chi-square .243
a
 1 .622

Likelihood Ratio .248 1 .619

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.55.

Table H3

Age Counts for Control (C), Experimental (E), and Total (T) Groups

Gender Count % within Group

 C E T C E T

<20 0 0 0 0.0% 0.0% 0.0%

20-25 1 9 10 5.9% 39.1% 25.0%

26-30 8 4 12 47.1% 17.4% 30.0%

31-40 6 7 13 35.3% 30.4% 32.5%

>40 2 3 5 11.8% 13.0% 12.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table H4

Age chi-square Tests

Method Value df p

Pearson chi-square 7.274
a
 3 .064

Likelihood Ratio 8.095 3 .044

a. 3 cells (37.5%) have expected count less than 5. The minimum expected count is 2.13.

142

Table H5

Major Counts for Control (C), Experimental (E), and Total (T) Groups

Major Count % within Group

 C E T C E T

CMIS 0 7 7 0.0% 30.4% 17.5%

CMSC 0 1 1 0.0% 4.3% 2.5%

IFSM 6 4 10 35.3% 17.4% 25.0%

CMIT 9 9 18 52.9% 39.1% 45.0%

CMST 1 0 1 5.9% 0.0% 2.5%

Other 1 2 3 5.9% 8.7% 7.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table H6

Major chi-square Tests

Method Value df p

Pearson chi-square 9.037
a
 5 .108

Likelihood Ratio 12.316 5 .031

a. 9 cells (75.0%) have expected count less than 5. The minimum expected count is .43.

Table H7

Ethnicity Counts for Control (C), Experimental (E), and Total (T) Groups

Ethnicity Count % within Group

 C E T C E T

African-

American
8 11 19 47.1% 47.8% 47.5%

Asian 5 2 7 29.4% 8.7% 17.5%

Caucasian 1 5 6 5.9% 21.7% 15.0%

Hispanic 2 4 6 11.8% 17.4% 15.0%

Other 1 1 2 5.9% 4.3% 5.0%

Total 17 23 40 100.0% 100.0% 100.0%

143

Table H8

Ethnicity chi-square Tests

Method Value df p

Pearson chi-square 4.289
a
 4 .368

Likelihood Ratio 4.491 4 .344

a. 8 cells (80.0%) have expected count less than 5. The minimum expected count is .85.

Table H9

Number of Courses Counts for Control (C), Experimental (E), and Total (T) Groups

Number of

Courses

Count % within Group

 C E T C E T

1 2 2 4 11.8% 8.7% 10.0%

2 8 5 13 47.1% 21.7% 32.5%

3 0 4 4 0.0% 17.4% 10.0%

4 5 5 10 29.4% 21.7% 25.0%

>4 2 7 9 11.8% 30.4% 22.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table H10

Number of Courses chi-square Tests

Method Value df p

Pearson chi-square 6.721
a
 4 .151

Likelihood Ratio 8.282 4 .082

a. 6 cells (60.0%) have expected count less than 5. The minimum expected count is 1.70.

144

Table H11

Number of Previous Computer Courses Counts for Control (C), Experimental (E), and

Total (T) Groups

Computer

Courses

Count % within Group

 C E T C E T

0 10 12 22 58.8% 52.2% 55.0%

1 5 5 10 29.4% 21.7% 25.0%

2 1 0 1 5.9% 0.0% 2.5%

3 1 2 3 5.9% 8.7% 7.5%

>3 0 4 4 0.0% 17.4% 10.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table H12

Number of Previous Computer Courses chi-square Tests

Method Value df p

Pearson chi-square 4.721
a
 4 .317

Likelihood Ratio 6.550 4 .162

a. 7 cells (70.0%) have expected count less than 5. The minimum expected count is .43.

Table H13

Number of Previous Math Courses Counts for Control (C), Experimental (E), and Total

(T) Groups

Math

Courses

Count % within Group

 C E T C E T

0 3 6 9 17.6% 26.1% 22.5%

1 8 5 13 47.1% 21.7% 32.5%

2 1 3 4 5.9% 13.0% 10.0%

3 5 4 9 29.4% 17.4% 22.5%

>3 0 5 5 0.0% 21.7% 12.5%

Total 17 23 40 100.0% 100.0% 100.0%

145

Table H14

Number of Previous Math Courses chi-square Tests

Method Value df p

Pearson chi-square 7.062
a
 4 .133

Likelihood Ratio 8.904 4 .064

a. 6 cells (60.0%) have expected count less than 5. The minimum expected count is 1.70.

146

Appendix I. Pre-Test Chi-square and t test Results

Table I1

Pre-test Question 1 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 11 16 27 64.7% 69.6% 67.5%

3 6 7 13 35.3% 30.4% 32.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I2

Pre-test Question 1 chi-square Tests

Method Value df P

Pearson chi-square .105
a
 1 .746

Likelihood Ratio .105 1 .746

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.53.

Table I3

Pre-test Question 2 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 16 23 39 94.1% 100.0% 97.5%

3 1 0 1 5.9% 0.0% 2.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I4

Pre-test Question 2 chi-square Tests

Method Value df P

Pearson chi-square 1.388
a
 1 .239

Likelihood Ratio 1.746 1 .186

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .43.

147

Table I5

Pre-test Question 3 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 9 14 23 52.9% 60.9% 57.5%

3 8 9 17 47.1% 39.1% 42.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I6

Pre-test Question 3 chi-square Tests

Method Value df p

Pearson chi-square .251
a
 1 .616

Likelihood Ratio .251 1 .616

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 7.23.

Table I7

Pre-test Question 4 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 9 14 23 52.9% 60.9% 57.5%

1 7 9 16 41.2% 39.1% 40.0%

3 1 0 1 5.9% 0.0% 2.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I8

Pre-test Question 4 chi-square Tests

Method Value df P

Pearson chi-square 1.470
a
 2 .479

Likelihood Ratio 1.829 2 .401

a. 2 cells (33.3%) have expected count less than 5. The minimum expected count is .43.

148

Table I9

Pre-test Question 5 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 13 14 27 76.5% 60.9% 67.5%

3 4 9 13 23.5% 39.1% 32.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I10

Pre-test Question 5 chi-square Tests

Method Value df P

Pearson chi-square 1.085
a
 1 .298

Likelihood Ratio 1.107 1 .293

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 5.53.

Table I11

Pre-test Question 6 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 15 19 34 88.2% 82.6% 85.0%

3 2 4 6 11.8% 17.4% 15.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table I12

Pre-test Question 6 chi-square Tests

Method Value df P

Pearson chi-square .243
a
 1 .622

Likelihood Ratio .248 1 .619

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.55.

149

Table I13

Pre-test Question 7 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 6 13 19 35.3% 56.5% 47.5%

3 4 2 6 23.5% 8.7% 15.0%

6 5 6 11 29.4% 26.1% 27.5%

9 2 2 4 11.8% 8.7% 10.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table I14

Pre-test Question 7 chi-square Tests

Method Value df P

Pearson chi-square 2.493
a
 3 .477

Likelihood Ratio 2.508 3 .474

a. 5 cells (62.5%) have expected count less than 5. The minimum expected count is 1.70.

Table I15

Pre-test Question 8 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 16 21 37 94.1% 91.3% 92.5%

3 1 2 3 5.9% 8.7% 7.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I16

Pre-test Question 8 chi-square Tests

Method Value df P

Pearson chi-square .112
a
 1 .738

Likelihood Ratio .114 1 .735

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.28.

150

Table I17

Pre-test Question 9 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 15 21 36 88.2% 91.3% 90.0%

1 1 1 2 5.9% 4.3% 5.0%

3 1 1 2 5.9% 4.3% 5.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table I18

Pre-test Question 9 chi-square Tests

Method Value df P

Pearson chi-square .102
a
 2 .950

Likelihood Ratio .101 2 .951

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is .85.

Table I19

Pre-test Question 10 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 14 21 35 82.4% 91.3% 87.5%

3 3 2 5 17.6% 8.7% 12.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I20

Pre-test Question 10 chi-square Tests

Method Value df P

Pearson chi-square .716
a
 1 .397

Likelihood Ratio .707 1 .400

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.13.

151

Table I21

Pre-test Question 11 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 16 22 38 94.1% 95.7% 95.0%

1 0 1 1 0.0% 4.3% 2.5%

3 1 0 1 5.9% 0.0% 2.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I22

Pre-test Question 11 chi-square Tests

Method Value df P

Pearson chi-square 2.094
a
 2 .351

Likelihood Ratio 2.821 2 .244

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is .43.

Table I23

Pre-test Question 12 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 14 19 33 82.4% 82.6% 82.5%

1 2 1 3 11.8% 4.3% 7.5%

3 1 3 4 5.9% 13.0% 10.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table I24

Pre-test Question 12 chi-square Tests

Method Value df P

Pearson chi-square 1.218
a
 2 .544

Likelihood Ratio 1.243 2 .537

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is 1.28.

152

Table I25

Pre-test Question 13 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 14 15 29 82.4% 65.2% 72.5%

3 3 8 11 17.6% 34.8% 27.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table I26

Pre-test Question 13 chi-square Tests

Method Value df P

Pearson chi-square 1.440
a
 1 .230

Likelihood Ratio 1.489 1 .222

a. 1 cells (25.0%) have expected count less than 5. The minimum expected count is 4.68.

Table I27

Group Statistics for Pre-test Summation Variables

Variable M SD SE

Control Group (n=17)

If sum 6.35 5.601 1.358

For sum .59 2.181 .529

While sum .71 1.687 .409

Rep sum 1.29 3.670 .890

Functions sum 2.12 3.276 .795

Total Points 9.76 11.060 2.682

Experimental Group (n=23)

If sum 5.22 5.946 1.240

For sum .22 .736 .153

While sum .52 1.729 .360

Rep sum .74 1.815 .378

Functions sum 3.04 3.747 .781

Total Points 9.00 10.846 2.262

153

Table I28

Pre-test Summation Variables t test

Variable t df p

If sum .612 38 .544

For sum .762 38 .451

While sum .336 38 .738

Rep sum .630 38 .532

Functions sum -.814 38 .421

Total Points .219 38 .828

154

Appendix J. Project 1 Statistics

Table J1.

Project 1Test Rubric Component Counts for Control (C), Experimental (E), and Total (T)

Groups

Category Count % within Group

 C E T C E T

Does Not 17 21 38 100.0% 91.3% 95.0%

Meets 0 0 0 0.0% 0.0% 0.0%

Exceeds 0 2 2 0.0% 8.7% 5.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table J2

Project 1 chi-square Testing Component

Method Value df P

Pearson chi-square 1.556
a
 1 .212

Likelihood Ratio 2.291 1 .130

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is .85.

Table J3

Group Statistics for Project 1 Total

Variable M SD SE

Control Group (n=17)

Total Points 9.59 .507 .123

Experimental Group (n=23)

Total Points 9.22 1.085 .226

Table J4

Project 1 Total Points Variable t test

Variable t df p

Total Points 1.304 38 .200

155

Appendix K. Project 2 Cross-tabulation and Chi-square statistics

Table K1

Project 2 Rubric Component Counts for Control (C), Experimental (E), and Total (T)

Groups

Grading Count % within Group

 C E T C E T

Design Component

Does Not 0 1 1 0.0% 4.3% 2.5%

Meets 2 0 2 11.8% 0.0% 5.0%

Exceeds 15 22 37 88.2% 95.7% 92.5%

Total 17 23 40 100.0% 100.0% 100.0%

Functionality Component

Does Not 1 1 2 5.9% 4.3% 5.0%

Meets 0 2 2 0.0% 8.7% 5.0%

Exceeds 16 20 36 94.1% 87.0% 90.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table K2

Project 2 Design chi square statistics output

Method Value df P

Pearson chi-square 3.503
a
 2 .174

Likelihood Ratio 4.588 2 .101

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is .43.

Table K3

Project 2 Functionality chi square statistics output

Method Value df P

Pearson chi-square 1.580
a
 2 .454

Likelihood Ratio 2.315 2 .314

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is .85.

156

Appendix L. Project 3 Cross-tabulation and Chi-square statistics

Table L1

Project 3 Rubric Component Counts for Control (C), Experimental (E), and Total (T)

Groups

Grading Count % within Group

 C E T C E T

Design Component

Does Not 0 1 1 0.0% 4.3% 2.5%

Meets 1 2 3 5.9% 8.7% 7.5%

Exceeds 16 20 36 94.1% 87.0% 90.0%

Total 17 23 40 100.0% 100.0% 100.0%

Test Component

Does Not 14 19 33 82.4% 82.6% 82.5%

Meets 0 0 0 0.0% 0.0% 0.0%

Exceeds 3 4 7 17.6% 17.4% 17.5%

Total 17 23 40 100.0% 100.0% 100.0%

Functionality Component

Does Not 2 0 2 11.8% .0% 5.0%

Meets 0 4 4 .0% 17.4% 10.0%

Exceeds 15 19 34 88.2% 82.6% 85.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table L2

Project 3 Design chi square statistics output

Method Value df P

Pearson chi-square .898
a
 2 .638

Likelihood Ratio 1.268 2 .530

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is .43.

Table L3

Project 3 Test chi- square statistics output

Method Value df P

Pearson chi-square .000
a
 1 .983

Likelihood Ratio .000 1 .983

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.98.

157

Table L4

Project 3 Functionality chi- square statistics output

Method Value df P

Pearson chi-square 5.699
a
 2 .058

Likelihood Ratio 7.886 2 .019

a. 4 cells (66.7%) have expected count less than 5. The minimum expected count is .85.

158

Appendix M. Post-Test Chi-square and T test results

Table M1

Post-test Question 1 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 2 4 6 11.8% 17.4% 15.0%

1 0 0 0 0.0% 0.0% 0.0%

2 0 0 0 0.0% 0.0% 0.0%

3 15 19 34 88.2% 82.6% 85.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table M2

Post-test Question 1 chi-square Tests

Method Value df P

Pearson chi-square .243
a
 1 .622

Likelihood Ratio .248 1 .619

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 2.55.

Table M3

Post-test Question 2 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 5 13 18 29.4% 56.5% 45.0%

1 6 2 8 35.3% 8.7% 20.0%

2 3 3 6 17.6% 13.0% 15.0%

3 3 5 8 17.6% 21.7% 20.0%

Total 17 23 40 100.0% 100.0% 100.0%

159

Table M4

Post-test Question 2 chi-square Tests

Method Value df P

Pearson chi-square 5.274
a
 3 .153

Likelihood Ratio 5.378 3 .146

a. 6 cells (75.0%) have expected count less than 5. The minimum expected count is 2.55.

Table M5

Post-test Question 3 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 2 1 3 11.8% 4.3% 7.5%

1 0 0 0 0.0% 0.0% 0.0%

2 0 0 0 0.0% 0.0% 0.0%

3 15 22 37 88.2% 95.7% 92.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table M6

Post-test Question 3 chi-square Tests

Method Value df P

Pearson chi-square .775
a
 1 .379

Likelihood Ratio .769 1 .381

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.28.

Table M7

Post-test Question 5 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 1 3 4 5.9% 13.0% 10.0%

1 0 0 0 0.0% 0.0% 0.0%

2 0 0 0 0.0% 0.0% 0.0%

3 16 20 36 94.1% 87.0% 90.0%

Total 17 23 40 100.0% 100.0% 100.0%

160

Table M8

Post-test Question 5 chi-square Tests

Method Value df P

Pearson chi-square .557
a
 1 .455

Likelihood Ratio .588 1 .443

a. 2 cells (50.0%) have expected count less than 5. The minimum expected count is 1.70.

Table M9

Post-test Question 6 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 6 8 14 35.3% 34.8% 35.0%

1 3 2 5 17.6% 8.7% 12.5%

2 0 0 0 0.0% 0.0% 0.0%

3 8 13 21 47.1% 56.5% 52.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table M10

Post-test Question 6 chi-square Tests

Method Value df P

Pearson chi-square .794
a
 2 .672

Likelihood Ratio .787 2 .675

a. 2 cells (33.3%) have expected count less than 5. The minimum expected count is 2.13.

Table M11

Post-test Question 7 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 1 1 2 5.9% 4.3% 5.0%

5 1 0 1 5.9% 0.0% 2.5%

6 7 10 17 41.2% 43.5% 42.5%

8 1 1 2 5.9% 4.3% 5.0%

9 7 11 18 41.2% 47.8% 45.0%

Total 17 23 40 100.0% 100.0% 100.0%

161

Table M12

Post-test Question 7 chi-square Tests

Method Value df P

Pearson chi-square 1.553
a
 4 .817

Likelihood Ratio 1.911 4 .752

a. 6 cells (60.0%) have expected count less than 5. The minimum expected count is .43.

Table M13

Post-test Question 8 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 2 8 10 11.8% 34.8% 25.0%

1 7 7 14 41.2% 30.4% 35.0%

2 2 2 4 11.8% 8.7% 10.0%

3 6 6 12 35.3% 26.1% 30.0%

Total 17 23 40 100.0% 100.0% 100.0%

Table M14

Post-test Question 8 chi-square Tests

Method Value df P

Pearson chi-square 2.762
a
 3 .430

Likelihood Ratio 2.951 3 .399

a. 3 cells (37.5%) have expected count less than 5. The minimum expected count is 1.70.

Table M15

Post-test Question 9 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 4 10 14 23.5% 43.5% 35.0%

1 10 8 18 58.8% 34.8% 45.0%

2 1 1 2 5.9% 4.3% 5.0%

3 2 4 6 11.8% 17.4% 15.0%

Total 17 23 40 100.0% 100.0% 100.0%

162

Table M16

Post-test Question 9 chi-square Tests

Method Value df P

Pearson chi-square 2.619
a
 3 .454

Likelihood Ratio 2.655 3 .448

a. 4 cells (50.0%) have expected count less than 5. The minimum expected count is .85.

Table M17

Post-test Question 10 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 5 9 14 29.4% 39.1% 35.0%

1 2 1 3 11.8% 4.3% 7.5%

2 2 4 6 11.8% 17.4% 15.0%

3 8 9 17 47.1% 39.1% 42.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table M18

Post-test Question 10 chi-square Tests

Method Value df P

Pearson chi-square 1.332
a
 3 .722

Likelihood Ratio 1.334 3 .721

a. 4 cells (50.0%) have expected count less than 5. The minimum expected count is 1.28.

Table M19

Post-test Question 11 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 4 8 12 23.5% 34.8% 30.0%

1 4 3 7 23.5% 13.0% 17.5%

2 2 3 5 11.8% 13.0% 12.5%

3 7 9 16 41.2% 39.1% 40.0%

Total 17 23 40 100.0% 100.0% 100.0%

163

Table M20

Post-test Question 11 chi-square Tests

Method Value df P

Pearson chi-square 1.050
a
 3 .789

Likelihood Ratio 1.051 3 .789

a. 4 cells (50.0%) have expected count less than 5. The minimum expected count is 2.13.

Table M21

Post-test Question 12 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 3 5 8 17.6% 21.7% 20.0%

1 2 3 5 11.8% 13.0% 12.5%

2 2 6 8 11.8% 26.1% 20.0%

3 10 9 19 58.8% 39.1% 47.5%

Total 17 23 40 100.0% 100.0% 100.0%

Table M22

Post-test Question 12 chi-square Tests

Method Value df P

Pearson chi-square 1.895
a
 3 .594

Likelihood Ratio 1.949 3 .583

a. 6 cells (75.0%) have expected count less than 5. The minimum expected count is 2.13.

Table M23

Post-test Question 13 Counts for Control (C), Experimental (E), and Total (T) Groups

Points Count % within Group

 C E T C E T

0 1 2 3 5.9% 8.7% 7.5%

1 2 0 2 11.8% 0.0% 5.0%

2 1 1 2 5.9% 4.3% 5.0%

3 13 20 33 76.5% 87.0% 82.5%

Total 17 23 40 100.0% 100.0% 100.0%

164

Table M24

Post-test Question 13 chi-square Tests

Method Value df P

Pearson chi-square 2.985
a
 3 .394

Likelihood Ratio 3.705 3 .295

a. 6 cells (75.0%) have expected count less than 5. The minimum expected count is .85.

Table M25

Group Statistics for Post-Test Summation Variables

Variable Mean STD STD Error Mean

Control Group (n=17)

If sum 13.82 4.290 1.040

For sum 4.00 2.449 .594

While sum 3.47 2.211 .536

Rep sum 7.47 3.826 .928

Functions sum 8.59 2.694 .653

Total Points 29.88 9.130 2.214

Experimental Group (n=23)

If sum 14.39 3.963 .826

For sum 3.52 2.998 .625

While sum 2.83 2.387 .498

Rep sum 6.35 4.764 .993

Functions sum 7.87 3.152 .657

Total Points 28.61 9.926 2.070

Table M26

Post-test Summation Variables t test

Variable t df p

If sum -.433 38 .668

For sum .538 38 .594

While sum .871 38 .389

Rep sum .799 38 .429

Functions sum .757 38 .454

Total Points .415 38 .681

165

Appendix N. Pre- and Post-test Analysis of Covariance Results

Table N1

Total score Adjusted Means ANCOVA Results for Control (C) and Experimental (E)

Adjusted Means (F = .121, ρ = .721)

Control Experimental

29.66 28.77

Table N2

If/else score Adjusted Means ANCOVA Results for Control (C) and Experimental (E)

Adjusted Means (F = .623, ρ = .435)

Control Experimental

13.61 14.54

Table N3

For/while score Adjusted Means ANCOVA Results for Control (C) and Experimental (E)

Adjusted Means (F = .283, ρ = .598)

Control Experimental

7.19 6.55

Table N4

Functions score Adjusted Means ANCOVA Results for Control (C) and Experimental (E)

Adjusted Means (F = 1.18, ρ = .284)

Control Experimental

8.74 7.75

166

Appendix O. Student Evaluation Average Weekly Study Hours

Table O1

Student Evaluation Study Hour Counts for Control (C), Experimental (E), and Total (T)

Groups

Avg. Study

Hours

Count % within Group

 C E T C E T

0-5 8 10 18 44.4% 40.0% 41.9%

6-10 5 13 18 27.8% 52.0% 41.9%

11-15 2 0 2 11.1% 0.0% 4.7%

>15 3 2 5 16.7% 8.0% 11.6%

Total 18 25 43 100.0% 100.0% 100.0%

Table O2

Student Evaluation Study Hour chi-square Tests

Method Value df P

Pearson chi-square 4.970
a
 3 .174

Likelihood Ratio 5.735 3 .125

a. 4 cells (50.0%) have expected count less than 5. The minimum expected count is .84.

167

Appendix P. IRB Approval

168

Appendix Q. Informed Consent Form

INFORMED CONSENT FORM

James Robertson, Researcher

The Computer and Information Science Department (CMIS) within the School of

Undergraduate Studies at UMUC is conducting research on learning outcomes of introductory

programming courses. As part of your enrollment, you will be asked to write and submit working

computer programs. These programs will be scored based on a rubric. Your individual scores will

be grouped with the other students in this section and compared with another section of this

course that is completing the same assignments. Based on the outcomes of these section-by-

section comparisons, we may make changes to the way the course is taught for future students.

Your participation in the research study is voluntary, though you are still required to complete all

mandatory course assignments.

During this research, you will do what you normally do in an introductory computer

programming course. That is, you will learn fundamental computer programming design and

implementation techniques. You will be adhering to the standard CMIS102 syllabus and

participating in pre-tests, post-tests, projects, assignments, reading and class participation. There

are no known risks associated with this research.

All information will remain strictly confidential. Although the descriptions and findings

may be published, at no time will your name be used. The participants‟ data will remain protected

at all times. During the analysis phase, only student randomly assigned identification numbers

will be used to separate records. If small subgroups are identified the results will not be publicly

distributed in reports or findings. You are at liberty to withdraw your consent to the experiment

and discontinue participation at any time without prejudice. If you do choose to not participate or

to discontinue participation your decision will not have an effect on your grade in the course.

However, all of the projects and activities still need to be completed. In these cases, the

individuals‟ responses will be withheld from contribution to the research.

If you have any questions after today, please feel free to call 240-582-2846 and ask for

James Robertson (jrobertson@umuc.edu), or contact Dr. Marie Cini (mcini@umuc.edu), the

Dean of School of Undergraduate Studies, or Dr. Patricia Alt, Chairperson of the Institutional

Review Board for the Protection of Human Participants at Towson University at (410) 704-2236.

I, _________________________________, affirm that I have read and understood the above

statement and have had all of my questions answered.

Date: ____________________

Signature: ___

Witness: ___

mailto:jrobertson@umuc.edu
mailto:mcini@umuc.edu

169

Appendix R. Programming Assignment Grading Rubric

Rubric

description

Does not meet

expectations

(1 point)

Meets expectations

(2 points)

Exceeds expectations

(3 points)

Program Layout

(Visual appeal)

- Proper naming

conventions were

rarely used

- Internal

documentation

was not provided

- Use of white

space, indenting

and braces was

inconsistent

- Proper naming

conventions were

used most of the

time

- Internal

documentation

provided good

descriptions

- Use of white

space, indenting

and braces was

good

- Proper naming

conventions were

used all of the

time

- Internal

documentation

provided

excellent

descriptions

- Use of white

space, indenting

and braces was

excellent.

Program Design - Use of control

structures was

usually incorrect

or inappropriate

- Algorithms were

inefficient

- Input/Output was

unclear or not

formatted

- Use of control

structures was

correct and

appropriate most

of the time.

- Algorithms were

efficient most of

the time.

- Input/Output was

clear and well

formatted most of

the time.

- Use of control

structures was

correct and

appropriate all of

the time.

- Algorithms were

efficient all of the

time.

- Input/Output was

clear and well

formatted all of

the time.

Test data No test data was

provided

Test data was

provided for most

code functionality.

Test data was

provided for all code

functionality.

Functionality Program did not meet

any of the required

functionality

Program met most of

the required

functionality

Program met or

exceeded all of the

required functionality

170

References

Adams, J. (2007). Alice, middle schoolers & the imaginary worlds camps. ACM SIGCSE

Bulletin, 39(1), 307-311.

Alice (2009). Retrieved February 8, 2009 from

http://alice.org/index.php?page=sponsors/sponsors.

Anderson, E., & McLoughlin, L. (2007). Critters in the classroom: a 3D computer-game-

like tool for teaching programming to computer animation students. In

International Conference on Computer Graphics and Interactive Techniques:

 ACM SIGGRAPH 2007 educators program (Article 7). New York: ACM.

Andrade, H. (2005). Teaching with rubrics: the good, the bad, and the ugly. College

Teaching, 53(1), 27-31.

Anewalt, K. (2008). Making CS0 fun: an active learning approach using toys, games and

Alice. Journal of Computer Sciences in Colleges, 23(3), 98-105.

Areias, C., & Mendez, A. (2007). A tool to help students to develop programming skills.

In B. Rachev,A. Smrikarov, & D. Dimov (Eds.), ACM International Conference

Proceeding Series: Vol. 285. Proceedings of the 2007 international conference

on Computer systems and technologies (Article 89). New York: ACM.

Baker, K., (2009). Learning theory and the re-education of older software engineers.

ACM SIGITE Newsletter archive, 6(2), 2-10.

Becker, K. (2003). Grading programming assignments using rubrics. In D. Finkel (Ed.)

Annual Joint Conference Integrating Technology into Computer Science

 Education: Proceedings of the 8th annual conference on Innovation and

technology in computer science education (pp. 253-253). New York: ACM.

171

Ben-Ari, M. (1998). Constructivism in Computer Science. In Technical Symposium on

Computer Science Education Proceedings of the twenty-ninth SIGCSE technical

symposium on Computer science education (pp. 257-261). New York: ACM.

Bers, M. (2007). Blocks to robots: learning with technology in the early childhood

classroom. New York: Teachers College Press.

Biddle, R. & Tempero, E. (1998). Java pitfalls for beginners. ACM SIGCSE Bulletin,

30(2),48-52.

Bishop-Clark, C., Courte, J., & Howard, E. (2006). Programming in pairs with Alice to

improve confidence, enjoyment and achievement. Journal of Educational

Computing Research, 34(2), 213-228.

Bishop-Clark, C., Courte, J., Evans, D., & Howard, E. (2007). A quantitative

and qualitative investigation of using Alice programming to improve

confidence, enjoyment and achievement among non-majors. Journal of

Educational Computing Research, 37(2), 193-207.

Brouwer, N., Muller, G., & Rietdijk, H. (2007). Educational designing with microworlds.

Journal of Technology and Teacher Education, 15(4), 439-462.

Brown, P. (2008). Some field experience with Alice. Journal of Computing Sciences in

Colleges, 24(2), 213-219.

Brooks, M. & Brooks, J. (1999). The courage to be constructivist. Educational

Leadership. 57(3) 1-10.

Bureau of Labor Statistics (2008). Retrieved September 20, 2008 from

 http://www.bls.gov/news.release/ecopro.toc.htm.

172

Calloni, B., & Bagert, D. (1997). Iconic programming proves effective for teaching the

first year programming sequence. In J. Miller (Ed.) Technical Symposium on

Computer Science Education: Proceedings of the twenty-eighth SIGCSE technical

symposium on Computer science education (pp. 262-266). New York: ACM.

Carlisle, M., Wilson, T., Humphries, J., & Hadfield, S. (2005). RAPTOR: a visual

programming environment for teaching algorithmic problem solving. In Technical

Symposium on Computer Science Education: Proceedings of the 36th SIGCSE

technical symposium on Computer science education (pp. 176-180). New York:

ACM.

Cheung, J., Ngai, G., Chan, S., & Lau, W. (2009). Filling the gap in programming

instruction: a text-enhanced graphical programming environment for junior high

students, In Technical Symposium on Computer Science Education: Proceedings

of the 40th ACM technical symposium on Computer science education (pp. 276-

280). New York: ACM.

CITE Demographic Data (2009). [2009 CMIS demographic data]. Unpublished raw data.

CITE Grade Distribution Data (2008). [2008 CS0 f2f grade distribution data].

 Unpublished raw data.

Clements, D. (1989). Computers in elementary mathematics education. Englewood

Cliffs, NJ. Prentice Hall.

Close, R., Kopec, D., & Aman, J. (2000). CS1: perspectives on programming languages

and the breadth-first approach. Journal of Computing Sciences in Colleges,

15(5), 228–234.

173

Cohoon, J. (2003). Must there be so few?: Including women in CS, In International

 Conference on Software Engineering: Proceedings of the 25th International

Conference on Software Engineering (pp. 668-674). Washington, D.C: IEEE

Computer Society.

Computer Curricula (1978). ACM Curriculum Committee on Computer Science.

Curriculum ‟78: Recommendations for the undergraduate program in computer

science. Communications of the ACM, 22(3).

Computer Curricula (2001). Retrieved October 15, 2008 from

 http://www.acm.org/education/education/education/curric_vols/cc2001.pdf.

Conway, M. (1997). Alice: Easy-to-Learn 3D Scripting for Novices.

(Doctoral dissertation, University of Virginia, 1997).

Conway, M., Audia, S., Burnette, T., Cosgrove, D., & Christiansen, K (2000). Alice:

lessons learned from building a 3D system for novices. In

Conference on Human Factors in Computing Systems: Proceedings of the

SIGCHI conference on Human factors in computing systems (pp. 486-493). New

York: ACM.

Cooper S., Dann, W., & Pausch, R. (2000). Alice: a 3-D tool for introductory

programming concepts. Journal of Computing Sciences in Colleges, 15(5), 108-

117.

Cooper, S., Dann, W., & Pausch, R. (2003). Teaching objects-first in introductory

computer science. In Technical Symposium on Computer Science Education:

Proceedings of the 34th SIGCSE technical symposium on Computer science

education (pp. 191-195). New York: ACM.

CRA Statistics retrieved Oct 10, 2009 from http://www.cra.org/info/taulbee/women.html.

http://www.acm.org/education/education/education/curric_vols/cc2001.pdf

174

Crotty, M. (1998). Foundations of Social Research: Meaning and Perspective in the

Research Process. Thousand Oaks, CA: Sage Publications.

Dale, N. (2006). Most difficult topics in CS1: results of an online survey to educators.

Inroads: the SIGCSE Bulletin, 38(2), 49-53.

de Raadt, M., Watson, R., & Toleman (2004). Introductory programming: what‟s

happening today and will there be any students to teach tomorrow? In R. Lister &

A. Young (Eds.) ACM International Conference Proceeding Series: Vol. 57.

Proceedings of the sixth conference on Australasian computing education (pp.

277-282). New York: ACM.

Dingle, A. & Zander, C. (2000). Assessing the ripple effect of CS1 language choice.

Journal of Computing Sciences in Colleges, 16(2), 85-93.

diSessa, A. (2000). Changing minds: computers, learning, and literacy. Cambridge, MA,

MIT Press.

Dodds, Z., Libeskind-Hadas, R., Alvarado, C., & Kuenning G. (2008). Evaluating a

breadth-first CS 1 for scientists. In Technical Symposium on Computer Science

Education: Proceedings of the 39th SIGCSE technical symposium on Computer

science education (pp. 266-270). New York: ACM.

Dougherty, J. (2007). Concept visualization in CS0 using Alice. Journal of Computing

Sciences in Colleges, 22(3), 145-152.

Driscoll, M., (2000). Psychology of learning for instruction. Needham Heights, MA,

Pearson.

Edwards, L.D. (1995). Microworlds as representations. In A. diSessa, C. Hoyles, R.

Noss, & L. Edwards (Eds.), Computers and exploratory learning (pp. 127-154).

New York: Springer-Yerlag.

175

Ehlert, A., & Schulte, C. (2009). Empirical comparison of objects-first and objects-later.

In International Computing Education Research Workshop: Proceedings of the

fifth international workshop on Computing education research workshop (pp. 15-

26). New York: ACM.

Ellis, H. (2002). Andragogy in a web technologies course. In Technical Symposium on

Computer Science Education Proceedings of the 33rd SIGCSE technical

symposium on Computer science education (pp. 206-210). New York: ACM.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., & Mehandjiev, N. (2004). Meta-

design: a manifesto for end-user development. Communications of the

ACM, 47(9), 33-37.

Fry, C. (1997). Programming on an already full brain. Communications of the ACM,

40(4), 55-64.

Garner, S., Haden, P., & Robins, A. (2005). My program is correct but it doesn‟t run: a

preliminary investigation of novice programmers‟ problems. In A. Young & D.

Tolhurst (Eds.) ACM International Conference Proceeding Series; Vol. 106.

Proceedings of the 7th Australasian conference on Computing education (pp.

173-180). Darlinghurst, Australia: Australian Computer Society, Inc.

Garris, R., Ahlers, R., & Driskell, J. (2002). Games, motivation, and learning: a research

and practice model. Simulation & Gaming, 33(4), 441-467.

Gay, L. & Airasian, P. (2003). Educational Research. Columbus, Ohio:Pearson.

Goldweber, M., Bergin, J., Lister, R. & McNally, M. (2006). A comparison of different

approaches to the introductory programming course. In D. Tolhurst, & S. Mann

(Eds.) ACM International Conference Proceeding Series: Vol. 165. Proceedings

 of the 8th Australian conference on Computing education (pp. 11-13).

Darlinghurst, Australia: Australian Computer Society, Inc.

176

Gomes, A. & Mendes A. (2007). An environment to improve programming education. In

B. Rachey, A. Smrikarov, & D. Dimov (Eds.) ACM International Conference

Proceeding Series: Vol. 285. Proceedings of the 2007 international conference

 on Computer systems and technologies (Article 8). New York: ACM.

Gross, P., & Powers, K. (2005). Evaluating assessments of novice programming

environments. In International Computing Education Research Workshop:

Proceedings of the first international workshop on Computing education research

(pp. 99-110). New York: ACM.

Hadjerrouit, S. (1998). Java as first programming language: a critical evaluation. ACM

 SIGCSE Bulletin, 30(2), 43-47.

Henriksen, P. & Kölling, M. (2004). Greenfoot: combining object visualization and

interaction. In Conference on Object Oriented Programming Systems Languages

and Applications: Companion to the 19th annual ACM SIGPLAN conference on

Object-oriented programming systems, languages, and applications (pp. 73-82).

New York: ACM.

Hogle, J. (1995). Computer worlds in education: catching up with Danny Dunn. (ERIC

 Document No. ED425738)

Hoover, W. (1996). The Practice Implications of Constructivism. SEDL Letter , 9(3)

 retrieved January 15, 2010 from

http://www.sedl.org/pubs/sedletter/v09n03/practice.html.

Hu, H. (2008). A summer programming workshop for middle school girls. Journal of

Computer Sciences in Colleges, 23(6), 194-202.

177

Hundhausen, C., & Brown, J. (2005). Personalizing and discussing algorithms within

CS1 studio experiences: An observational study. In International Computing

Education Research Workshop: Proceedings of the first international workshop

 on Computing education research (pp. 45-56). New York: ACM.

Jonassen, D. (1991). Objectivism versus constructivism: Do we need a new philosophical

paradigm? Educational Technology Research & Development, 39(3), 5-14.

Jonassen, D. (2002). Learning as activity. Educational Technology, 42(2),45-51.

Kahn, K. (1996). Drawings on napkins, video game animation, and other ways to

program computers. Communications of the ACM, 39(8), 49-59.

Kato, Y. (2006). An XML-based microworld simulator for business modeling education.

In Proceedings of the Fourth International Conference on Creating, Connecting

and Collaborating through Computing (pp. 232-239). Washington, DC: IEEE

Computer Society.

Kelleher, C., & Pausch, R. (2005). Lowering the barriers to programming: A taxonomy

of programming environments and languages for novice programmers. ACM

Computing Surveys, 37(2), 83-137.

Kelleher, C., Pausch, R. & Kiesler, S. (2007). Storytelling Alice motivates middle school

girls to learn computer programming. In Conference on Human Factors in

Computing Systems: Proceedings of the SIGCHI conference on Human factors in

 computing systems (pp. 1455-1464). New York: ACM.

Kieran-Greenbush, K. (1991). Reaching the adult learner: adult learner and computer

training. In Proceedings of the 19th annual ACM SIGUCCS conference on User

services (pp. 177-182). New York: ACM.

Klassen, M. (2006). Visual approach for teaching programming concepts. 9
th

International Conference on Engineering Education, July 2006. T1A-1-T1A-6.

178

Knowles, M. (1970). The Modern Practice of Adult Education. Andragogy versus

pedagogy, Englewood Cliffs: Prentice Hall/Cambridge.

Kolling, M. & Rosenberg, J. (2000). Objects first With Java and BlueJ. In S. Haller (Ed.)

 Technical Symposium on Computer Science Education: Proceedings of the thirty-

 first SIGCSE technical symposium on Computer science education (pp. 429-429).

New York: ACM.

Koski, M., Kurhila, J., & Pasanen, T. (2008). Why using robots to teach computer

 science can be successful theoretical reflection to andragogy and minimalism. In

International Conference on Computing Education Research: Proceedings of the

8th International Conference on Computing Education Research (pp. 32-40). New

York:ACM.

Kubota, R. (2001). Voices from the margin: second and foreign language teaching

approaches from minority perspectives. The Canadian Modern Language

 Review, 54(3), 394-412.

Lahtinen, E., AlaMutka, K., & Järvinen, H. (2005). A study of the difficulties of novice

 programmers. In Annual Joint Conference Integrating Technology into

Computer Science Education: Proceedings of the 10th annual SIGCSE

conference on Innovation and technology in computer science education (pp. 14-

18). New York: ACM.

Lui, A., Kwan, R., Poon, M. & Cheung, Y. (2000). Saving weak programming students:

 applying constructivism in a first programming course. Inroads: the SIGCSE

Bulletin, 36(2), 72-76.

Lorenzen, T & Sattar, A. (2008). Objects first using Alice to introduce object constructs

in CS1. SIGSE Bulletin, 40(2), 62-64.

179

Markoff, J. (2009). Computer science programs make a comeback in enrollment.

Retrieved November 10, 2009 from

http://www.nytimes.com/2009/03/17/science/17comp.html

Masterson, T. & Meyer, R. (2001). SIVIL: A true visual programming language for

students. Journal of Computer Sciences in Colleges, 16(4), 74-86.

McGrath, V. (2009). Reviewing the evidence on how adult learners learn: An

examination of Knowles‟ Model of Andragogy. In T. Fleming (Ed.) The Adult

Learner 2009 (pp. 99-110). AONTAS, Dublin.

McKinney, A. (2003). A recent radical graphical approach to programming. Journal of

Computer Sciences in Colleges, 18(6), 28-35.

Meyer,R. & Masterson, T. (2000). Towards a better visual programming language:

Critiquing prograph's control structures. Journal of Computer Sciences in

Colleges, 15(5), 183-196.

Moskal, B., Lurie, D., & Cooper, S. (2004). Evaluating the effectiveness of a new

instructional approach. In Technical Symposium on Computer Science Education:

Proceedings of the 35th SIGCSE technical symposium on Computer science

education (pp. 75-79). New York: ACM.

Muhlhauser, M. & Gecsei, J. (1996). Services, frameworks and paradigms for distributed

multimedia applications. IEEE Multimedia, 3(3), 48-61.

Mullins, P., Whitfield, D., & Conlon, M. (2009). Using Alice 2.0 as a first language.

Journal of Computing Sciences in Colleges, 24(3), 136-143.

180

Murphy, L., Lewandowski,G., McCauley,R.,Simon,B., Thomas, L., & Zander, C. (2008).

Debugging: the good, the bad, and the quirky–a qualitative analysis of novices‟

strategies. In Technical Symposium on Computer Science Education:

Proceedings of the 39th SIGCSE technical symposium on Computer science

 education (pp. 163-167). New York: ACM.

Myers, B. (1986). Visual programming, programming by example, and program

visualization: a taxonomy. In M. Mantei & P. Orbeton (Eds.) Conference on

Human Factors in Computing Systems: Proceedings of the SIGCHI conference on

Human factors in computing systems (pp. 59-66). New York: ACM.

Olan, M. (2003).Unit testing: test early, test often. Journal of Computing Sciences in

Colleges, 19(2), 319-327.

Open World Learning. retrieved January 15, 2010 from

http://www.openworldlearning.org/mia/welcome.htm.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. New York:

Basic.

Papert, S. (1980b) . Computer-based microworlds as incubators for powerful ideas. In R.

Taylor (ed.) The computer in the school: Tutor, tool, tutee (pp. 203-210). New

York. Teacher‟s College Press.

Papert, S. (1991). Situating Constructionism. In I. Harel & S. Papert (Eds.),

Constructionism (pp. 1-12). Norwood, NJ: Ablex.

Pattis, R. (1981). Karel the Robot: A gentle introduction to the art of programming. (2nd

ed.). Chicago: John Wiley & Sons.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E., & Bennedsen, J. (2007). A

 survey of literature on the teaching of introductory programming. ACM SIGCSE

Bulletin, 39(4), 204-223.

181

Petre, M. (1995). Why Looking Isn't Always Seeing: Readership Skills and Graphical

Programming. Communication of the ACM, 38(6),55-70.

Piaget, J. (1973). The Child and Reality. Harmondsworth: Penguin.

Powers, K., Ecott, S. & Hirschfield, L. (2007). Through the looking glass: Teaching CS0

with Alice. ACM SIGCSE Bulletin, 39(1), 213-217.

President‟s Information Technology Committee (2005). Computational Science:

Ensuring America‟s Competitiveness. Presidents report, June 2005.

Reiber, L. (2004). Microworlds. In D. Jonassen (Ed.) Handbook of Research on

education communications and technology (pp. 583-603). London. Lawrence

Erlbaum Associates.

Rigas, G., Carling, E., & Brehmer, B. (2002). Reliability and validity of performance

measures in microworlds. Intelligence, 30(2002), 463-480.

Robertson, J. (2007). [Summer 2007 CS0 Loop and Function Analysis]. Unpublished raw

 data.

Rodger, S. (2002). Introducing computer science through animation and virtual worlds

ACM SIGCSE Bulletin, 34(1), 186-190.

Rodger, S., Hayes, J., Lezin, G. Qin, H., Nelson, D. ,Tucker, R., & Lopez, M. et al.

(2009). Engaging middle school teachers and students with Alice in a diverse set

of subjects. ACM SIGCSE Bulletin, 41(1), 271-275.

Roussou, M. (2004). Learning by doing and learning through play: an exploration of

interactivity in virtual environments for children. Computers in Entertainment,

2(1), 10-20.

182

Ruehr, F. (2008). Tips for teaching types and functions. In International Conference on

Functional Programming: Proceedings of the 2008 international workshop on

Functional and declarative programming in education (pp. 79-90). New York:

ACM.

Scott, J. (1987). Training adult learners - a new face in end users. In Proceedings of the

15th annual ACM SIGUCCS conference on User Services (pp. 54-55). New

York: ACM.

Seidman, R. (2009). Alice first: 3D interactive game programming. In Annual Joint

Conference Integrating Technology into Computer Science Education

Proceedings of the 14th annual ACM SIGCSE conference on Innovation and

 technology in computer science education (pp. 345-345). New York: ACM.

Seymour, E. & Hewitt, N. (1997). Talking about leaving. Boulder: Westview Press.

Soloway, E. & Spohrer, J. (1989). Studying the Novice Programmer. Lawrence

Erlbaum Associates, Hillsdale, New Jersey.

Sung, K., & Shirley, P. (2004). Algorithm analysis for returning adult students.

Journal of Computing Sciences in Colleges, 20(2), 62-69.

Sykes, E. (2007). Determining the effectiveness of the 3D Alice programming

environment at the computer science I level. Journal of Educational Computing

 Research, 36(2), 223-244.

Tiobe (2009). Retrieved April 2, 2009 from

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html/

University data (2009). Retrieved January 21, 2009 from

 http://www.umuc.edu/ip/ataglance.shtml

Venit, S. & Drake, E. (2009). Prelude to Programming Concepts & Design. Addison-

Wesley, Boston, Massachusetts.

http://www.umuc.edu/ip/ataglance.shtml

183

Vesgo, J. (2007). Continued drop in CS bachelor's degree production and enrollments as

the number of new majors stabilizes. Computing Research News, 19(2).

Widnall, S . E . (1988). AAAS presidential lecture:

Voices from the pipeline. Science, 241,1740-1745.

Winslow, L. (1996). Programming pedagogy: a psychological overview. ACM SIGCSE

 Bulletin , 28(3),17-22.

Xing, C. (2008). Enhancing the learning and teaching of functions through programming

in ML. Journal of Computing Sciences in Colleges, 23(4), 97-104.

184

Curriculum Vita

NAME: James A. Robertson

PERMANENT ADDRESS: Severna Park, MD, 21146

PROGRAM OF STUDY: Instructional Technology

DEGREE AND DATE TO BE CONFERRED: Doctor of Education, May 2010

Collegiate Institutions Attended Dates Degree Date of Degree

Towson University 2003-2010 Ed.D. May, 2010

Major: Instructional Technology

University of Dayton 1990-1995 M.S. May, 1995

Major: Electro-Optical Engineering

University of Houston-Clear Lake 1985-1989 B.S. May, 1989

Major: Electro-Optics

Salisbury University 1981-1983 B.S. May, 1983

Major: Medical Technology

Professional Publications:

Sadera, W, Robertson, J., Song, L., & Midon, N. (2009). Success in online learning and

the role of community. Journal of Online Learning and Teaching, 5(2), 1-8.

Bennett, K. & Robertson, J. (2009). Multimodal signature file formats and performance

in computational environments. Proceedings of the SPIE, 7324 (2009), 1-12.

Professional Positions held:

University of Maryland University College, Adelphi, MD

Academic Director and Collegiate Faculty April 2001 - present

Oracle Corporation, Arlington, VA

Principal Consultant Jan 2000 – April 2001

IIT Research Institute, Lanham, MD

 Research Engineer June 1989 – Jan 2000

University of Texas Medical Branch, Galveston, TX

 Medical Technologist May 1983- June 1989

