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Annual Report to ARO by Dr. J. C. Chen, Dept.of EE, UMBC

Both GaN and ZnSe based materials are wide-band-gap compound semiconductors ideally
suited for devices in the visible-to-ultraviolet region of the spectrum. Laser diodes and LEDs have
been successfully demonstrated using both materials. Due to the rapid and more promising
development of GaN recently [1], we also spent a great deal of effect in GaN besides in ZnSe.

In order to grow GaN, we have to modify our MOCVD system. Since the growth
temperature of GaN is much hi gher than that of ZnSe, we have to use a RF heater instead of an IR
heater to reach more than 10000 C. A 7.5 KW RF heater has been installed and tested up to
1200C. In addition, we also obtained the “highest purity” ammonia from Solktronic Chemicals,
Inc., (SCI, a major supplier of hi gh-purity semiconductor industry gas). In the last few years, SCI
has spent tremendous efforts in improving the purity of ammonia. Recently, the so-called “blue-
ammonia” was purified by a special process and tested with all impurities less than 50 ppb. It has

been shown that the impurities (especially oxygen and moisture) in ammonia is one of the major
obstacles in the growth of high-purity GaN [2]. Through the long term coorporation between SCI
and UMBC, SCI agreed to p.rovide the first blue-ammonia to us free of charge. The study using
blue-ammonia is now underwéy. We believe that some breakthrough can be achieved soon by
using high growth temperatures and hi gh-purity ammonia.

Moreover, we have performed several characterization techniques, such as DLTS, TSC,
photocurrent spectroscopy, and X-ray, on our previous GaN samples to understand its defect
nature. Some important results are listed below and some of them have been published or
submitted to Applied Physics Letters or other journals. We have received a lot of requsts of our
reprints from companies and research institutes worldwide.

Key discovery:
The major results of last year’s work in our laboratory can be summarized as follows.

(1) We are the first group to observe the transferred-electron effect in GaN [3]. Figure 1 shows a
current-electric field (I-E) curve of GaN using a metal-semiconductor-metal (MSM) structure. It
clearly shows a negative differential resistivity (NDR) in GaN under high electric field. The
threshold electrical field was found to be around 1.91x105 V/em. The NDR of GaN can be used in
the application of high-temperature Gunn diodes.

(2) In collaboration with NASA and the Applied Physics Lab. of JHU,we have performed a
systematic studies on GaN M-S-M ultraviolet detectors made f rom GaN grown by MOCVD under




Annual Report of Scientific Accomplishments . _

by Dr. J. C. Chen, Dept.of EE, Univ. of Maryland Baltimore Campus (UMBC)

Both GaN and ZnSe based materials are wide-band-gap compound semiconductors ideally
suited for devices in the visible-to-ultraviolet region of the spectrum. Laser diodes and LEDs have
been successfully demonstrated using both materials. Due to the rapid and more promising
development of GaN recently [1], we also spent a great deal of effect in GaN besides in ZnSe.

In order to grow GaN, we have to modify our MOCVD system. Since the growth
temperature of GaN is much higher than that of ZnSe, we have to use a RF heater instead of an IR
heater to reach more than 10000 C. A 7.5 KW RF heater has been installed and tested up to
1200C. In addition, we also obtained the “highest purity” ammonia from Solktronic Chemicals,
Inc., (SCI, a major supplier of high-purity semiconductor industry gas). In the last few years, SCI
has spent tremendous efforts in improving the purity of ammonia. Recently, the so-called “blue-
ammonia” was purified by a special process and tested with all impurities less than 50 ppb. It has
been shown that the impurities (especially oxygen and moisture) in ammonia is one of the major
obstacles in the growth of high-purity GaN [2]. Through the long term corporation between SCI
and UMBC, SCI agreed to provide the first blue-ammonia to us free of charge. The study using
blue-ammonia is now underway. We believe that some breakthrough can be achieved soon by
using high growth temperatures and high-purity ammonia.

Moreover, we have performed several characterization techniques, such as DLTS, TSC,
photocurrent spectroscopy, and x-ray, on our previous GaN samples to understand its defect
nature. Some important results are listed below and some of them have been published or
submitted to Applied Physics Letters or other journals. We have received a lot of requsts of our

reprints from companies and research institutes worldwide.

Key discovery:

The major results of last year’s work in our laboratory can be summarized as follows.

(1) We are the first group to observe the transferred-electron effect in GaN [3]. Figure 1 shows a
current-electric field (I-E) curve of GaN using a metal-semiconductor-metal (MSM) structure. It
clearly shows a negative differential resistivity (NDR) in GaN under high electric field. The
threshold electrical field was found to be around 1.91x105 V/cm. The NDR of GaN can be used in
the application of high-temperature Gunn diodes.

(2) In collaboration with NASA and the Applied Physics Lab. of JHU,we have performed a
systematic studies on GaN M-S-M ultraviolet detectors made from GaN grown by MOCVD under



different NH3 flow rates [4]. We have found thzt.2.0.62-¢Y deep-trap which was attributed to
gallium antisites or nitrogen vacancy-related defects was responsible for the low responsivity and
the slow response time in GaN UV detectors (figure 2). In addition, this 0.62 eV level can be
effectively reduced by increasing the NH3 flow rate during the MOCVD growth. As a result, a

high-performance UV detector was fabricated on GaN of the lowest 0.62 eV trap. This detector
has a responsivity as high as 3200 A/W under 5 V at a wavelength of 365 nm and improved

response times in the sub-milliseconds range.

(3) The defects in GaN characterized by thermally stimulated current (TSC) spectroscopy and
photocurrent spectroscopy also show interesting behavior [5].

(4) Besides the study of GaN, several studies related to other widel-gap materials were also
performed [6-7]. -

Summary and future plan:

We have achieved some in-depth understanding of the defect formation on GaN using
various characterization techniques. We also upgraded our MOCVD system and source materials
during the period of this project. Based on these achievements, we will continue to optimize our

GaN growth and doping study in the next step.
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Figure 2. The measured resistivity, concentration of trap T5 and the
response time as a function of NHj flow rate in GaN.
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