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ABSTRACT. This is the second part of a two-part study aimed at establishing the mechanics of a cracked cantilever 
beam subjected to a transverse force applied at its free end. Following the development of a four-beam model in Part A, 
in this Part B of a two Part series of papers, a two dimensional (2D) Finite Element (FE) model is developed and use to 
obtain independent numerical estimates of the cross sectional resultants dominating the beams above and below the 
fully embedded horizontal crack in a cantilever beam subjected to an end transverse force. The FE model is also used to 
obtain numerical estimates of the required deformation of the cantilever free as needed to establish the effective of the 
transition regions adjacent to the crack tips. The FE model results are then compared to the four-beam model 
predictions. The four-beam model predictions are found to be in excellent agreement with their FE counterparts. 
Related discussion is presented wherein the relevance of the model developed in Part A to damage and crack detection 
as well as to fundamental fracture mechanics studies on homogeneous and heterogeneous layer systems containing 
delamination cracks is addressed.  

 

Introduction. The background and motivation of this study are presented in Part A [1] of this two-
part series of papers. As discussed in [1], the development of a simple but robust mechanics of 
materials model for the cracked system considered in this study is motivated by the need to develop 
robust damage and crack detection [2-19] diagnostic tools and capabilities that are needed in 
assessing the structural integrity of components and structures. While ample research has been 
undertaken in the above areas, simple to use and implement models and methods are still required 
for the timely detection of both diffused damage as well as the presence of cracks in such systems. 
In light of the above, this study is expected to contribute in the development of such tools that are 
based both on physics based models as well as on non-model based methods primarily based on 
damage and crack induced free surface curvature changes as discussed elsewhere [20-23]. The 
focus of this Part B of the two-part series of papers is to conduct parametric studies using the model 
develop in [1] while also developing independent 2D FE model predictions needed to calibrate the 
model developed in [1] and present comparisons between the four-beam model predictions and the 
2D FE estimates. 

In Part A [1] of this two-part series of papers, a four-beam model was developed capable of 
capturing the load transfer mechanics through the near-tip Transition regions for a cantilever beam 
containing a horizontal crack and subjected to an end loading force. As discussed above, the model 
                                                 

6 This research was partially supported through a University of Maryland, Baltimore County DRIF award and 

Graduate Assistantship in the Department of Mechanical Engineering. 
7 Professor Charalambides would like to acknowledge many useful discussions with Mechanical Engineering 

Professor Weidong Zhu and Professor Emeritus Christian von Kerczek. 



Mechanics, Materials Science & Engineering, July 2016  ISSN 2412-5954 
 

MMSE Journal. Open Access www.mmse.xyz 
159 

developed in [1] will be employed in this study in obtaining cross-sectional resultants dominating 
the beam area in the crack region while also using the model findings to better understand the load 
transfer mechanics through the same crack region for the system under consideration. In doing so, a 
summary of the key findings of the four-beam model developed in [1] shall be presented next. 

Key findings of the four-beam model. The four-beam model reported in [1] was developed for the 
cracked cantilever beam shown in Fig. 1a. Overall, the beam has a length , height  while 
containing a horizontal sharp crack of length  located at position  from the fixed end at 
depth  from the top surface. Consistent with the four-beam model developed in [1], the above 
domain was divided into four sub-domains, each forming a beam as shown in Fig. 1a labeled Beam-
1, Beam-2, Beam-3 and Beam-4. Transition regions 1 through 4 were introduced, the effective 
deformation of which was assumed to be captured by rotary springs placed at Beam Interfaces 1 
through 4 shown in Figs. 1 and 2. The model developed in [1] employed the following beam 
deformation findings established via the method of finite elements in [18]: 

(a) The free surface and neutral axis curvatures of the cracked beam at the crack center location 
match the curvature of a healthy beam, i.e., an identical beam without a crack under an end force 
condition;  

(b) The neutral axis rotations (slope) of the cracked beam in the region between the applied load 
and the nearest crack tip matches the corresponding slope of the healthy beam.  

 

 
Fig. 1. Schematics used in the development of the analytical model capturing the mechanics of the 
beams above and below the crack, i.e., Beams 2 and 3 shown above. (a) The cracked beam with 
Beams 2 and 3 highlighted along with Interfaces 1-4. (b) A section through the center of the crack 

at their corresponding Interfaces 1-4. 

 

Based on the finding (a) above, curvature matching of Beams 2 and 3, i.e., the beams above and 
below the horizontal crack also referred to as the top and bottom beams respectively, with that of 
the healthy beam yields the following beam resultant moment equations: 

 

 (1) 



Mechanics, Materials Science & Engineering, July 2016  ISSN 2412-5954 
 

MMSE Journal. Open Access www.mmse.xyz 
160 

 

where  is the moment resultant at t
Beam-2; 

 -3 as shown in Fig. 1b; 

 is the resultant bending moment transferred through the cross section at the crack center 
location in the healthy beam, i.e., an identically loaded and supported beam without a crack.  

 

angle of rotation and deflection compatibility conditions from reference section A to reference 
section B. Also shown are Transition Regions 1-4. 

 

For a downward load  the bending moment at the crack center location in the healthy beam is 
. The quantities  are the second moments of inertia for the top, bottom, 

and healthy beams respectively. With the bending moments acting in the top and bottom beams 
known, an expression for the axial forces  and is then obtained through a global moment 
equilibrium enforced over the right half of the beam as discussed in [1] (see Fig. 1), such that, 

 

  (2) 

 

As shown in Fig. 1, at the crack center cross sections, Beam-2, i.e., the beam above the crack plane, 
is subjected to an axial force resultant , shear force resultant  and bending moment resultant 

. Similarly, Beam-3 also referred to in this study as the bottom beam denoted by a superscript 
 or subscript , is subjected to force and moment resultants  ,  and respectively. 

Meanwhile, Section/Interface 1 which is the left end of the top beam is subjected to the force and 
moment resultants N1, V1 and M1 whereas the right end of the same beam is subjected to N2, V2 and 
M2 at Interface 2. Similarly, the bottom beam or Beam-3 is subjected to end forces and moments N3, 
V3 and M3 at Section/Interface 3 and N4, V4 and M4 at Section 4 as shown in Fig. 1c. 

As presented in [1], beam deflection and beam slope compatibility conditions along with the finding 
(b) above, (i.e., slope matching of the cracked and healthy beams at the end of the Transition region 
to the right of the right crack tip), yield the following shear force equation, 
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 (3) 

 

where  is the length of the transition regions (see Fig. 2); 

 is the crack length.  

Also in the above equation,  represents the second moment of inertia,  is the related cross 
sectional area,  is the modulus of elasticity,  is the shear modulus and  is the Timoshenko shear 
constant [17]. The subscripts  and  denote quantities for the beams above (top beam or 
Beam-2) and below (bottom beam or Beam-3) the crack. As discussed in [1], it is worth noting that 
when ignoring the Timoshenko shear effects, i.e., letting  then the following simple 
form for the shear force ratio which becomes independent of the transition region length 
proportionality constant , is obtained, i.e., 

 

  (4) 

 

It is also noteworthy to observe for systems in which the crack is on the beam neutral axis (i.e., 

21 hh ), both Eqns. (3) and (4) predict that the shear force ration between the shear resultants in the 
top and bottom beam is  and thus from global equilibrium it can be shown that 

 As will be discussed later in this study, shear force predictions obtained by the 
present model were found to compare very well with 2D finite element results. 

In [1], the transition region length proportionality constant  is obtained by matching the deflection 
at the free end of the cracked beam predicted by the four-beam model to its counterpart obtained 
independently using a 2D FE model. This consistency condition gives rise to a non-linear equation 
in  which can then be solved for admissible values of . The above consistency equation is fully 
derived in [1] and is summarized below. 
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Fig. 3. A schematics showing (a) the original cracked beam with its un-deformed neutral axis and 
(b) the deformed neutral axis configuration of the four-beam model. The relationship between the 
deflections and rotations at key reference points of the beam are also shown in (b). The 
deformations and rotations between A and B include the transition region effects captured by the 
rotary spring and Timoshenko shear effects. 

 

With the aid of the schematic shown in Fig. 3 and as presented in [1], the following consistency 
equation applies,  

 

 (5) 

 

where  is the beam deflection at its free end at D as shown in Fig. 3; 

 is its 2D FE counterpart.  

In the above equation, the  symbol denotes non-dimensional values with all length quantities 
normalized with respect to the beam length  and  is used to convert the beam 

plane stress to its plane strain equivalent solution. Also in the above consistency equation,  is 
the absolute value of the deflection of the cracked beam at its free end obtained through non-
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dimensional FE simulations as will be discussed later in the study. Also in Eqn. (5), 
,  and ,  and 

. Furthermore,  can be expressed in terms of the load  and the shear force ratio 
 given by Eqn. (3). In Eqn. (5), the constants  are the Timoshenko shear constants for 

the healthy beam and Beam-2 above the crack respectively. Thus using the above equations and 
after normalizing each term with respect to a characteristic deflection , the following 
consistency condition in which the only unknown is the transition region length constant  is 
obtained, 

 

 (6) 

 

where the equation coefficients are functions of either explicitly as shown below or implicitly 
through the beam lengths and are given by, 

 

 

 

 

 

 (7) 

 

where  is a subset of Eqn. (3) and is given by, 

 

 (8) 
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In the above equation, the finite element term is divided by the factor as needed to match 
the beam plane stress and the 2D FE plane strain solutions. The above consistency equation in  
will be solved for several cases wherein the horizontal crack is placed at different locations along 
the length and height of the beam. However, in order to carry out this task, finite element solutions 
for the non-dimensional deflection of the beam at the free end will need to be obtained. Thus, a 
brief description of the finite element models used in these simulations shall be discussed next. 

Finite Element modeling of a beam with a horizontal crack. Broad finite element studies of a 
cantilever beam containing a fully embedded sharp crack and subjected to end transverse loading 
and bending moment have been carried out as reported in [18,19]. In those studies, cracks of 
varying length and orientation were systematically placed at various geometrically admissible 
locations within the beam. The near tip mechanics both at the left and right crack tips were 
established while neutral axis, as well as top and bottom surface deflections, slopes and curvatures 
were also established. The finite element results reported in this study compliment those reported in 
[18] and [19] in that they help in the development of a better understanding of the load transfer 
mechanism across the crack region in the areas above and below the crack as well as within the 
transition regions near the crack tip regions. For completeness, specifics of the finite element 
modeling used in deriving the results reported in this study shall be presented next. 

As shown in Fig. 4, a 2D rectangular domain of length  and height  with a horizontal sharp 
crack of length  with its center located at position  from the left fixed end and at depth  
from the top surface was discretized using 4-noded isoparametric elements under plane strain 
conditions. A generalized mesh generator developed in [18] was used. Care was given to the 
meshing of the near- minimum of 16 rings of 
elements all placed within a small region as needed to capture sufficient details of the near-tip 
singular fields. A vertical transverse load  was applied at the top left corner of the mesh as shown 
in Fig. 4. The finite element simulations were carried out in a non-dimensional environment as 
discussed in [18,19], where the length of the beam  was taken to be the characteristic length, its 
elastic modulus was taken to be the characteristic m  and the 
intensity of the applied load  was taken to be the characteristic line force. Fig. 4 shows five FE 
models in which a crack of length  is shown to be placed at  and at various 

depths as measured by the parameter . For example, the top FE model corresponds to 
 whereas the bottom mesh represents a beam containing a shallow crack relative to the 

top surface with  All FE simulations reported in this study were carried out for a beam 
with an  aspect ratio.  

As a means of comparing the four-beam model predictions to the 2D finite element results, the 
normalized axial force resultants and  along with the shear counterparts and 

 as well as the equivalent bending moment acting at the mid-plane of the regions above and 
below the crack surface,  and  respectively were calculated using finite element 
stress estimates. In doing so, finite element stresses were extracted at the Gauss integration stations 
nearest to the vertical plane passing through the crack center using elements from both sites of the 
above vertical plane. Finite element stress estimates from adjacent stations were then averaged and 
were then numerically integrated along the height of the individual beam (Beams 2 and 3 above the 
below the crack plane respectively as shown in Fig. 2) as needed to obtain the stress resultants 
reported herein. 
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In addition to obtaining finite element estimates of the force and moment resultants, the deflection 
at the free end of the cracked beam for each model was also extracted. Those results were reported 
in [18]. As discussed above, an independent finite element estimate of the beam deflection is 
needed in calibrating the four-beam model developed in this study. Furthermore, deflection, slope 
and curvature results along the top free surface of a cracked beam reported in [18] provide evidence 
of the two critical observations employed in the model development. The above finite element 
results along with the model predictions shall be presented next. 

Results. Cross sectional force and moment resultants as well as effective transition region length 
predictions obtained using the four-beam model are reported in Figs. 5 through 8 where their finite 
element counterparts are also reported.  

For example, Fig. 5 shows the normalized moment resultants and  as a function of 
the normalized crack depth  in the 0.25 to 0.75 range. The analytical predictions obtained 
through Eqn. (3) are shown using solid lines whereas the finite element results are shown using 
discrete symbols. Three sets of data obtained for are reported. It may be of 
importance to recall that the model developed in [1] and summarized in this study is based on the 
fundamental observation of matching curvatures at the cross sections located at the crack center. 
That observation led to the development of the moment equation given by Eqn. (1) which was used 
to obtain the analytical moment predictions reported in Fig. 5. As shown, the analytically predicted 
moment resultants are in excellent agreement with those obtained using finite elements. This 
finding validates the fundamental assumption made in the model development and further 
reinforces the notion that simple but robust models can be developed in understanding the 
seemingly complex behavior of cracked structures. As expected, the beams above and below the 
crack are shown to experience equal amounts of bending moments predicted to be of the 
bending moment experienced by the healthy beam at the crack center location when  
while a higher portion of the moment is predicted to be transferred through the thicker of the two 
beams when  
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Fig. 4. Two dimensional finite element models used in extracting force and moment resultants as 
well as the free-end deflections used in model calibration and comparison studies reported in Figs. 
5-10 below. As shown, the fixed conditions were imposed on the left edge of the beam whereas a 
downward transverse load  was applied at the top right corner of each mesh. The various models 
shown represent beams containing horizontal cracks of length  at various depths, with a 
beam aspect ratio h/L=0.1 as reported in [18]. 
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Fig. 5. Normalized bending moment resultants 
plotted against the crack depth ratio  

the crack region. The discrete points were 
obtained via 2D finite element simulations using 
model similar to those presented in Fig. 4. The 
solid lines were obtained using Eqn. (1). The 
results correspond to a downward load . 
Results for three different crack center 
locations, i.e.,  are 
presented. The curves with the upward trend 
correspond to the moment  in the bottom 
beam, whereas the results with the downward 
trend correspond to the moment Mt in the top 
beam. 

Fig. 6. Normalized axial force resultants 
plotted against the crack depth ratio  

the crack region. The discrete points represent 
2D finite element predictions whereas the solid 
lines were obtained using Eqn. (2). The results 
correspond to a downward load 
beam is predicted to be in tension while the 

compression with a force of equal magnitude 
as that of the top beam. The curves with 
negative values correspond to the axial force 
Nb in the bottom beam, whereas the results with 
the positive values correspond to the axial 
force in the top beam. 

 

Fig. 6 shows the normalized axial force resultants and  as a function of the 
normalized crack depth  again in the 0.25 to 0.75 range. The analytical predictions obtained 
through Eqn. (5) are shown using solid lines whereas the finite element results are shown using 
discrete symbols. As before, three sets of data obtained for are reported. The 

top set of curves correspond to the axial force acting at the mid-plane of Beam-2 above the 
crack plane. The bottom set of curves correspond to the normalized resultant  acting at the 
mid-plane of Beam-3 below the crack plane. A remarkable agreement is shown to exist between the 
axial force predicted through Eqn. (2) and the finite element results for all instances considered. As 
expected, for a downward load , Beam-2 above the crack plane is subjected to a tensile force 
whose magnitude scales with the distance of the crack center from the applied load  while 
inversely proportional to the beam height  consistent with Eqn. (5). Again, as expected, an equal 
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and opposite axial force is applied at the mid-plane of Beam-3 below the crack plane thus forming a 
couple with its counterpart acting in Beam-2 above the crack plane. When considering the results 
reported in Figs. 5 and 6, one recognizes that in the crack region the bending moment transfer 
through the cracked beam region takes place primarily through a couple with a pair of tensile and 
compressive forces acting at the mid-plane of the beams above and below the crack plane. It may 
also be important to note that once the resultant forces and moment Nt and Mt are known, their 
counterparts in the lower beam are established, through Eqns. (1) and (2). 

The shear force resultants predicted both using the model developed in this study and through the 
method of finite elements are presented in Fig. 7. It is important to note that in order to establish the 
shear forces acting in Beams 2 and 3 respectively, one needs to solve for the transition 
region length parameter  first using the consistency condition given by Eqn. (5). Once  is 
established, then the shear force ratio can be obtained through Eqn. (3) and then use global force 
equilibrium as needed to obtain the individual shear forces . So, for each case considered, 
the corresponding value for the deflection at the free end of the cracked beam was used to solve a 
non-linear equation in  given by Eqn. (6). For the systems considered, the values obtained with 
the aid of Eqn. (6) are reported in Fig. 8. However, the  trends will be discussed later on in this 
section while now focusing on the shear resultants shown in Fig. 7. 

The shear force profiles plotted against the crack depth ratio  and predicted using the analytical 
model are shown in solid blue lines in Fig. 7. The finite element results are shown using the discrete 
symbols as marked on the same figure. As shown, the model predictions and finite element results 
exhibit the same overall trends. The results appear to be in excellent agreement for cracks located at 
or close to the mid-plane of the healthy beam. However, the analytical predictions appear to be 
slightly larger when compared to the finite element predictions for the shear force in the thicker 
beam while slightly underestimating its FE counterpart in the thinner of the two beams when 

. Maximum deviation of less than 8% in the thicker beams appears for systems in which 
or . It may be of importance to note that the  and related shear 

force resultant results reported in this study were obtained using a Timoshenko constant 
 for the top, bottom and healthy beam respectively consistent with reported 

values for beams with a rectangular cross section [24, 25].  

The  curves obtained by solving Eqn. (6) and reported in [18] are plotted in Fig. 8. Some 
interesting observations can be made. For example, the normalized transition region length 
parameter  is predicted to increase with the normalized crack depth , acquiring a maximum 
at A symmetric profile is predicted for cracks located at equal distance above or below 
the mid-plane of the healthy beam. The results also suggest that the transition region length does 
depend on the location of the crack center along the axis of the beam. Perhaps somewhat counter-
intuitive is the model prediction that a shorter transition region is predicted for cracks located close 
to the fixed end of the beam as shown by the  and  curves. It may also be 

important to note that for the case of  although for a slightly higher beam aspect ratio, 
i.e., , available finite element results reported in [18] suggest that the transition region 
length is approximately equal to  which suggest a value for . As reported in 
[18] and shown in Fig. 8, the model prediction for the case of  and  is 

 which is remarkably close to the value obtained through finite elements. The above 
results and general findings of this study are critically analyzed and discussed in the next section. 
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In order to further understand the transition region mechanics, profiles of the normalized bending 
moment transferred through the top portion of the beam along with the % difference between the 

 9. 

 

  
Fig. 7. Normalized shear force resultants plotted 
against the crack depth ratio h1/h predicted for the 

The discrete points represent 2D finite element 
results whereas the solid lines were obtained via 
Eqn. (3) and global force equilibrium. Both the 
finite element and analytical model simulations 
reproduced the same profiles for all crack center 
locations considered indicating that the shear 
forces depend only on the normalized crack depth 
h1/h. 

Fig. 8. The non-dimensional transition region 
length parameter plotted against the normalized 
crack depth h1/h. Results obtained through the 
four-beam model for three different crack 
locations, i.e., xc/L=0.3, 0.4 and 0.5 are presented. 
The discrete symbols represent the cases for which 
finite element deflections at the free end of the 
beam were used to solve for the crack length 
parameter  
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extracted from the FE models discussed in this study. Different curves correspond to beams with 
cracks placed at different  depths as indicated in the figure. (b) Profiles of the % difference of 

 

The results reported in Fig. 9a were extracted from the 2D FE models discussed earlier in this work. 
In obtaining these results, the normal stresses to cross sections along the path  indicated in the 
figure were first extracted from the FE model. Their contribution to the bending moment with 
respect to the neutral axis of the top beam was then integrated to obtain the moment resultant 
carried by the top beam, i.e., the beam above the embedded horizontal crack. A % difference 

for each of the models considered in this study. The latter results are reported in Fig. 9b. In Fig. 9a, 

to observe that the presence of the crack appears to cause a local change in the bending moment, 
and thus the beam curvature in the vicinity of the crack. The predicted moment change appears to 
extend at the most extreme case to approximately  (see Fig. 9a and 9b respectively) on 
either side of the crack. Similar results related to the axial and shear force profiles (see Fig. 10) 
suggest that the changes in the associate axial and shear force resultants may persist over somewhat 
greater extent to approximately  as shown in Fig. 10. The latter results would indeed be 
consistent with model transition region estimates reported herein. As shown, in Fig. 10, finite 
element profiles of the normalized axial force  and shear force , transmitted through the 
top portion (i.e., beam above the crack plane) of the cracked beam are reported. Like in Fig. 9, the 
force resultants reported in Fig. 10 were extracted from FE models by integrating the normal and 
shear stresses acting on cross sections along the designated path . The different curves correspond 
to beam systems containing a horizontal crack at different depths h1/h as indicated in the figure. It 
may be of interest to observe that when comparing the profiles reported in Figs. 9 and 10, the shear 
force resultant appears to exhibit larger transition profiles when compared to either the bending 
moment or the axial force profiles. 

 

 
Fig. 10. Finite element profiles of the normalized axial force (a) and shear force (b), transmitted 
through the top portion (i.e., beam above the crack plane) of the cracked beam. The different curves 
correspond to beam systems containing a horizontal crack at different depths h1 h as indicated in 
the figure. 
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The results reported in Fig. 9, may also have profound implications on the development of non-
model crack detection methods [20-23], since, the predicted crack induced changes in the bending 

 

Discussion. The four-beam mechanics of materials model developed in [1] is founded on two 
fundamental observations made possible through the method of finite elements, i.e., (a) the 
matching of the curvatures of the beams above and below the crack to the curvature of the healthy 
beam at the crack center location, and (b) the matching of the beam slope of the crack beam to that 
of the healthy beam at the end of the transition region closest to the applied loading. While the 
matching of the beam slopes has been discussed as part of the transition region load transfer and 
deformation mechanism in an earlier section of this study, no such consideration has thus far been 

consider the mechanics of the beams above and below the crack plane, i.e., Beams 2 and 3 
respectively. 

As suggested both by the model and finite elements, the cross sectional force and moment resultants 
acting at the mid-plane of Beams 2 and 3 at the crack center cross section are fixed and depend on 
the bending moment  acting at the crack center location in the healthy beam as 
well as on the beam height  and crack depth h1/h. As discussed above, the shear forces also may 
depend on the mechanics of the transition region. Regardless, once those quantities are established, 
it is of importance to recognize that both the shear and axial force resultants acting in Beams 2 and 
3 remain constant throughout the crack region. On the other hand, the bending moment would vary 
linearly consistent as discussed in [1]. Given the fact that no net axial force is present in the healthy 
beam while the shear force is also constant under the loading considered in this study, moment 
equilibrium at the crack tip cross section would suggest that the moment  acting at Interface 1 
would not be equal to its healthy beam counterpart and thus would exhibit a discontinuity through a 
finite jump. At the same time, similar arguments made for the cross section at the right crack tip, 
i.e., Interface 2 would lead to the conclusion that a similar moment discontinuity between  and 
its healthy beam counterpart of an equal and opposite amount exist at the right crack tip at Interface 
2. In light of the linear moment profile within Beams 2 and 3, the moments dominating the latter 
beams will have to intersect with their healthy beam counterparts at the crack center location. Since 
these moments are given in terms of the moment of inertia ratio as expressed in Eqn. (1), it can be 
concluded that at least for homogeneous systems the moment matching is equivalent to the 
matching of curvatures of Beams 2 and 3 in the cracked region, to the curvature of the healthy beam 
at the crack center location. With the above in mind, one could make similar arguments in 
understanding the mechanics of cracked beams under other type of loadings or even heterogeneous 
biomaterial or multilayered beams including composite laminates. 

Another issue of relevance for discussion is the introduction of a transition region in the model 
development along with the predicted trends in the normalized transition region length parameter . 
The transition regions were introduced in this beam model development as a means of accounting 
for the complex load transfer and deformation mechanics in the vicinity of the singular fields in the 
crack tip region. As discussed earlier, evidence from finite element studies do support the existence 
of such transition regions [18]. It is encouraging to see that the model predictions, at least in the 

121 hh  case, are very close to results obtained using 2D finite elements. Additional finite element 
results may in fact be needed in establishing higher confidence in the  model predictions over a 
wide range of rations and crack center locations . However, such broad comparisons are 
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beyond the scope of this study and are expected to be reported in future works. For relatively long 
cracks, i.e., one could explain the transition region dependency on the crack depth 
(see Fig. 8) as being driven by the characteristic length ratio . However, it is not quite obvious, 
at least to the authors, why smaller transition region lengths are predicted for cracks located closer 
to the fixed end. One possible explanation is the fact that such cracks are subjected to higher 
bending moments at the crack center location which results in higher axial force and bending 
moments acting at the crack tip edge of the transition region. In this model development, the 
mechanics of the transition region are captured through rotary spring and Timoshenko shear 
equations consistent with Eqn. (13). The important aspect of this modeling approach is that the 
rotations resulting from the deformation mechanics in the transition region are taken to be 
proportional to the respective moments which increase with decreasing . 

Thus, for a fixed  and otherwise similar cracked beam geometries, the current model would 
yield larger rotational angles in the transition region for cracks located closer to the fixed end. Thus, 
as result of rigid body motions, smaller transition region lengths may be required to match the free 
end deflections. This finding is possibly an artifact of the model used. An improved model may in 
fact be needed wherein the transition region rotations are set to be related to the moment change in 
the crack region rather than the total moments acting at each of the four transition region interfaces. 

Although the  predictions may need to be better understood through further studies, the same 
model has provided useful insights regarding both the global mechanics of the cracked beam as well 
as the local transition region and crack region mechanics. It is of interest to know that a predictive 
model now exists in calculating the force and moment resultants acting at 
Interfaces 1-4. With the above resultants and those acting on the opposite vertical edge of the 
transition region known, one can proceed to develop a better understanding of the transition fields 
and their local and global mechanical effects. For example, when focusing on the bottom edge of 
the transition region, one could start developing useful qualitative arguments regarding the profiles 
of the normal and shear stress and how they can be related to the singular crack tip fields. A simple 
schematic showing such potential profiles is presented in Fig. 11. As shown, and due to the fact that 
the axial force acting on the left edge of the referenced transition region is not equal to that acting 
on the right edge, i.e., , force equilibrium in the -direction would suggest that a shear 
stress must exist on the bottom edge of the transition region which is the crack plane ahead of the 
left crack tip. The shear stress induced by the transverse shear force  on the horizontal plane 
ahead of the left crack tip is known to equilibrate the axial force difference acting at the left and 
right edges of the transition region in the healthy beam. Since  is not equal to its counterpart 
acting in the healthy beam, an additional shear stress must exist on the crack plane ahead of the left 
crack tip as needed for global equilibrium. Since no change in the transverse force acting in the 
beam takes place, this added shear must be induced by the mode  [26,27] singular stress field 
dominating the crack tip region since mode  induces no shear on the crack plane. This observation 
provides useful insights in how one can integrate the macro-mechanics of the crack region to the 
singular fracture fields induced in the crack-tip regions. For example, force equilibrium in the -
direction would take the form, 

 

 (9) 

 



Mechanics, Materials Science & Engineering, July 2016  ISSN 2412-5954 
 

MMSE Journal. Open Access www.mmse.xyz 
173 

where  is the change of the axial force between Sections A and 1 in the healthy beam (see 
Fig. 2); 

 is its counterpart in the cracked beam; 

 is the beam width; 

is the change in the shear stress on the crack plane ahead of the crack tip required for 
equilibrium.  

Qualitative arguments can lead to the development of viable stress profiles. For example, as shown 
in Fig. 11, the profile of xy in the transition region ahead of the crack tip should conform to the 
mode  driven shear stress close to the crack tip. At a critical distance from the crack tip, the stress 
profile must go through a stress transition region as needed to bridge the stress profile away from 
the crack tip to that close to the crack tip. While plausible transition stress profiles can be postulated 
for all stress components, the importance of this argument is to note that a relationship between the 
transition length  and the mode  and mode  stress intensity factors may exist and could be 
established through the structure of the transition fields. 

As discussed earlier in this study, another relevant observation is that the presence of even a slight 
mode  component would induce a tensile normal stress if  associated with crack tip 
opening, or compressive if  associated with crack surface contact as shown schematically in 
Fig. 11. The presence of such a stress close to the crack tip will need to be offset by an opposite 
stress resultant away from the crack tip in the transition region. Such a stress profile would then 
induce a net moment on the plane ahead of the crack tip in the transition region which ought to 
be counter-balanced by an equal and opposite moment on the vertical left edge of the transition 

transition region as predicted via finite elements and reported in [18]. Thus, the presence of such a 

measurement used in non-model damage detection methods [20-23].  
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Fig. 11. Schematics of potential transition region stress fields that are superimposed onto those of 
the healthy beam. These fields are shown to conform to the near-tip mixed mode fields near the 
crack tip region and to the macro-mechanical field differences sufficiently away from the crack tip. 
As shown, a change of moment is induced by the mode  component of the stress intensity 
factor on the crack plane ahead of the left crack tip. An equal and opposite moment change then 

moment and associated curvature profile at the start of the transition region as discussed in [1].  

 

Finally in this section, it may also be important to note that this work is expected to have broader 
impact in advancing damage detection studies as well as studies on the fracture mechanics of 
structures with fully embedded cracks. For example, the macro-mechanics of the cracked beam 
established via the current model yield valuable information regarding the predicted free surface 
curvatures along the length of the beam. Enabled by the findings of this work, curvature deviations 
from an otherwise smooth profile measured experimentally, could be used to diagnose the presence 
of crack damage in structures as discussed elsewhere. Meanwhile, the near-tip mechanics can now 
be more thoroughly explored using analytical techniques such as the compliance method or the -
integral approach [26] in establishing the near-tip energy release rates and associated mode  and 
mode  stress intensity factors. Such studies have the potential to substantially enhance our 
understanding of mixed mode [28-30] and predominately mode  fractures while guiding 
improved designs of composites and composite laminate systems [29].  

Summary. Informed by 2D finite element findings, a four-beam mechanics of materials model was 
developed in Part A [1] of this two-part series of papers. In this work, key findings of the four-beam 
model were first summarized. The development of related 2D FE models was then discussed and 
used to conduct parametric studies through which the cross sectional resultants acting in the beams 
above and below the crack were obtained. In addition, FE estimates of the cracked beam deflection 
at its free end were used to obtain the effective transition region length introduced in the 
development of the four beam model. Force and moment predictions were also obtained using the 
four-beam model which were then compared to their FE counterparts. The model and FE results 
were shown to be in excellent agreement over a wide range of crack location, i.e., depth from the 
top beam surface, and crack center location along the longitudinal axis of the beam. 

The reported results show that the four-beam model is capable of predicting the load transfer and 
deformation mechanics of a cantilever beam containing a fully embedded horizontal crack under the 
application of an end transverse force. Discussion on the limitations of the model as well as its 
potential impact on damage detection and fracture of structures with embedded cracks is also 
included in this work. 
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