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Hyperspectral imaging (HSI) technology has found success in a variety of applications; 

however, its use is often still limited due to size, weight and power (SWaP) constraints. 

In this dissertation, compressive sensing (CS) is proposed as an enabling technology to 

reduce the high spectral band count, through the creation of compressively-sensed 

bands (CSBs). A CS model based on the universality of random sensing is proposed 

for the analysis of hyperspectral classification in the compressed domain. Specifically, 

the utility of the support vector machine (SVM) in the compressed domain is evaluated 

through both mathematical analysis and empirical experimentation. This work shows 

that is indeed possible to achieve full band classification performance in the 

compressed domain. The experiments also demonstrate that the minimum number of 

CSBs is scene dependent, requiring additional algorithms to provide a full solution. 

Two supervised algorithms based on a feature selection framework are proposed for 



  

estimating the minimum lower bound on the required number of CSBs. The first 

algorithm is based on feature filtering techniques and the second algorithm is based on 

classifier wrapping. Finally, an unsupervised algorithm is presented, based on 

progressive band processing, that is able to adaptively determine the required number 

of CSBs in-situ. The contributions of this dissertation provide the fundamental 

foundation for compressed classification of hyperspectral images and identify several 

new opportunities for future research. 
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Nomenclature: 

§ Hyperspectral image (3D):     𝑹 ∈ 𝔑$%×$'×( 

§ Hyperspectral image (2D):     𝑹 ∈ 𝔑$)×( 

§ Number of pixels in the x dimension:    𝑁+ 

§ Number of pixels in the y dimension:    𝑁, 

§ Total number of pixels in the image:   𝑁- = 𝑁+ ∗ 𝑁, 

§ Number of spectral bands:    𝐿 

§ Hyperspectral band image:    𝑹1 ∈ 𝔑$%×$'  

§ Hyperspectral pixel vector:     𝐫 ∈ 𝔑(×3 

§ Hyperspectral pixel element:    𝑟 ∈ 𝔑3×3 

§ Sampling matrix:      𝚽 ∈ ℜ7×(  

§ Representation matrix:      𝚿 ∈ ℜ(×( 

§ Compressed measurement:     𝐲 ∈ 𝔑7×3 

§ Compressively-sensed band index   𝑚 ∈ {1,2,3,… 𝐿} 

§ Recovered pixel vector     𝐫BC ∈ 𝔑(×3 

§ Order of sparsity      𝑘 

§ Restricted isometry constant    𝛿F 

§ Class index      𝑝 ∈ {0,1,2,… , 𝑃} 

§ Number of samples in class p    𝑁J 

§ Pixel vectors in class p     𝑅J ∈ 𝔑(×$L  
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§ Class mean pixel vector     𝝁J ∈ 𝔑(×3 

§ Classification map:      𝑪 ∈ 𝔑$%×$'  

§ Individual classification accuracy   𝑃OP(𝑝) 

§ Individual classification precision   𝑃OS(𝑝) 

§ Overall classification accuracy    𝑃TP 

§ Average classification accuracy    𝑃PP 

§ Average classification precision    𝑃PS 

§ Overall classification accuracy efficacy   𝑃TPUVV  

§ Average classification accuracy efficacy  𝑃PPUVV  

§ Average classification precision efficacy  𝑃PSUVV  

§ Optimal number of compressed bands   𝑚WJX 

§ Individual progression accuracy    𝑃SP 

§ Individual progression precision   𝑃SS 

§ Overall progression accuracy    𝑃TSP 

§ Average progression accuracy    𝑃PSP 

§ Average progression precision    𝑃PSP  

§ Individual Tanimoto coefficient    𝑃YO   

§ Overall Tanimoto coefficient    𝑃TYO  

§ Average Tanimoto coefficient    𝑃PYO  
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In general, lower case bold face characters are used to designate vectors and upper-case 

bold face characters are used to designate matrices. 



Chapter 1: Introduction and Fundamental Concepts 

Hyperspectral sensing (HS) technologies have found success in a variety of 

applications ranging from agricultural land cover and land use mapping, food 

inspection, environmental monitoring to medical imaging, law enforcement and 

military reconnaissance and surveillance. Although hyperspectral technology has 

continued to improve over the years, its applications are still limited due to size, weight 

and power (SWaP) constraints. One of the challenging requirements is the need to 

sample a large number of very fine spectral bands which require very fast and expensive 

analog-to-digital converters (ADCs), high capacity on-board storage and optimized 

computational hardware and software to allow for real-time processing. Such 

requirements limit the utility of many applications and preclude the use of 

hyperspectral technologies in many applications. 

Compressive sensing (CS) has recently developed as a promising approach in 

hyperspectral data analysis. CS is based on the concepts of signal sparsity and 

incoherence, and allows for data to be acquired at Sub-Nyquist rates, with little or no 

loss of information. By taking advantage of CS, the burdens imposed by high sampling 

rates (band rates in terms of band acquisition) can be significantly reduced, i.e., by 

leveraging the fact that the spectral bands are redundant. Such a compressive sampling 

approach can be applied to each hyperspectral pixel vector by reducing a very large 

number of spectral bands to a small number of compressively sensed bands (CSBs) that 

need to be collected. However, to fully exploit this benefit, hyperspectral processing 

should be able to be applied directly in the compressively sensed band domain (CSBD) 

without an appreciable loss of performance.  
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This dissertation presents a compressive sensing (CS) based approach to the 

classification of hyperspectral images (HSI). The document consists of six chapters. 

Chapter 1 discusses previous work, introduces hyperspectral technologies, defines the 

task of classification, and describes the datasets that are used for the included 

experiments. Chapter 2 describes a mathematical model for the compressive sensing of 

HS data and provides the framework for subsequent analysis. Chapter 3 introduces the 

proposed compressive sensing classification approach, along with a mathematical error 

analysis and experimental results. Chapter 4 introduces two supervised approaches for 

estimating the minimum number of CSBs required for optimal performance. Chapter 5 

introduces a progressive band extension to compressive sensing classification, along 

with the supporting experimental results. Finally, Chapter 6 provides summary 

discussion. For consistency of notation, all vectors and matrices are bold face with 

lower case and upper case used to differentiate between them, respectively.   

Related Work and Dissertation Contributions 

Sparsity is an enabling concept that has been leveraged in many different ways to 

support various applications in hyperspectral data exploitation. Most commonly, the 

concept of sparsity is applied as an additional constraint to expand existing 

hyperspectral imaging algorithms such as linear spectral unmixing (Jordache, Bioucas-

Dias and Plaza 2011) (Bioucas-Dias and Figueiredo 2010), band selection (Du, 

Bioucas-Dias and Plaza 2012), feature extraction (Zhong and Wang 2008) (Tuia, 

Flamary and Courty 2015), and classification (Chen, Nasrabadi and Tran 2011) (Chen, 

Nasrabadi and Tran 2013). In such approaches, a desired sparsity level is typically 

imposed on the HS data as a constraint allowing for more unique mathematical 
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solutions to existing HS algorithms. In contrast, compressive sensing (Candes and 

Wakin 2008) provides a different approach in which, rather than incorporating sparsity 

as a constraint, the image acquisition process is fundamentally changed to account for 

signal sparsity and to maximize incoherence (increase information) between sparse 

measurements. The fundamentals of compressed sensing have been researched in great 

detail in the literature and a more detailed discussion on the essential concepts is 

provided in Chapters 2, where mathematical models are introduced. 

Early works in CS theory have addressed the concept compressed classification 

and evaluated the expected performance limits for various classifiers. One of the 

earliest works was the smashed filter (Davenport, et al. 2007) which was an extension 

of the matched filter to matched embeddings in the compressed domain. The use of 

more complicated classifiers such as the support vector machine (SVM) in the 

compressed domain were also investigated (Calderbank, Jafarpour and Schapire 2009); 

however, the work was limited to the linear kernel and focused on fairly trivial synthetic 

classification problems. The work by Hahm (Hahm, Rosenkranz and Zoubir 2014) 

introduced the concept of compressed classification to hyperspectral data; however, the 

sampling strategy was based on an adaptively optimized sensing paradigm which was 

not easily implementable in hardware. Additionally, a method for choosing the 

appropriate number of compressed bands and the effects of individual scene complexity 

on compressed performance were not addressed. 

In this work, several major contributions are made to advance the state-of-the-

art in compressed classification of hyperspectral images. First of all, a universal 

compressive sensing model is identified that can be implemented without creation of 
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new, complex sensing hardware. While the concept of universal sampling is not new 

to CS, the implications of using such a model in the context of hyperspectral 

classification are in fact new and critical for achieving realizable hardware designs. 

Second, error expressions between the full band domain and CSBD are derived for the 

linear kernel and radial basis function-based kernel-based SVM. These error 

expressions show, analytically, that full band classification performance is indeed 

achievable in CSBD for sufficient band sampling conditions. Third, feature selection 

approaches are developed to estimate a minimum bound on the required number of 

CSBs. Fourth, a progressive band classification approach is introduced that allows for 

an in-situ determination of how many compressed bands need to be acquired. Finally, 

a series of experiments are performed to demonstrate hyperspectral classification in 

CSBD. The experiments include multiple images of various scenes from different 

sensors and illustrate the effects of scene complexity. 

Hyperspectral Imaging (HSI) 

A hyperspectral image is a three dimensional data cube composed of two spatial 

dimensions and a wavelength (spectral band) dimension. Contrary to multispectral 

images which are typically composed of just three bands (red, green, and blue), an HS 

image is composed of many finely spaced, contiguous, spectral bands. HS data 

provided spatial, spectral, and radiometric (intensity) information about an imaged 

scene and have found success in numerous applications. A simple illustration of a 

Hyperspectral data cube is shown in Figure 1, where several of the Hyperspectral 

channels has been plotted in an exploded view. 
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Figure 1: Hyperspectral image cube. 

 

Given the high dimensionality of HS data, the 3D images are often referred to 

and processed along different dimensions. Within this document, several conventions 

have been adopted and are maintained for consistency. An image cube, 𝑹 ∈ 𝔑$%×$'×(, 

is defined as the full hyperspectral image (all pixels and bands), consisting of 𝑁+ × 𝑁, 

spatial pixels and 𝐿 spectral bands. A band image, 𝑹1 ∈ 𝔑$%×$' , is defined to include 

all pixels for a single band, 𝑙. A pixel vector, 𝐫 ∈ 𝔑(×3, is defined to include all bands 

for a single pixel. Finally, a pixel element, 𝑟 ∈ 𝔑3×3, is defined to be a single pixel 

from a single band. All illustration for each of the aforementioned definitions is 

provided in Figure 2. 
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Figure 2: Hyperspectral image dimensions. 

 

HSI sensors can operate in the visible (VIS), near-infrared (NIR), short-wave infrared 

(SWIR), medium-wave infrared (MWIR), and long-wave infrared (LWIR) spectral 

wavelengths. Depending on the spectral bands acquired, HSI sensors are tuned to either 

reflected or emitted electromagnetic radiation. The images considered in this work are 

limited to the VIS and NIR portion of the spectrum which is dominated by reflections 

from solar radiation. Figure 3 shows an example of several individual pixel vectors 

plotted as a function of their spectral bands, in the unitless reflectance ratio. This simple 

example illustrates the intrinsic discriminability that is available within a single pixel.  
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Figure 3: Hyperspectral pixel vector. 

 

Multi-Class Classification of Hyperspectral Images 

For an HSI, 𝑹 ∈ 𝔑$%×$'×(, where each pixel belongs to one of 𝑃 possible classes, a 

classifier is a function, 𝑓(𝒓), that assigns a label, 𝑝 ∈ {1,2,… , 𝑃}, to each pixel, 𝒓, 

resulting in a classification map, 𝑪 ∈ 𝔑$%×$' . An example three-class problem, with 

two features, is illustrated in Figure 4. The green ‘x’s, blue ‘+’s, and orange ‘o’s 

represent samples from three different classes plotted as a function of feature 𝑥3 and 

feature 𝑥^. The boundaries defined by the classifier, 𝑓(𝒓), are illustrated as shaded 

regions with matching colors for each respective class.  
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Figure 4: An example of a three-class dataset with two features. 

 

The spectral diversity intrinsically available in hyperspectral data can be 

leveraged directly as classification features to perform pixel-wise classification. 

Additionally, spatial correlation from neighboring pixels can be included to further 

improve classification accuracy. Hyperspectral classification continues to be a very 

active area of research utilizing state-of-the-art classifiers, such as deep neural network 

architectures (Chen, Lin, et al. 2014), (Li, Zhang and Zhang 2014), kernel-based 

discriminators (Camps-Valls and Bruzzone 2005), (Camps-Valls, Gomez-Chova, et al. 

2006), statistical learning theory (Camps-Valls, Tuia, et al. 2014), and complex feature 

strategies based on both spatial and spectral features (Fauvel, Benediktsson, et al. 

2008), (Fauvel, Tarabalka, et al. 2013). For this work, the spectral-spatial classifier 

proposed in (Kang, Li and Benediktsson 2014) is adopted for all experiments. The 

algorithm is described in detail in Chapter 3.  

There are several classification performance metrics that are commonly 

reported in hyperspectral literature. Within this work, the class accuracy, class 
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precision and overall accuracy are reported for all experiments. Each of these metrics 

can be most easily understood by first referring to a confusion matrix, as shown in 

Figure 5. A confusion matrix is constructed by doing a pair-wise comparison of the 

ground truth and predicted label for every combination of classes. For the confusion 

matrix in Figure 5, the columns represent the true values, the rows represent predicted 

values, and the elements represent the number of pixels that fall into that particular 

case. A confusion matrix for a perfect classifier would be an identity matrix, since the 

predicted values (rows) would always match the true values (columns).  

 

   
Figure 5: A classification confusion matrix. 

 

The class accuracy for class 𝑝, 𝑃OP(𝑝), can be computed from the confusion 

matrix by dividing the total number of correct classifications for a given class, 𝐶J,J, by 

the total pixel count from that particular class, as shown in Equation (1). The class 

precision for class 𝑝, 𝑃OS(𝑝), can be computed from the confusion matrix by dividing 
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the total number of correct classifications for a given class, 𝐶J,J, by the total count of 

predictions made for that particular class, as shown in Equation (2).  Finally, the overall 

accuracy, 𝑃TP, can be computed from the confusion matrix by summing the diagonal 

elements and dividing by the total number of pixels, as shown in Equation (3). 

 

 𝑃OP(𝑝) =
𝑛JJ

∑ 𝑛bJS
bc3

	

 
(1) 

 

 𝑃OS(𝑝) =
𝑛JJ

∑ 𝑛JbS
bc3

	

 
(2) 

 

 
𝑃TP =

∑ 𝑛bbS
bc3

𝑁
	 (3) 

 

In addition to referring to 𝑃OP and 𝑃OS for each class, it is also convenient to the 

consider the average class accuracy, 𝑃PP =
3
S
∑ 𝑃OP(𝑝)S
3 , and the average class 

precision, 𝑃PS =
3
S
∑ 𝑃OS(𝑝)S
3 . These metrics are also reported in the experiment 

sections.  

Hyperspectral Datasets for Classification Evaluation 

The Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) (Green, et al. 1998) 

is an aircraft based hyperspectral sensor with 224 contiguous bands over the 400-2500 

nm spectrum. AVIRIS images are well-known in the hyperspectral literature and 

prolific in algorithm benchmarks. Two AVIRIS images are examined throughout this 

work: Indian Pines and Salinas. The Indian Pines (Baumgardner, Biehl and Landgrebe 
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2015) image is a well-known benchmark dataset for Hyperspectral classification. The 

image has 20 m spatial resolution and consists of 200 spectral channels, after removal 

of the water absorption bands. The image was collected over Purdue’s Indiana Indian 

Pines test site and is composed of a mixture of agriculture and forestry. The provided 

ground truth consists of 17 classes, including the background, and is shown in Figure 

6.  

The Salinas image (Universidad del Pais Vasco Grupo de Inteligencia 

Computacional n.d.) is another well-known benchmark dataset for Hyperspectral 

classification. The image has 3.7 m spatial resolution and consists of 200 spectral 

channels, after removal of the water absorption bands. The image was collected over 

Salinas Valley, California and is composed of a mixture agriculture. The ground truth 

consists of 17 classes, including the background, and is shown in Figure 7. 

 

 
Figure 6: AVIRIS Indian Pines image and ground truth. 
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Figure 7: AVIRIS Salinas image and ground truth. 

 

The Reflective Optics System Imaging Spectrometer (ROSIS) (Holzwarth, et 

al. 2003) is an aircraft based hyperspectral sensor with 115 contiguous bands over the 

430-860 nm spectrum. The sensor was originally designed for resolving fine spectral 

structures and has produced several images that have been widely used within the 

literature. Two ROSIS images are examined within this work: Pavia University and 

Pavia Centre.  

The Pavia University and Pavia Centre image scenes (Universidad del Pais 

Vasco Grupo de Inteligencia Computacional n.d.) are well-known benchmark datasets 

for Hyperspectral classification. The images have 1.3 m spatial resolution and consists 

of 102 spectral channels, after removal of the water absorption bands. The images were 

collected over Pavia, northern Italy and are composed of urban scenes. The provided 

ground truths, for each image, consists of 9 different classes and are shown in Figure 8 

and Figure 9.   
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Figure 8: ROSIS Pavia University image and ground truth. 

 

 
Figure 9: ROSIS Pavia Centre image and ground truth. 
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Conclusion 

This chapter introduced the concept of performing classification within a compressive 

sensing framework, as well as provided some motivation for the application of such a 

technique in the field of hyperspectral image processing. A brief summary of the related 

work was provided and contrasted with the major contributions of the presented work. 

Hyperspectral images were introduced and common notation was established to 

provided consistency throughout the document. The task of classification of 

hyperspectral data was also introduced and a brief summary of the current-state-of-the 

art was provided. A set of performance metrics were defined for hyperspectral 

classification that are used in subsequent chapters to evaluate the merit of the proposed 

approach. Finally, four real hyperspectral images, from two different sensors, were 

introduced and described. These images are evaluated and analyzed in all of the 

included experimental sections.  
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Chapter 2: A Universal Sampling Model for Compressive 

Sensing 

Introduction 

In this chapter, a topic in mathematics referred to as compressive sensing (CS) is 

introduced. The notion of a sub-sampled system is described for both the general case 

and in the context of a hyperspectral imaging sensor. An alternative version of the 

hyperspectral system model is proposed in which data analysis is performed directly in 

the compressed domain. The potential benefits and use cases for such a system are 

outlined and discussed. 

The fundamental concepts of sparsity and incoherence are introduced and 

applied to hyperspectral pixel vectors. A mathematical model for compressively-sensed 

hyperspectral images is derived from the common CS model and is used to define a 

compressive encoding and decoding process. The concept of universality is introduced 

and used to define a new universal sampling model that guarantees the ability to 

achieve optimal performance in the compressed domain. The chapter concludes with a 

brief experimental section that illustrates the presented concepts.  

Sub-Sampled Systems 

A Compressive Sensing System 

In a typical digital signal processing system, signals are sampled according to the 

Shannon-Nyquist sampling theorem (Shannon 1949), which states that a uniformly 

spaced set of samples must be collected, at a sufficient rate, from a bandlimited signal 



 

 16 

to ensure perfect reconstruction. Furthermore, the sampling rate is directly bounded by 

the signal bandwidth. In a CS system, signals are sub-sampled well below the Shannon-

Nyquist rate, without loss of information, by leveraging some intrinsic sparsity within 

the data. The fully-sampled signals can later be recovered from the compressively-

sampled signals and processed without modification of the original analysis algorithms.  

A CS system offers potential reductions in the SWaP requirements of the 

sensing platform, as well as potential reductions in bandwidth requirements for data 

that must be transmitted between systems. A simple motivating example is that of a 

space-borne system where minimizing the required onboard data storage and 

communication bandwidth are critical. Compressively sensed data can be captured and 

transmitted back to a ground station, where the fully-sampled data can recovered and 

analyzed. CS enables flexibility within a larger communication system, by shifting high 

data rate and high computation tasks to more SWaP-tolerant components of the overall 

system.   

A typical CS system consists of four general stages: sensing, encoding, 

decoding and analysis. A block diagram illustrating these four general stages is shown 

in Figure 10. The sensing stage includes the acquisition of the analog signal, before it 

is digitally sampled. In the encoding stage, the analog signal is compressively sampled 

resulting in a digital signal acquired at sub-Nyquist rate, i.e. a compressed digital signal. 

The compressed digital signal is then typically moved to some type of storage for 

processing at a later time, or is transmitted to a different system for offboard processing. 

During the decoding stage, a sparse recovery algorithm is used to extract the fully-
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sampled digital signal from the compressively-sampled digital signal. Finally, 

traditionally analysis algorithms can be applied to the recovered fully-sampled signal.  

 

 
Figure 10: Common CS system block diagram. 

 

A Compressive Hyperspectral Imaging System 

Imaging systems where one of the earliest applications of CS techniques. The single 

pixel camera (Duarte, et al. 2008) demonstrated that it was possible to form a full 2D 

image through a series of compressively-sampled single-pixel measurements. In this 

approach, the spatial data of the image are sub-sampled into a single pixel that consists 

of a mixture of the individual pixels. A number of these single-pixel measurements are 

aggregated together to form a single compressed measurement. This imaging system 

concept is a good example of the common CS model shown in Figure 10. The sensing 

stage consists of traditional image photonic elements that capture the light sources. The 

compressive sampling stage consists of a digital micromirror that mixes the light 

sources and an analog-to-digital converter to digitally sample the mixtures. The 
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compressed measurement is then stored, where it can later undergo a sparse recovery 

and then be analyzed using standard image processing algorithms.  

A similar hyperspectral imaging system concept can be imagined, where rather 

than compressing the spatial information, the large number of spectral bands are 

compressively-sampled. In this approach, the spatial information is fully sampled but 

the spectral channels are sub-sampled. An illustration of a CS HSI system following 

the common CS model is shown in Figure 11. In the sensing stage, the full 

hyperspectral image cube is acquired before it is digitally sampled. The image bands 

are then compressively-sampled, resulting in an image cube with full spatial samples 

but a reduced number of spectral bands. Following the same logic as before, this 

compressed measurement can then be stored for sparse recovery and processing.  

 

 
Figure 11: An HSI concept for the common CS system model. 
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This  CS HSI concept will serve as the starting point of discussion; however, it 

must be modified to account for compressed analysis and to better accommodate on-

board / real-time analysis of compressed HS data. A proposed updated system concept 

based on compressed analysis is shown in Figure 12. In this approach, the decoding 

process has been completely removed, and the analysis algorithms are applied directly 

in the compressed domain. One of the benefits of this approach, is that analysis can be 

performed on-board enabling real-time decisions to be made based on in-situ analysis. 

Some example use cases, for an unmanned aerial vehicle (UAV), might include 

decisions to: switch to an alternate route, re-survey an area to reduce uncertainty, or to 

change missions entirely. Similarly for a space-borne platform, in-situ analysis may 

include decisions to: enable or disable additional sensors, determine which data should 

be saved, or prioritize which data should be transmitted back to the base station for 

immediate review. This model also maintains the ability to store the compressed data 

and re-analyze at a later time, after the data have been sparsely recovered.  

 

 
Figure 12: A Universal HSI system model. 
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Realization of such a system will, of course, require the development of new 

analysis algorithms that are capable of operating on the compressed data. The 

development of such techniques are the central theme of this thesis. More specifically, 

the task of performing hyperspectral image classification in the compressed domain is 

addressed in the remaining chapters. 

A General Mathematical Model for Compressive Sensing 

A large body of work exists in the mathematical and, more recently, engineering 

communities describing various approaches to implement a compressive sensing 

system. The focus of this section is specifically on the encoding and decoding stages, 

which include detailed descriptions of the compressive sampling and sparse recovery 

processes. The analysis stage is the central theme of this thesis and is covered in great 

detail in later chapters. A detailed discussion on the sensing stage and related hardware 

modifications is beyond the scope of this work and left for future discussion.  

A complete mathematical model for the general compressive hyperspectral 

imaging system, illustrated in Figure 11, is provided in this section. The adopted 

approach assumes that the spatial information is fully sampled but the spectral channels 

are sub-sampled. To make this distinction clear, the sparse measurements will be 

referred to as compressively-sensed bands (CSBs) to eliminate any potential 

ambiguities between spatial and spectral samples. 
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Compressive Sampling 

A common mathematical model for the compressive sampling process is shown in 

equation (4), where  𝒚 ∈ ℝg×3 is the compressed measurement vector, 𝚽 ∈ ℝg×h is 

the sampling matrix, 𝚿 ∈ ℝh×h is the sparsifying representation basis, 𝒓 ∈ ℝh×3 is a 

hyperspectral pixel vector, 𝒏 ∈ ℝg×3 is a noise vector and 𝑚 represents the number of 

CSBs that are acquired in a single measurement.  

 

 𝒚 = 𝚽	𝚿𝒓 + 𝒏 (4) 

 

In this general framework, the noise vector, 𝒏, can represent multiple noise sources, 

such as, environmental noise and various forms of sensor and operation noise. The 

theoretical discussion, within this work, is limited to the noise free case; however, many 

works in the literature have demonstrated the robustness of CS to noise (Candes and 

Wakin 2008). Additionally, noise robustness is demonstrated empirically through the 

use of real hyperspectral images in experimental analysis. 

The success of the model in (4) depends on two specific concepts: sparsity and 

incoherence. Fundamentally, the signal of interest must be sparse in some 

representation basis, 𝚿, for any sub-sampling strategy to be effective. The order of 

sparsity, 𝑘, of a signal is often defined as the number of non-zero values and is denoted 

as the 𝑙k norm, ‖𝒓‖k. However, this strict definition is impractical for most real signals, 

especially in the presence of noise. A more qualitative definition is adopted where a 

signal is said to be sparse or compressible if the sorted coefficients of the absolute value 

of the signal follows an exponential decay. A simple illustration of this qualitative 
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definition is shown in Figure 13. In this cartoon, the orange line corresponds to a sparse 

signal where a majority of the points are exactly zero, and the green line corresponds 

to a compressible signal where the absolute value of the coefficients follows an 

exponential decay toward zero.  

 

 
Figure 13: Simple illustration of a sparse or compressible signal. 

 

The second key requirement for the compressive sampling model in equation 

(4), is that the data must be sampled incoherently. This requirement is motivated by the 

fact that the compressive sampling process is signal-independent and it is desirable that 

each compressed sample contain approximately the same amount of information. This 

ensures that for any given number of CSBs the amount of information acquired will be, 

with high probability, approximately equivalent. In particular, for the given model, the 

sampling matrix, 𝚽, should be maximally incoherent with the representation basis, 𝚿. 

As was the case for sparsity, many definitions have also been proposed for the 

coherence between two matrices. The adopted convention in this work is to define the 
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coherence measure, 𝜇(𝚽,𝚿), as the largest correlation between any two elements of 

𝚽 and 𝚿 (Candes and Wakin 2008). This definition of coherence is described 

mathematically in equation (5), where the measure is bounded as 𝜇(𝚽,𝚿) ∈ n1, √𝐿p. 

 

 𝜇(𝚽,𝚿) = √𝐿 max
3tF,bt(

u〈𝜙F,𝜓b〉u (5) 

 

Sparse Recovery 

To discuss the sparse recovery process, a more formal consideration of the concept of 

information loss is required and a key notion of CS known as restricted isometries must 

be introduced. The restricted isometry property (RIP) (Baraniuk, et al. 2008) defines 

the restricted isometry constant 𝛿F of a matrix 𝚽 as the smallest number such that 

equation (6) holds for all 𝑘-sparse vectors, where 𝑘 can be any positive integer.  

 

 (1 − 𝛿F)‖𝒓‖1{
^ ≤ ‖𝚽𝒓‖1{

^ ≤ (1 + 𝛿F)‖𝒓‖1{
^  (6) 

 

The matrix 𝚽 can be said to satisfy the RIP of order 𝑘 if 𝛿F is not too close to one 

(Candes and Wakin 2008). This also implies that all subsets of 𝑘 columns taken from 

𝚽 will be approximately orthogonal.  

In CS, a general convention is to define a lossless compression as one in which 

the Euclidean distance between any two vectors is preserved. This can be described 

mathematically by the RIP of order 2, since the maximum dimensionality of the 

difference of two 𝑘-sparse vectors will be 2𝑘. Equation (6) can be written in terms of 

the difference of two vectors as shown in equation (7).  
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 (1 − 𝛿^F)‖𝒓3 − 𝒓^‖1{
^ ≤ ‖𝚽𝒓3 −𝚽𝒓^‖1{

^ ≤ (1 + 𝛿F)‖𝒓3 − 𝒓^‖1{
^  (7) 

 

The fact that the Euclidean distance is maintained, guarantees that the 𝑘-sparse vectors 

cannot be in the null space of the matrix 𝚽 and that a sparse recovery is indeed possible.  

The sparse recovery process can now be framed as the minimization shown in equation 

(8), where 𝒓}~ represents the sparse signal that has been recovered from the compressed 

measurement 𝒚 = 𝚽𝒓. 

 

 min
𝒓}∈ℝ�

‖𝒓~C ‖1� 					𝑠. 𝑡.					𝚽𝒓~C = 𝒚 = 𝚽𝒓 (8) 

 

Orthogonal matching pursuit (OMP) (Tropp and Gilbert 2007) and basis pursuit 

(BP) (Chen, Donoho and Saunders 2001) are two of the most common sparse recovery 

algorithms; however, there are a number of ways to solve this problem algorithmically 

in practice. A more detailed discussion on sparse recovery algorithms is beyond the 

scope of this work and the interested reader is referred to (Fornasier and Peter n.d.) for 

a survey of the available algorithms.  

Sparse Representation of Hyperspectral Images 

A logical starting point is to determine a representation basis in which hyperspectral 

pixel vectors are indeed sparse or compressible. Previous works on hyperspectral 

sparsity have suggested the use of the discrete cosine transform (DCT) (Amhed, 

Natarajan and Rao 1974), wavelet transforms (Antonini, et al. 1992), and dictionary 

learning approaches (Li, et al. 2013).  Figure 14 illustrates the effectiveness of the DCT 
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and the Haar wavelet (Haar 1910) as sparsifying transforms on all four hyperspectral 

test images. For each pixel in an image, the minimum number of coefficients required 

to represent 99% of the total signal power is reported, where the total signal power is 

inner product of the pixel vector in the specified domain, 𝑃𝑤𝑟(𝒓�) = (𝚿𝒓�)𝑻(𝚿𝒓�). 

The minimum number of coefficients for all pixels, in each image, are summarized as 

normalized histograms for the original basis (𝚿 = 𝑰(+(), the DCT basis and the Haar 

basis. The original basis (shown in blue) requires nearly all of the coefficients to 

represent 99% of the signal power, suggesting that the data are not sparse in the original 

domain. Both the DCT (red) and the Haar (orange) transforms show consistently lower 

number of required coefficients to represent 99% of the signal power, suggesting that 

the data are indeed compressible in these domains.  

 

 
Figure 14: Distribution of the total number of sorted coefficients required to represent 99% signal energy. 
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It is important to re-iterate that there are many other transformations in which 

hyperspectral data are sparse and that the DCT is likely not an optimal sparsifying 

domain. However, as it will be shown in the following section, there is in fact no need 

to find an optimal sparsifying basis for algorithms that will operate directly on the 

compressed measurements. The sparsifying transform need only be known during the 

reconstruction process.  

Random Compressive Sampling 

As mentioned previously, it is critical in a CS system that the measurements are made 

incoherently with respect to the sparse domain, more strictly, 𝜇(𝚽,𝚿) should be 

minimized. It is natural then to design the sampling matrix, 𝚽, based on the assumed 

sparse representation, 𝚿; however, this is not common in practice as it is not easy to 

design a sampling matrix that is simultaneously incoherent with the sparse 

representation and able to satisfy the RIP. Fortunately, for most signals a random 

sampling strategy has been shown to be sufficient, if not optimal (Candes and Wakin 

2008). In other words, sampling matrices drawn from certain random distributions can 

be shown to satisfy both RIP and incoherent sampling with respect to the sparse 

representation, 𝚿. That is, for most practical systems, a random sensing matrix is 

indeed a nearly optimal choice regardless of the sparse representation. This is critical 

for designing real-world systems as it makes the sampling system agnostic to the 

sensing modality and is exactly the main reason that random sampling strategies have 

become ubiquitous in the CS literature.  
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More specially, the sparse acquisition model in equation (4) can be 

implemented by constructing the sampling matrix, 𝚽, from any distribution that 

satisfies the  concentration of measure inequalities (Baraniuk, et al. 2008). For such a 

family of sampling matrices, it can be shown that RIP is valid provided that equation 

(9) is satisfied, where the number of compressively sensed bands, 𝑚, and the true 

sparsity order of 𝑘 are related by a constant, 𝑐, and the total number of spectral bands, 

𝐿. For the case of reconstruction, 𝑐 will be approximately equal to a value of two to 

ensure the Euclidean distance is preserved.  

 

 𝑚 ≥ 𝑐𝑘 log
𝐿
𝑘 (9) 

 

While many distributions have been proven to satisfy the inequalities, the 

Gaussian distribution is very commonly adopted due to its simplicity in analysis and 

modeling. To construct a Gaussian sampling matrix, each element of the matrix, 𝜙�b, 

is drawn from a normal distribution with a variance scaled by the number of 

dimensions, as shown in equation (10). The column vectors of the sampling matrix are 

next normalized to ensure the matrix is orthogonal. The resulting sampling matrix will 

satisfy RIP and will be nearly incoherent with any sparse representation, achieving both 

of the desired objectives. 

 

 𝜙�b~𝒩 �0,
1
𝐿� (10) 
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A Universal Compressive Sensing Model for Hyperspectral Imaging 

This sub-section presents a property referred to as universality, which is an enabling 

concept in the proposed CS classification approach. It is a universal sensing model 

which leverages the fact that the sparse basis matrix, 𝚿, need not be known at the time 

of signal acquisition, but only required during sparse recovery. More specifically, by 

adopting a random sampling strategy, the sparse acquisition model in equation (4) can 

be simplified to the form shown in equation (11), where 𝚽� represents a random 

sampling matrix, that satisfies the concentration of measure inequalities and 𝑚 is 

selected such that equation (9) is satisfied.  

 

 𝑦 = 	𝚽�𝒓 + 𝒏 (11) 

 

Furthermore, the constraint of the sparse recovery process in equation (8) can be 

modified by including the sparse representation matrix 𝚿 to yield the form shown in 

equation (12). 

 

 min
𝒓}∈ℝ�

‖𝒓~C ‖1� 					𝑠. 𝑡.					𝚽�𝚿𝒓~C = 𝒚 (12) 

 

By combining equations (11) and (12), a universal sensing model is established and 

clearly demonstrates that knowledge of the sparse matrix is only required for the signal 

reconstruction. This has the extremely important implication that, for algorithms 

performed in CSBD, optimal performance can be achieved without the need of 

identifying the sparse matrix 𝚿.   
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The universality property also has very important implications in the design of 

physically realizable compressively-sensed hyperspectral systems. Given the fact that 

the sparsifying transform, 𝚿, is no longer a part of the acquisition process, there is no 

need for a specific transform to be included in the hardware design. This means that 

new compressively sampled hyperspectral systems can be designed using existing 

hardware with the addition generic linear mixing hardware, to create the random 

mixtures. As a result, it reduces the overall cost of new systems. In addition, it also 

facilitates the process of retrofitting existing hyperspectral sensors to be able to 

compressively sample bands.  

Experiments 

An experiment was conducted to illustrate the concept of universality for the task of 

reconstruction. For each image, 1,000 pixels were randomly selected and sparsely 

sampled using both of the sensing models described in equations (4) and (11). The 

sampling matrix was randomly generated from a normal distribution, as shown in 

equation (10), where each column was normalized such that ‖𝝓�‖1{ = 1 for any 

column 𝑣. For the sensing model in equation (4), the DCT was chosen as the sparsifying 

transformation. In both cases, the number of CSBs, 𝑚, was varied from 40 to 0.7𝐿, 

where the total number of bands, 𝐿, varied for each image. The minimum and maximum 

number of CSBs were selected to reduce computation time, and were chosen based on 

the expected sparsity levels in the DCT domain, shown in Figure 14. Recall, that the 

minimum number of CSBs required to satisfy the RIP condition is approximately twice 

the true sparsity level. Each of the CSB vectors were then reconstructed using the 

Orthogonal Matching Pursuit (OMP) (Tropp and Gilbert 2007) reconstruction 
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algorithm with the appropriate constraints shown in equations (8) and (12), 

respectively. A high level description of the experimental steps for a single pixel is 

provided in Table 1. 

 

Table 1: Experiment procedure for illustrating universal compressive sampling 

Universal Random Sampling Experiment 

Input: A hyperspectral pixel vector 𝒓 ∈ 𝔑3×( 

1. Generate a random sampling matrix, 𝜙�b~𝒩 �0, 3
(
�, and normalize the 

columns such that ∑ 𝜙�b7
�c3 = 1, for 𝑗 ∈ {1,2, … , 𝐿}.  

2. Model a compressively-sampled band vector sampled in the DCT domain, 

𝒚3 = 𝚽𝚿�OY𝒓, and directly in the spectral domain, 𝒚^ = 𝚽𝒓. 

3. Use OMP to minimize the objective min
𝒓}∈ℝ�

‖𝒓}‖1� such that 𝚽𝒓}3 = 𝒚3 and 

𝚽𝚿𝒓}^ = 𝒚^. 

4. Perform an inverse DCT transform on the reconstructed pixel vectors to 

obtain estimates of the original pixel vector.  

Output: Reconstructed estimates of the pixel vector, 𝒓}3 ∈ 𝔑3×(, 𝒓}^ ∈ 𝔑3×( 

 

To assess the consistency of both sampling approaches, the root-mean-square 

(RMS) errors between the original pixel vectors and the pixel vectors that were 

recovered during sparse reconstruction were calculated. The mean RMS error over all 

pixels was calculated as a function of 𝑚, and is shown in Figure 15 for all four images. 

For the red lines, the pixel vectors were sampled directly in the spectral domain, and 

for the blue lines, the pixel vectors were sampled in the DCT domain. In all cases, the 
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mean error vectors align exceptionally well, which suggests that, on average, both 

approaches provide the same achievable reconstruction error.  

 

 
Figure 15: Mean RMS reconstruction error for all images  

 

To probe a little bit further, a metric based on the individual reconstruction error 

of each pixel was devised. An error threshold was first determined based on the 

statistics of the mean RMS error curves. More specifically, for each image, an empirical 

cumulative distribution function (CDF) was estimated from the mean RMS curves and 

then the 50th percentile RMS error was selected as a global threshold. Finally, the 

minimum number of CSBs required to achieve an RMS error less than or equal to the 
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50th percentile threshold was calculated for each pixel. The minimum CSBs required 

for each of the individual pixel vectors were used to generate normalized histograms 

for all the images, and they are shown in Figure 16. As before, the blue represents pixel 

vectors sampled in the DCT domain and red represents pixel vectors directly sampled. 

The resulting distributions show excellent agreement. There are small differences 

between the distributions; however, given the relatively few test pixels, and the 

probabilistic nature of CS, these slight perturbations are to be expected.  

 

 
Figure 16: Minimum CSB distribution for all images 
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Conclusion 

The notion of a sub-sampled system was introduced and a compressed hyperspectral 

imaging system model was proposed. The fundamentals of compressive sensing were 

reviewed and the two key concepts of sparsity and incoherence were introduced and 

defined. A typical mathematical model for compressive sampling and sparse recovery 

were presented and used to derive a compressively-sensed hyperspectral model. A 

random sampling strategy was proposed and an argument was made to leverage the 

universality afforded by this sampling strategy, when operating directly on the 

compressed measurements, since it removes the need to determine the sparse 

representation. An experiment was performed to illustrate the universality of random 

sampling and to confirm that all of the required information is embedded in the sparse 

measurement regardless of which orthogonal basis it is acquired from.  
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Chapter 3: Hyperspectral Image Classification via Compressive 

Sensing 

Introduction 

In this Chapter, the task of hyperspectral classification in the compressively-sensed 

band domain (CSBD) is considered. A joint spectral-spatial classifier based on an Edge 

Preserving Filter (EPF) is presented. Spectral classification based on the Support 

Vector Machine (SVM) is considered. The specific contribution of this chapter is to 

evaluate the utility of the spectral classifier in CSBD through both mathematical 

analysis and empirical experimentation. Expected error bounds on classification 

performance between the full band and CSBD are derived for the linear and radial basis 

function (RBF) SVM. A set of experiments are performed to validate the mathematical 

analysis and theoretical discussion using the four real-world images described in 

Chapter 1. Finally, the concept of scene complexity is investigated through a 

comparison between the different hyperspectral sensors and the individual image 

content. A new metric is proposed, based on performance efficacy and a 

compressively-sensed band ratio, that allows for direct comparisons among the images. 

The work presented in this chapter ultimately demonstrates both analytically and 

experimentally that classification in the CSBD is possible, while maintaining sufficient 

performance for nearly all practical classification tasks.  

Support Vector Machines 

The support vector machine (SVM) (Cortes and Vapnik 1995) is a popular classifier 

that has been successfully applied in hyperspectral applications and is well understood 
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in the machine learning and pattern recognition communities. The SVM is a binary 

discriminant function that defines an l-dimensional hyperplane separating two classes 

described by 𝐿 features. The linear SVM can be defined as the discriminant function 

shown in Equation (13), where the weight vector ω bias b are maximized using a 

maximum margin objective function, subject to ‖𝝎‖ = 1. 

 

 𝑓(𝒓) = 𝝎Y𝒓 + 𝑏 (13) 

 

A hard classification of unknown pixel vectors is performed by observing the sign of 

the output, where positive values +1 belong to one class and negative values −1 belong 

to the other. Although, the SVM is natively a binary classifier, it is often extended to 

multi-class classification problems through the use of a binary extension strategy, such 

as one-vs-rest or one-vs-one (Bishop 1995). The one-vs-one approach is specifically 

adopted in this work. 

To make SVMs more mathematically convenient, the Representer Theorem 

(Schölkopf, Herbrich and Smola 2001) is often leveraged. The theorem  states that, 

with appropriate constraints, 𝝎 can always be written as a linear combination of the 

training data, 𝝎Y = ∑ 𝛼b𝑑b𝒓bY
$¢£¤¥¦
bc3 , where 𝑑b ∈ {−1,1} is the training label, 𝛼b ∈ [0,1] 

is a linear coefficient and 𝑁X©ª�« is the total number of training samples. Substituting 

this relationship, the linear SVM discriminant function can also be written as: 

 

 𝑓(𝒓) = ¬ 𝛼b𝑑b𝒓bY
$¢£¤¥¦

bc3

𝒓 (14) 
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where the bias term is implicitly included in the weight vector. In general, most values 

of 𝛼b will be zero and the non-zero values are referred to as the support vectors. In this 

form, the SVM is completely described by the choice of the support vectors, which are 

typically solved for iteratively. 

In many practical classification problems, the data are not linearly separable in 

the original feature space. A solution to this problem is to transform the feature vectors 

into a high dimensionality feature space where the data are linearly separable. For an 

arbitrary transformation, 𝜙(𝒓), the linear discriminant function can be rewritten, more 

generally, as shown in Equation (15). 

 

 𝑓(𝒓) =¬𝛼b𝑑b𝜙(𝒓)bY𝜙(𝒓)
$

bc3

 (15) 

 

In practice, transforming all of the data to the new dimension is computationally 

prohibitive and is avoided using what is referred to as the kernel trick. A property of 

Mercer’s theorem (Scholkopf and Smola 2002) is used to directly calculate the required 

dot products without ever mapping the data into the non-linear feature space. The dot 

products in Equation (15) are replaced with an arbitrary kernel operator, 𝐾(𝒓Y, 𝒓) =

𝜙(𝒓Y)	𝜙(𝒓)	, as shown in equation (16), where the Kernel is carried out on the original 

data. 

 

 𝑓(𝒓) =¬𝛼b𝑑b

$

bc3

	𝐾®𝒓b, 𝒓¯ (16) 
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Many different types of kernels have been proposed for use with support vector 

machines; however, one of the most common kernels is the radial basis function (RBF) 

kernel. The RBF is defined as 𝐾(𝒓Y, 𝒓) = exp	(− ‖𝒓²𝒓‖{

^³{
), where 𝜎 is a tuneable 

hyperparameter. Substituting the kernel definition into Equation (16), the RBF SVM 

discriminant function is written as shown in Equation (17). 

 

 𝑓(𝒓) =¬𝛼b𝑑b

$

bc3

	exp	 µ−
¶𝒓b − 𝒓¶

^

2𝜎^
· (17) 

 

Edge Preserving Filters 

Spatial correlation between neighboring pixels must be taken into account to achieve 

state-of-the-art hyperspectral classification performance. To capture the spatial 

contextual information, the edge preserving filter (EPF) proposed in (Kang, Li and 

Benediktsson 2014) has been included in the proposed compressed, spectral-spatial 

classifier. In this approach the initial pixel class probabilities are determined by a 

spectral classifier and then the spectral classification map is further refined by a follow-

up EPF. The spatial filters are performed using guidance images derived from the 

principal components of the input image, which preserves the major features in the 

scene. A summary of the approach is presented in Table 2. 

 

Table 2: Edge Preserving Filter Classification Algorithm 

Edge Preserving Filtering Classification Algorithm 

Input: A hyperspectral image 𝑹 ∈ 𝔑$%×$'×( 
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1. Generate a classification map, 𝐶¸SO ∈ 𝔑$%×$' , using a spectral classifier.  

2. Generate an initial binary probability map, 𝑃�,J ∈ [0,1], by assigning the 

pixelwise class to each respective channel as 𝑃�,J = ¹ 1, 	𝑖𝑓	𝑐� = 𝑙
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

3. Optimize the probability map by applying an edge preserving filter, 𝑃¾�,J =

∑ 𝑊�,b(𝐼)𝑃�,Jb , where the weights, 𝑊�,b, depend on the choice of EPF and the 

guidance image 𝐼.  

4. Generate the final classification map by choosing the class with the highest 

probability 𝐶USÁ = 𝑎𝑟𝑔	 max
3t«tS

𝑃¾�,J 

Output: A final classification map, 𝐶USÁ ∈ 𝔑$%×$'  

 

The original work presents two approaches for calculating the weights of EPF: 

the joint bilateral filter and the guided filter. Both approaches provide increased 

classification performance over the pixelwise classifier and are suitable for the 

proposed experiments. Specifically, the guided filter was chosen for this analysis and 

the definition is shown in (18), where 𝜔� and 𝜔b are local windows around pixel 𝑖 and 

𝑗, 𝜇F  and 𝜎F^ are the mean and variance of the local window, and |𝜔| is the number of 

pixels in the window. Regarding the guidance image, 𝐼, principal component analysis 

(PCA) (Wold, Esbensen and Geladi 1987) is used to define a binary or color guidance 

image by selecting the one or three of the first principal components, respectively. The 

color guidance image has been selected for use in this analysis.  
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 𝑊�,b(𝐼) =
1
|𝜔|^ ¬ Æ1+

(𝐼� − 𝜇F)®𝐼b − 𝜇F¯
𝜎F^ + 𝜖

È
F∈É¥,F∈ÉÊ

	 (18) 

 

To illustrate the effectiveness of this approach, a comparison between 

classification maps generated using SVM and SVM-EPF is shown in Figure 17, for the 

Indian Pines dataset. It is clear that the spatial filtering is able to leverage the local 

structure of the scene and provide a much more accurate class estimate. The large 

amount of “speckle” resulting from the spectral-only classifier, is removed by the 

spatial filtering process.  

 

 
Figure 17: Comparison of SVM and SVM-EPF classification maps for Indian Pines. 

 

Support Vector Machines in the Compressively-Sensed Band Domain 

Classification in CSBD can be represented using a modification of the discriminant 

function that includes the sparse acquisition matrix. The compressed discriminant 

function then takes the form shown in Equation (19), where the subscript 𝑠, for 𝛼, 

denotes the fact that the SVM in the CSBD is not guaranteed to use the same support 

vectors or bias.  
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 𝑓~(𝒓) =¬𝛼~Ê𝑑b®𝚽𝒓b¯
𝐓
𝚽𝒓

$

bc3

	 (19) 

 

To examine the performance of the support vector in the classified domain, an error 

function can be constructed between the full band and CSB domains. Let ϵ =

|𝑓(𝒓) − 𝑓~(𝚽𝒓)| denote the absolute error between the fully sampled and the sparsely 

sampled classifiers. 

 

 ϵ = Í¬𝛼b𝑑b𝒓bY𝒓
$

bc3

−¬𝛼~Ê𝑑b®𝚽𝒓b¯
𝐓
𝚽𝒓

$

bc3

Í	 (20) 

 

In general, it is impossible to derive a closed form solution for this expression 

since the support vectors are solved iteratively in practice. Additionally, there is no 

guarantee of a unique solution when solving for these model parameters. To simplify 

the analysis, the support vectors are chosen, without guarantee of optimality, to be the 

same in the sparsely sampled domain. This implies that 𝛼~Ê = 𝛼b, ∀	𝑗, and the error 

function in Equation (20) can be reduced to 

 

 ϵ = Í¬𝛼b𝑑b Ï𝒓bY𝒓 − ®𝚽𝒓b¯
𝐓
𝚽𝒓Ð

$

bc3

Í (21) 

 

Furthermore recognizing that 𝒓bY𝒓 = ¶𝒓b¶^
^
, the classification error can be defined as 
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 𝜖 = Í¬𝛼b𝑑b �¶𝒓b¶^
^
− ¶𝚽𝒓b¶^

^
�

$

bc3

Í (22) 

 

Given that the sampling matrix, 𝚽, satisfies the RIP in Equation (6), the error can be 

re-written as an inequality in terms of the RIC, 𝛿F, as  

 

 𝜖 ≤ Í¬𝛼b𝑑b �¶𝒓b¶^
^
− (1 − 𝛿F)¶𝒓b¶^

^
�

$

bc3

Í (23) 

 

Expanding the RIC term and simplifying, the final error can be written as  

 

 𝜖 ≤ Í¬𝛼b𝑑b¶𝒓b¶^
^
𝛿F

$

bc3

Í (24) 

 

which indicates that the classification error is directly bounded by the RIC and will go 

to zero for all 𝑚 that satisfy the condition shown in Equation (6), as 𝛿F goes to zero. 

This derivation demonstrates that it is indeed possible to achieve full classification 

accuracy in the CSBD, provided that sufficient sampling conditions are satisfied.  

Kernel Support Vector Machines in the Compressively-Sensed Band Domain 

Following a similar approach to the linear SVM, the performance of the RBF SVM in 

CSBD can be assessed by analyzing the error between the full band and CSB domains. 

Choosing, again, to maintain the same support vectors in the CSBD, the error function 

for the RBF SVM is described as shown in Equation (25). 



 

 42 

 ϵ = Í¬𝛼b𝑑b Ñexpµ−
¶𝒓b − 𝒓¶

^

2𝜎^
· − exp	(−

¶𝚽𝒓b −𝚽𝒓¶
^

2𝜎^ )Ò
$

bc3

Í (25) 

 

For simplicity, let 𝒛 = 𝒓b − 𝒓 and substitute it into Equation (25) to yield 
 

 ϵ = Í¬𝛼b𝑑b Ñexp µ−
¶𝒛b¶

^

2𝜎^
· − exp	 µ−

¶𝚽𝒛b¶
^

2𝜎^
·Ò

$

bc3

Í (26) 

 

Knowing that the sampling matrix, 𝚽, satisfies the RIP in Equation (6), the error can 

be re-written as an inequality in terms of the RIC, 𝛿F, as 

 

 ϵ ≤ Í¬𝛼b𝑑b Ñexpµ−
¶𝒛b¶

^

2𝜎^
· − exp	 µ−

¶(1 − 𝛿F)𝒛b¶
^

2𝜎^
·Ò

$

bc3

Í (27) 

 

Recognizing that (1 − 𝛿F) is a scalar quantity, the expression can be further reduced 

by expanding the RIC term and factoring out the exponential, resulting in 

 

 ϵ ≤ Í¬𝛼b𝑑b Ñexp µ−
¶𝒛b¶

^

2𝜎^
· − exp µ−

¶𝒛b¶
^

2[𝜎/(1 − 𝛿F)]^
·Ò

$

bc3

Í (28) 

 

Interestingly, the error is no longer bounded linearly by the RIC, but rather by 

a difference in the kernel space. In this particular case, both terms are identical with the 

exception of the RBF hyperparameter, which is scaled by (1 − 𝛿F)²^. Just as in the 

linear case, the RBF classification error will go to zero for all 𝑚 that satisfy the 

condition shown in Equation (6), as 𝛿F goes to zero. 
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Experiments 

Simulated experiments were performed comparing performance between the full band 

and CSB hyperspectral data. Algorithm performance is measured by three common 

metrics:  overall accuracy (𝑃TP), average accuracy (𝑃PP), and average precision (𝑃PS) 

as described in Chapter 1. Additionally, the individual class accuracies were also 

considered to further understand the results. Finally, scene complexity was evaluated 

with the introduction of a new metric based on performance efficacy and a 

compressively sensed band ratio (CSBR). 

Experimental Setup 

The sparse hyperspectral pixel vectors were modelled using random Gaussian sensing 

matrices with 𝑚 compressively sensed bands taken directly from the original pixel 

domain (i.e. no sparsifying transformation was applied before compressively sampling 

the pixel vectors). The number of CSBs, 𝑚, was varied from five up to the total number 

of bands for each image. The RBF-based SVM was used as the spectral classifier, with 

the tunable kernel parameter set to 0.72, 0.64, 0.75, and 0.59 for Indian Pines, Salinas, 

Pavia University, and Pavia Centre, respectively. The edge preserving filtering process 

was based on a guided filter with a color guidance image, based on the first 3 principal 

components, i.e., EPF-G-c (Kang, Li and Benediktsson 2014).  

For each experiment, the pixel vectors were randomly partitioned into training 

and validation sets following the same set-up described in (Kang, Li and Benediktsson 

2014) for Indian Pines, Salinas and Pavia University. The Pavia Centre scene was 

partitioned in a similar fashion to Pavia University with 285 training samples from each 

class. The exact number of training and validation samples are tabulated in Tables 3-6. 
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Table 3: Indian Pines Training and Test Samples 

Class Name Training Samples Test Samples 
Alfalfa 25 21 

Corn-notil 83 1345 
Corn-mintil 78 752 

Corn 68 169 
Grass-pasture 79 404 

Grass-trees 78 652 
Grass-mowed 14 14 

Hay-windrowed 66 412 
Oates 10 10 

Soybean-notil 81 891 
Soybean-mintil 99 2356 
Soybean-clean 73 520 

Wheat 70 135 
Woods 90 1175 

Buildings 65 321 
Stone-Steele Towers 46 47 

Background 0 10,076 
 

Table 4: Salinas Training and Test Samples 

Class Name Training Samples Test Samples 
Broccoli 1 67 1942 
Broccoli 2 67 3659 

Fallow 67 1909 
Fallow Rough Plow 69 1325 

Fallow Smooth 67 2611 
Stubble 67 3892 
Celery 68 3511 

Grapes Untrained 69 11202 
Soil Vineyard 68 6135 

Corn 68 3210 
Lettuce 4 Week 68 1000 
Lettuce 5 Week 67 1860 
Lettuce 6 Week 67 849 
Lettuce 7 Week 67 1003 

Vineyard Untrained 70 7198 
Vineyard VT 67 1740 
Background 0 56,975 
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Table 5: Pavia University Training and Test Samples 

Class Name Training Samples Test Samples 
Asphalt 286 6345 

Meadows 286 18363 
Gravel 285 1814 
Trees 285 2779 

Painted Metal Sheets 285 1060 
Bare Soil 285 4744 
Bitumen 285 1045 

Self-blocking Bricks 285 3397 
Shadows 285 662 

Background 0 164,624 
 

Table 6: Pavia Centre Training and Test Samples 

Class Name Training Samples Test Samples 
Water 285 65686 
Trees 285 7313 

Asphalt 285 2805 
Self-blocking Brick 285 2400 

Bitumen 285 6299 
Tiles 285 8963 

Shadows 285 7002 
Meadows 285 42541 
Bare Soil 285 2578 

Background 0 635,488 
 

The same randomly selected set of training samples in Tables 3-6 were used for 

experiments in both the full band and CSB domains for the EPF-G-c classifier. Each 

experiment was repeated 20 times and the average results are reported. For all of the 

plots in this section, the dashed and solid lines show the results of each classification 

measure produced by EPF-G-c on the full band pixels, i.e., data without compressive 

sensing and the CSB pixels, respectively. 
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Classification Accuracy Analysis 

The 𝑃TP and 𝑃PP for Purdue’s Indian Pines are plotted in Figure 18, with m ranging 

from 1 to 220. Note that the plot had a large jump around 30 CSBs, and then began to 

flatten after 100 CSBs with near full band performance. As can be seen in the figure 

the maximum performance was achieved using approximately 50% of the total number 

of CSBs. The range of accuracy for this image is significant with just over a 20% 

difference in accuracy between the minimum number of CSBs and using the maximum 

number of CSBs. This particular image has the most imbalanced classes and was also 

the most difficult one among the four images that were tested. The presented results, in 

the CSBD, are in line with many of the performance measures reported in the literature. 

 

 

 
Figure 18: Indian Pines accuracy. 
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The 𝑃TP and 𝑃PP for Salinas are plotted in Figure 19. Similar to the experiments 

conducted for the Purdue Indian Pines, the largest improvement in classification 

accuracy occurs within the first 30 CSBs and continues to improve slowly until the 

accuracy flattens after 100 CSBs. Contrary to the Indian Pines image, the range of 

accuracy values is quite small with just about a 6% difference in performance between 

the minimum and maximum achievable accuracy. For the minimum case it required 

only 5 CSBs for EPF-G-c to achieve an overall accuracy and an average accuracy of 

92% and 95%, respectively. Remarkably, even with just 2.5% of the total number of 

CSBs, the achieved accuracy level is acceptable for many practical applications. 

 

 
Figure 19: Salinas accuracy. 

 

The 𝑃TP and 𝑃PP for Pavia University are plotted in Figure 20. Both accuracies 

converged quickly between 20 and 40 CSBs. There is an exponential increase in 

performance for the lower number of CSBs. This ROSIS image showed a similar trend 
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to the AVIRIS Indian Pines image, where there was a significant difference in the 

minimum and maximum performance achieved for a different number of CSBs. The 

range of accuracy values between the fewest CSBs and the full band performance is 

quite significant with a total difference of about 15% for the overall accuracy and 20% 

for the average accuracy. 

 

 
Figure 20: Pavia University accuracy. 

 

The 𝑃TP and 𝑃PP for Pavia Centre are plotted in Figure 21. This image is 

somewhat unique because both accuracies appeared to converge at a slightly different 

number of CSBs where 𝑃TP converged with about 20 CSBs and the 𝑃PP converged with 

around 30-50 CSBs. The reason for this will become more apparent when the individual 

class accuracies are discussed in later experiments. The range of accuracies for this 

image was exceptionally small. The difference in accuracy between using 5 CSBs and 

the full band image was just 2.5% for 𝑃PP and less than 1% for 𝑃TP. This image is 



 

 49 

another example which shows accuracy required for practical applications can be 

achieved with small fractions of the total number of bands. 

 

 
Figure 21: Pavia Centre accuracy. 

 

Interestingly, the classification accuracy achievable in the CSBD did not appear 

to be correlated with either the scene types (agricultural and urban) or the sensors 

(AVIRIS and ROSIS) used for experiments. However, for all images acceptable 

accuracy can be achieved directly in CSBD with a significant reduction in the number 

of CSBs 

Classification Precision Analysis 

The 𝑃PS is considered in this section and has received little interest in hyperspectral 

image classification. However, its practical impact is quite important since it is the only 

measure that accounts for background data samples for classification. To address 
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background issue in classification 𝑃PS is calculated with and without inclusion of the 

BKG samples in the image scenes. 

The 𝑃PS for the Purdue Indian Pines is shown in Figure 22. Near full precision 

performance is achieved with only 50 CSBs with and without the inclusion of the BKG 

samples. The range of precision values between the fewest CSBs and the maximum 

CSBs is much smaller than the spread in accuracy, with only about a 10% difference. 

Following a similar trend as with accuracy, Indian Pines is again the most difficult of 

the four images tested. 

 

 
Figure 22: Indian Pines precision. 

 

The results of 𝑃PS for Salinas, Pavia University, and Pavia Centre are shown in 

Figure 23-Figure 25, respectively. For these images, full band domain performance 

could be achieved with using only 5-10 CSBs! This is quite interesting given the fact 

that both Indian Pines and Salinas were collected from the same sensor and consist of 
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similar agricultural classes. Since the relative performance holds for the cases with and 

without precision, it is not believed to be due to a bias in the background signatures. 

One possible cause could be due to the fact that the Purdue data contains many 

imbalanced classes with 4 classes less than 100 data samples. The relatively low 

training samples for these classes could introduce some instability into the SVM 

classifiers. Given the many potential influencing factors and availability of ground 

truthing, further investigation into this difference is was not believed to be warranted.  

 

 
Figure 23: Salinas precision. 
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Figure 24: Pavia University precision. 

 

 
Figure 25: Pavia Centre precision. 

 

In general, the precision is less affected by the compressive sampling for all 

images. In all cases, full band performance could be achieved with 25% or less than 
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the total number of available CSBs. For Salinas and Pavia Centre, full band precision 

performance could be achieved while using only 5% of CSBs. The precision 

performance was also fairly consistent with and without the inclusion of BKG samples. 

In agreement with the accuracy performance results, the classification in the CSBD was 

capable of achieving acceptable precision performance with just fractions of the total 

number of CSBs. 

Individual Class Accuracy Analysis 

To further probe into the performance of the four images, the individual class accuracy 

is reviewed. By observing how the individual classes are affected by the number of 

CSBs, it is possible to gain some intuition on what really determines the maximum 

achievable performance in the CSBD, as well as explain some of the differences that 

have been noted between 𝑃TP and 𝑃PP.  

The individual class accuracies for Indian Pines are plotted in Figure 26. 

Interestingly, many of the classes converged to full band performance with as few as 

10 CSBs, i.e., only 5% of the spectral bands! This is in stark contrast to the 100 CSBs 

needed before the overall accuracy converged. Accuracy performance in both the full 

band domain and CSBD is clearly limited by specific classes.  
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Figure 26: Indian Pines individual class accuracy. 

 

The individual class accuracies for Salinas are shown in Figure 27. Remarkably, 

in comparison with the Purdue data all of the classes with the exception of “vineyard 

untrained” converged to full band performance with only 10 CSBs or less! This 

explains why 𝑃PP is higher than 𝑃TP. This suggests that the data set is almost completely 

separable, and shows a clear correlation between class separability and the viability of 

compressed classification.  
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Figure 27: Salinas individual class accuracy. 

 

Similar performance was also observed for the ROSIS images. The individual 

class accuracies for Pavia University are shown in Figure 28. For this image, half of 

the classes converged with just 5 CSBs and the remaining classes converged at various 

numbers of CSBs. All of the classes with the exception of “Gravel” converged to full 

band classification accuracy.  
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Figure 28: Pavia University individual class accuracy. 

 

The individual class accuracies for Pavia Centre are shown in Figure 29. A 

similar trend was observed with half of the classes converging with only 5 CSBs and 

the remaining classes converging at various numbers of CSBs. Two of the classes that 

did not converge immediately, “asphalt” and “shadows”, are classes that never 

achieved full band classification accuracy. This also reinforces the correlation between 

class separability and viability of compressive sensing classification. 
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Figure 29: Pavia Centre individual class accuracy. 

 

Scene Complexity 

One of interesting results from the above experiments is variability in the number of 

required CSBs to achieve maximum performance for each of the different scenes. This 

observation was true for both AVIRIS and ROSIS sensors, suggesting that it was 

indeed scene complexity that limits effectiveness of CSBs. To investigate this concept 

further, an efficacy criterion is defined for the overall accuracy, 𝑃TPUVV , which 

calculates the ratio of 𝑃TP in CSBD to 𝑃TP in the original data domain, i.e., full band 

domain. Similarly, the compressively sensed band ratio (CSBR), 𝐶𝑆𝐵𝑅 = 7
(

, defined 

as the number of CSBs divided by the total number of bands, 𝐿, is introduced to 
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normalize the number of spectral bands among images. Using these criteria makes it 

possible to directly compare the performance for all four images. The overall accuracy 

efficiency is plotted as a function of CSBR in Figure 30. For both Salinas and Pavia 

Centre, nearly full band performance can be achieved with a CSBR of only 10%. For 

the more difficult images, Pavia University required a CSBR of approximately 20% 

and Indian Pines required approximately 50%.  

 

 
Figure 30: Overall accuracy efficacy for all four images. 

 

Similarly, the efficacy of precision, 𝑃PS×ØØ , calculates a ratio of precision in the 

CSBD to precision in the original full band domain and its results are plotted in Figure 

31. As shown in the previous section, precision is generally better than accuracy. The 

efficacy of precision confirmed this fact with the worst case performance never being 

lower than 90% of the full band precision performance after a CSBR greater than 20%. 
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The efficacy of precision also showed the same trend as the 𝑃TPUVV  with the Indian 

Pines and Pavia University images being more difficult than the other images. 

 
Figure 31: Average precision efficacy for all four images. 

 

Conclusion 

Hyperspectral image classification in the CSBD was explored in this chapter with the 

motivation of enabling low-cost, low-SWAP hyperspectral designs. A CSBD spectral-

spatial classifier was proposed based on a RBF-SVM spectral classifier and an EPF 

spatial filter that is applied after pixelwise classification. A mathematically error 

analysis was performed for SVMs in the CSBD that showed classification is indeed 

possible under sufficient sampling conditions. The empirical analysis consisted of a set 

of experiments performed on four real hyperspectral images. Observing the individual 

class accuracies, it was noted that nearly all of the classes converge to full performance 

with a few number of CSBs (10-20) and performance is typically limited by a select 
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few classes. The results across two sensors and four images (two per sensor) were 

compared using the proposed algorithm efficacy and compressively sensed band ratio 

metrics. This comparison confirmed that scene complexity directly limits the maximum 

amount of compressed performance that can be obtained. The variability from scene to 

scene suggests that a method to predict or adaptively adjust the number of CSBs is 

needed and is the focus of chapter 4.  
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Chapter 4:  Estimating A Measurement Bound for Compressed 

Hyperspectral Classification Via Feature Selection 

Introduction 

One of the practical challenges associated with implementing a compressed 

classification system, is deciding on an appropriate number of compressed bands to 

collect. As it was shown in Chapter 3, the required number of CSBs can vary across 

scenes and sensors. Selecting too few CSBs will result in poor classification efficacy. 

Conversely, selecting too many CSBs will result in wasted storage, increased 

bandwidth, and higher computational costs. An approach is desired that can estimate 

the optimal number of CSBs required to achieve high classification efficacy, while 

minimizing the total number of CSBs that are acquired. For convenience, the symbol, 

𝑚WJX, is defined as the lower bound required to achieve near optimal performance. The 

term “optimal” is not strictly defined, since the exact meaning may vary based on the 

desired application. 

In this chapter, the problem of selecting the appropriate number of CSBs is 

framed as a special case of a feature selection problem. Supervised approaches based 

on estimating 𝑚WJX directly from the training data, are explored. A brief overview of 

feature selection is provided and its applicability is discussed. Two different 

approaches are proposed based on the feature selection framework. Finally, a set of 

experiments are performed to evaluate the utility of the explored approaches.  
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Feature Selection 

Feature extraction and feature selection are two well researched topics, within the 

machine learning and pattern recognition communities. While there are some 

overlapping themes between these two areas of research, it is important to clearly 

define them both. Ultimately, feature selection will be adopted as the underlying 

framework for estimating 𝑚WJX.  

Feature Extraction 

Feature extraction is defined here as an approach in which existing features, or raw 

data, are manipulated to produce new, more powerful features. This was done 

historically by projecting existing features into new spaces that are lower dimensional 

mixtures of the original features; such as principal component analysis (PCA) (Wold, 

Esbensen and Geladi 1987), linear discriminant analysis (LDA) (Bishop 1995), or 

canonical correlation analysis (CCA) (Hadoon, Szedmak and Shawe-Taylor 2004). 

More recently, deep learning approaches, such as deep belief networks (Boureau and 

Cun 2008), auto-encoding networks (Vincent, et al. 2008), and deep classifiers 

(Krizhevsky, Sutskever and Hinton 2012) have found great success in extracting 

features directly from the raw data. In many of these cases, the transformations depend 

on data-adaptive learning procedures. Given the signal-independent nature of the 

compressive sampling process, feature extraction techniques are not directly applicable 

and are not discussed any further. 
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Feature Selection 

Feature selection is defined as an approach in which a subset of existing features are 

selected with the goal of removing redundancy or maximizing relevance. In a typical 

feature selection problem, there are 𝐿 disparate classification features that must be 

chosen from, each of which are independent and have varying, unknown levels of 

discriminatory power. The challenge is to determine the appropriately sized subset of 

features and, specifically, which combination of features are the most effective for 

classification. This becomes an NP-Complete problem where each of the subsets must 

be searched exhaustively. Given the difficulty of this problem, it has been heavily 

researched and there are many existing algorithms that can be leveraged. A detailed 

review of feature selection algorithms can be found in (Tang, Alelyani and Liu 2014). 

There are three general categories of supervised feature selection algorithms: 

filter methods, wrapper methods, and embedded methods. Filter methods are 

independent of a particular classifier and are based on characteristics of the dataset. 

They are typically fast to run because classifiers do not need to be trained on the various 

sets of features. Wrapper methods are a brute force approach in which a particular 

classifier is trained using various sets of features and performance metrics such as 

accuracy or precision are used to select the optimal feature set. This approach is 

typically very slow for  general feature selection and often results in only a partial 

sampling of the parameter space. Finally, embedded methods are a combination of filter 

and wrapper methods, where data characteristics are used to limit the features and then 

wrapper methods are applied to ensure that maximum performance is achieved. 



 

 64 

Embedded methods are often applied to achieve the accuracy of wrapper methods but 

with a reduced search time.  

The task of estimating 𝑚WJX can be framed as a special case of a feature 

selection problem. For this task all of the features can be considered to have equal 

discriminatory power, given that the compressed bands are sampled incoherently. More 

specifically, we can state the nature of the incoherent sampling will cause all possible 

subsets of a fixed size to be approximately equivalent. This greatly reduces the 

complexity of the problem since it means that only the number of features needs to be 

determined rather than a specific subset. This reduction in the problem complexity 

removes a lot of the computational burdens that would otherwise limit the practicality 

of the more exhaustive techniques. In this chapter, discussion is focused on filter and 

wrapper methods. It will be shown that wrapper approaches are indeed computationally 

tractable, without requiring the compromises associated with an embedded variation.  

Filter Method Approach 

Filter methods are based on calculating measures of effectiveness for classification 

features, without directly applying them within a classifier. This offers the potential of 

identifying features that are universally effective for any type of classifier. However,  

this approach also raises the challenge of identifying appropriate measures of 

effectiveness for each feature. The choice of such a measure is often dependent upon 

the type of data, and relating these measures back to the ability to perform classification 

is not always straightforward.  

In general, filter methods can be further classified into univariate and 

multivariate. In the univariate approach, each feature is considered one at a time, 
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making implementation simple and reducing the overall search space. A typical 

univariate filter approach consists of individually scoring each of the features and then 

choosing the highest ranked features for use with classification. The disadvantage to 

the univariate approach is that it is incapable of identifying the combined 

discriminatory power of multiple features, since they are only considered one by one. 

Additionally, univariate approaches are unable to recognize redundancy between the 

features.  

The multivariate approach considers features in batches, providing the ability 

to solve both of the challenges faced by a univariate approach. Estimation of 𝑚WJX can 

be thought of as a multivariate filter problem, where the batch size, alone, is varied and 

the individual feature scores are irrelevant. The pixel training data, 𝑹Y©ª�« ∈ 𝔑$)×( , 

can be grouped by the class labels, 𝒄 ∈ 𝔑$)×3, and summarized into a single, 

representative class statistic, 𝒁 ∈ 𝔑S×(, for each of the 𝑃 classes. The class statistics 

can then be compressively sampled, 𝒁7 = 𝚽𝑍Y, with 𝑚 CSBs, and a similarity 

measure can be calculated between all unique combinations of classes, 𝜻 ∈ 𝔑S(S²3)×3. 

This process can then be repeated for all values of 𝑚, and 𝑚WJX can then be selected by 

observing the point at which adding additional features (i.e. CSBs) no longer 

significantly affects the similarity measure. This general approach is summarized in 

Table 7. 

 

Table 7: Feature Selection Filtering Algorithm 

General Feature Selection Filtering Approach 

Input: Training pixel vectors 𝑹Y©ª�« ∈ 𝔑$)×( , pixel class label vector 𝒄 ∈ 𝔑$)×3 
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1. Summarize each class into representative 𝑃 statistic vectors, 𝒁 ∈ 𝔑S×(, one 

for each class.  

2. Choose an initial number of CSBs, 𝑚 = 𝑚7�« and a CSB step size 𝛿7.  

3. Randomly generate a compressive sampling matrix 𝚽 ∈ 𝔑(×7.  

4. Compressively sample the summary statistic vectors, 𝒁7 = 𝚽𝑍Y 

5. Calculate a measure of similarity, 𝜻 ∈ 𝔑S(S²3)×3, between all unique pairs 

of class statistic vectors. 

6. Set 𝑚 = 𝑚 + 𝛿7 and repeat steps 3 through 5 until 𝑚 ≥ 𝐿. 

7. Chose the value of	𝑚 where the similarity measure converges.  

Output: The estimated minimum number of CSBs: 𝑚WJX.  

 

Class Statistics 

Given the large number of training samples that are available for most HSI datasets, 

each class must be summarized in some manner to make computations tractable. A 

natural starting place is to consider the mean pixel vector over all pixels within a single 

class. The class mean pixel vector, 𝝁J ∈ 𝔑(×3, for class 𝑝, is defined in equation (29), 

where the index, i, represents the ith spectral band. 𝑹J ∈ 𝔑(×$L  is  a matrix containing 

all the pixel vectors within the class and 𝑁J denotes the total number of pixels in class 

𝑝. 

 

 
𝜇J(𝑖) =

1
𝑁J

¬𝑹J(𝑗, 𝑖)

$L

bc3

 (29) 
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Although it is not explicitly shown, the class statistics can also be derived for the 

compressed vectors, where the number of bands, 𝐿, simply becomes the number of 

CSBs, 𝑚.  

Similarity metrics 

Once each class has been reduced to a representative pixel vector, a measure of 

similarity1, 𝜁(𝝁3, 𝝁^) = 𝜁3^, can be calculated between any combination of two 

individual classes. This concept is most easily visualized as a similarity matrix, where, 

for each element, the index of the rows and columns correspond to the class index, and 

the value is the measure of similarity between those classes. The diagonal of the 

similarity matrix will necessarily be zero, since a pixel vector will always be perfectly 

similar to itself. Furthermore, if the similarity metrics are symmetric, 𝜁�b = 𝜁b� , then the 

matrix will be also be symmetric, resulting in 𝑃 ∗ (𝑃 − 1) measures of similarity, 

where 𝑃 is the total number of classes. A class similarity matrix is illustrated in Figure 

32. 

                                                

1 The term similarity here is used to maintain generality; however, it should be noted that the metrics 
proposed in this work take the form of a distance measure. This is why the convention of 0 designating 
complete similarity (0 distance) has been adopted.  
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Figure 32: Class similarity matrix. 

To further reduce the similarity down to a single, per-class, metric, the average class 

similarity, 𝜁JÞ , for class p, is defined in equation (30). This metric provides a simple 

way of observing the effect of varying the number of CSBs.  

 

 𝜁JÞ =
1

𝑃 − 1¬𝜁�J
�ßJ

 (30) 

 

Hyperspectral similarity metrics are needed to quantify the impact of increasing 

the number of CSBs. Since the dimensionality will be increasing, it is imperative that 

these metrics be normalized to allow for a relative comparison. Three different 

similarity metrics are specifically considered: normalized squared Euclidean distance 

(NSED), spectral angler mapper (SAM), and spectral information divergence (SID).  

The Euclidean distance between class means is a suitable choice for a similarity 

metrics since it provides an easily understood measure of class separation. 

Unfortunately, the standard Euclidean distance is unbounded and will potentially grow 

monotonically as the number of dimensions are increased. To consider the Euclidean 
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distance as a tractable similarity metric, it must first be normalized to ensure bounded 

outputs. The normalized squared Euclidean distance measure is proposed as shown in 

equation (31). Here, 𝒓3 and 𝒓^ represent arbitrary pixel vectors, 𝜇3 and 𝜇^ represent the 

mean over the pixel vectors and ‖∙‖^^ represents the squared L2 norm.  

 

 𝑁𝑆𝐸𝐷(𝒓3, 𝒓^) =
1
2	
‖(𝒓3 − 𝒓^) − (𝜇3 − 𝜇^)‖^^

‖𝒓3 − 𝜇3‖^^ + ‖𝒓^ − 𝜇^‖^^
 (31) 

 

Spectral angle mapper (Kruse, et al. 1993) is a metric that assumes that the 

spectral signature of hyperspectral pixel vectors are points lying in an 𝐿-dimensional 

space, where	𝐿 is the total number of spectral bands. Spectral similarity is quantified as 

the angle between two vectors, or signatures, in the 𝐿-dimensional space. SAM is either 

reported as an angle, 𝛼(𝒓3, 𝒓^), on the interval Ï0, ã
^
Ð, or as the cosine of the angle, 

cos𝛼(𝒓3, 𝒓^), lying on the interval [0,1]. The inherent normalization of SAM, lends 

itself straightforwardly as a multivariate filter metric. The angle definition based on the 

zero-mean pixel vectors2 is adopted as shown in equation (32). 

 

 𝑆𝐴𝑀(𝒓3, 𝒓^) = cos²3 Æ
(𝒓3 − 𝜇3) ∙ (𝒓^ − 𝜇^)

‖𝒓3‖^	‖𝒓^‖^
È	 (32) 

 

Spectral information divergence (Chang 1999) is an information-theoretic 

approach to quantifying spectral similarity. Unlike the NSED or SAM which treat the 

                                                

2 This particular formulation of SAM has also been referred to as spectral correlation mapper (De 
Carvalho and Meneses 2000); however, for simplicity, the name SAM is maintained throughout the text.  
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pixel vectors as points in an 𝐿-dimensional space, SID views each pixel vector as a 

random variable and estimates differences between the distributions of the spectral 

bands. A normalized band probability is defined for a pixel vector, 𝒓, as 𝑝(b) =
©(�)

∑ ©(b)�
¥è�

, 

where 𝑗 ∈ [1, 𝐿]. Furthermore, the Kullback-Leibler (KL) divergence between two 

arbitrary pixel vectors, 𝒓3 and 𝒓^, is defined as 𝐷(𝒓3||𝒓^) = ∑ 𝑝3(𝑖) log
J�(�)
J{(�)

(
�c3  and 

𝐷(𝒓^||𝒓3) = ∑ 𝑝^(𝑖) log
J{(�)
J�(�)

(
�c3 , where the information measures are not symmetric. 

Finally, the SID is defined as the sum of both KL-divergences, as shown in equation 

(33). Note, that the SID is a symmetric metric since it accounts for the KL-divergence 

in both directions.  

 

 𝑆𝐼𝐷(𝒓3, 𝒓^) = 	¬𝑝3(𝑖) log
𝑝3(𝑖)
𝑝^(𝑖)

(

�c3

+¬𝑝^(𝑖) log
𝑝^(𝑖)
𝑝3(𝑖)

(

�c3

 (33) 

 

In the original form, SID cannot be readily used as a similarity metric, due to 

the unnormalized output of the KL-divergence. A simple adjustment can be made by 

adding a factor of 3
(
 to the SID definition, to account for the total number of bands. The 

resulting metric will be an average estimate of how correlated high probability events 

are between both pixel vectors, and more importantly, will provide a normalized upper 

bound on the metric.   

Statistical Robustness 

One of the unique aspects to using feature selection for estimation of 𝑚WJX, is the 

innately probabilistic nature of the random projections that occur during sparse 
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acquisition. Unlike wrapper methods which adaptively train in the CSD, the filter 

approaches are based on similarity measures that are fixed and are therefore potentially 

much more sensitive to the random projections. Given this probabilistic nature, it is 

important to assess how sensitive the similarity metrics will be to any particular random 

draw. To examine this further, the class mean pixel vectors from the Indian Pines 

image, were compressively sampled according to the model in equation (11). The 

number of CSBs were varied from 5 to 220. The average similarity metric defined in 

equation (30), was calculated between the Alfalfa class and all other classes. The 

similarity measures based on NSED, SAM and SID measure are shown in Figure 33, 

for 10 random trials. The average over all trials is also shown as the thicker black line. 

 

 
Figure 33: Average similarity for the alfalfa class from the Indian Pines image.  

 

Each of the different similarity measure appears to asymptote relatively 

quickly, less than 50 CSBs, which shows good promise for utility in estimating a lower 

bound. However, there is clearly a lot of variance in each of the individual estimates 

due to the randomness of the sparse projections. This variance may potentially 

introduce some difficulty in developing an automated method for selecting the 

appropriate bound. One simple approach is to average multiple trials together and 
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operate on a single smoothed similarity measure, to provide a single hard estimate of 

𝑚WJX. Unfortunately, for reasonable batch sizes, the variance in the compressed 

similarity metric manifests as perturbations in the bound estimate. To capture this 

variability, multiple estimates can be made and then be combined into a distribution of 

possible values of 𝑚WJX, providing a soft bound estimate. This approach is further 

illustrated in the experiment section.  

Wrapper Method Approach 

Given that only the number of compressed bands need to be determined, rather than a 

specific combination of bands, this problem is well-suited as feature selection wrapper 

method. Wrapper methods often show the best performance but tend to be intractable 

given the combinations of features that must be exhaustively searched. Fortunately, for 

estimating 𝑚WJX, all of the features can be considered to have approximately equal 

discriminatory power and all fixed size sets will be equivalent. This severely reduces 

the parameter space that must be searched, and therefore reduces the total number of 

times the classifiers must be trained.  

Therefore a, straightforward and effective algorithm for estimating 𝑚WJX can be 

designed by observing the performance metrics of a classifier, as 𝑚 is increased. A 

compressed classifier is trained for a range of CSBs and the classifier performance is 

evaluated at each step. The minimum number of CSBs can then be determined by 

observing the point at which the classifier performance asymptotes, or reaches a desired 

minimum performance level. The feature selection wrapper algorithm is summarized 

in Table 8.  
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Table 8: Feature Selection Wrapper Algorithm 

Feature Selection Wrapper Algorithm 

Input: A hyperspectral training dataset 𝑹$ ∈ 𝔑$×(  and sampling matrix 𝚽 ∈

ℜ(+7é¤% 

1. Choose an initial number of CSBs, 𝑚 = 𝑚7�« and a CSB step size 𝛿7.  

2. Form a valid sampling matrix, 𝚽 ∈ ℜ(+7 and project all of the training pixels 

into the CSBD, 𝑹O¸ê� = 𝑹𝚽. 

3. Train the classifier 𝑓7(𝒓) and calculate a performance metric. 

4. Increment the number of compressed bands, 𝑚 = 𝑚 + 𝛿. 

5. Set 𝑚 = 𝑚 + 𝛿7 and repeat steps 2 through 4 until 𝑚 ≥ 𝐿.  

6. Choose the value of 𝑚 where the performance metric asymptotes or when a 

desired performance level has been met.  

Output: The estimated minimum number of CSBs, 𝑚WJX, and a set of trained 

classifiers 𝐹 = {𝑓7(𝒓), 𝑓7ìí(𝒓), 𝑓7ì^í(𝒓),… , 𝑓7é¤%(𝒓)}. 

 

Automatic Bound Selection 

In the previous sections, two feature selection algorithms were proposed: however, a 

specific rule for determining convergence was not defined. A change-point detection 

algorithm is proposed for adaptively determining CSB convergence. The proposed 

change-point algorithm can be combined with the feature selection algorithms 

described in Table 7 and Table 8, to create fully automated approaches.  
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Optimal Partition Change-point Detection 

Change-point detection is the task of determining a point within a data sequence at 

which the signal characteristics abruptly change. The field has been well researched 

and large number of approaches have been proposed (Basseville and Nikiforov 1993). 

Optimal partitioning (Lavielle 2005) is a global approach to change-point detection 

where all possible change points are simultaneously detected by minimizing a single 

cost function. A cost function, 𝐽(𝒉), is constructed as a function of a data sequence, 

𝒉 ∈ 𝔑3×Y. For a given candidate change-point, 𝜏 ∈ [1, 𝑇], the data are partitioned into 

a lower segment, 𝒉(Wòó© = 𝒉[1,… , 𝜏], and an upper segment, 𝒉ôJJó© = 𝒉[𝜏 +

1,… , 𝑇]. A summary characteristic is calculated for segments and then summed 

together to form the associated cost for that particular change-point, 𝐽(𝒉[𝜏]). The 

optimal change-point is then determined by choosing the value of 𝜏 that minimizes the 

cost function. The general form of the optimal partitioning algorithm is summarized in 

Table 9.  

 

Table 9: Change-point detection via optimal partitioning 

Optimal Partitioning Change-point Detection 

Input: A data sequence 𝒉 ∈ 𝔑3×Y  

1. Choose a candidate change-point, 𝜏. 

2. Divide the data sequence into lower, 𝒉(Wòó© = 𝒉[1,… , 𝜏], and upper, 

𝒉ôJJó© = 𝒉[𝜏 + 1,… , 𝑇], segments.  

3. Calculate the summary statistics for the lower and upper data segments. 

4. Calculate the total cost, 𝐽(𝒉[𝜏]) = 𝐽1Wòó©(𝒉(Wòó©) + 𝐽õJJó©®	𝒉ôJJó©¯.   
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5. Repeat steps 1 through 4 for all candidate change-points, 𝜏 ∈ [1,𝑇]. 

6. Chose the value of 𝜏 that minimizes 𝐽(𝒉). 

Output: The optimally partitioned change-point, 𝜏WJX. 

 

In general, the summary statistic calculated during step 3, can take any form; however, 

in this work the partition mean and partition standard deviation are specifically 

considered. To understand the differences between these approaches, two simple 

simulations were created, where the points of convergence where known. Each of the 

two simulations were modeled in an attempt to the represent the filter and wrapper 

methods. For the filter methods, the similarity metrics always tended to converge 

quickly; however, the overall variance seemed to reduce at a slower rate. For the 

classifier performance observed in Chapter 3, there was lower amount of variance, but 

the point of convergence spanned a larger range of values.  

For both simulations, a logarithmic convergence was modeled. The data 

sequence, 𝒉, was calculated using a limited log function of the form shown in (34). In 

this form, the scale factor, 𝛽, can be used to control how quickly the data sequence will 

converge. The limiting index, 𝜏7ª+, corresponds to the point of convergence, for a 

unity scale factor. The true point of convergence, for the general case, can be calculated 

by multiplying the limiting index by the inverse of the scale factor, 𝜏÷W«�ó©øó =
ùé¤%
ú

. 

 

 ℎ(𝜏) = min(log(𝛽𝜏) , log(𝜏7ª+)) (34) 
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Figure 34 shows the results for the filter method with 𝜏7ª+ = [5,10,15,20], 𝜏 ∈

[1,200], and 𝛽 = 1. To account for the slower reduction in variance, zero-mean, 

Gaussian noise with a linearly decreasing standard deviation, from 4 to 0.8, was added 

directly to the data sequence. The thin gray lines represent 10 individual random trials, 

and the thick green line is the mean over all trials. The dashed blue and red lines 

represent the optimal partitioning estimate for the partition mean and the partition 

standard deviation summary statistics, respectively. The black dashed line represents 

the true convergence index. For this case, the mean statistic provides a fairly robust 

estimate of the true convergence point. The standard deviation metric is clearly biased 

by the increased variance, and is unable to provide a robust estimate.  

 

 
Figure 34: Optimal partitioning simulation for the filter method. 

 

Figure 35 shows the results for a wrapper method simulation with 𝜏7ª+ = 100, 𝜏 ∈

[1,200], and 𝛽 = [1,1.5,2,4]. To introduce some uncertainty, zero-mean, Gaussian 
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random noise, with a standard deviation of 0.8, was added directly the sequence. The 

thin gray lines represent 10 individual random trials, and the thick green line is the 

mean over all trials. The dashed blue and red lines represent the optimal partitioning 

estimate for the partition mean and the partition standard deviation summary statistics, 

respectively. The black dashed line represents the true convergence index. In general, 

both statistics underestimate the true convergence; however, they both appear to 

perform better for sequences that converge quickly. The standard deviation statistic 

consistently provides a better estimate than the mean statistic.  

 

 
Figure 35: Optimal partitioning simulation for the wrapper method. 

 

Based on these simple experiments, the optimal partitioning algorithm with a 

mean summary statistic will be used to automate the filter approach. Conversely, the 

optimal partitioning algorithm with a standard deviation statistic will be used to 

automate the wrapper approach.  
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Class-based Adaptive Compression 

The ability to estimate a class-specific 𝑚 provides a unique opportunity to further 

compress the acquired images before storing them to disk. For most hardware 

implementations, the number of CSBs that must be collected will be decided by the 

average or worst case bound among all classes. However, it is possible to further 

compress some of the pixels based on the individual lower bounds of each class. The 

classification map, 𝑪, can be combined with a class specific CSB bound, 𝑚WJX(𝑖), to 

save each pixel with the appropriate number of compressed bands. More specifically, 

all pixels belonging to class 𝑖, will be stored with 𝑚WJX(𝑖) compressed bands.  

To measure the effectiveness of this approach, a new metric must be introduced 

to account for the variable number of compressed bands among the pixels. The 

compressively-sensed band ratio (CSBR), introduced in Chapter 3, can be generalized 

into the compressively-sensed element ratio (CSER), where individual compressed 

elements are considered rather than compressed bands. In this context, the 

compressively-sensed element corresponds to a single compressed measurement and is 

analogous to the pixel element of the full band image, as defined in chapter 1. The 

CSER takes the form shown in equation (35), where 𝑛(𝑖) represents the number of 

pixels in the ith class. 

 

 𝐶𝑆𝐸𝑅 =
#	𝑜𝑓	𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

#	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 =
1
𝐿𝑁¬𝑚(𝑖)𝑛(𝑖)

S

�c3

 (35) 

 

Furthermore, it can be easily shown that the CSBR is simply a special case of the CSER 

when 𝑚	(𝑖) = 𝑚, ∀𝑖. In this case, 𝑚 can be factored out of the summation resulting in 
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∑ 𝑛(𝑖)S
�c3 = 𝑁. Applying these simplifications to equation (35), the CSBR can be 

derived from the CSER as shown in equation (36). 

 

 𝐶𝑆𝐵𝑅 =
𝑚
𝐿𝑁¬𝑛(𝑖)

S

�c3

=
𝑚𝑁
𝐿𝑁 =

𝑚
𝐿  (36) 

 

Another convenient property of the CSER metric, is that it can easily be related 

to the storage requirements. This can be accomplished by multiplying an element count 

by the desired bit-depth. In general, the element count is calculated as shown the 

numerator in equation (35), 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑐𝑜𝑢𝑛𝑡 = ∑ 𝑚(𝑖)𝑛(𝑖)S
�c3 . For the case of a single 

number of CSBs, this reduces to 𝑚 ∗ 𝑁. Similarly, for the case of the full band image, 

this reduces to 𝐿 ∗ 𝑁. As an example, assume there is an 2-class image with 𝐿 = 100 

bands, and 𝑁	 = 	200,000 pixels, that is stored with single precision (4 bytes per 

element). The required number of bytes to store the full band image would be 100 ∗

200,000 ∗ 4	𝑏𝑦𝑡𝑒𝑠 = 80	𝑀𝐵.3 Further assume that a CSB lower bound has been 

estimated to be 𝑚(1) = 5 and 𝑚(2) = 10, and that exactly half of the pixels belong to 

each of the classes. The required number of bytes to store the compressed image would 

be �5 ∗ ^kk,kkk
^

+ 10 ∗ ^kk,kkk
^

� ∗ 4	𝑏𝑦𝑡𝑒𝑠 = 6	𝑀𝐵. The storage savings in this example 

would simply be !k²"
!k

= 92.5%. Alternatively, this can be directly calculated using the 

CSER, as (1 − 𝐶𝑆𝐸𝑅) = �1 − %.&
3kk
� = 92.5%. Thus the CSER provides a normalized 

metric for comparing multiple images and is directly related to storage requirements.  

                                                

3 Here a gigabyte (MB) is simply assumed to be 1,000,000 bytes rather than the formal 1,024 kilobytes. 



 

 80 

Experiments 

Filter Experiments 

An experiment was performed to explore the effectiveness of the filter-based bound 

estimation algorithm. Given the probabilistic nature of the random projections, the 

experiment was setup in a Monte Carlo fashion, and repeated for 2,000 trials to provide 

representative statistics for each of the proposed similarity measurements. In each trial, 

the class mean vector was calculated for each class and then projected into the 

compressed domain following the model in equation (11). The number of CSBs, 𝑚, 

was varied from 5 to 55 in steps of 5 and then from 65 to 𝐿 in steps 10. Average class 

similarities, from equation (30), were calculated at each value of m, based on NSED, 

SAM, and SID, as described in equations (31), (32), and (33), respectively. Finally, 

𝑚WJX was estimated by applying the optimal partitioning algorithm, with a summary 

statistic based on the mean partition statistic.  

The estimated lower bound from each trial has been summarized into a separate 

probability distribution for each of the similarity metrics: NSED, SAM and SID. The 

experiment results for both of the AVIRIS images, Indian pines and Salinas, are shown 

in Figure 36 and Figure 37, respectively. The NSED and SAM distributions show 

maximum probability with 5 CSBs or less, which is in line with the classification results 

shown in Chapter 3. The SID distributions show a peak probability between 5 and 10 

CSBS; however, the distribution is very tightly bound. For all of the metrics, both 

images resulted in very similar distributions. Given that the types of image scenes and 

classes are very similar, this result is not surprising. 
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Figure 36: Indian Pines filter results for the mean-based optimal partition algorithm. 

 
Figure 37: Salinas filter results for the mean-based optimal partition algorithm. 

 

The results for the ROSIS images, Pavia University and Pavia Centre, are shown in 

Figure 38 and Figure 39, respectively. All of the similarity metrics show distributions 

with highest probabilities occurring within the first 15 CSBs. For NSED and SAM, the 

distributions show maximum probabilities with 5 or less CSBs, which is in line with 

the performance that was observed for nearly all of the classes in Chapter 3. Similar to 

the AVIRIS images, both ROSIS images resulted in very similar distributions. This is 

again attributed to the fact that both scenes contain similar content.  
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Figure 38: Pavia University filter results for the mean-based optimal partition algorithm. 

 
Figure 39: Pavia Centre filter results for the mean-based optimal partition algorithm. 

 

In general, the NSED and SAM similarities gave comparable results. This is 

not surprising considering that they are both based on a geometric interpretation of 

hyperspectral similarity, while SID is based on a probabilistic one, making it more 

unique. The SID distributions showed lower amounts of variance, but were biased to 

be higher than what was observed in Chapter 3. It is also important to note that these 

results are all sensitive to the specific change-point algorithm that is implemented, as 

well as the averaging sizes that are used in the experiment.  

Wrapper Experiments 

The first consideration that should be made for a wrapper approach is to 

determine if the value of 𝑚WJX is consistent between the training data and the test data. 

That is, can the training data alone provide a robust estimate of 𝑚WJX. While it is well 
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known that the classification performance of the training dataset may potentially be 

biased compared to the test dataset, it turns out that 𝑚WJX is indeed unbiased. This is 

demonstrated empirically by comparing the average accuracy, 𝑃PP	, between the 

training samples and the test samples. In this case, the test samples represent the 

unobserved pixels that will be encountered in a real-world application.  

Figure 40 shows an example of the training 𝑃PP and test 𝑃PP for the Indian Pines 

image scene. Notice that while there is approximately 2% difference between the 

training and test 𝑃PP, however, the relative effect from varying the number of CSBs is 

consistent. Similarly, training and test comparisons for Salinas, Pavia University, and 

Pavia Centre are shown in Figure 41, Figure 42, and Figure 43, respectively. A strong 

correlation exists between the training and test 𝑃PP for all of these image scenes as well. 

While they do show varying amounts of bias in the reported 𝑃PP, the relative behavior 

as a function of the number of CSBs is again consistent.  
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Figure 40: Comparison of training and test 𝑃PP for Indian Pines. 

 
Figure 41: Comparison of training and test 𝑃PP for Salinas. 
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Figure 42: Comparison of training and test 𝑃PP for Pavia University. 

 
Figure 43: Comparison of training and test 𝑃PP for Pavia Centre. 

 

The correlation between the training and test performance can be easily 

quantified by using a measure such as the Pearson correlation coefficient, which is 

defined as ÷W�(ª,')
~X((ª)∗~X((')

, where 𝑎 and 𝑏 are arbitrary vectors of equal length, 𝑐𝑜𝑣 
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represents the covariance and 𝑠𝑡𝑑 represents the standard deviation. The Pearson 

correlation coefficient between the training and test performance is equal to 0.9980, 

0.9811, 0.9996, and 0.9996 for Indian Pines, Salinas, Pavia University, and Pavia 

Centre, respectively. It is quite clear for these images that the relationship between the 

training and test data are highly correlated, as a function of the number of CSBs, and 

that the training data can be used reliably. This an important realization because it 

allows for 𝑚WJX to be selected based solely on the training data, and ensures that it will 

be relevant for unseen data.  

Class Specific Bounds and Adaptive Compression for the SVM Classifier 

For a final comparison, a single 𝑚WJX(𝑖) was estimated for each class, from all of the 

images. The individual bound was then combined with the classifier results from 

Chapter 3, to determine what the resulting CSER and algorithm efficacy would be. For 

the filter approach, the value of 𝑚WJX corresponding to the expected value of the 

estimated distribution was selected. For the wrapper approach, the value 𝑚 determined 

by the change-point detection algorithm, with a standard deviation summary statistic, 

was selected. For each of the experimental cases, the results have been summarized 

into a collection of tables. The efficacy of the individual class accuracy is shown for 

the all three filtering methods, as well as the SVM wrapper method. Additionally, the 

average accuracy, overall accuracy and the compressively-sensed element ratio are 

shown at the bottom of the table. 

The results for both algorithms run on the Indian Pines image are summarized 

in Table 10. As should be expected, the wrapper method is able to select the value of 

m that produces the highest efficacy, for most cases, since it is specifically tuned to the 
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SVM classifier. In general, the filter methods do a very good job of estimating 

reasonable lower bounds for many of the individual classes. In this case, 11 of the 16 

classes show equivalent performance between the filter and the wrapper methods. 

Amongst the filter methods, the NSED and SAM filters provide similar results, with 

the SAM filter showing the best agreement, for the SVM classifier. The SID filter 

results in the lowest bound estimates and can considered to be a more aggressive 

estimate. In regards to the CSER, the filter methods result in ratios that are 1.5 to 3 

times smaller than the wrapper method.    

Table 10: Indian Pines CSER and Efficacy Results -SVM  

 NSED Filter SAM Filter SID Filter Wrapper 
 𝑷𝑪𝑨𝑬𝒇𝒇 

Alfalfa 0.99 1.00 0.99 1.00 
Corn-notil 0.87 0.93 0.80 0.95 

Corn-mintil 0.84 0.93 0.82 0.95 
Corn 0.99 1.00 1.00 1.00 

Grass-pasture 0.99 0.99 0.99 0.99 
Grass-trees 1.00 1.00 1.00 1.00 

Grass-mowed 0.98 0.99 0.96 0.98 
Hay-windrowed 1.00 1.00 1.00 1.00 

Oats 0.93 0.99 0.87 0.94 
Soy-notil 0.94 0.96 0.93 0.97 

Soy-mintil 0.91 0.93 0.89 0.98 
Soy-clean 0.94 0.98 0.89 0.98 

Wheat 1.00 1.00 1.00 1.00 
Woods 1.01 1.01 1.01 1.00 

Buildings 0.95 0.97 0.91 0.98 
SS Towers 1.00 1.00 1.00 1.00 
𝑨𝑨𝑬𝒇𝒇 0.96 0.98 0.94 0.98 
𝑶𝑨𝑬𝒇𝒇 0.94 0.96 0.91 0.98 

 
CSER 0.09 0.14 0.07 0.24 

 

The results for the bound estimation algorithms run on the Salinas image are 

summarized in Table 11. In this case, the filter and wrapper methods show better 
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agreement, with the NSED achieving identical efficacy for all classes. The wrapper 

method results in full efficacy for all classes except for one. The CSER, however, 

produced from the wrapper method is again1.5 to 3 times higher than the filter methods.  

 

Table 11: Salinas CSER and Efficacy Results - SVM 

 NSED Filter SAM Filter SID Filter Wrapper 
 𝑷𝑪𝑨𝑬𝒇𝒇 

Broccoli 1 1.00 1.00 1.00 1.00 
Broccoli 2 1.00 1.00 1.00 1.00 

Fallow 1.00 1.00 1.00 1.00 
Fallow Rough Plow 1.00 1.00 1.00 1.00 

Fallow Smooth 1.00 1.00 1.00 1.00 
Stubble 1.00 1.00 1.00 1.00 
Celery 1.00 1.00 1.00 1.00 

Grapes Untrained 0.99 0.98 0.98 0.99 
Soil Vineyard 1.00 1.00 1.00 1.00 

Corn 1.00 1.00 0.99 1.00 
Lettuce 4 Week 1.00 1.00 1.00 1.00 
Lettuce 5 Week 1.00 1.00 1.00 1.00 
Lettuce 6 Week 1.00 1.00 1.00 1.00 
Lettuce 7 Week 1.00 1.00 1.00 1.00 

Vineyard Untrained 1.00 1.00 1.01 1.00 
Vineyard VT 1.00 1.00 1.00 1.00 

AA 1.00 1.00 1.00 1.00 
OA 1.00 1.00 1.00 1.00 

 
CSER 0.10 0.12 0.07 0.31 

 

The results for the bound estimation algorithms run on the ROSIS images are 

summarized in Table 12, and Table 13. Similar to the AVIRIS images, both approaches 

showed good agreement, with the wrapper method being more conservative. The 

NSED and SAM filters resulted in very similar predictions and the SID filter again 

resulted in the most aggressive estimates.    
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Table 12: Pavia University CSER and Efficacy Results - SVM 

 NSED Filter SAM Filter SID Filter Wrapper 
 𝑷𝑪𝑨𝑬𝒇𝒇 

Asphalt 0.98 0.98 0.97 1.00 
Meadows 0.99 0.99 0.98 1.00 

Gravel 0.99 0.99 0.99 0.99 
Trees 1.00 1.00 1.00 1.00 

Painted Metal Sheets 1.00 1.00 1.00 1.00 
Bare Soil 1.00 1.00 1.00 1.00 
Bitumen 1.00 1.00 1.00 1.00 
Bricks 1.00 1.00 0.90 1.00 

Shadows 1.00 1.00 1.00 1.00 
AA 1.00 1.00 0.99 1.00 
OA 0.99 0.99 0.99 1.00 

 
CSER 0.18 0.21 0.13 0.27 

 

Table 13: Pavia Centre CSER and Efficacy Results - SVM 

 NSED Filter SAM Filter SID Filter Wrapper 
 𝑷𝑪𝑨𝑬𝒇𝒇 

Water 1.00 1.00 1.00 1.00 
Trees 1.00 1.00 0.98 1.00 

Asphalt 0.99 0.99 0.99 1.00 
Self-blocking Brick 1.00 1.00 1.00 1.00 

Bitumen 1.00 1.00 1.00 1.00 
Tiles 1.00 1.00 1.00 1.00 

Shadows 1.00 1.00 0.99 0.99 
Meadows 1.00 1.00 1.00 1.00 
Bare Soil 1.00 1.00 1.00 1.00 

AA 1.00 1.00 0.99 1.00 
OA 1.00 1.00 1.00 1.00 

 
CSER 0.20 0.21 0.14 0.47 

 

Conclusion 

Two supervised approaches, based on feature selection, were presented for estimating 

an optimal number of CSBs. The first approach was a filter method based on observing 

the behavior of the average class similarity measure, as a function of the number of 
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CSBs. The filter approach resulted in a probability distribution of possible values of 

𝑚WJX. A hard estimate could then be derived by selecting a characteristic of the 

distribution such as the maximum probability or the expected value. The second 

approach was a wrapper method based on observing the behavior of classifier 

performance on the training data. A hard bound was directly estimated by choosing the 

value of 𝑚 were performance improvements saturated.  

Both of the proposed algorithms were automated using a change-point detection 

algorithm called optimal partitioning. A simple experiment was performed to 

determine the appropriate summary statistic for each algorithm. The results showed 

that the mean statistic was more appropriate for the filter method and the standard 

deviation statistic was more appropriate for the wrapper method. The fully automated 

version of the algorithms were tested using the classification results presented in 

Chapter 3. An individual estimate of 𝑚WJX was made for each class and then used to 

perform class specific compression. Both algorithms were capable of successfully 

estimating adequate bounds for the number of CSBs. The wrapper method more 

consistently estimated bounds with higher efficacy; however, this was at the cost of a 

CSER of 1.5. to 3 times larger than the filter method. Among the filter methods, the 

NSED and SAM filters produced similar results, and the SID filter was slightly less 

conservative and typically resulted in the lowest CSER and efficacy.   
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Chapter 5:  Compressed Progressive Band Hyperspectral 

Classification 

Introduction 

Progressive band processing (PBP) is a hyperspectral processing technique based on 

iteratively processing an image with full spatial information, but reduced spectral bands 

(Chang 2012). PBP algorithms offer the benefit of providing immediate feedback while 

the full image cube is being acquired and iteratively updating the algorithm output as 

more spectral information is received. Progressive band versions of many different 

algorithms have been proposed; such as, dimensionality reduction (Chang, Wang, et al. 

2011), target detection (Wang, et al. 2013), anomaly detection (Chang, Li, et al. 2015), 

spectral unmixing (Chang and Liu 2014), and endmember extraction (Schultz, Hobbs 

and Chang 2014). These progressive band algorithms make it possible to transmit 

portions of hyperspectral images in smaller, more efficient packets, while still 

generating near real-time feedback that improves as more spectral bands are 

introduced.  

In this Chapter, a compressed progressive band hyperspectral classification 

framework is proposed. The proposed approach is based on a general compressive 

sensing system, where CSBs are either collected or transmitted serially. In the first case, 

a snapshot hyperspectral imager (Hagen and Kudenov 2013) could be used to generate 

instantaneous images at full spatial and spectral resolution, but that are never digitally 

sampled. Rather, the digital sampling is limited to compressive band mixtures that are 

collected serially. This approach would greatly benefit remote or unmanned platforms 
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that require feedback from classification predictions to inform decisions or autonomy. 

In the second case, the compressed band hyperspectral images can be fully acquired on 

the sensor platform, and the progressive band classification can be performed off-

sensor as the CSBs are received. This approach could be adapted to work with many 

different types of hyperspectral sensors and is analogous to the original PBP 

algorithms.  

A progressive band framework is ideally suited for the compressively-sensed 

band images that have been presented in this work. Specifically, a compressed 

progressive band classifier (CPBC) is introduced that offers two advantages over the 

more traditional approach. First, the progressive nature provides immediate feedback 

without the need to collect the full number of CSBs. As it was shown in Chapter 3, 

classification of some classes converged with a very small number of classes, which 

means that even some of the earliest progressive iterations will provide extremely 

informative results. Second CPBP provides an unsupervised approach to determining 

the required number of CSBs directly from in-situ measurements, that can work with 

any compressed classifier. By observing the behavior of the classifier in between 

progressions, a stopping criterion can be developed to adaptively determine when a 

sufficient number of CSBs have been acquired.  

There are three key aspects to the compressed progressive band classifier: the 

progressive classifier, the progression metrics, and the stopping criteria. The 

progressive classifier must be capable of iteratively processing a hyperspectral image 

for varying amounts of CSBs. The progression metrics refer to measures that are able 

to quantify the perceived change in performance between successive iterations. Finally, 



 

 93 

the stopping criteria are definitive rules, based on the progression metrics, that 

determine when a sufficient number of CSBs have been processed. Each of this aspects 

are discussed in full detail, in the following sub-sections.  

Progressive Classifier 

To enable a progressive band approach, the classifier must be capable of processing 

images with a varying number of CSBs. To accomplish this, a straightforward and 

general approach is developed based on employing a set of classifiers, 𝐹 =

{𝑓7(𝒓), 𝑓7ìí(𝒓), 𝑓7ì^í(𝒓),… , 𝑓7é¤%(𝒓)}, that are functions of only the pixel vector, 

rather than a single classifier, 𝑓(𝒓,𝑚), that is a function of both 𝑚 and the pixel vector. 

In this notation, 𝑓7(𝒓) corresponds to a classifier that has been individually trained 

with 𝑚 CSBS, where 𝑚 is any integer on the interval [1,𝑚7ª+	], and 𝛿7 is an arbitrary 

step size. The full parameter space is captured when 𝛿7 = 1 and 𝑚7ª+ = 𝐿; however, 

in practice a larger step size and a lower maximum number CSBs will likely be 

sufficient, for most cases. A short analysis is performed on the effects of 𝛿7 and 𝑚 in 

the experiment section.  

To effectively train the set of classifiers, the compressive sampling matrix must 

be known a priori, and specifically included in the training process. Furthermore, the 

order of the columns in the sampling matrix must be preserved during both algorithm 

training and deployment. Both of these requirements can be easily satisfied by 

generating a random sampling matrix of maximum size, 𝚽 ∈ ℜ(+7é¤%, and then 
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selecting contiguous sub-matrices for each classifier4. The training data is then 

projected into the CSBD and the normal classifier training procedure is used. This 

process is repeated until the desired set of classifiers have been trained. The complete 

training procedure is summarized in Table 14. Note, that for simplicity, the training 

procedure has been described with a uniform step size; however, it in practice it is 

trivial to alter the training procedure to allow for a non-uniformly spaced number of 

CSBs.  

 

Table 14: Progressive band classifier training procedure 

Progressive Band Classifier Training Procedure 

Input: A hyperspectral training dataset 𝑹$ ∈ 𝔑$×(  and sampling matrix 𝚽 ∈

ℜ(+7é¤% 

1. Choose an initial number of CSBs, 𝑚 = 𝑚7�« and a CSB step size 𝛿.  

2. Form a sub-matrix, 𝚽. ∈ 𝔑(×7, by selecting columns 1 to 𝑚 from 𝚽 and re-

normalizing along the columns. 

3. Project all of the training pixels into the CSBD, 𝑹O¸ê� = 𝑹𝚽. . 

4. Train the classifier 𝑓7(𝒓). 

5. Increment the number of compressed bands, 𝑚 = 𝑚 + 𝛿. 

6. Repeat steps 2 through 5 until 𝑚 = 𝑚7ª+. 

Output: A set of trained classifiers 𝐹 = {𝑓7(𝒓), 𝑓7ìí(𝒓), 𝑓7ì^í(𝒓),… , 𝑓7é¤%(𝒓)} 

 

                                                

4 It is important to stress that on a physical system, 𝚽 is implemented directly in the sampling hardware 
and must be coordinated with the classifier training procedure. 
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The presented approach has two desirable traits. First, this procedure does not 

require the classifier to be altered in any way. This allows for any classifier to be 

implemented without modification and for all of the standard classifier training 

procedures to be leveraged. Second, since the compressed classifier is not directly tied 

to the progression metrics or stopping criteria, the variations of the CPBC algorithm 

can be easily created by simply including a different set of classifiers. Moreover, it is 

even possible to train multiple sets of classifiers and employ classifier fusion 

techniques.  

The main shortcoming to this approach is that for very complicated classifiers, 

such as deep neural networks, the required training time may become intractable. 

However, the free parameters 𝛿7 and 𝑚7ª+, provide a mechanism for trading between 

training time and progressive band resolution. Additionally, it is possible to develop 

adaptive training procedures that use the classifier performance of the training data to 

update 𝛿 and to inform what 𝑚7ª+ should be.  

Progression Metrics 

Progression metrics are required to measure the change in classifier performance 

between progressive iterations. Such metrics are essential for determining if classifier 

performance has converged or if additional CSBs should be collected. As it was shown 

in Chapter 3, a compressed classifier performance tends to asymptote at a particular 

number of CSBs, based on the individual scene complexity. A progression metric is 

desired that will correlate well with classification performance, since classification 

performance cannot be measured in-situ. In this section, the notion of a progressive 

band confusion matrix is introduced and a number of metrics are derived from it. A 
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connection is made between the derived metrics and the well-known Tanimoto 

Coefficient (TC). Finally, the progression metrics are cast into a probabilistic 

framework to provide additional insight into the subtleties of the proposed metrics.   

Confusion Matrix Approach 

The proposed approach leverages the specific nature of the classification problem to 

develop progression metrics that can be used for determining stopping criteria. For each 

progression of the progressive band algorithm, an estimate of class membership is 

produced for each of the current pixels. Let 𝑪/(𝑚) represent the class predictions for 𝑚 

-CSBs and 𝑪/(𝑚 + 𝛿7) represent the class predictions for (𝑚 + 𝛿7)-CSBs, where 𝛿7 

is any positive integer and 𝑚 + 𝛿7 < 𝐿. The relationship between the predicted class 

membership at subsequent iterations can be exploited to provide several measures of 

progression. The notion of a progressive band confusion matrix is introduced to aid in 

the exploration of the relationship between these class predictions. 

Refer to the progressive band confusion matrix shown in Figure 44. The progressive 

band confusion matrix is similar to the standard classification confusion matrix shown 

in Figure 5; however, the rows and the columns both represent class predictions. 

Specifically, 𝑛�b represents the number of pixels to belong to the 𝑖’𝑡ℎ class with 𝑚 -

CSBs and to the 𝑗’𝑡ℎ class with (𝑚 + 𝛿7)-CSBs. The presented convention treats the 

predictions for 𝑚-CSBs as the confusion “predictions” and the predictions for (𝑚 +

𝛿7)-CSBs as the confusion “truth”5. This convention is motivated by the fact that 

                                                

5 It is important to note that the terms “prediction” and “truth” are used here to be consistent with the 
traditional classification confusion matrix; however, class membership ground truth is not available in-
situ and this approach is indeed completely unsupervised.  
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predictions made using more CSBs will, with high probability, provide more accurate 

estimates, thus they should be assumed to be more reliable.  

 

 
Figure 44: Progressive band confusion matrix. 

 

Using the progressive band confusion matrix and following an analogous 

approach to classification performance, it is possible to define several progression 

metrics. Based on the class accuracy shown in equation (1), the progression accuracy 

is defined in equation (37). The progression accuracy, for the 𝑝’𝑡ℎ class, is the number 

of pixels predicted, in both iterations, to belong to class 𝐶J divided by the number of 

pixels whose prediction change to 𝐶J from a different class. Based on the classification 

precision shown in equation (2), the progression precision is defined in equation (38). 

The progression precision, for the 𝑝’𝑡ℎ class, is the number of pixels predicted, in both 

iterations, to belong to class 𝐶J divided by the number of pixels that were previously 

predicted as 𝐶J and are now predicted to belong to a different class. Finally, based on 
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the classification overall accuracy shown in equation (3), the overall progression 

accuracy is defined in equation (39). The overall progression accuracy is the number 

of pixels that share class predictions in both iterations divided by the total number of 

pixels.  

 

 𝑃SP(𝑝) =
𝑛JJ

∑ 𝑛bJS
bc3

	

 
(37) 

 

 𝑃SS(𝑝) =
𝑛JJ

∑ 𝑛JbS
bc3

	

 
(38) 

 

 
𝑃TSP =

∑ 𝑛bbS
bc3

𝑁
	 (39) 

 

Similar to the measure of classification performance, it is also convenient to consider 

the average progression accuracy, 𝑃PSP =
3
S
∑ 𝑃SP(𝑝)S
3 , and the average progression 

precision, 𝑃PSS =
3
S
∑ 𝑃SS(𝑝)S
3 .  

Relationship to the Tanimoto Coefficient 

An interesting connection can be made between the proposed progression metrics and 

a binary similarity metric referred to as the Tanimoto coefficient6 (Rogers and 

Tanimoto 1960). In the context of a progression metric, the Tanimoto coefficient (TC), 

for class 𝐶J,  is defined in equation (40) as the ratio of the intersection of class 

                                                

6 This is also referred to as the Jaccard Index (Jaccard 1901). 
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predictions to the union of the class predictions, where |∙| denotes the number of 

elements in the set. In this context, 𝑪/J ∈ 𝔑$%×$'  is a Boolean matrix where a true value 

indicates that a particular pixel belongs to class 𝐶J.  

 

 𝑃YO(𝑝) =
u𝑪/J(𝑚) ∩ 𝑪/J(𝑚 + 𝛿)u
u𝑪/J(𝑚) ∪ 𝑪/J(𝑚 + 𝛿)u

	 (40) 

 

The Tanimoto coefficient, for a single class, can be written in terms of the progression 

confusion matrix, as shown in equation (41).  

 

 𝑃YO(𝑝) =
𝑛JJ

∑ 𝑛bJS
bc3 + ∑ 𝑛JbS

bc3 − 𝑛JJ
	 (41) 

 

In this form, it is clear to see that 𝑃YO  is very similar to 𝑃SP and 𝑃SS, but with a 

normalization term in the denominator that incorporates all predictions from both 

iterations, simultaneously. Another very important difference is that 𝑃YO  is a symmetric 

measure, while 𝑃SP and 𝑃SS are not. More specifically, 𝑃YO  does not depend on the 

convention that is adopted to define the confusion matrix “truth”, whereas, both 𝑃SP 

and 𝑃SS depend on it.  

These differences can be further explored by posing the problem in a 

probabilistic framework. Substituting in the basic definitions for a conditional and a 

joint probability, 𝑃YO(𝑝), can be re-written in terms of probabilities as shown in 

equation (42).  
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𝑃YO(𝑝) =
𝑃®𝑪/J(𝑚) ∩ 𝑪/J(𝑚 + 𝛿)¯
𝑃®𝑪/J(𝑚) ∪ 𝑪/J(𝑚 + 𝛿)¯

 

 

=
𝑝(𝑪/J(𝑚), 𝑪/J(𝑚 + 𝛿))

𝑃 �𝑪/J(𝑚)� + 𝑃 �𝑪/J(𝑚 + 𝛿)� − 𝑃®𝑪/J(𝑚), 𝑪/J(𝑚 + 𝛿)¯
	

(42) 

 

Similarly, the proposed progression accuracy and progression precision can also be re-

written in terms of probabilities, as shown in equations (43) and (44).  

 

 

𝑃SP(𝑝) =
𝑃 �𝑪/J(𝑚), 𝑪/J(𝑚 + 𝛿)�

𝑃 �𝑪/J(𝑚)�
 

 

=
𝑃 �𝑪/J(𝑚 + 𝛿)|𝑪/J(𝑚)�𝑃 �𝑪/J(𝑚)�

𝑃 �𝑪/J(𝑚)�
= 

 
𝑃®𝑪/J(𝑚 + 𝛿)|𝑪/J(𝑚)¯	

 

(43) 

 

 

𝑃SS(𝑝) =
𝑃 �𝑪/J(𝑚),𝑪/J(𝑚 + 𝛿)�

𝑃 �𝑪/J(𝑚)�
 

 

=
𝑃 �𝑪/J(𝑚)|𝑪/J(𝑚 + 𝛿)�𝑃 �𝑪/J(𝑚 + 𝛿)�

𝑃 �𝑪/J(𝑚 + 𝛿)�
 

 
= 𝑃 �𝑪/J(𝑚)|𝑪/J(𝑚 + 𝛿)�	

(44) 

 

Interestingly, for the adopted convention, the progression accuracy is the a priori 

conditional probability and the progression precision is the a posteriori conditional 

probability. That is, 𝑃SP(𝑝) is conditioned on the previous iteration, while 𝑃SS(𝑝) is 

conditioned on the most recent iteration. Comparatively, 𝑃YO(𝑝) is the joint probability 
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conditioned by the union of the marginal probabilities. It is again obvious from this 

form that 𝑃YO(𝑝) is indeed symmetric and will not depend on the particular convention 

that is adopted.  

The Overall Tanimoto Coefficient 

Finally, an overall Tanimoto coefficient (OTC) can be defined by considering all 

classes simultaneously, as shown in equation (45).  

 

 𝑃TYO =
∑ u𝑪/J(𝑚) ∩ 𝑪/J(𝑚 + 𝛿)uS
Jc3

∑ u𝑪/J(𝑚) ∪ 𝑪/J(𝑚 + 𝛿)uS
Jc3

	 (45) 

 

By recognizing that the denominator of this expression is equal to the total number of 

pixels, 𝑁, and that the intersection is the sum of the diagonal elements of the 

progression confusion matrix, ∑ 𝑛bbS
bc3 , it can then be shown that the overall 

progression accuracy and the overall TI are indeed equivalent.  

 

 
𝑃TYO =

∑ 𝑛bbS
bc3

𝑁 = 𝑃TSP	 (46) 

 

Each of these metrics are explored in the experiment section and an analysis is 

performed to select the most appropriate measure for use with a stopping rule.   

Stopping Criteria 

Stopping criteria must be defined, based on the progression metrics, to indicate when 

enough CSBs have been collected. At first glance, this seems similar to the changepoint 

detection problem posed in Chapter 4, for determining the appropriate number of CSBs 
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a-priori. However, a key difference is that for progressive band processing, the 

stopping criterion must be causal, which was not the case for the changepoint detection 

algorithm. There are, however, a few specific considerations that can be made for the 

progressive band convergence. First, all of the progression metrics defined in the 

previous section are normalized between 0 and 1, which allows for target values to be 

directly included in a stopping rule. Second, in a noise free system, the progression 

metrics should all be monotonically increasing, which can further reduce some of the 

complexity in the stopping rules.  

To identify convergence in progression, a set of rules based on the absolute 

progression metric value and the magnitude of the difference in successive iterations 

are proposed. The stopping rule is based on two user inputs: a progression metric 

threshold, 𝜏S4, and a difference threshold, 𝜏í . The first threshold is simply the 

minimum progression metric that must be reached before convergence can be declared. 

This threshold is useful for preventing the algorithm converging at local minimum due 

to noise in the system. The second threshold represents the maximum change that is 

tolerated for a converged sequence. Values that are greater than this threshold are 

considered to have not yet converged. To make this threshold more intuitive, it is 

applied as a relative percentage of the current progression metric value. For a set of 

arbitrary progression metrics, 𝑃S4, with 𝑚 and (𝑚 + 𝛿7) CSBS, the stopping rule can 

be defined as shown in the following pseudo-code. 

 

If (𝑃S4(𝑚 + 𝛿7) − 𝑃S4	(𝑚)) > 0 
 If 𝑃S4(𝑚) > 𝜏S4 and 

S67(7ìíé)²S67	(7)
S67	(7)

< 𝜏í 
  Declare convergence 
 Else 
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  Continue 
Else 
 Ignore negative values 

 

Experiments 

Setup 

For these experiments, the experimental procedure presented in Chapter 3 was repeated 

to calculated the progression metrics. However, to properly simulate the in-situ nature 

of the progressive band processing, the results from a single trial are analyzed rather 

than the average of a collection of experiments. Similarly, the same number of 

training/testing samples, and classifier hyperparameters were maintained. In the 

interest of brevity, the performance metrics presented within this section are limited to 

the classification accuracy metrics, 𝑃TP and 𝑃PP; however, the results of the precision 

metrics were also in agreement. The experiments were again conducted on all four of 

the real-world hyperspectral images introduced in Chapter 1.  

Training Step Size and Maximum Bound 

One potential concern is that for classifiers with a computationally burdensome 

inference process, using small step sizes may become intractable. This raises the 

question of how fine the step size must be to adequately capture the performance 

progression. To answer this question, a simple experiment was conducted to explore 

the effects of step size on the classification progression. The spectral-spatial classifier 

was trained on Indian Pines image with a step size of 1 additional CSB at each iteration. 

Multiple subsets of results were then created by sub-sampling with step-sizes of 2, 5, 

7, and 10, to simulate the process of using larger step sizes. Finally, the root-mean-
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square (RMS) error of the overall accuracy was calculated between the step size of 1 

and all of the larger step sizes. A simple linear interpolation was used for the sub-

sampled results to align them with the finely sampled results. It should be noted that, 

for simplicity, only a single experiment was conducted and the 𝑃TP achieved on the 

training data has been reported.  

The step-size experiment results, for the Indian Pines image, are shown in Figure 

45, and the RMS errors are tabulated and displayed as annotations. It is immediately 

obvious that the step size will have minimal impact on the progression metric. The 

larger step sizes adequately track the performance progression and result in RMS errors 

that less than 1% 𝑃TP. This result is re-assuring, as it suggests that the step size can be 

chosen completely based on the desired fidelity and the available computational 

resources.  

 

 
Figure 45: Step-size experiment for Indian Pines. 
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Progressive Band Classification 

To fully illustrate the progressive classification sequence, a collection of classification 

maps and difference maps have been generate for each of the images. The classification 

maps display the current class predictions for each pixel, and the difference maps 

highlight the pixels that have changed between updates. The corresponding number of 

CSBs for each of the maps is annotated directly on the figure. For reference, the ground 

truth and the full band predictions are shown in the top left corner of each plot.  

The progressive band classification sequence for the Indian Pines image is 

shown in Figure 46. The progressions from 𝑚 = 5 to 𝑚 = 30, 𝑚 = 35 to 𝑚 = 60, and 

𝑚 = 65 to 𝑚 = 90 are grouped together in the top two rows, middle two rows, and 

bottom two rows, respectively. It is readily apparent from the difference maps that the 

class predictions rapidly change in the early iterations, with large clusters of pixels 

changing within the first 20 CSBs. While the majority of the pixels eventually 

converge, there are still small number of pixels that continue to change through 90 

CSBs. Given that the Indian Pines is the more difficult of the test images and that the 

classification accuracy is limited to the lower 90% range, it is not unreasonable to 

expect for some pixels to continually change, even for the larger number of CSBs. 

Nevertheless, the classification maps, with as few as 20 CSBs, provide a useful view 

of the scene and could be used to inform real-time decision making for many potential 

applications.  
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Figure 46: Indian Pines progressive classification sequence 

 

The progressive band classification sequence for the Salinas image is shown in 

Figure 47. Even with only 10 CSBs, the class predictions provide an excellent 

approximation to the ground truth, and could potentially inform many real-time 

decisions. The largest change in class predictions occur between 5 and 10 CSBs, and 

the changes are predominantly limited to two specific classes. Similar to the Indian 

Pines image, the overall accuracy of the image is limited to ~96%, thus it is plausible 

that 4% of the pixels may be subject to fluctuations if they are close to the class 

boundaries.  
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Figure 47: Salinas progressive classification sequence 

 

The progressive band classification sequence for Pavia University is shown in 

Figure 48. Similar to Indian Pines, there multiple large clusters of pixels that change 

within the first 20 CSBs; however, the class predictions begin to converge around 30 

CSBs and show minimal changes beyond that point.  

 



 

 108 

 

Figure 48: Pavia University progressive classification sequence 

 

The progressive band classification sequence for Pavia Centre is shown in 

Figure 49. This image converges faster than all of the other three images. Even with 

the minimum of 5 CSBs the classification map looks nearly identical to the ground 

truth. The difference maps show minimal changes as the number of CSBs is increased. 
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Figure 49: Pavia Centre progressive classification sequence 

 

For each of the test images, the progressive classification sequence shows that 

there is large amount of useful information available, even with as few as 20 CSBs. 

The current class predictions and knowledge of which pixels are changing between 

iterations can be coupled to inform many different real-time decisions. The difference 

maps could also be used in-situ to isolate a sub-set of pixels for further analysis or for 

transmission in a remote system.  

Progression Metric Experiment 

One of the most important tasks of these experiments was to quantify the effectiveness 

of the proposed progression metrics as indicators of performance convergence. More 

simply put, how reliably could the progression metrics be used to determine when 

enough CSBs have been collected in-situ. In this section, the classification accuracy 

metrics, 𝑃TP and 𝑃PP, are compared with the progression metrics. The Pearson 

correlation coefficient introduced in Chapter 4, was again used to quantify the utility 

of the progression metrics. For each of the plots, the solid blue and red lines represent 
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the 𝑃TP and 𝑃PP, respectively. The dashed lines represent the various progression 

metrics: overall progression accuracy (yellow), average progression accuracy (purple), 

average progression precision (green), and overall Tanimoto coefficient (cyan). 

Furthermore, the Pearson coefficient is tabulated, for each combination of accuracy and 

progression metric, and is annotated directly on the plots. 

There are a few notes worth mentioning regarding the background pixels. First, 

excluding the background pixels in the progression metrics will result in a more 

optimistic estimate of performance, with a higher correlation between the classifier 

performance. This can be understood intuitively by recalling the effect that the 

background pixels had on the precision metrics. Since many of the background pixels 

tend to be mixtures of the other classes, this can create some instability in the 

progression metric as the assigned label will tend to jump around more for the 

background pixels. Second, it is important to recognize that some additional training 

techniques could potentially be employed to improve the classifiers robustness to the 

background pixels. This line of effort is adjacent to the central thesis of this work and 

has been left for future research.  

Figure 50 shows a comparison between the classification accuracy and the 

progression metrics, for the Indian Pines image. For both the cases with and without 

background pixels, all of the progression metrics correlate very well with the classifier 

performance. There is a notable turning point in all of the curves around 25 CSBs and 

then a more gradual increase until about 100 CSBS were the curves converge. The, the 

progression metrics result in a correlation coefficient greater than or equal to 0.94 and 

a maximum correlation of 0.99.  
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Figure 50: Indian Pines progression metrics. 

 

Figure 51 shows a comparison between the classification accuracy and the 

progression metrics, for the Salinas image. In this case, there is a stark difference 

between including and excluding the background pixels. When the background pixels 

are excluded, the progression metrics show relatively high correlation with 

performance. However, when background pixels are considered, the correlation drops 

from 0.9 to 0.65. Fortunately, there is still an obvious changepoint around 40 CSBs, 

where the progression metrics asymptote. While a progressive band algorithm based 

on this particular classifier, will likely overestimate the total number of CSBs, it will 

still converge at a value less than 25% of the total number of bands.  
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Figure 51: Salinas progression metrics. 

 

Figure 52 shows a comparison between the classification accuracy and the 

progression metrics, for the Pavia University image. This is another example of where 

background pixels negatively impact the performance the progression metrics. 

Interestingly, this also the image that shows the largest discrepancies between the 

different progression metrics. When the background pixels are included, there is a 

difference of 0.22 between the lowest and the highest correlation coefficients. In 

general, correlation is better with the average accuracy for all metrics.  
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Figure 52: Pavia University progression metrics 

 

Finally, Figure 53 shows a comparison between the classification accuracy and the 

progression metrics, for the Pavia Centre image. In this case, the reported correlation 

coefficients are reasonably high (>0.9) even if background pixels are included. 

However, it is still apparent that the turning point with background pixels is close to 

about 20 CSBs higher than the turning point in the performance metrics.  

 

 
Figure 53: Pavia Centre progression metrics 
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Stopping Criteria Experiment 

As a final test, the proposed stopping rule was applied to the progression metrics 

calculated in the previous section. The difference threshold was held constant at 0.01 

and the progression metric threshold was varied from 0.90 to 0.99. The resulting CSBR, 

𝑃TPUVV , and 𝑃PPUVV  are reported for each of the thresholds, and displayed as bar plots. 

For the cases where the algorithm failed to converge (i.e. stopping criteria were never 

satisfied), values were simply excluded from the plot. The experiment was conducted 

both with and without the inclusion of background pixels.  

The results for each of the images, without including background pixels, are 

shown in Figure 54, Figure 55, Figure 56, and Figure 57. In general, the stopping 

criterion performs exceptionally well for all of the proposed summary progression 

metrics. For three of the four images, an efficacy of nearly exactly 1 is obtained, while 

maintaining a CSBR less than 0.25. For the fourth image, an efficacy of 0.95 is 

achieved with the same CSBR.  

The algorithm also appears to be fairly robust to the specific choice of the 

progression metric threshold. Increasing the threshold does not result in an 

overestimate of the number of CSBs. There was a single case, for the Indian Pines 

image, where the algorithm failed to converge with the 𝑃PYO  and 𝜏S4 = 0.99. This was 

due to the fact that  𝑃PYO  never reached a value of 0.99.  

Regarding the choice of a particular progression metric, each of the proposed 

progression metrics provide fairly similar results. There were no consistent trends 

across all of the images that would suggest one metric to be better than another.  
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Figure 54: Indian Pines progressive band statistics without BKG pixels 

 

 

Figure 55: Salinas progressive band statistics without BKG pixels 
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Figure 56: Pavia University progressive band statistics without BKG pixels 

 

 

Figure 57: Pavia Centre progressive band statistics without BKG pixels 
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When considering the case were background pixels are included, there are two 

primary effects on the performance of the algorithm. First, the absolute value of the 

progression metrics tend to decrease. This reduction will directly affect the valid range 

of values that can be chosen for 𝜏S4. To illustrate the effects on the threshold, refer to 

the Indian Pines results in Figure 58. Note that values of 𝜏S4 are now displayed from 

0.85 to 0.99. In this case, the lower threshold values result in CSBR and performance 

efficacies that are similar to those reported when excluding the background pixels. For 

the higher thresholds, less than half of the cases converged, because the progression 

metrics never exceeded the threshold. Interestingly, 𝑃TSP and 𝑃PSP converged in all 

cases but one. Conversely, 𝑃PSS converged less than half of the time and 𝑃PYO  only 

converged once. This observation was limited to the Indian Pines image. For the other 

three images, the algorithm converged almost every time. 
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Figure 58: Indian Pines progressive band statistics with BKG pixels 

 

Second, as it was shown in the previous section, the correlation between the 

progression metrics and classifier performance decreases. For two of the images, this 

introduced an obvious lag between the classifier performance improvements and the 

progression metric. This lag will manifest as an overestimate of the required number of 

CSBs, and consequently a higher CSBR. This effect was most evident in the Pavia 

University image, shown in Figure 59. For the case where background pixels were 

excluded, CSBR around 0.25 with full efficacy was achieved; however, with the 

inclusion of background pixels, the CSBR has nearly doubled.  
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Figure 59: Pavia University progressive band statistics with BKG pixels 

 

Conclusion 

This chapter presented an in-situ approach to estimating the appropriate number of 

CSBs, based on a compressed progressive band classifier. This approach coupled band 

sequential processing with iterative compressive sensing. The resulting algorithm 

provides intermediate class predictions that could be used for decision making, as well 

as adaptively determines when enough CSBs have been collected. The progressive 

band algorithm was defined in three parts: progressive classifier, progression metrics, 

and stopping criteria. Each of these parts was discussed in detail, and a corresponding 

experiment was performed to analyze the proposed approach.  
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Several important conclusions were drawn from the experiments. First, the algorithm 

is not sensitive to the step-size between iterations. This allows for the step-size to be 

chosen based on practical constraints; such as computational resources and system 

latency. Second, all of the progression metrics showed very high correlation with 

classifier performance. The effects of background pixels were specifically considered, 

and were shown, for two of the images, to drastically reduce correlation. The proposed 

explanation for this decorrelation is that background pixels that fall near class 

boundaries, will tend to jump back and forth. However, potential mitigation strategies 

were proposed to lessen the effects of background pixels. Finally, the proposed 

stopping criteria was demonstrated to be well-suited. In general, the user thresholds 

were fairly robust across all of the images. For the case without the inclusion of 

background pixels, the algorithm was able to achieved nearly full efficacy for all 

images, with a CSBR less than 0.25. The case with inclusion of background pixels was 

also considered and some isolated effects were noted.  
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Chapter 6:  Summary and Conclusions 

The contributions of this dissertation provide the fundamental foundation for 

compressed classification of hyperspectral images. A new approach for hyperspectral 

classification in the compressively-sensed band domain (CSBD) was presented. 

Compressive sensing (CS) was proposed as an enabling technology to reduce the high 

spectral band count, through the creation of compressively-sensed bands (CSBs). A CS 

model based on the universality of random sensing was proposed for the analysis of 

hyperspectral classification in the compressed domain. It was shown that the universal 

model satisfied the restricted isometry property (RIP) and guaranteed optimal 

performance could be achieved, without the need of identifying the sparse 

representation. An experiment was performed to demonstrate the proposed model and 

universality property that it possesses.  

A spectral-spatial classifier based on the support vector machine and guided 

filters was analyzed in the CSBD. An error analysis, based on RIP, was derived and 

used to show that compressed classifier will indeed asymptote to full band 

performance, as the number of CSBs are increased. These findings were empirically 

validated through a set of simulated experiments, based on four common hyperspectral 

images. The experiments demonstrated that full classification performance could be 

achieved with as few as 10% of the total bands for some of the images. The analysis 

also concluded that the scene complexity was a major driver in the required number of 

CSBs to achieve full performance, and that additional methods are required to 

intelligently determine the correct number of CSBs.  
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Two supervised algorithms based on a feature selection framework were 

proposed for estimating the minimum lower bound on the required number of CSBs. 

The first algorithm was based on feature filtering techniques and the second algorithm 

is based on classifier wrapping. Three variants of the filtering approach were 

implemented, based on Euclidean distance, spectral angle mapper, and spectral 

information divergence. All of the filter algorithms showed excellent agreement and 

were robust across all images. The wrapper method also showed excellent agreement 

with the employed classifier, demonstrating that the relationship between the number 

of CSBs and performance is maintained between training and test data.  

Finally, a compressed progressive band classification algorithm was developed 

that is able to adaptively determine the required number of CSBs in-situ. Several new 

progression metrics were developed and showed to correlate well with classifier 

accuracy performance. A fully automated algorithm was developed based on a 

difference threshold and a progression metric threshold. The experimental results 

showed that the algorithm performed excellently and that performance was fairly robust 

to the choice of threshold. In addition to the ability to adaptively determine a sufficient 

number of compressed bands, the progressive classifier is also capable of providing 

intermediate class predictions at each iteration. The iterative class predictions can be 

combined with logic to develop new types of autonomy.  

While this work provided a fairly complete analysis of compressed 

hyperspectral classification, there are still many open research questions. First, this 

research has focused on the signal processing and machine learning aspects of the 

compressed system, and there a number of hardware considerations that need to be 
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researched further before a practical system can be deployed. Second, the compressive 

sensing models explored so far have been limited to Gaussian sampling, which is likely 

not the most practical. Additional random sampling distributions and deterministic 

sampling approaches should be considered. Third, this research was limited to a single 

type of classifier. A more comprehensive analysis of various types of classifiers, such 

as modern neural networks, should be examined in the CSBD. Finally, specific 

applications should be considered and the appropriate logic and autonomy should be 

developed to fully exploit the new capabilities presented within this work.  
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