

ABSTRACT

Title of Document: A COMPRESSIVE SENSING APPROACH

TO HYPERSPECTRAL IMAGE

CLASSIFICATION

 Charles Della Porta, Doctorate of Philosophy

Conferred August 2019

Directed By: Dr. Chein-I Chang

Remote Sensing Signal and Image Processing Lab

Department of Electrical Engineering

University of Maryland, Baltimore County

Hyperspectral imaging (HSI) technology has found success in a variety of applications;

however, its use is often still limited due to size, weight and power (SWaP) constraints.

In this dissertation, compressive sensing (CS) is proposed as an enabling technology to

reduce the high spectral band count, through the creation of compressively-sensed

bands (CSBs). A CS model based on the universality of random sensing is proposed

for the analysis of hyperspectral classification in the compressed domain. Specifically,

the utility of the support vector machine (SVM) in the compressed domain is evaluated

through both mathematical analysis and empirical experimentation. This work shows

that is indeed possible to achieve full band classification performance in the

compressed domain. The experiments also demonstrate that the minimum number of

CSBs is scene dependent, requiring additional algorithms to provide a full solution.

Two supervised algorithms based on a feature selection framework are proposed for

estimating the minimum lower bound on the required number of CSBs. The first

algorithm is based on feature filtering techniques and the second algorithm is based on

classifier wrapping. Finally, an unsupervised algorithm is presented, based on

progressive band processing, that is able to adaptively determine the required number

of CSBs in-situ. The contributions of this dissertation provide the fundamental

foundation for compressed classification of hyperspectral images and identify several

new opportunities for future research.

A COMPRESSIVE SENSING APPROACH TO HYPERSPECTRAL IMAGE

CLASSIFICATION

By

Charles Della Porta

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, Baltimore County, in partial fulfillment

of the requirements for the degree of

Doctorate of Philosophy

2019

© Copyright by

Charles Della Porta

2019

ii

Dedication

This dissertation is dedicated to my parents Richard and Laura, my wife, Tatiana, and

my beautiful children Isabella and Eric. Your love and support is what has made this

work a possibility.

iii

Acknowledgements

This work would not have been possible without the mentorship of my advisor Dr.

Chein-I Chang, department of electrical engineering at The University of Maryland

Baltimore County. His advice and insights have contributed greatly to the direction of

my research. I would also like to acknowledge the support of my peers Adam Bekit

and Bernard Lampe. In addition, I am grateful for the feedback and insights provided

by the dissertation committee members Dr. Kalpakis, Dr. Zhu, Dr. Bradley, and Dr.

Safavi.

iv

Table of Contents

Dedication .. ii

Acknowledgements ... iii

Table of Contents ... iv

Nomenclature: .. vi

Chapter 1: Introduction and Fundamental Concepts ... 1

Related Work and Dissertation Contributions .. 2
Hyperspectral Imaging (HSI)... 4
Multi-Class Classification of Hyperspectral Images ... 7
Hyperspectral Datasets for Classification Evaluation ... 10
Conclusion .. 14

Chapter 2: A Universal Sampling Model for Compressive Sensing 15

Introduction ... 15
Sub-Sampled Systems ... 15

A Compressive Sensing System... 15
A Compressive Hyperspectral Imaging System ... 17

A General Mathematical Model for Compressive Sensing 20
Compressive Sampling .. 21
Sparse Recovery .. 23
Sparse Representation of Hyperspectral Images ... 24
Random Compressive Sampling .. 26

A Universal Compressive Sensing Model for Hyperspectral Imaging 28
Experiments .. 29
Conclusion .. 33

Chapter 3: Hyperspectral Image Classification via Compressive Sensing 34

Introduction ... 34
Support Vector Machines .. 34
Edge Preserving Filters.. 37
Support Vector Machines in the Compressively-Sensed Band Domain 39
Kernel Support Vector Machines in the Compressively-Sensed Band Domain 41
Experiments .. 43

Experimental Setup ... 43
Classification Accuracy Analysis... 46
Classification Precision Analysis ... 49
Individual Class Accuracy Analysis... 53

v

Scene Complexity ... 57
Conclusion .. 59

Chapter 4: Estimating A Measurement Bound for Compressed Hyperspectral

Classification Via Feature Selection ... 61

Introduction ... 61
Feature Selection ... 62

Feature Extraction ... 62
Feature Selection ... 63

Filter Method Approach .. 64
Class Statistics ... 66
Similarity metrics .. 67
Statistical Robustness .. 70

Wrapper Method Approach ... 72
Automatic Bound Selection ... 73

Optimal Partition Change-point Detection ... 74
Class-based Adaptive Compression ... 78
Experiments .. 80

Filter Experiments ... 80
Wrapper Experiments .. 82
Class Specific Bounds and Adaptive Compression for the SVM Classifier 86

Conclusion .. 89
Chapter 5: Compressed Progressive Band Hyperspectral Classification 91

Introduction ... 91
Progressive Classifier .. 93
Progression Metrics ... 95

Confusion Matrix Approach .. 96
Relationship to the Tanimoto Coefficient... 98
The Overall Tanimoto Coefficient ... 101

Stopping Criteria ... 101
Experiments .. 103

Setup ... 103
Training Step Size and Maximum Bound .. 103
Progressive Band Classification ... 105
Progression Metric Experiment ... 109
Stopping Criteria Experiment .. 114

Conclusion .. 119
Chapter 6: Summary and Conclusions ... 121

Bibliography .. 124

vi

Nomenclature:

§ Hyperspectral image (3D): 𝑹 ∈ 𝔑$%×$'×(

§ Hyperspectral image (2D): 𝑹 ∈ 𝔑$)×(

§ Number of pixels in the x dimension: 𝑁+

§ Number of pixels in the y dimension: 𝑁,

§ Total number of pixels in the image: 𝑁- = 𝑁+ ∗ 𝑁,

§ Number of spectral bands: 𝐿

§ Hyperspectral band image: 𝑹1 ∈ 𝔑$%×$'

§ Hyperspectral pixel vector: 𝐫 ∈ 𝔑(×3

§ Hyperspectral pixel element: 𝑟 ∈ 𝔑3×3

§ Sampling matrix: 𝚽 ∈ ℜ7×(

§ Representation matrix: 𝚿 ∈ ℜ(×(

§ Compressed measurement: 𝐲 ∈ 𝔑7×3

§ Compressively-sensed band index 𝑚 ∈ {1,2,3,… 𝐿}

§ Recovered pixel vector 𝐫BC ∈ 𝔑(×3

§ Order of sparsity 𝑘

§ Restricted isometry constant 𝛿F

§ Class index 𝑝 ∈ {0,1,2,… , 𝑃}

§ Number of samples in class p 𝑁J

§ Pixel vectors in class p 𝑅J ∈ 𝔑(×$L

vii

§ Class mean pixel vector 𝝁J ∈ 𝔑(×3

§ Classification map: 𝑪 ∈ 𝔑$%×$'

§ Individual classification accuracy 𝑃OP(𝑝)

§ Individual classification precision 𝑃OS(𝑝)

§ Overall classification accuracy 𝑃TP

§ Average classification accuracy 𝑃PP

§ Average classification precision 𝑃PS

§ Overall classification accuracy efficacy 𝑃TPUVV

§ Average classification accuracy efficacy 𝑃PPUVV

§ Average classification precision efficacy 𝑃PSUVV

§ Optimal number of compressed bands 𝑚WJX

§ Individual progression accuracy 𝑃SP

§ Individual progression precision 𝑃SS

§ Overall progression accuracy 𝑃TSP

§ Average progression accuracy 𝑃PSP

§ Average progression precision 𝑃PSP

§ Individual Tanimoto coefficient 𝑃YO

§ Overall Tanimoto coefficient 𝑃TYO

§ Average Tanimoto coefficient 𝑃PYO

viii

In general, lower case bold face characters are used to designate vectors and upper-case

bold face characters are used to designate matrices.

Chapter 1: Introduction and Fundamental Concepts

Hyperspectral sensing (HS) technologies have found success in a variety of

applications ranging from agricultural land cover and land use mapping, food

inspection, environmental monitoring to medical imaging, law enforcement and

military reconnaissance and surveillance. Although hyperspectral technology has

continued to improve over the years, its applications are still limited due to size, weight

and power (SWaP) constraints. One of the challenging requirements is the need to

sample a large number of very fine spectral bands which require very fast and expensive

analog-to-digital converters (ADCs), high capacity on-board storage and optimized

computational hardware and software to allow for real-time processing. Such

requirements limit the utility of many applications and preclude the use of

hyperspectral technologies in many applications.

Compressive sensing (CS) has recently developed as a promising approach in

hyperspectral data analysis. CS is based on the concepts of signal sparsity and

incoherence, and allows for data to be acquired at Sub-Nyquist rates, with little or no

loss of information. By taking advantage of CS, the burdens imposed by high sampling

rates (band rates in terms of band acquisition) can be significantly reduced, i.e., by

leveraging the fact that the spectral bands are redundant. Such a compressive sampling

approach can be applied to each hyperspectral pixel vector by reducing a very large

number of spectral bands to a small number of compressively sensed bands (CSBs) that

need to be collected. However, to fully exploit this benefit, hyperspectral processing

should be able to be applied directly in the compressively sensed band domain (CSBD)

without an appreciable loss of performance.

 2

This dissertation presents a compressive sensing (CS) based approach to the

classification of hyperspectral images (HSI). The document consists of six chapters.

Chapter 1 discusses previous work, introduces hyperspectral technologies, defines the

task of classification, and describes the datasets that are used for the included

experiments. Chapter 2 describes a mathematical model for the compressive sensing of

HS data and provides the framework for subsequent analysis. Chapter 3 introduces the

proposed compressive sensing classification approach, along with a mathematical error

analysis and experimental results. Chapter 4 introduces two supervised approaches for

estimating the minimum number of CSBs required for optimal performance. Chapter 5

introduces a progressive band extension to compressive sensing classification, along

with the supporting experimental results. Finally, Chapter 6 provides summary

discussion. For consistency of notation, all vectors and matrices are bold face with

lower case and upper case used to differentiate between them, respectively.

Related Work and Dissertation Contributions

Sparsity is an enabling concept that has been leveraged in many different ways to

support various applications in hyperspectral data exploitation. Most commonly, the

concept of sparsity is applied as an additional constraint to expand existing

hyperspectral imaging algorithms such as linear spectral unmixing (Jordache, Bioucas-

Dias and Plaza 2011) (Bioucas-Dias and Figueiredo 2010), band selection (Du,

Bioucas-Dias and Plaza 2012), feature extraction (Zhong and Wang 2008) (Tuia,

Flamary and Courty 2015), and classification (Chen, Nasrabadi and Tran 2011) (Chen,

Nasrabadi and Tran 2013). In such approaches, a desired sparsity level is typically

imposed on the HS data as a constraint allowing for more unique mathematical

 3

solutions to existing HS algorithms. In contrast, compressive sensing (Candes and

Wakin 2008) provides a different approach in which, rather than incorporating sparsity

as a constraint, the image acquisition process is fundamentally changed to account for

signal sparsity and to maximize incoherence (increase information) between sparse

measurements. The fundamentals of compressed sensing have been researched in great

detail in the literature and a more detailed discussion on the essential concepts is

provided in Chapters 2, where mathematical models are introduced.

Early works in CS theory have addressed the concept compressed classification

and evaluated the expected performance limits for various classifiers. One of the

earliest works was the smashed filter (Davenport, et al. 2007) which was an extension

of the matched filter to matched embeddings in the compressed domain. The use of

more complicated classifiers such as the support vector machine (SVM) in the

compressed domain were also investigated (Calderbank, Jafarpour and Schapire 2009);

however, the work was limited to the linear kernel and focused on fairly trivial synthetic

classification problems. The work by Hahm (Hahm, Rosenkranz and Zoubir 2014)

introduced the concept of compressed classification to hyperspectral data; however, the

sampling strategy was based on an adaptively optimized sensing paradigm which was

not easily implementable in hardware. Additionally, a method for choosing the

appropriate number of compressed bands and the effects of individual scene complexity

on compressed performance were not addressed.

In this work, several major contributions are made to advance the state-of-the-

art in compressed classification of hyperspectral images. First of all, a universal

compressive sensing model is identified that can be implemented without creation of

 4

new, complex sensing hardware. While the concept of universal sampling is not new

to CS, the implications of using such a model in the context of hyperspectral

classification are in fact new and critical for achieving realizable hardware designs.

Second, error expressions between the full band domain and CSBD are derived for the

linear kernel and radial basis function-based kernel-based SVM. These error

expressions show, analytically, that full band classification performance is indeed

achievable in CSBD for sufficient band sampling conditions. Third, feature selection

approaches are developed to estimate a minimum bound on the required number of

CSBs. Fourth, a progressive band classification approach is introduced that allows for

an in-situ determination of how many compressed bands need to be acquired. Finally,

a series of experiments are performed to demonstrate hyperspectral classification in

CSBD. The experiments include multiple images of various scenes from different

sensors and illustrate the effects of scene complexity.

Hyperspectral Imaging (HSI)

A hyperspectral image is a three dimensional data cube composed of two spatial

dimensions and a wavelength (spectral band) dimension. Contrary to multispectral

images which are typically composed of just three bands (red, green, and blue), an HS

image is composed of many finely spaced, contiguous, spectral bands. HS data

provided spatial, spectral, and radiometric (intensity) information about an imaged

scene and have found success in numerous applications. A simple illustration of a

Hyperspectral data cube is shown in Figure 1, where several of the Hyperspectral

channels has been plotted in an exploded view.

 5

Figure 1: Hyperspectral image cube.

Given the high dimensionality of HS data, the 3D images are often referred to

and processed along different dimensions. Within this document, several conventions

have been adopted and are maintained for consistency. An image cube, 𝑹 ∈ 𝔑$%×$'×(,

is defined as the full hyperspectral image (all pixels and bands), consisting of 𝑁+ × 𝑁,

spatial pixels and 𝐿 spectral bands. A band image, 𝑹1 ∈ 𝔑$%×$' , is defined to include

all pixels for a single band, 𝑙. A pixel vector, 𝐫 ∈ 𝔑(×3, is defined to include all bands

for a single pixel. Finally, a pixel element, 𝑟 ∈ 𝔑3×3, is defined to be a single pixel

from a single band. All illustration for each of the aforementioned definitions is

provided in Figure 2.

 6

Figure 2: Hyperspectral image dimensions.

HSI sensors can operate in the visible (VIS), near-infrared (NIR), short-wave infrared

(SWIR), medium-wave infrared (MWIR), and long-wave infrared (LWIR) spectral

wavelengths. Depending on the spectral bands acquired, HSI sensors are tuned to either

reflected or emitted electromagnetic radiation. The images considered in this work are

limited to the VIS and NIR portion of the spectrum which is dominated by reflections

from solar radiation. Figure 3 shows an example of several individual pixel vectors

plotted as a function of their spectral bands, in the unitless reflectance ratio. This simple

example illustrates the intrinsic discriminability that is available within a single pixel.

 7

Figure 3: Hyperspectral pixel vector.

Multi-Class Classification of Hyperspectral Images

For an HSI, 𝑹 ∈ 𝔑$%×$'×(, where each pixel belongs to one of 𝑃 possible classes, a

classifier is a function, 𝑓(𝒓), that assigns a label, 𝑝 ∈ {1,2,… , 𝑃}, to each pixel, 𝒓,

resulting in a classification map, 𝑪 ∈ 𝔑$%×$' . An example three-class problem, with

two features, is illustrated in Figure 4. The green ‘x’s, blue ‘+’s, and orange ‘o’s

represent samples from three different classes plotted as a function of feature 𝑥3 and

feature 𝑥^. The boundaries defined by the classifier, 𝑓(𝒓), are illustrated as shaded

regions with matching colors for each respective class.

 8

Figure 4: An example of a three-class dataset with two features.

The spectral diversity intrinsically available in hyperspectral data can be

leveraged directly as classification features to perform pixel-wise classification.

Additionally, spatial correlation from neighboring pixels can be included to further

improve classification accuracy. Hyperspectral classification continues to be a very

active area of research utilizing state-of-the-art classifiers, such as deep neural network

architectures (Chen, Lin, et al. 2014), (Li, Zhang and Zhang 2014), kernel-based

discriminators (Camps-Valls and Bruzzone 2005), (Camps-Valls, Gomez-Chova, et al.

2006), statistical learning theory (Camps-Valls, Tuia, et al. 2014), and complex feature

strategies based on both spatial and spectral features (Fauvel, Benediktsson, et al.

2008), (Fauvel, Tarabalka, et al. 2013). For this work, the spectral-spatial classifier

proposed in (Kang, Li and Benediktsson 2014) is adopted for all experiments. The

algorithm is described in detail in Chapter 3.

There are several classification performance metrics that are commonly

reported in hyperspectral literature. Within this work, the class accuracy, class

 9

precision and overall accuracy are reported for all experiments. Each of these metrics

can be most easily understood by first referring to a confusion matrix, as shown in

Figure 5. A confusion matrix is constructed by doing a pair-wise comparison of the

ground truth and predicted label for every combination of classes. For the confusion

matrix in Figure 5, the columns represent the true values, the rows represent predicted

values, and the elements represent the number of pixels that fall into that particular

case. A confusion matrix for a perfect classifier would be an identity matrix, since the

predicted values (rows) would always match the true values (columns).

Figure 5: A classification confusion matrix.

The class accuracy for class 𝑝, 𝑃OP(𝑝), can be computed from the confusion

matrix by dividing the total number of correct classifications for a given class, 𝐶J,J, by

the total pixel count from that particular class, as shown in Equation (1). The class

precision for class 𝑝, 𝑃OS(𝑝), can be computed from the confusion matrix by dividing

 10

the total number of correct classifications for a given class, 𝐶J,J, by the total count of

predictions made for that particular class, as shown in Equation (2). Finally, the overall

accuracy, 𝑃TP, can be computed from the confusion matrix by summing the diagonal

elements and dividing by the total number of pixels, as shown in Equation (3).

 𝑃OP(𝑝) =
𝑛JJ

∑ 𝑛bJS
bc3

	

(1)

 𝑃OS(𝑝) =
𝑛JJ

∑ 𝑛JbS
bc3

	

(2)

𝑃TP =

∑ 𝑛bbS
bc3

𝑁
	 (3)

In addition to referring to 𝑃OP and 𝑃OS for each class, it is also convenient to the

consider the average class accuracy, 𝑃PP =
3
S
∑ 𝑃OP(𝑝)S
3 , and the average class

precision, 𝑃PS =
3
S
∑ 𝑃OS(𝑝)S
3 . These metrics are also reported in the experiment

sections.

Hyperspectral Datasets for Classification Evaluation

The Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) (Green, et al. 1998)

is an aircraft based hyperspectral sensor with 224 contiguous bands over the 400-2500

nm spectrum. AVIRIS images are well-known in the hyperspectral literature and

prolific in algorithm benchmarks. Two AVIRIS images are examined throughout this

work: Indian Pines and Salinas. The Indian Pines (Baumgardner, Biehl and Landgrebe

 11

2015) image is a well-known benchmark dataset for Hyperspectral classification. The

image has 20 m spatial resolution and consists of 200 spectral channels, after removal

of the water absorption bands. The image was collected over Purdue’s Indiana Indian

Pines test site and is composed of a mixture of agriculture and forestry. The provided

ground truth consists of 17 classes, including the background, and is shown in Figure

6.

The Salinas image (Universidad del Pais Vasco Grupo de Inteligencia

Computacional n.d.) is another well-known benchmark dataset for Hyperspectral

classification. The image has 3.7 m spatial resolution and consists of 200 spectral

channels, after removal of the water absorption bands. The image was collected over

Salinas Valley, California and is composed of a mixture agriculture. The ground truth

consists of 17 classes, including the background, and is shown in Figure 7.

Figure 6: AVIRIS Indian Pines image and ground truth.

 12

Figure 7: AVIRIS Salinas image and ground truth.

The Reflective Optics System Imaging Spectrometer (ROSIS) (Holzwarth, et

al. 2003) is an aircraft based hyperspectral sensor with 115 contiguous bands over the

430-860 nm spectrum. The sensor was originally designed for resolving fine spectral

structures and has produced several images that have been widely used within the

literature. Two ROSIS images are examined within this work: Pavia University and

Pavia Centre.

The Pavia University and Pavia Centre image scenes (Universidad del Pais

Vasco Grupo de Inteligencia Computacional n.d.) are well-known benchmark datasets

for Hyperspectral classification. The images have 1.3 m spatial resolution and consists

of 102 spectral channels, after removal of the water absorption bands. The images were

collected over Pavia, northern Italy and are composed of urban scenes. The provided

ground truths, for each image, consists of 9 different classes and are shown in Figure 8

and Figure 9.

 13

Figure 8: ROSIS Pavia University image and ground truth.

Figure 9: ROSIS Pavia Centre image and ground truth.

 14

Conclusion

This chapter introduced the concept of performing classification within a compressive

sensing framework, as well as provided some motivation for the application of such a

technique in the field of hyperspectral image processing. A brief summary of the related

work was provided and contrasted with the major contributions of the presented work.

Hyperspectral images were introduced and common notation was established to

provided consistency throughout the document. The task of classification of

hyperspectral data was also introduced and a brief summary of the current-state-of-the

art was provided. A set of performance metrics were defined for hyperspectral

classification that are used in subsequent chapters to evaluate the merit of the proposed

approach. Finally, four real hyperspectral images, from two different sensors, were

introduced and described. These images are evaluated and analyzed in all of the

included experimental sections.

 15

Chapter 2: A Universal Sampling Model for Compressive

Sensing

Introduction

In this chapter, a topic in mathematics referred to as compressive sensing (CS) is

introduced. The notion of a sub-sampled system is described for both the general case

and in the context of a hyperspectral imaging sensor. An alternative version of the

hyperspectral system model is proposed in which data analysis is performed directly in

the compressed domain. The potential benefits and use cases for such a system are

outlined and discussed.

The fundamental concepts of sparsity and incoherence are introduced and

applied to hyperspectral pixel vectors. A mathematical model for compressively-sensed

hyperspectral images is derived from the common CS model and is used to define a

compressive encoding and decoding process. The concept of universality is introduced

and used to define a new universal sampling model that guarantees the ability to

achieve optimal performance in the compressed domain. The chapter concludes with a

brief experimental section that illustrates the presented concepts.

Sub-Sampled Systems

A Compressive Sensing System

In a typical digital signal processing system, signals are sampled according to the

Shannon-Nyquist sampling theorem (Shannon 1949), which states that a uniformly

spaced set of samples must be collected, at a sufficient rate, from a bandlimited signal

 16

to ensure perfect reconstruction. Furthermore, the sampling rate is directly bounded by

the signal bandwidth. In a CS system, signals are sub-sampled well below the Shannon-

Nyquist rate, without loss of information, by leveraging some intrinsic sparsity within

the data. The fully-sampled signals can later be recovered from the compressively-

sampled signals and processed without modification of the original analysis algorithms.

A CS system offers potential reductions in the SWaP requirements of the

sensing platform, as well as potential reductions in bandwidth requirements for data

that must be transmitted between systems. A simple motivating example is that of a

space-borne system where minimizing the required onboard data storage and

communication bandwidth are critical. Compressively sensed data can be captured and

transmitted back to a ground station, where the fully-sampled data can recovered and

analyzed. CS enables flexibility within a larger communication system, by shifting high

data rate and high computation tasks to more SWaP-tolerant components of the overall

system.

A typical CS system consists of four general stages: sensing, encoding,

decoding and analysis. A block diagram illustrating these four general stages is shown

in Figure 10. The sensing stage includes the acquisition of the analog signal, before it

is digitally sampled. In the encoding stage, the analog signal is compressively sampled

resulting in a digital signal acquired at sub-Nyquist rate, i.e. a compressed digital signal.

The compressed digital signal is then typically moved to some type of storage for

processing at a later time, or is transmitted to a different system for offboard processing.

During the decoding stage, a sparse recovery algorithm is used to extract the fully-

 17

sampled digital signal from the compressively-sampled digital signal. Finally,

traditionally analysis algorithms can be applied to the recovered fully-sampled signal.

Figure 10: Common CS system block diagram.

A Compressive Hyperspectral Imaging System

Imaging systems where one of the earliest applications of CS techniques. The single

pixel camera (Duarte, et al. 2008) demonstrated that it was possible to form a full 2D

image through a series of compressively-sampled single-pixel measurements. In this

approach, the spatial data of the image are sub-sampled into a single pixel that consists

of a mixture of the individual pixels. A number of these single-pixel measurements are

aggregated together to form a single compressed measurement. This imaging system

concept is a good example of the common CS model shown in Figure 10. The sensing

stage consists of traditional image photonic elements that capture the light sources. The

compressive sampling stage consists of a digital micromirror that mixes the light

sources and an analog-to-digital converter to digitally sample the mixtures. The

 18

compressed measurement is then stored, where it can later undergo a sparse recovery

and then be analyzed using standard image processing algorithms.

A similar hyperspectral imaging system concept can be imagined, where rather

than compressing the spatial information, the large number of spectral bands are

compressively-sampled. In this approach, the spatial information is fully sampled but

the spectral channels are sub-sampled. An illustration of a CS HSI system following

the common CS model is shown in Figure 11. In the sensing stage, the full

hyperspectral image cube is acquired before it is digitally sampled. The image bands

are then compressively-sampled, resulting in an image cube with full spatial samples

but a reduced number of spectral bands. Following the same logic as before, this

compressed measurement can then be stored for sparse recovery and processing.

Figure 11: An HSI concept for the common CS system model.

 19

This CS HSI concept will serve as the starting point of discussion; however, it

must be modified to account for compressed analysis and to better accommodate on-

board / real-time analysis of compressed HS data. A proposed updated system concept

based on compressed analysis is shown in Figure 12. In this approach, the decoding

process has been completely removed, and the analysis algorithms are applied directly

in the compressed domain. One of the benefits of this approach, is that analysis can be

performed on-board enabling real-time decisions to be made based on in-situ analysis.

Some example use cases, for an unmanned aerial vehicle (UAV), might include

decisions to: switch to an alternate route, re-survey an area to reduce uncertainty, or to

change missions entirely. Similarly for a space-borne platform, in-situ analysis may

include decisions to: enable or disable additional sensors, determine which data should

be saved, or prioritize which data should be transmitted back to the base station for

immediate review. This model also maintains the ability to store the compressed data

and re-analyze at a later time, after the data have been sparsely recovered.

Figure 12: A Universal HSI system model.

 20

Realization of such a system will, of course, require the development of new

analysis algorithms that are capable of operating on the compressed data. The

development of such techniques are the central theme of this thesis. More specifically,

the task of performing hyperspectral image classification in the compressed domain is

addressed in the remaining chapters.

A General Mathematical Model for Compressive Sensing

A large body of work exists in the mathematical and, more recently, engineering

communities describing various approaches to implement a compressive sensing

system. The focus of this section is specifically on the encoding and decoding stages,

which include detailed descriptions of the compressive sampling and sparse recovery

processes. The analysis stage is the central theme of this thesis and is covered in great

detail in later chapters. A detailed discussion on the sensing stage and related hardware

modifications is beyond the scope of this work and left for future discussion.

A complete mathematical model for the general compressive hyperspectral

imaging system, illustrated in Figure 11, is provided in this section. The adopted

approach assumes that the spatial information is fully sampled but the spectral channels

are sub-sampled. To make this distinction clear, the sparse measurements will be

referred to as compressively-sensed bands (CSBs) to eliminate any potential

ambiguities between spatial and spectral samples.

 21

Compressive Sampling

A common mathematical model for the compressive sampling process is shown in

equation (4), where 𝒚 ∈ ℝg×3 is the compressed measurement vector, 𝚽 ∈ ℝg×h is

the sampling matrix, 𝚿 ∈ ℝh×h is the sparsifying representation basis, 𝒓 ∈ ℝh×3 is a

hyperspectral pixel vector, 𝒏 ∈ ℝg×3 is a noise vector and 𝑚 represents the number of

CSBs that are acquired in a single measurement.

 𝒚 = 𝚽	𝚿𝒓 + 𝒏 (4)

In this general framework, the noise vector, 𝒏, can represent multiple noise sources,

such as, environmental noise and various forms of sensor and operation noise. The

theoretical discussion, within this work, is limited to the noise free case; however, many

works in the literature have demonstrated the robustness of CS to noise (Candes and

Wakin 2008). Additionally, noise robustness is demonstrated empirically through the

use of real hyperspectral images in experimental analysis.

The success of the model in (4) depends on two specific concepts: sparsity and

incoherence. Fundamentally, the signal of interest must be sparse in some

representation basis, 𝚿, for any sub-sampling strategy to be effective. The order of

sparsity, 𝑘, of a signal is often defined as the number of non-zero values and is denoted

as the 𝑙k norm, ‖𝒓‖k. However, this strict definition is impractical for most real signals,

especially in the presence of noise. A more qualitative definition is adopted where a

signal is said to be sparse or compressible if the sorted coefficients of the absolute value

of the signal follows an exponential decay. A simple illustration of this qualitative

 22

definition is shown in Figure 13. In this cartoon, the orange line corresponds to a sparse

signal where a majority of the points are exactly zero, and the green line corresponds

to a compressible signal where the absolute value of the coefficients follows an

exponential decay toward zero.

Figure 13: Simple illustration of a sparse or compressible signal.

The second key requirement for the compressive sampling model in equation

(4), is that the data must be sampled incoherently. This requirement is motivated by the

fact that the compressive sampling process is signal-independent and it is desirable that

each compressed sample contain approximately the same amount of information. This

ensures that for any given number of CSBs the amount of information acquired will be,

with high probability, approximately equivalent. In particular, for the given model, the

sampling matrix, 𝚽, should be maximally incoherent with the representation basis, 𝚿.

As was the case for sparsity, many definitions have also been proposed for the

coherence between two matrices. The adopted convention in this work is to define the

 23

coherence measure, 𝜇(𝚽,𝚿), as the largest correlation between any two elements of

𝚽 and 𝚿 (Candes and Wakin 2008). This definition of coherence is described

mathematically in equation (5), where the measure is bounded as 𝜇(𝚽,𝚿) ∈ n1, √𝐿p.

 𝜇(𝚽,𝚿) = √𝐿 max
3tF,bt(

u〈𝜙F,𝜓b〉u (5)

Sparse Recovery

To discuss the sparse recovery process, a more formal consideration of the concept of

information loss is required and a key notion of CS known as restricted isometries must

be introduced. The restricted isometry property (RIP) (Baraniuk, et al. 2008) defines

the restricted isometry constant 𝛿F of a matrix 𝚽 as the smallest number such that

equation (6) holds for all 𝑘-sparse vectors, where 𝑘 can be any positive integer.

 (1 − 𝛿F)‖𝒓‖1{
^ ≤ ‖𝚽𝒓‖1{

^ ≤ (1 + 𝛿F)‖𝒓‖1{
^ (6)

The matrix 𝚽 can be said to satisfy the RIP of order 𝑘 if 𝛿F is not too close to one

(Candes and Wakin 2008). This also implies that all subsets of 𝑘 columns taken from

𝚽 will be approximately orthogonal.

In CS, a general convention is to define a lossless compression as one in which

the Euclidean distance between any two vectors is preserved. This can be described

mathematically by the RIP of order 2, since the maximum dimensionality of the

difference of two 𝑘-sparse vectors will be 2𝑘. Equation (6) can be written in terms of

the difference of two vectors as shown in equation (7).

 24

 (1 − 𝛿^F)‖𝒓3 − 𝒓^‖1{
^ ≤ ‖𝚽𝒓3 −𝚽𝒓^‖1{

^ ≤ (1 + 𝛿F)‖𝒓3 − 𝒓^‖1{
^ (7)

The fact that the Euclidean distance is maintained, guarantees that the 𝑘-sparse vectors

cannot be in the null space of the matrix 𝚽 and that a sparse recovery is indeed possible.

The sparse recovery process can now be framed as the minimization shown in equation

(8), where 𝒓}~ represents the sparse signal that has been recovered from the compressed

measurement 𝒚 = 𝚽𝒓.

 min
𝒓}∈ℝ�

‖𝒓~C ‖1� 					𝑠. 𝑡.					𝚽𝒓~C = 𝒚 = 𝚽𝒓 (8)

Orthogonal matching pursuit (OMP) (Tropp and Gilbert 2007) and basis pursuit

(BP) (Chen, Donoho and Saunders 2001) are two of the most common sparse recovery

algorithms; however, there are a number of ways to solve this problem algorithmically

in practice. A more detailed discussion on sparse recovery algorithms is beyond the

scope of this work and the interested reader is referred to (Fornasier and Peter n.d.) for

a survey of the available algorithms.

Sparse Representation of Hyperspectral Images

A logical starting point is to determine a representation basis in which hyperspectral

pixel vectors are indeed sparse or compressible. Previous works on hyperspectral

sparsity have suggested the use of the discrete cosine transform (DCT) (Amhed,

Natarajan and Rao 1974), wavelet transforms (Antonini, et al. 1992), and dictionary

learning approaches (Li, et al. 2013). Figure 14 illustrates the effectiveness of the DCT

 25

and the Haar wavelet (Haar 1910) as sparsifying transforms on all four hyperspectral

test images. For each pixel in an image, the minimum number of coefficients required

to represent 99% of the total signal power is reported, where the total signal power is

inner product of the pixel vector in the specified domain, 𝑃𝑤𝑟(𝒓�) = (𝚿𝒓�)𝑻(𝚿𝒓�).

The minimum number of coefficients for all pixels, in each image, are summarized as

normalized histograms for the original basis (𝚿 = 𝑰(+(), the DCT basis and the Haar

basis. The original basis (shown in blue) requires nearly all of the coefficients to

represent 99% of the signal power, suggesting that the data are not sparse in the original

domain. Both the DCT (red) and the Haar (orange) transforms show consistently lower

number of required coefficients to represent 99% of the signal power, suggesting that

the data are indeed compressible in these domains.

Figure 14: Distribution of the total number of sorted coefficients required to represent 99% signal energy.

 26

It is important to re-iterate that there are many other transformations in which

hyperspectral data are sparse and that the DCT is likely not an optimal sparsifying

domain. However, as it will be shown in the following section, there is in fact no need

to find an optimal sparsifying basis for algorithms that will operate directly on the

compressed measurements. The sparsifying transform need only be known during the

reconstruction process.

Random Compressive Sampling

As mentioned previously, it is critical in a CS system that the measurements are made

incoherently with respect to the sparse domain, more strictly, 𝜇(𝚽,𝚿) should be

minimized. It is natural then to design the sampling matrix, 𝚽, based on the assumed

sparse representation, 𝚿; however, this is not common in practice as it is not easy to

design a sampling matrix that is simultaneously incoherent with the sparse

representation and able to satisfy the RIP. Fortunately, for most signals a random

sampling strategy has been shown to be sufficient, if not optimal (Candes and Wakin

2008). In other words, sampling matrices drawn from certain random distributions can

be shown to satisfy both RIP and incoherent sampling with respect to the sparse

representation, 𝚿. That is, for most practical systems, a random sensing matrix is

indeed a nearly optimal choice regardless of the sparse representation. This is critical

for designing real-world systems as it makes the sampling system agnostic to the

sensing modality and is exactly the main reason that random sampling strategies have

become ubiquitous in the CS literature.

 27

More specially, the sparse acquisition model in equation (4) can be

implemented by constructing the sampling matrix, 𝚽, from any distribution that

satisfies the concentration of measure inequalities (Baraniuk, et al. 2008). For such a

family of sampling matrices, it can be shown that RIP is valid provided that equation

(9) is satisfied, where the number of compressively sensed bands, 𝑚, and the true

sparsity order of 𝑘 are related by a constant, 𝑐, and the total number of spectral bands,

𝐿. For the case of reconstruction, 𝑐 will be approximately equal to a value of two to

ensure the Euclidean distance is preserved.

 𝑚 ≥ 𝑐𝑘 log
𝐿
𝑘 (9)

While many distributions have been proven to satisfy the inequalities, the

Gaussian distribution is very commonly adopted due to its simplicity in analysis and

modeling. To construct a Gaussian sampling matrix, each element of the matrix, 𝜙�b,

is drawn from a normal distribution with a variance scaled by the number of

dimensions, as shown in equation (10). The column vectors of the sampling matrix are

next normalized to ensure the matrix is orthogonal. The resulting sampling matrix will

satisfy RIP and will be nearly incoherent with any sparse representation, achieving both

of the desired objectives.

 𝜙�b~𝒩 �0,
1
𝐿� (10)

 28

A Universal Compressive Sensing Model for Hyperspectral Imaging

This sub-section presents a property referred to as universality, which is an enabling

concept in the proposed CS classification approach. It is a universal sensing model

which leverages the fact that the sparse basis matrix, 𝚿, need not be known at the time

of signal acquisition, but only required during sparse recovery. More specifically, by

adopting a random sampling strategy, the sparse acquisition model in equation (4) can

be simplified to the form shown in equation (11), where 𝚽� represents a random

sampling matrix, that satisfies the concentration of measure inequalities and 𝑚 is

selected such that equation (9) is satisfied.

 𝑦 = 	𝚽�𝒓 + 𝒏 (11)

Furthermore, the constraint of the sparse recovery process in equation (8) can be

modified by including the sparse representation matrix 𝚿 to yield the form shown in

equation (12).

 min
𝒓}∈ℝ�

‖𝒓~C ‖1� 					𝑠. 𝑡.					𝚽�𝚿𝒓~C = 𝒚 (12)

By combining equations (11) and (12), a universal sensing model is established and

clearly demonstrates that knowledge of the sparse matrix is only required for the signal

reconstruction. This has the extremely important implication that, for algorithms

performed in CSBD, optimal performance can be achieved without the need of

identifying the sparse matrix 𝚿.

 29

The universality property also has very important implications in the design of

physically realizable compressively-sensed hyperspectral systems. Given the fact that

the sparsifying transform, 𝚿, is no longer a part of the acquisition process, there is no

need for a specific transform to be included in the hardware design. This means that

new compressively sampled hyperspectral systems can be designed using existing

hardware with the addition generic linear mixing hardware, to create the random

mixtures. As a result, it reduces the overall cost of new systems. In addition, it also

facilitates the process of retrofitting existing hyperspectral sensors to be able to

compressively sample bands.

Experiments

An experiment was conducted to illustrate the concept of universality for the task of

reconstruction. For each image, 1,000 pixels were randomly selected and sparsely

sampled using both of the sensing models described in equations (4) and (11). The

sampling matrix was randomly generated from a normal distribution, as shown in

equation (10), where each column was normalized such that ‖𝝓�‖1{ = 1 for any

column 𝑣. For the sensing model in equation (4), the DCT was chosen as the sparsifying

transformation. In both cases, the number of CSBs, 𝑚, was varied from 40 to 0.7𝐿,

where the total number of bands, 𝐿, varied for each image. The minimum and maximum

number of CSBs were selected to reduce computation time, and were chosen based on

the expected sparsity levels in the DCT domain, shown in Figure 14. Recall, that the

minimum number of CSBs required to satisfy the RIP condition is approximately twice

the true sparsity level. Each of the CSB vectors were then reconstructed using the

Orthogonal Matching Pursuit (OMP) (Tropp and Gilbert 2007) reconstruction

 30

algorithm with the appropriate constraints shown in equations (8) and (12),

respectively. A high level description of the experimental steps for a single pixel is

provided in Table 1.

Table 1: Experiment procedure for illustrating universal compressive sampling

Universal Random Sampling Experiment

Input: A hyperspectral pixel vector 𝒓 ∈ 𝔑3×(

1. Generate a random sampling matrix, 𝜙�b~𝒩 �0, 3
(
�, and normalize the

columns such that ∑ 𝜙�b7
�c3 = 1, for 𝑗 ∈ {1,2, … , 𝐿}.

2. Model a compressively-sampled band vector sampled in the DCT domain,

𝒚3 = 𝚽𝚿�OY𝒓, and directly in the spectral domain, 𝒚^ = 𝚽𝒓.

3. Use OMP to minimize the objective min
𝒓}∈ℝ�

‖𝒓}‖1� such that 𝚽𝒓}3 = 𝒚3 and

𝚽𝚿𝒓}^ = 𝒚^.

4. Perform an inverse DCT transform on the reconstructed pixel vectors to

obtain estimates of the original pixel vector.

Output: Reconstructed estimates of the pixel vector, 𝒓}3 ∈ 𝔑3×(, 𝒓}^ ∈ 𝔑3×(

To assess the consistency of both sampling approaches, the root-mean-square

(RMS) errors between the original pixel vectors and the pixel vectors that were

recovered during sparse reconstruction were calculated. The mean RMS error over all

pixels was calculated as a function of 𝑚, and is shown in Figure 15 for all four images.

For the red lines, the pixel vectors were sampled directly in the spectral domain, and

for the blue lines, the pixel vectors were sampled in the DCT domain. In all cases, the

 31

mean error vectors align exceptionally well, which suggests that, on average, both

approaches provide the same achievable reconstruction error.

Figure 15: Mean RMS reconstruction error for all images

To probe a little bit further, a metric based on the individual reconstruction error

of each pixel was devised. An error threshold was first determined based on the

statistics of the mean RMS error curves. More specifically, for each image, an empirical

cumulative distribution function (CDF) was estimated from the mean RMS curves and

then the 50th percentile RMS error was selected as a global threshold. Finally, the

minimum number of CSBs required to achieve an RMS error less than or equal to the

 32

50th percentile threshold was calculated for each pixel. The minimum CSBs required

for each of the individual pixel vectors were used to generate normalized histograms

for all the images, and they are shown in Figure 16. As before, the blue represents pixel

vectors sampled in the DCT domain and red represents pixel vectors directly sampled.

The resulting distributions show excellent agreement. There are small differences

between the distributions; however, given the relatively few test pixels, and the

probabilistic nature of CS, these slight perturbations are to be expected.

Figure 16: Minimum CSB distribution for all images

 33

Conclusion

The notion of a sub-sampled system was introduced and a compressed hyperspectral

imaging system model was proposed. The fundamentals of compressive sensing were

reviewed and the two key concepts of sparsity and incoherence were introduced and

defined. A typical mathematical model for compressive sampling and sparse recovery

were presented and used to derive a compressively-sensed hyperspectral model. A

random sampling strategy was proposed and an argument was made to leverage the

universality afforded by this sampling strategy, when operating directly on the

compressed measurements, since it removes the need to determine the sparse

representation. An experiment was performed to illustrate the universality of random

sampling and to confirm that all of the required information is embedded in the sparse

measurement regardless of which orthogonal basis it is acquired from.

 34

Chapter 3: Hyperspectral Image Classification via Compressive

Sensing

Introduction

In this Chapter, the task of hyperspectral classification in the compressively-sensed

band domain (CSBD) is considered. A joint spectral-spatial classifier based on an Edge

Preserving Filter (EPF) is presented. Spectral classification based on the Support

Vector Machine (SVM) is considered. The specific contribution of this chapter is to

evaluate the utility of the spectral classifier in CSBD through both mathematical

analysis and empirical experimentation. Expected error bounds on classification

performance between the full band and CSBD are derived for the linear and radial basis

function (RBF) SVM. A set of experiments are performed to validate the mathematical

analysis and theoretical discussion using the four real-world images described in

Chapter 1. Finally, the concept of scene complexity is investigated through a

comparison between the different hyperspectral sensors and the individual image

content. A new metric is proposed, based on performance efficacy and a

compressively-sensed band ratio, that allows for direct comparisons among the images.

The work presented in this chapter ultimately demonstrates both analytically and

experimentally that classification in the CSBD is possible, while maintaining sufficient

performance for nearly all practical classification tasks.

Support Vector Machines

The support vector machine (SVM) (Cortes and Vapnik 1995) is a popular classifier

that has been successfully applied in hyperspectral applications and is well understood

 35

in the machine learning and pattern recognition communities. The SVM is a binary

discriminant function that defines an l-dimensional hyperplane separating two classes

described by 𝐿 features. The linear SVM can be defined as the discriminant function

shown in Equation (13), where the weight vector ω bias b are maximized using a

maximum margin objective function, subject to ‖𝝎‖ = 1.

 𝑓(𝒓) = 𝝎Y𝒓 + 𝑏 (13)

A hard classification of unknown pixel vectors is performed by observing the sign of

the output, where positive values +1 belong to one class and negative values −1 belong

to the other. Although, the SVM is natively a binary classifier, it is often extended to

multi-class classification problems through the use of a binary extension strategy, such

as one-vs-rest or one-vs-one (Bishop 1995). The one-vs-one approach is specifically

adopted in this work.

To make SVMs more mathematically convenient, the Representer Theorem

(Schölkopf, Herbrich and Smola 2001) is often leveraged. The theorem states that,

with appropriate constraints, 𝝎 can always be written as a linear combination of the

training data, 𝝎Y = ∑ 𝛼b𝑑b𝒓bY
$¢£¤¥¦
bc3 , where 𝑑b ∈ {−1,1} is the training label, 𝛼b ∈ [0,1]

is a linear coefficient and 𝑁X©ª�« is the total number of training samples. Substituting

this relationship, the linear SVM discriminant function can also be written as:

 𝑓(𝒓) = ¬ 𝛼b𝑑b𝒓bY
$¢£¤¥¦

bc3

𝒓 (14)

 36

where the bias term is implicitly included in the weight vector. In general, most values

of 𝛼b will be zero and the non-zero values are referred to as the support vectors. In this

form, the SVM is completely described by the choice of the support vectors, which are

typically solved for iteratively.

In many practical classification problems, the data are not linearly separable in

the original feature space. A solution to this problem is to transform the feature vectors

into a high dimensionality feature space where the data are linearly separable. For an

arbitrary transformation, 𝜙(𝒓), the linear discriminant function can be rewritten, more

generally, as shown in Equation (15).

 𝑓(𝒓) =¬𝛼b𝑑b𝜙(𝒓)bY𝜙(𝒓)
$

bc3

 (15)

In practice, transforming all of the data to the new dimension is computationally

prohibitive and is avoided using what is referred to as the kernel trick. A property of

Mercer’s theorem (Scholkopf and Smola 2002) is used to directly calculate the required

dot products without ever mapping the data into the non-linear feature space. The dot

products in Equation (15) are replaced with an arbitrary kernel operator, 𝐾(𝒓Y, 𝒓) =

𝜙(𝒓Y)	𝜙(𝒓)	, as shown in equation (16), where the Kernel is carried out on the original

data.

 𝑓(𝒓) =¬𝛼b𝑑b

$

bc3

	𝐾®𝒓b, 𝒓¯ (16)

 37

Many different types of kernels have been proposed for use with support vector

machines; however, one of the most common kernels is the radial basis function (RBF)

kernel. The RBF is defined as 𝐾(𝒓Y, 𝒓) = exp	(− ‖𝒓²𝒓‖{

^³{
), where 𝜎 is a tuneable

hyperparameter. Substituting the kernel definition into Equation (16), the RBF SVM

discriminant function is written as shown in Equation (17).

 𝑓(𝒓) =¬𝛼b𝑑b

$

bc3

	exp	 µ−
¶𝒓b − 𝒓¶

^

2𝜎^
· (17)

Edge Preserving Filters

Spatial correlation between neighboring pixels must be taken into account to achieve

state-of-the-art hyperspectral classification performance. To capture the spatial

contextual information, the edge preserving filter (EPF) proposed in (Kang, Li and

Benediktsson 2014) has been included in the proposed compressed, spectral-spatial

classifier. In this approach the initial pixel class probabilities are determined by a

spectral classifier and then the spectral classification map is further refined by a follow-

up EPF. The spatial filters are performed using guidance images derived from the

principal components of the input image, which preserves the major features in the

scene. A summary of the approach is presented in Table 2.

Table 2: Edge Preserving Filter Classification Algorithm

Edge Preserving Filtering Classification Algorithm

Input: A hyperspectral image 𝑹 ∈ 𝔑$%×$'×(

 38

1. Generate a classification map, 𝐶¸SO ∈ 𝔑$%×$' , using a spectral classifier.

2. Generate an initial binary probability map, 𝑃�,J ∈ [0,1], by assigning the

pixelwise class to each respective channel as 𝑃�,J = ¹ 1, 	𝑖𝑓	𝑐� = 𝑙
0, 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3. Optimize the probability map by applying an edge preserving filter, 𝑃¾�,J =

∑ 𝑊�,b(𝐼)𝑃�,Jb , where the weights, 𝑊�,b, depend on the choice of EPF and the

guidance image 𝐼.

4. Generate the final classification map by choosing the class with the highest

probability 𝐶USÁ = 𝑎𝑟𝑔	 max
3t«tS

𝑃¾�,J

Output: A final classification map, 𝐶USÁ ∈ 𝔑$%×$'

The original work presents two approaches for calculating the weights of EPF:

the joint bilateral filter and the guided filter. Both approaches provide increased

classification performance over the pixelwise classifier and are suitable for the

proposed experiments. Specifically, the guided filter was chosen for this analysis and

the definition is shown in (18), where 𝜔� and 𝜔b are local windows around pixel 𝑖 and

𝑗, 𝜇F and 𝜎F^ are the mean and variance of the local window, and |𝜔| is the number of

pixels in the window. Regarding the guidance image, 𝐼, principal component analysis

(PCA) (Wold, Esbensen and Geladi 1987) is used to define a binary or color guidance

image by selecting the one or three of the first principal components, respectively. The

color guidance image has been selected for use in this analysis.

 39

 𝑊�,b(𝐼) =
1
|𝜔|^ ¬ Æ1+

(𝐼� − 𝜇F)®𝐼b − 𝜇F¯
𝜎F^ + 𝜖

È
F∈É¥,F∈ÉÊ

	 (18)

To illustrate the effectiveness of this approach, a comparison between

classification maps generated using SVM and SVM-EPF is shown in Figure 17, for the

Indian Pines dataset. It is clear that the spatial filtering is able to leverage the local

structure of the scene and provide a much more accurate class estimate. The large

amount of “speckle” resulting from the spectral-only classifier, is removed by the

spatial filtering process.

Figure 17: Comparison of SVM and SVM-EPF classification maps for Indian Pines.

Support Vector Machines in the Compressively-Sensed Band Domain

Classification in CSBD can be represented using a modification of the discriminant

function that includes the sparse acquisition matrix. The compressed discriminant

function then takes the form shown in Equation (19), where the subscript 𝑠, for 𝛼,

denotes the fact that the SVM in the CSBD is not guaranteed to use the same support

vectors or bias.

 40

 𝑓~(𝒓) =¬𝛼~Ê𝑑b®𝚽𝒓b¯
𝐓
𝚽𝒓

$

bc3

	 (19)

To examine the performance of the support vector in the classified domain, an error

function can be constructed between the full band and CSB domains. Let ϵ =

|𝑓(𝒓) − 𝑓~(𝚽𝒓)| denote the absolute error between the fully sampled and the sparsely

sampled classifiers.

 ϵ = Í¬𝛼b𝑑b𝒓bY𝒓
$

bc3

−¬𝛼~Ê𝑑b®𝚽𝒓b¯
𝐓
𝚽𝒓

$

bc3

Í	 (20)

In general, it is impossible to derive a closed form solution for this expression

since the support vectors are solved iteratively in practice. Additionally, there is no

guarantee of a unique solution when solving for these model parameters. To simplify

the analysis, the support vectors are chosen, without guarantee of optimality, to be the

same in the sparsely sampled domain. This implies that 𝛼~Ê = 𝛼b, ∀	𝑗, and the error

function in Equation (20) can be reduced to

 ϵ = Í¬𝛼b𝑑b Ï𝒓bY𝒓 − ®𝚽𝒓b¯
𝐓
𝚽𝒓Ð

$

bc3

Í (21)

Furthermore recognizing that 𝒓bY𝒓 = ¶𝒓b¶^
^
, the classification error can be defined as

 41

 𝜖 = Í¬𝛼b𝑑b �¶𝒓b¶^
^
− ¶𝚽𝒓b¶^

^
�

$

bc3

Í (22)

Given that the sampling matrix, 𝚽, satisfies the RIP in Equation (6), the error can be

re-written as an inequality in terms of the RIC, 𝛿F, as

 𝜖 ≤ Í¬𝛼b𝑑b �¶𝒓b¶^
^
− (1 − 𝛿F)¶𝒓b¶^

^
�

$

bc3

Í (23)

Expanding the RIC term and simplifying, the final error can be written as

 𝜖 ≤ Í¬𝛼b𝑑b¶𝒓b¶^
^
𝛿F

$

bc3

Í (24)

which indicates that the classification error is directly bounded by the RIC and will go

to zero for all 𝑚 that satisfy the condition shown in Equation (6), as 𝛿F goes to zero.

This derivation demonstrates that it is indeed possible to achieve full classification

accuracy in the CSBD, provided that sufficient sampling conditions are satisfied.

Kernel Support Vector Machines in the Compressively-Sensed Band Domain

Following a similar approach to the linear SVM, the performance of the RBF SVM in

CSBD can be assessed by analyzing the error between the full band and CSB domains.

Choosing, again, to maintain the same support vectors in the CSBD, the error function

for the RBF SVM is described as shown in Equation (25).

 42

 ϵ = Í¬𝛼b𝑑b Ñexpµ−
¶𝒓b − 𝒓¶

^

2𝜎^
· − exp	(−

¶𝚽𝒓b −𝚽𝒓¶
^

2𝜎^)Ò
$

bc3

Í (25)

For simplicity, let 𝒛 = 𝒓b − 𝒓 and substitute it into Equation (25) to yield

 ϵ = Í¬𝛼b𝑑b Ñexp µ−
¶𝒛b¶

^

2𝜎^
· − exp	 µ−

¶𝚽𝒛b¶
^

2𝜎^
·Ò

$

bc3

Í (26)

Knowing that the sampling matrix, 𝚽, satisfies the RIP in Equation (6), the error can

be re-written as an inequality in terms of the RIC, 𝛿F, as

 ϵ ≤ Í¬𝛼b𝑑b Ñexpµ−
¶𝒛b¶

^

2𝜎^
· − exp	 µ−

¶(1 − 𝛿F)𝒛b¶
^

2𝜎^
·Ò

$

bc3

Í (27)

Recognizing that (1 − 𝛿F) is a scalar quantity, the expression can be further reduced

by expanding the RIC term and factoring out the exponential, resulting in

 ϵ ≤ Í¬𝛼b𝑑b Ñexp µ−
¶𝒛b¶

^

2𝜎^
· − exp µ−

¶𝒛b¶
^

2[𝜎/(1 − 𝛿F)]^
·Ò

$

bc3

Í (28)

Interestingly, the error is no longer bounded linearly by the RIC, but rather by

a difference in the kernel space. In this particular case, both terms are identical with the

exception of the RBF hyperparameter, which is scaled by (1 − 𝛿F)²^. Just as in the

linear case, the RBF classification error will go to zero for all 𝑚 that satisfy the

condition shown in Equation (6), as 𝛿F goes to zero.

 43

Experiments

Simulated experiments were performed comparing performance between the full band

and CSB hyperspectral data. Algorithm performance is measured by three common

metrics: overall accuracy (𝑃TP), average accuracy (𝑃PP), and average precision (𝑃PS)

as described in Chapter 1. Additionally, the individual class accuracies were also

considered to further understand the results. Finally, scene complexity was evaluated

with the introduction of a new metric based on performance efficacy and a

compressively sensed band ratio (CSBR).

Experimental Setup

The sparse hyperspectral pixel vectors were modelled using random Gaussian sensing

matrices with 𝑚 compressively sensed bands taken directly from the original pixel

domain (i.e. no sparsifying transformation was applied before compressively sampling

the pixel vectors). The number of CSBs, 𝑚, was varied from five up to the total number

of bands for each image. The RBF-based SVM was used as the spectral classifier, with

the tunable kernel parameter set to 0.72, 0.64, 0.75, and 0.59 for Indian Pines, Salinas,

Pavia University, and Pavia Centre, respectively. The edge preserving filtering process

was based on a guided filter with a color guidance image, based on the first 3 principal

components, i.e., EPF-G-c (Kang, Li and Benediktsson 2014).

For each experiment, the pixel vectors were randomly partitioned into training

and validation sets following the same set-up described in (Kang, Li and Benediktsson

2014) for Indian Pines, Salinas and Pavia University. The Pavia Centre scene was

partitioned in a similar fashion to Pavia University with 285 training samples from each

class. The exact number of training and validation samples are tabulated in Tables 3-6.

 44

Table 3: Indian Pines Training and Test Samples

Class Name Training Samples Test Samples
Alfalfa 25 21

Corn-notil 83 1345
Corn-mintil 78 752

Corn 68 169
Grass-pasture 79 404

Grass-trees 78 652
Grass-mowed 14 14

Hay-windrowed 66 412
Oates 10 10

Soybean-notil 81 891
Soybean-mintil 99 2356
Soybean-clean 73 520

Wheat 70 135
Woods 90 1175

Buildings 65 321
Stone-Steele Towers 46 47

Background 0 10,076

Table 4: Salinas Training and Test Samples

Class Name Training Samples Test Samples
Broccoli 1 67 1942
Broccoli 2 67 3659

Fallow 67 1909
Fallow Rough Plow 69 1325

Fallow Smooth 67 2611
Stubble 67 3892
Celery 68 3511

Grapes Untrained 69 11202
Soil Vineyard 68 6135

Corn 68 3210
Lettuce 4 Week 68 1000
Lettuce 5 Week 67 1860
Lettuce 6 Week 67 849
Lettuce 7 Week 67 1003

Vineyard Untrained 70 7198
Vineyard VT 67 1740
Background 0 56,975

 45

Table 5: Pavia University Training and Test Samples

Class Name Training Samples Test Samples
Asphalt 286 6345

Meadows 286 18363
Gravel 285 1814
Trees 285 2779

Painted Metal Sheets 285 1060
Bare Soil 285 4744
Bitumen 285 1045

Self-blocking Bricks 285 3397
Shadows 285 662

Background 0 164,624

Table 6: Pavia Centre Training and Test Samples

Class Name Training Samples Test Samples
Water 285 65686
Trees 285 7313

Asphalt 285 2805
Self-blocking Brick 285 2400

Bitumen 285 6299
Tiles 285 8963

Shadows 285 7002
Meadows 285 42541
Bare Soil 285 2578

Background 0 635,488

The same randomly selected set of training samples in Tables 3-6 were used for

experiments in both the full band and CSB domains for the EPF-G-c classifier. Each

experiment was repeated 20 times and the average results are reported. For all of the

plots in this section, the dashed and solid lines show the results of each classification

measure produced by EPF-G-c on the full band pixels, i.e., data without compressive

sensing and the CSB pixels, respectively.

 46

Classification Accuracy Analysis

The 𝑃TP and 𝑃PP for Purdue’s Indian Pines are plotted in Figure 18, with m ranging

from 1 to 220. Note that the plot had a large jump around 30 CSBs, and then began to

flatten after 100 CSBs with near full band performance. As can be seen in the figure

the maximum performance was achieved using approximately 50% of the total number

of CSBs. The range of accuracy for this image is significant with just over a 20%

difference in accuracy between the minimum number of CSBs and using the maximum

number of CSBs. This particular image has the most imbalanced classes and was also

the most difficult one among the four images that were tested. The presented results, in

the CSBD, are in line with many of the performance measures reported in the literature.

Figure 18: Indian Pines accuracy.

 47

The 𝑃TP and 𝑃PP for Salinas are plotted in Figure 19. Similar to the experiments

conducted for the Purdue Indian Pines, the largest improvement in classification

accuracy occurs within the first 30 CSBs and continues to improve slowly until the

accuracy flattens after 100 CSBs. Contrary to the Indian Pines image, the range of

accuracy values is quite small with just about a 6% difference in performance between

the minimum and maximum achievable accuracy. For the minimum case it required

only 5 CSBs for EPF-G-c to achieve an overall accuracy and an average accuracy of

92% and 95%, respectively. Remarkably, even with just 2.5% of the total number of

CSBs, the achieved accuracy level is acceptable for many practical applications.

Figure 19: Salinas accuracy.

The 𝑃TP and 𝑃PP for Pavia University are plotted in Figure 20. Both accuracies

converged quickly between 20 and 40 CSBs. There is an exponential increase in

performance for the lower number of CSBs. This ROSIS image showed a similar trend

 48

to the AVIRIS Indian Pines image, where there was a significant difference in the

minimum and maximum performance achieved for a different number of CSBs. The

range of accuracy values between the fewest CSBs and the full band performance is

quite significant with a total difference of about 15% for the overall accuracy and 20%

for the average accuracy.

Figure 20: Pavia University accuracy.

The 𝑃TP and 𝑃PP for Pavia Centre are plotted in Figure 21. This image is

somewhat unique because both accuracies appeared to converge at a slightly different

number of CSBs where 𝑃TP converged with about 20 CSBs and the 𝑃PP converged with

around 30-50 CSBs. The reason for this will become more apparent when the individual

class accuracies are discussed in later experiments. The range of accuracies for this

image was exceptionally small. The difference in accuracy between using 5 CSBs and

the full band image was just 2.5% for 𝑃PP and less than 1% for 𝑃TP. This image is

 49

another example which shows accuracy required for practical applications can be

achieved with small fractions of the total number of bands.

Figure 21: Pavia Centre accuracy.

Interestingly, the classification accuracy achievable in the CSBD did not appear

to be correlated with either the scene types (agricultural and urban) or the sensors

(AVIRIS and ROSIS) used for experiments. However, for all images acceptable

accuracy can be achieved directly in CSBD with a significant reduction in the number

of CSBs

Classification Precision Analysis

The 𝑃PS is considered in this section and has received little interest in hyperspectral

image classification. However, its practical impact is quite important since it is the only

measure that accounts for background data samples for classification. To address

 50

background issue in classification 𝑃PS is calculated with and without inclusion of the

BKG samples in the image scenes.

The 𝑃PS for the Purdue Indian Pines is shown in Figure 22. Near full precision

performance is achieved with only 50 CSBs with and without the inclusion of the BKG

samples. The range of precision values between the fewest CSBs and the maximum

CSBs is much smaller than the spread in accuracy, with only about a 10% difference.

Following a similar trend as with accuracy, Indian Pines is again the most difficult of

the four images tested.

Figure 22: Indian Pines precision.

The results of 𝑃PS for Salinas, Pavia University, and Pavia Centre are shown in

Figure 23-Figure 25, respectively. For these images, full band domain performance

could be achieved with using only 5-10 CSBs! This is quite interesting given the fact

that both Indian Pines and Salinas were collected from the same sensor and consist of

 51

similar agricultural classes. Since the relative performance holds for the cases with and

without precision, it is not believed to be due to a bias in the background signatures.

One possible cause could be due to the fact that the Purdue data contains many

imbalanced classes with 4 classes less than 100 data samples. The relatively low

training samples for these classes could introduce some instability into the SVM

classifiers. Given the many potential influencing factors and availability of ground

truthing, further investigation into this difference is was not believed to be warranted.

Figure 23: Salinas precision.

 52

Figure 24: Pavia University precision.

Figure 25: Pavia Centre precision.

In general, the precision is less affected by the compressive sampling for all

images. In all cases, full band performance could be achieved with 25% or less than

 53

the total number of available CSBs. For Salinas and Pavia Centre, full band precision

performance could be achieved while using only 5% of CSBs. The precision

performance was also fairly consistent with and without the inclusion of BKG samples.

In agreement with the accuracy performance results, the classification in the CSBD was

capable of achieving acceptable precision performance with just fractions of the total

number of CSBs.

Individual Class Accuracy Analysis

To further probe into the performance of the four images, the individual class accuracy

is reviewed. By observing how the individual classes are affected by the number of

CSBs, it is possible to gain some intuition on what really determines the maximum

achievable performance in the CSBD, as well as explain some of the differences that

have been noted between 𝑃TP and 𝑃PP.

The individual class accuracies for Indian Pines are plotted in Figure 26.

Interestingly, many of the classes converged to full band performance with as few as

10 CSBs, i.e., only 5% of the spectral bands! This is in stark contrast to the 100 CSBs

needed before the overall accuracy converged. Accuracy performance in both the full

band domain and CSBD is clearly limited by specific classes.

 54

Figure 26: Indian Pines individual class accuracy.

The individual class accuracies for Salinas are shown in Figure 27. Remarkably,

in comparison with the Purdue data all of the classes with the exception of “vineyard

untrained” converged to full band performance with only 10 CSBs or less! This

explains why 𝑃PP is higher than 𝑃TP. This suggests that the data set is almost completely

separable, and shows a clear correlation between class separability and the viability of

compressed classification.

 55

Figure 27: Salinas individual class accuracy.

Similar performance was also observed for the ROSIS images. The individual

class accuracies for Pavia University are shown in Figure 28. For this image, half of

the classes converged with just 5 CSBs and the remaining classes converged at various

numbers of CSBs. All of the classes with the exception of “Gravel” converged to full

band classification accuracy.

 56

Figure 28: Pavia University individual class accuracy.

The individual class accuracies for Pavia Centre are shown in Figure 29. A

similar trend was observed with half of the classes converging with only 5 CSBs and

the remaining classes converging at various numbers of CSBs. Two of the classes that

did not converge immediately, “asphalt” and “shadows”, are classes that never

achieved full band classification accuracy. This also reinforces the correlation between

class separability and viability of compressive sensing classification.

 57

Figure 29: Pavia Centre individual class accuracy.

Scene Complexity

One of interesting results from the above experiments is variability in the number of

required CSBs to achieve maximum performance for each of the different scenes. This

observation was true for both AVIRIS and ROSIS sensors, suggesting that it was

indeed scene complexity that limits effectiveness of CSBs. To investigate this concept

further, an efficacy criterion is defined for the overall accuracy, 𝑃TPUVV , which

calculates the ratio of 𝑃TP in CSBD to 𝑃TP in the original data domain, i.e., full band

domain. Similarly, the compressively sensed band ratio (CSBR), 𝐶𝑆𝐵𝑅 = 7
(

, defined

as the number of CSBs divided by the total number of bands, 𝐿, is introduced to

 58

normalize the number of spectral bands among images. Using these criteria makes it

possible to directly compare the performance for all four images. The overall accuracy

efficiency is plotted as a function of CSBR in Figure 30. For both Salinas and Pavia

Centre, nearly full band performance can be achieved with a CSBR of only 10%. For

the more difficult images, Pavia University required a CSBR of approximately 20%

and Indian Pines required approximately 50%.

Figure 30: Overall accuracy efficacy for all four images.

Similarly, the efficacy of precision, 𝑃PS×ØØ , calculates a ratio of precision in the

CSBD to precision in the original full band domain and its results are plotted in Figure

31. As shown in the previous section, precision is generally better than accuracy. The

efficacy of precision confirmed this fact with the worst case performance never being

lower than 90% of the full band precision performance after a CSBR greater than 20%.

 59

The efficacy of precision also showed the same trend as the 𝑃TPUVV with the Indian

Pines and Pavia University images being more difficult than the other images.

Figure 31: Average precision efficacy for all four images.

Conclusion

Hyperspectral image classification in the CSBD was explored in this chapter with the

motivation of enabling low-cost, low-SWAP hyperspectral designs. A CSBD spectral-

spatial classifier was proposed based on a RBF-SVM spectral classifier and an EPF

spatial filter that is applied after pixelwise classification. A mathematically error

analysis was performed for SVMs in the CSBD that showed classification is indeed

possible under sufficient sampling conditions. The empirical analysis consisted of a set

of experiments performed on four real hyperspectral images. Observing the individual

class accuracies, it was noted that nearly all of the classes converge to full performance

with a few number of CSBs (10-20) and performance is typically limited by a select

 60

few classes. The results across two sensors and four images (two per sensor) were

compared using the proposed algorithm efficacy and compressively sensed band ratio

metrics. This comparison confirmed that scene complexity directly limits the maximum

amount of compressed performance that can be obtained. The variability from scene to

scene suggests that a method to predict or adaptively adjust the number of CSBs is

needed and is the focus of chapter 4.

 61

Chapter 4: Estimating A Measurement Bound for Compressed

Hyperspectral Classification Via Feature Selection

Introduction

One of the practical challenges associated with implementing a compressed

classification system, is deciding on an appropriate number of compressed bands to

collect. As it was shown in Chapter 3, the required number of CSBs can vary across

scenes and sensors. Selecting too few CSBs will result in poor classification efficacy.

Conversely, selecting too many CSBs will result in wasted storage, increased

bandwidth, and higher computational costs. An approach is desired that can estimate

the optimal number of CSBs required to achieve high classification efficacy, while

minimizing the total number of CSBs that are acquired. For convenience, the symbol,

𝑚WJX, is defined as the lower bound required to achieve near optimal performance. The

term “optimal” is not strictly defined, since the exact meaning may vary based on the

desired application.

In this chapter, the problem of selecting the appropriate number of CSBs is

framed as a special case of a feature selection problem. Supervised approaches based

on estimating 𝑚WJX directly from the training data, are explored. A brief overview of

feature selection is provided and its applicability is discussed. Two different

approaches are proposed based on the feature selection framework. Finally, a set of

experiments are performed to evaluate the utility of the explored approaches.

 62

Feature Selection

Feature extraction and feature selection are two well researched topics, within the

machine learning and pattern recognition communities. While there are some

overlapping themes between these two areas of research, it is important to clearly

define them both. Ultimately, feature selection will be adopted as the underlying

framework for estimating 𝑚WJX.

Feature Extraction

Feature extraction is defined here as an approach in which existing features, or raw

data, are manipulated to produce new, more powerful features. This was done

historically by projecting existing features into new spaces that are lower dimensional

mixtures of the original features; such as principal component analysis (PCA) (Wold,

Esbensen and Geladi 1987), linear discriminant analysis (LDA) (Bishop 1995), or

canonical correlation analysis (CCA) (Hadoon, Szedmak and Shawe-Taylor 2004).

More recently, deep learning approaches, such as deep belief networks (Boureau and

Cun 2008), auto-encoding networks (Vincent, et al. 2008), and deep classifiers

(Krizhevsky, Sutskever and Hinton 2012) have found great success in extracting

features directly from the raw data. In many of these cases, the transformations depend

on data-adaptive learning procedures. Given the signal-independent nature of the

compressive sampling process, feature extraction techniques are not directly applicable

and are not discussed any further.

 63

Feature Selection

Feature selection is defined as an approach in which a subset of existing features are

selected with the goal of removing redundancy or maximizing relevance. In a typical

feature selection problem, there are 𝐿 disparate classification features that must be

chosen from, each of which are independent and have varying, unknown levels of

discriminatory power. The challenge is to determine the appropriately sized subset of

features and, specifically, which combination of features are the most effective for

classification. This becomes an NP-Complete problem where each of the subsets must

be searched exhaustively. Given the difficulty of this problem, it has been heavily

researched and there are many existing algorithms that can be leveraged. A detailed

review of feature selection algorithms can be found in (Tang, Alelyani and Liu 2014).

There are three general categories of supervised feature selection algorithms:

filter methods, wrapper methods, and embedded methods. Filter methods are

independent of a particular classifier and are based on characteristics of the dataset.

They are typically fast to run because classifiers do not need to be trained on the various

sets of features. Wrapper methods are a brute force approach in which a particular

classifier is trained using various sets of features and performance metrics such as

accuracy or precision are used to select the optimal feature set. This approach is

typically very slow for general feature selection and often results in only a partial

sampling of the parameter space. Finally, embedded methods are a combination of filter

and wrapper methods, where data characteristics are used to limit the features and then

wrapper methods are applied to ensure that maximum performance is achieved.

 64

Embedded methods are often applied to achieve the accuracy of wrapper methods but

with a reduced search time.

The task of estimating 𝑚WJX can be framed as a special case of a feature

selection problem. For this task all of the features can be considered to have equal

discriminatory power, given that the compressed bands are sampled incoherently. More

specifically, we can state the nature of the incoherent sampling will cause all possible

subsets of a fixed size to be approximately equivalent. This greatly reduces the

complexity of the problem since it means that only the number of features needs to be

determined rather than a specific subset. This reduction in the problem complexity

removes a lot of the computational burdens that would otherwise limit the practicality

of the more exhaustive techniques. In this chapter, discussion is focused on filter and

wrapper methods. It will be shown that wrapper approaches are indeed computationally

tractable, without requiring the compromises associated with an embedded variation.

Filter Method Approach

Filter methods are based on calculating measures of effectiveness for classification

features, without directly applying them within a classifier. This offers the potential of

identifying features that are universally effective for any type of classifier. However,

this approach also raises the challenge of identifying appropriate measures of

effectiveness for each feature. The choice of such a measure is often dependent upon

the type of data, and relating these measures back to the ability to perform classification

is not always straightforward.

In general, filter methods can be further classified into univariate and

multivariate. In the univariate approach, each feature is considered one at a time,

 65

making implementation simple and reducing the overall search space. A typical

univariate filter approach consists of individually scoring each of the features and then

choosing the highest ranked features for use with classification. The disadvantage to

the univariate approach is that it is incapable of identifying the combined

discriminatory power of multiple features, since they are only considered one by one.

Additionally, univariate approaches are unable to recognize redundancy between the

features.

The multivariate approach considers features in batches, providing the ability

to solve both of the challenges faced by a univariate approach. Estimation of 𝑚WJX can

be thought of as a multivariate filter problem, where the batch size, alone, is varied and

the individual feature scores are irrelevant. The pixel training data, 𝑹Y©ª�« ∈ 𝔑$)×(,

can be grouped by the class labels, 𝒄 ∈ 𝔑$)×3, and summarized into a single,

representative class statistic, 𝒁 ∈ 𝔑S×(, for each of the 𝑃 classes. The class statistics

can then be compressively sampled, 𝒁7 = 𝚽𝑍Y, with 𝑚 CSBs, and a similarity

measure can be calculated between all unique combinations of classes, 𝜻 ∈ 𝔑S(S²3)×3.

This process can then be repeated for all values of 𝑚, and 𝑚WJX can then be selected by

observing the point at which adding additional features (i.e. CSBs) no longer

significantly affects the similarity measure. This general approach is summarized in

Table 7.

Table 7: Feature Selection Filtering Algorithm

General Feature Selection Filtering Approach

Input: Training pixel vectors 𝑹Y©ª�« ∈ 𝔑$)×(, pixel class label vector 𝒄 ∈ 𝔑$)×3

 66

1. Summarize each class into representative 𝑃 statistic vectors, 𝒁 ∈ 𝔑S×(, one

for each class.

2. Choose an initial number of CSBs, 𝑚 = 𝑚7�« and a CSB step size 𝛿7.

3. Randomly generate a compressive sampling matrix 𝚽 ∈ 𝔑(×7.

4. Compressively sample the summary statistic vectors, 𝒁7 = 𝚽𝑍Y

5. Calculate a measure of similarity, 𝜻 ∈ 𝔑S(S²3)×3, between all unique pairs

of class statistic vectors.

6. Set 𝑚 = 𝑚 + 𝛿7 and repeat steps 3 through 5 until 𝑚 ≥ 𝐿.

7. Chose the value of	𝑚 where the similarity measure converges.

Output: The estimated minimum number of CSBs: 𝑚WJX.

Class Statistics

Given the large number of training samples that are available for most HSI datasets,

each class must be summarized in some manner to make computations tractable. A

natural starting place is to consider the mean pixel vector over all pixels within a single

class. The class mean pixel vector, 𝝁J ∈ 𝔑(×3, for class 𝑝, is defined in equation (29),

where the index, i, represents the ith spectral band. 𝑹J ∈ 𝔑(×$L is a matrix containing

all the pixel vectors within the class and 𝑁J denotes the total number of pixels in class

𝑝.

𝜇J(𝑖) =

1
𝑁J

¬𝑹J(𝑗, 𝑖)

$L

bc3

 (29)

 67

Although it is not explicitly shown, the class statistics can also be derived for the

compressed vectors, where the number of bands, 𝐿, simply becomes the number of

CSBs, 𝑚.

Similarity metrics

Once each class has been reduced to a representative pixel vector, a measure of

similarity1, 𝜁(𝝁3, 𝝁^) = 𝜁3^, can be calculated between any combination of two

individual classes. This concept is most easily visualized as a similarity matrix, where,

for each element, the index of the rows and columns correspond to the class index, and

the value is the measure of similarity between those classes. The diagonal of the

similarity matrix will necessarily be zero, since a pixel vector will always be perfectly

similar to itself. Furthermore, if the similarity metrics are symmetric, 𝜁�b = 𝜁b� , then the

matrix will be also be symmetric, resulting in 𝑃 ∗ (𝑃 − 1) measures of similarity,

where 𝑃 is the total number of classes. A class similarity matrix is illustrated in Figure

32.

1 The term similarity here is used to maintain generality; however, it should be noted that the metrics
proposed in this work take the form of a distance measure. This is why the convention of 0 designating
complete similarity (0 distance) has been adopted.

 68

Figure 32: Class similarity matrix.

To further reduce the similarity down to a single, per-class, metric, the average class

similarity, 𝜁JÞ , for class p, is defined in equation (30). This metric provides a simple

way of observing the effect of varying the number of CSBs.

 𝜁JÞ =
1

𝑃 − 1¬𝜁�J
�ßJ

 (30)

Hyperspectral similarity metrics are needed to quantify the impact of increasing

the number of CSBs. Since the dimensionality will be increasing, it is imperative that

these metrics be normalized to allow for a relative comparison. Three different

similarity metrics are specifically considered: normalized squared Euclidean distance

(NSED), spectral angler mapper (SAM), and spectral information divergence (SID).

The Euclidean distance between class means is a suitable choice for a similarity

metrics since it provides an easily understood measure of class separation.

Unfortunately, the standard Euclidean distance is unbounded and will potentially grow

monotonically as the number of dimensions are increased. To consider the Euclidean

 69

distance as a tractable similarity metric, it must first be normalized to ensure bounded

outputs. The normalized squared Euclidean distance measure is proposed as shown in

equation (31). Here, 𝒓3 and 𝒓^ represent arbitrary pixel vectors, 𝜇3 and 𝜇^ represent the

mean over the pixel vectors and ‖∙‖^^ represents the squared L2 norm.

 𝑁𝑆𝐸𝐷(𝒓3, 𝒓^) =
1
2	
‖(𝒓3 − 𝒓^) − (𝜇3 − 𝜇^)‖^^

‖𝒓3 − 𝜇3‖^^ + ‖𝒓^ − 𝜇^‖^^
 (31)

Spectral angle mapper (Kruse, et al. 1993) is a metric that assumes that the

spectral signature of hyperspectral pixel vectors are points lying in an 𝐿-dimensional

space, where	𝐿 is the total number of spectral bands. Spectral similarity is quantified as

the angle between two vectors, or signatures, in the 𝐿-dimensional space. SAM is either

reported as an angle, 𝛼(𝒓3, 𝒓^), on the interval Ï0, ã
^
Ð, or as the cosine of the angle,

cos𝛼(𝒓3, 𝒓^), lying on the interval [0,1]. The inherent normalization of SAM, lends

itself straightforwardly as a multivariate filter metric. The angle definition based on the

zero-mean pixel vectors2 is adopted as shown in equation (32).

 𝑆𝐴𝑀(𝒓3, 𝒓^) = cos²3 Æ
(𝒓3 − 𝜇3) ∙ (𝒓^ − 𝜇^)

‖𝒓3‖^	‖𝒓^‖^
È	 (32)

Spectral information divergence (Chang 1999) is an information-theoretic

approach to quantifying spectral similarity. Unlike the NSED or SAM which treat the

2 This particular formulation of SAM has also been referred to as spectral correlation mapper (De
Carvalho and Meneses 2000); however, for simplicity, the name SAM is maintained throughout the text.

 70

pixel vectors as points in an 𝐿-dimensional space, SID views each pixel vector as a

random variable and estimates differences between the distributions of the spectral

bands. A normalized band probability is defined for a pixel vector, 𝒓, as 𝑝(b) =
©(�)

∑ ©(b)�
¥è�

,

where 𝑗 ∈ [1, 𝐿]. Furthermore, the Kullback-Leibler (KL) divergence between two

arbitrary pixel vectors, 𝒓3 and 𝒓^, is defined as 𝐷(𝒓3||𝒓^) = ∑ 𝑝3(𝑖) log
J�(�)
J{(�)

(
�c3 and

𝐷(𝒓^||𝒓3) = ∑ 𝑝^(𝑖) log
J{(�)
J�(�)

(
�c3 , where the information measures are not symmetric.

Finally, the SID is defined as the sum of both KL-divergences, as shown in equation

(33). Note, that the SID is a symmetric metric since it accounts for the KL-divergence

in both directions.

 𝑆𝐼𝐷(𝒓3, 𝒓^) = 	¬𝑝3(𝑖) log
𝑝3(𝑖)
𝑝^(𝑖)

(

�c3

+¬𝑝^(𝑖) log
𝑝^(𝑖)
𝑝3(𝑖)

(

�c3

 (33)

In the original form, SID cannot be readily used as a similarity metric, due to

the unnormalized output of the KL-divergence. A simple adjustment can be made by

adding a factor of 3
(
 to the SID definition, to account for the total number of bands. The

resulting metric will be an average estimate of how correlated high probability events

are between both pixel vectors, and more importantly, will provide a normalized upper

bound on the metric.

Statistical Robustness

One of the unique aspects to using feature selection for estimation of 𝑚WJX, is the

innately probabilistic nature of the random projections that occur during sparse

 71

acquisition. Unlike wrapper methods which adaptively train in the CSD, the filter

approaches are based on similarity measures that are fixed and are therefore potentially

much more sensitive to the random projections. Given this probabilistic nature, it is

important to assess how sensitive the similarity metrics will be to any particular random

draw. To examine this further, the class mean pixel vectors from the Indian Pines

image, were compressively sampled according to the model in equation (11). The

number of CSBs were varied from 5 to 220. The average similarity metric defined in

equation (30), was calculated between the Alfalfa class and all other classes. The

similarity measures based on NSED, SAM and SID measure are shown in Figure 33,

for 10 random trials. The average over all trials is also shown as the thicker black line.

Figure 33: Average similarity for the alfalfa class from the Indian Pines image.

Each of the different similarity measure appears to asymptote relatively

quickly, less than 50 CSBs, which shows good promise for utility in estimating a lower

bound. However, there is clearly a lot of variance in each of the individual estimates

due to the randomness of the sparse projections. This variance may potentially

introduce some difficulty in developing an automated method for selecting the

appropriate bound. One simple approach is to average multiple trials together and

 72

operate on a single smoothed similarity measure, to provide a single hard estimate of

𝑚WJX. Unfortunately, for reasonable batch sizes, the variance in the compressed

similarity metric manifests as perturbations in the bound estimate. To capture this

variability, multiple estimates can be made and then be combined into a distribution of

possible values of 𝑚WJX, providing a soft bound estimate. This approach is further

illustrated in the experiment section.

Wrapper Method Approach

Given that only the number of compressed bands need to be determined, rather than a

specific combination of bands, this problem is well-suited as feature selection wrapper

method. Wrapper methods often show the best performance but tend to be intractable

given the combinations of features that must be exhaustively searched. Fortunately, for

estimating 𝑚WJX, all of the features can be considered to have approximately equal

discriminatory power and all fixed size sets will be equivalent. This severely reduces

the parameter space that must be searched, and therefore reduces the total number of

times the classifiers must be trained.

Therefore a, straightforward and effective algorithm for estimating 𝑚WJX can be

designed by observing the performance metrics of a classifier, as 𝑚 is increased. A

compressed classifier is trained for a range of CSBs and the classifier performance is

evaluated at each step. The minimum number of CSBs can then be determined by

observing the point at which the classifier performance asymptotes, or reaches a desired

minimum performance level. The feature selection wrapper algorithm is summarized

in Table 8.

 73

Table 8: Feature Selection Wrapper Algorithm

Feature Selection Wrapper Algorithm

Input: A hyperspectral training dataset 𝑹$ ∈ 𝔑$×(and sampling matrix 𝚽 ∈

ℜ(+7é¤%

1. Choose an initial number of CSBs, 𝑚 = 𝑚7�« and a CSB step size 𝛿7.

2. Form a valid sampling matrix, 𝚽 ∈ ℜ(+7 and project all of the training pixels

into the CSBD, 𝑹O¸ê� = 𝑹𝚽.

3. Train the classifier 𝑓7(𝒓) and calculate a performance metric.

4. Increment the number of compressed bands, 𝑚 = 𝑚 + 𝛿.

5. Set 𝑚 = 𝑚 + 𝛿7 and repeat steps 2 through 4 until 𝑚 ≥ 𝐿.

6. Choose the value of 𝑚 where the performance metric asymptotes or when a

desired performance level has been met.

Output: The estimated minimum number of CSBs, 𝑚WJX, and a set of trained

classifiers 𝐹 = {𝑓7(𝒓), 𝑓7ìí(𝒓), 𝑓7ì^í(𝒓),… , 𝑓7é¤%(𝒓)}.

Automatic Bound Selection

In the previous sections, two feature selection algorithms were proposed: however, a

specific rule for determining convergence was not defined. A change-point detection

algorithm is proposed for adaptively determining CSB convergence. The proposed

change-point algorithm can be combined with the feature selection algorithms

described in Table 7 and Table 8, to create fully automated approaches.

 74

Optimal Partition Change-point Detection

Change-point detection is the task of determining a point within a data sequence at

which the signal characteristics abruptly change. The field has been well researched

and large number of approaches have been proposed (Basseville and Nikiforov 1993).

Optimal partitioning (Lavielle 2005) is a global approach to change-point detection

where all possible change points are simultaneously detected by minimizing a single

cost function. A cost function, 𝐽(𝒉), is constructed as a function of a data sequence,

𝒉 ∈ 𝔑3×Y. For a given candidate change-point, 𝜏 ∈ [1, 𝑇], the data are partitioned into

a lower segment, 𝒉(Wòó© = 𝒉[1,… , 𝜏], and an upper segment, 𝒉ôJJó© = 𝒉[𝜏 +

1,… , 𝑇]. A summary characteristic is calculated for segments and then summed

together to form the associated cost for that particular change-point, 𝐽(𝒉[𝜏]). The

optimal change-point is then determined by choosing the value of 𝜏 that minimizes the

cost function. The general form of the optimal partitioning algorithm is summarized in

Table 9.

Table 9: Change-point detection via optimal partitioning

Optimal Partitioning Change-point Detection

Input: A data sequence 𝒉 ∈ 𝔑3×Y

1. Choose a candidate change-point, 𝜏.

2. Divide the data sequence into lower, 𝒉(Wòó© = 𝒉[1,… , 𝜏], and upper,

𝒉ôJJó© = 𝒉[𝜏 + 1,… , 𝑇], segments.

3. Calculate the summary statistics for the lower and upper data segments.

4. Calculate the total cost, 𝐽(𝒉[𝜏]) = 𝐽1Wòó©(𝒉(Wòó©) + 𝐽õJJó©®	𝒉ôJJó©¯.

 75

5. Repeat steps 1 through 4 for all candidate change-points, 𝜏 ∈ [1,𝑇].

6. Chose the value of 𝜏 that minimizes 𝐽(𝒉).

Output: The optimally partitioned change-point, 𝜏WJX.

In general, the summary statistic calculated during step 3, can take any form; however,

in this work the partition mean and partition standard deviation are specifically

considered. To understand the differences between these approaches, two simple

simulations were created, where the points of convergence where known. Each of the

two simulations were modeled in an attempt to the represent the filter and wrapper

methods. For the filter methods, the similarity metrics always tended to converge

quickly; however, the overall variance seemed to reduce at a slower rate. For the

classifier performance observed in Chapter 3, there was lower amount of variance, but

the point of convergence spanned a larger range of values.

For both simulations, a logarithmic convergence was modeled. The data

sequence, 𝒉, was calculated using a limited log function of the form shown in (34). In

this form, the scale factor, 𝛽, can be used to control how quickly the data sequence will

converge. The limiting index, 𝜏7ª+, corresponds to the point of convergence, for a

unity scale factor. The true point of convergence, for the general case, can be calculated

by multiplying the limiting index by the inverse of the scale factor, 𝜏÷W«�ó©øó =
ùé¤%
ú

.

 ℎ(𝜏) = min(log(𝛽𝜏) , log(𝜏7ª+)) (34)

 76

Figure 34 shows the results for the filter method with 𝜏7ª+ = [5,10,15,20], 𝜏 ∈

[1,200], and 𝛽 = 1. To account for the slower reduction in variance, zero-mean,

Gaussian noise with a linearly decreasing standard deviation, from 4 to 0.8, was added

directly to the data sequence. The thin gray lines represent 10 individual random trials,

and the thick green line is the mean over all trials. The dashed blue and red lines

represent the optimal partitioning estimate for the partition mean and the partition

standard deviation summary statistics, respectively. The black dashed line represents

the true convergence index. For this case, the mean statistic provides a fairly robust

estimate of the true convergence point. The standard deviation metric is clearly biased

by the increased variance, and is unable to provide a robust estimate.

Figure 34: Optimal partitioning simulation for the filter method.

Figure 35 shows the results for a wrapper method simulation with 𝜏7ª+ = 100, 𝜏 ∈

[1,200], and 𝛽 = [1,1.5,2,4]. To introduce some uncertainty, zero-mean, Gaussian

 77

random noise, with a standard deviation of 0.8, was added directly the sequence. The

thin gray lines represent 10 individual random trials, and the thick green line is the

mean over all trials. The dashed blue and red lines represent the optimal partitioning

estimate for the partition mean and the partition standard deviation summary statistics,

respectively. The black dashed line represents the true convergence index. In general,

both statistics underestimate the true convergence; however, they both appear to

perform better for sequences that converge quickly. The standard deviation statistic

consistently provides a better estimate than the mean statistic.

Figure 35: Optimal partitioning simulation for the wrapper method.

Based on these simple experiments, the optimal partitioning algorithm with a

mean summary statistic will be used to automate the filter approach. Conversely, the

optimal partitioning algorithm with a standard deviation statistic will be used to

automate the wrapper approach.

 78

Class-based Adaptive Compression

The ability to estimate a class-specific 𝑚 provides a unique opportunity to further

compress the acquired images before storing them to disk. For most hardware

implementations, the number of CSBs that must be collected will be decided by the

average or worst case bound among all classes. However, it is possible to further

compress some of the pixels based on the individual lower bounds of each class. The

classification map, 𝑪, can be combined with a class specific CSB bound, 𝑚WJX(𝑖), to

save each pixel with the appropriate number of compressed bands. More specifically,

all pixels belonging to class 𝑖, will be stored with 𝑚WJX(𝑖) compressed bands.

To measure the effectiveness of this approach, a new metric must be introduced

to account for the variable number of compressed bands among the pixels. The

compressively-sensed band ratio (CSBR), introduced in Chapter 3, can be generalized

into the compressively-sensed element ratio (CSER), where individual compressed

elements are considered rather than compressed bands. In this context, the

compressively-sensed element corresponds to a single compressed measurement and is

analogous to the pixel element of the full band image, as defined in chapter 1. The

CSER takes the form shown in equation (35), where 𝑛(𝑖) represents the number of

pixels in the ith class.

 𝐶𝑆𝐸𝑅 =
#	𝑜𝑓	𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

#	𝑜𝑓	𝑝𝑖𝑥𝑒𝑙	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 =
1
𝐿𝑁¬𝑚(𝑖)𝑛(𝑖)

S

�c3

 (35)

Furthermore, it can be easily shown that the CSBR is simply a special case of the CSER

when 𝑚	(𝑖) = 𝑚, ∀𝑖. In this case, 𝑚 can be factored out of the summation resulting in

 79

∑ 𝑛(𝑖)S
�c3 = 𝑁. Applying these simplifications to equation (35), the CSBR can be

derived from the CSER as shown in equation (36).

 𝐶𝑆𝐵𝑅 =
𝑚
𝐿𝑁¬𝑛(𝑖)

S

�c3

=
𝑚𝑁
𝐿𝑁 =

𝑚
𝐿 (36)

Another convenient property of the CSER metric, is that it can easily be related

to the storage requirements. This can be accomplished by multiplying an element count

by the desired bit-depth. In general, the element count is calculated as shown the

numerator in equation (35), 𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑐𝑜𝑢𝑛𝑡 = ∑ 𝑚(𝑖)𝑛(𝑖)S
�c3 . For the case of a single

number of CSBs, this reduces to 𝑚 ∗ 𝑁. Similarly, for the case of the full band image,

this reduces to 𝐿 ∗ 𝑁. As an example, assume there is an 2-class image with 𝐿 = 100

bands, and 𝑁	 = 	200,000 pixels, that is stored with single precision (4 bytes per

element). The required number of bytes to store the full band image would be 100 ∗

200,000 ∗ 4	𝑏𝑦𝑡𝑒𝑠 = 80	𝑀𝐵.3 Further assume that a CSB lower bound has been

estimated to be 𝑚(1) = 5 and 𝑚(2) = 10, and that exactly half of the pixels belong to

each of the classes. The required number of bytes to store the compressed image would

be �5 ∗ ^kk,kkk
^

+ 10 ∗ ^kk,kkk
^

� ∗ 4	𝑏𝑦𝑡𝑒𝑠 = 6	𝑀𝐵. The storage savings in this example

would simply be !k²"
!k

= 92.5%. Alternatively, this can be directly calculated using the

CSER, as (1 − 𝐶𝑆𝐸𝑅) = �1 − %.&
3kk
� = 92.5%. Thus the CSER provides a normalized

metric for comparing multiple images and is directly related to storage requirements.

3 Here a gigabyte (MB) is simply assumed to be 1,000,000 bytes rather than the formal 1,024 kilobytes.

 80

Experiments

Filter Experiments

An experiment was performed to explore the effectiveness of the filter-based bound

estimation algorithm. Given the probabilistic nature of the random projections, the

experiment was setup in a Monte Carlo fashion, and repeated for 2,000 trials to provide

representative statistics for each of the proposed similarity measurements. In each trial,

the class mean vector was calculated for each class and then projected into the

compressed domain following the model in equation (11). The number of CSBs, 𝑚,

was varied from 5 to 55 in steps of 5 and then from 65 to 𝐿 in steps 10. Average class

similarities, from equation (30), were calculated at each value of m, based on NSED,

SAM, and SID, as described in equations (31), (32), and (33), respectively. Finally,

𝑚WJX was estimated by applying the optimal partitioning algorithm, with a summary

statistic based on the mean partition statistic.

The estimated lower bound from each trial has been summarized into a separate

probability distribution for each of the similarity metrics: NSED, SAM and SID. The

experiment results for both of the AVIRIS images, Indian pines and Salinas, are shown

in Figure 36 and Figure 37, respectively. The NSED and SAM distributions show

maximum probability with 5 CSBs or less, which is in line with the classification results

shown in Chapter 3. The SID distributions show a peak probability between 5 and 10

CSBS; however, the distribution is very tightly bound. For all of the metrics, both

images resulted in very similar distributions. Given that the types of image scenes and

classes are very similar, this result is not surprising.

 81

Figure 36: Indian Pines filter results for the mean-based optimal partition algorithm.

Figure 37: Salinas filter results for the mean-based optimal partition algorithm.

The results for the ROSIS images, Pavia University and Pavia Centre, are shown in

Figure 38 and Figure 39, respectively. All of the similarity metrics show distributions

with highest probabilities occurring within the first 15 CSBs. For NSED and SAM, the

distributions show maximum probabilities with 5 or less CSBs, which is in line with

the performance that was observed for nearly all of the classes in Chapter 3. Similar to

the AVIRIS images, both ROSIS images resulted in very similar distributions. This is

again attributed to the fact that both scenes contain similar content.

 82

Figure 38: Pavia University filter results for the mean-based optimal partition algorithm.

Figure 39: Pavia Centre filter results for the mean-based optimal partition algorithm.

In general, the NSED and SAM similarities gave comparable results. This is

not surprising considering that they are both based on a geometric interpretation of

hyperspectral similarity, while SID is based on a probabilistic one, making it more

unique. The SID distributions showed lower amounts of variance, but were biased to

be higher than what was observed in Chapter 3. It is also important to note that these

results are all sensitive to the specific change-point algorithm that is implemented, as

well as the averaging sizes that are used in the experiment.

Wrapper Experiments

The first consideration that should be made for a wrapper approach is to

determine if the value of 𝑚WJX is consistent between the training data and the test data.

That is, can the training data alone provide a robust estimate of 𝑚WJX. While it is well

 83

known that the classification performance of the training dataset may potentially be

biased compared to the test dataset, it turns out that 𝑚WJX is indeed unbiased. This is

demonstrated empirically by comparing the average accuracy, 𝑃PP	, between the

training samples and the test samples. In this case, the test samples represent the

unobserved pixels that will be encountered in a real-world application.

Figure 40 shows an example of the training 𝑃PP and test 𝑃PP for the Indian Pines

image scene. Notice that while there is approximately 2% difference between the

training and test 𝑃PP, however, the relative effect from varying the number of CSBs is

consistent. Similarly, training and test comparisons for Salinas, Pavia University, and

Pavia Centre are shown in Figure 41, Figure 42, and Figure 43, respectively. A strong

correlation exists between the training and test 𝑃PP for all of these image scenes as well.

While they do show varying amounts of bias in the reported 𝑃PP, the relative behavior

as a function of the number of CSBs is again consistent.

 84

Figure 40: Comparison of training and test 𝑃PP for Indian Pines.

Figure 41: Comparison of training and test 𝑃PP for Salinas.

 85

Figure 42: Comparison of training and test 𝑃PP for Pavia University.

Figure 43: Comparison of training and test 𝑃PP for Pavia Centre.

The correlation between the training and test performance can be easily

quantified by using a measure such as the Pearson correlation coefficient, which is

defined as ÷W�(ª,')
~X((ª)∗~X((')

, where 𝑎 and 𝑏 are arbitrary vectors of equal length, 𝑐𝑜𝑣

 86

represents the covariance and 𝑠𝑡𝑑 represents the standard deviation. The Pearson

correlation coefficient between the training and test performance is equal to 0.9980,

0.9811, 0.9996, and 0.9996 for Indian Pines, Salinas, Pavia University, and Pavia

Centre, respectively. It is quite clear for these images that the relationship between the

training and test data are highly correlated, as a function of the number of CSBs, and

that the training data can be used reliably. This an important realization because it

allows for 𝑚WJX to be selected based solely on the training data, and ensures that it will

be relevant for unseen data.

Class Specific Bounds and Adaptive Compression for the SVM Classifier

For a final comparison, a single 𝑚WJX(𝑖) was estimated for each class, from all of the

images. The individual bound was then combined with the classifier results from

Chapter 3, to determine what the resulting CSER and algorithm efficacy would be. For

the filter approach, the value of 𝑚WJX corresponding to the expected value of the

estimated distribution was selected. For the wrapper approach, the value 𝑚 determined

by the change-point detection algorithm, with a standard deviation summary statistic,

was selected. For each of the experimental cases, the results have been summarized

into a collection of tables. The efficacy of the individual class accuracy is shown for

the all three filtering methods, as well as the SVM wrapper method. Additionally, the

average accuracy, overall accuracy and the compressively-sensed element ratio are

shown at the bottom of the table.

The results for both algorithms run on the Indian Pines image are summarized

in Table 10. As should be expected, the wrapper method is able to select the value of

m that produces the highest efficacy, for most cases, since it is specifically tuned to the

 87

SVM classifier. In general, the filter methods do a very good job of estimating

reasonable lower bounds for many of the individual classes. In this case, 11 of the 16

classes show equivalent performance between the filter and the wrapper methods.

Amongst the filter methods, the NSED and SAM filters provide similar results, with

the SAM filter showing the best agreement, for the SVM classifier. The SID filter

results in the lowest bound estimates and can considered to be a more aggressive

estimate. In regards to the CSER, the filter methods result in ratios that are 1.5 to 3

times smaller than the wrapper method.

Table 10: Indian Pines CSER and Efficacy Results -SVM

 NSED Filter SAM Filter SID Filter Wrapper
 𝑷𝑪𝑨𝑬𝒇𝒇

Alfalfa 0.99 1.00 0.99 1.00
Corn-notil 0.87 0.93 0.80 0.95

Corn-mintil 0.84 0.93 0.82 0.95
Corn 0.99 1.00 1.00 1.00

Grass-pasture 0.99 0.99 0.99 0.99
Grass-trees 1.00 1.00 1.00 1.00

Grass-mowed 0.98 0.99 0.96 0.98
Hay-windrowed 1.00 1.00 1.00 1.00

Oats 0.93 0.99 0.87 0.94
Soy-notil 0.94 0.96 0.93 0.97

Soy-mintil 0.91 0.93 0.89 0.98
Soy-clean 0.94 0.98 0.89 0.98

Wheat 1.00 1.00 1.00 1.00
Woods 1.01 1.01 1.01 1.00

Buildings 0.95 0.97 0.91 0.98
SS Towers 1.00 1.00 1.00 1.00
𝑨𝑨𝑬𝒇𝒇 0.96 0.98 0.94 0.98
𝑶𝑨𝑬𝒇𝒇 0.94 0.96 0.91 0.98

CSER 0.09 0.14 0.07 0.24

The results for the bound estimation algorithms run on the Salinas image are

summarized in Table 11. In this case, the filter and wrapper methods show better

 88

agreement, with the NSED achieving identical efficacy for all classes. The wrapper

method results in full efficacy for all classes except for one. The CSER, however,

produced from the wrapper method is again1.5 to 3 times higher than the filter methods.

Table 11: Salinas CSER and Efficacy Results - SVM

 NSED Filter SAM Filter SID Filter Wrapper
 𝑷𝑪𝑨𝑬𝒇𝒇

Broccoli 1 1.00 1.00 1.00 1.00
Broccoli 2 1.00 1.00 1.00 1.00

Fallow 1.00 1.00 1.00 1.00
Fallow Rough Plow 1.00 1.00 1.00 1.00

Fallow Smooth 1.00 1.00 1.00 1.00
Stubble 1.00 1.00 1.00 1.00
Celery 1.00 1.00 1.00 1.00

Grapes Untrained 0.99 0.98 0.98 0.99
Soil Vineyard 1.00 1.00 1.00 1.00

Corn 1.00 1.00 0.99 1.00
Lettuce 4 Week 1.00 1.00 1.00 1.00
Lettuce 5 Week 1.00 1.00 1.00 1.00
Lettuce 6 Week 1.00 1.00 1.00 1.00
Lettuce 7 Week 1.00 1.00 1.00 1.00

Vineyard Untrained 1.00 1.00 1.01 1.00
Vineyard VT 1.00 1.00 1.00 1.00

AA 1.00 1.00 1.00 1.00
OA 1.00 1.00 1.00 1.00

CSER 0.10 0.12 0.07 0.31

The results for the bound estimation algorithms run on the ROSIS images are

summarized in Table 12, and Table 13. Similar to the AVIRIS images, both approaches

showed good agreement, with the wrapper method being more conservative. The

NSED and SAM filters resulted in very similar predictions and the SID filter again

resulted in the most aggressive estimates.

 89

Table 12: Pavia University CSER and Efficacy Results - SVM

 NSED Filter SAM Filter SID Filter Wrapper
 𝑷𝑪𝑨𝑬𝒇𝒇

Asphalt 0.98 0.98 0.97 1.00
Meadows 0.99 0.99 0.98 1.00

Gravel 0.99 0.99 0.99 0.99
Trees 1.00 1.00 1.00 1.00

Painted Metal Sheets 1.00 1.00 1.00 1.00
Bare Soil 1.00 1.00 1.00 1.00
Bitumen 1.00 1.00 1.00 1.00
Bricks 1.00 1.00 0.90 1.00

Shadows 1.00 1.00 1.00 1.00
AA 1.00 1.00 0.99 1.00
OA 0.99 0.99 0.99 1.00

CSER 0.18 0.21 0.13 0.27

Table 13: Pavia Centre CSER and Efficacy Results - SVM

 NSED Filter SAM Filter SID Filter Wrapper
 𝑷𝑪𝑨𝑬𝒇𝒇

Water 1.00 1.00 1.00 1.00
Trees 1.00 1.00 0.98 1.00

Asphalt 0.99 0.99 0.99 1.00
Self-blocking Brick 1.00 1.00 1.00 1.00

Bitumen 1.00 1.00 1.00 1.00
Tiles 1.00 1.00 1.00 1.00

Shadows 1.00 1.00 0.99 0.99
Meadows 1.00 1.00 1.00 1.00
Bare Soil 1.00 1.00 1.00 1.00

AA 1.00 1.00 0.99 1.00
OA 1.00 1.00 1.00 1.00

CSER 0.20 0.21 0.14 0.47

Conclusion

Two supervised approaches, based on feature selection, were presented for estimating

an optimal number of CSBs. The first approach was a filter method based on observing

the behavior of the average class similarity measure, as a function of the number of

 90

CSBs. The filter approach resulted in a probability distribution of possible values of

𝑚WJX. A hard estimate could then be derived by selecting a characteristic of the

distribution such as the maximum probability or the expected value. The second

approach was a wrapper method based on observing the behavior of classifier

performance on the training data. A hard bound was directly estimated by choosing the

value of 𝑚 were performance improvements saturated.

Both of the proposed algorithms were automated using a change-point detection

algorithm called optimal partitioning. A simple experiment was performed to

determine the appropriate summary statistic for each algorithm. The results showed

that the mean statistic was more appropriate for the filter method and the standard

deviation statistic was more appropriate for the wrapper method. The fully automated

version of the algorithms were tested using the classification results presented in

Chapter 3. An individual estimate of 𝑚WJX was made for each class and then used to

perform class specific compression. Both algorithms were capable of successfully

estimating adequate bounds for the number of CSBs. The wrapper method more

consistently estimated bounds with higher efficacy; however, this was at the cost of a

CSER of 1.5. to 3 times larger than the filter method. Among the filter methods, the

NSED and SAM filters produced similar results, and the SID filter was slightly less

conservative and typically resulted in the lowest CSER and efficacy.

 91

Chapter 5: Compressed Progressive Band Hyperspectral

Classification

Introduction

Progressive band processing (PBP) is a hyperspectral processing technique based on

iteratively processing an image with full spatial information, but reduced spectral bands

(Chang 2012). PBP algorithms offer the benefit of providing immediate feedback while

the full image cube is being acquired and iteratively updating the algorithm output as

more spectral information is received. Progressive band versions of many different

algorithms have been proposed; such as, dimensionality reduction (Chang, Wang, et al.

2011), target detection (Wang, et al. 2013), anomaly detection (Chang, Li, et al. 2015),

spectral unmixing (Chang and Liu 2014), and endmember extraction (Schultz, Hobbs

and Chang 2014). These progressive band algorithms make it possible to transmit

portions of hyperspectral images in smaller, more efficient packets, while still

generating near real-time feedback that improves as more spectral bands are

introduced.

In this Chapter, a compressed progressive band hyperspectral classification

framework is proposed. The proposed approach is based on a general compressive

sensing system, where CSBs are either collected or transmitted serially. In the first case,

a snapshot hyperspectral imager (Hagen and Kudenov 2013) could be used to generate

instantaneous images at full spatial and spectral resolution, but that are never digitally

sampled. Rather, the digital sampling is limited to compressive band mixtures that are

collected serially. This approach would greatly benefit remote or unmanned platforms

 92

that require feedback from classification predictions to inform decisions or autonomy.

In the second case, the compressed band hyperspectral images can be fully acquired on

the sensor platform, and the progressive band classification can be performed off-

sensor as the CSBs are received. This approach could be adapted to work with many

different types of hyperspectral sensors and is analogous to the original PBP

algorithms.

A progressive band framework is ideally suited for the compressively-sensed

band images that have been presented in this work. Specifically, a compressed

progressive band classifier (CPBC) is introduced that offers two advantages over the

more traditional approach. First, the progressive nature provides immediate feedback

without the need to collect the full number of CSBs. As it was shown in Chapter 3,

classification of some classes converged with a very small number of classes, which

means that even some of the earliest progressive iterations will provide extremely

informative results. Second CPBP provides an unsupervised approach to determining

the required number of CSBs directly from in-situ measurements, that can work with

any compressed classifier. By observing the behavior of the classifier in between

progressions, a stopping criterion can be developed to adaptively determine when a

sufficient number of CSBs have been acquired.

There are three key aspects to the compressed progressive band classifier: the

progressive classifier, the progression metrics, and the stopping criteria. The

progressive classifier must be capable of iteratively processing a hyperspectral image

for varying amounts of CSBs. The progression metrics refer to measures that are able

to quantify the perceived change in performance between successive iterations. Finally,

 93

the stopping criteria are definitive rules, based on the progression metrics, that

determine when a sufficient number of CSBs have been processed. Each of this aspects

are discussed in full detail, in the following sub-sections.

Progressive Classifier

To enable a progressive band approach, the classifier must be capable of processing

images with a varying number of CSBs. To accomplish this, a straightforward and

general approach is developed based on employing a set of classifiers, 𝐹 =

{𝑓7(𝒓), 𝑓7ìí(𝒓), 𝑓7ì^í(𝒓),… , 𝑓7é¤%(𝒓)}, that are functions of only the pixel vector,

rather than a single classifier, 𝑓(𝒓,𝑚), that is a function of both 𝑚 and the pixel vector.

In this notation, 𝑓7(𝒓) corresponds to a classifier that has been individually trained

with 𝑚 CSBS, where 𝑚 is any integer on the interval [1,𝑚7ª+], and 𝛿7 is an arbitrary

step size. The full parameter space is captured when 𝛿7 = 1 and 𝑚7ª+ = 𝐿; however,

in practice a larger step size and a lower maximum number CSBs will likely be

sufficient, for most cases. A short analysis is performed on the effects of 𝛿7 and 𝑚 in

the experiment section.

To effectively train the set of classifiers, the compressive sampling matrix must

be known a priori, and specifically included in the training process. Furthermore, the

order of the columns in the sampling matrix must be preserved during both algorithm

training and deployment. Both of these requirements can be easily satisfied by

generating a random sampling matrix of maximum size, 𝚽 ∈ ℜ(+7é¤%, and then

 94

selecting contiguous sub-matrices for each classifier4. The training data is then

projected into the CSBD and the normal classifier training procedure is used. This

process is repeated until the desired set of classifiers have been trained. The complete

training procedure is summarized in Table 14. Note, that for simplicity, the training

procedure has been described with a uniform step size; however, it in practice it is

trivial to alter the training procedure to allow for a non-uniformly spaced number of

CSBs.

Table 14: Progressive band classifier training procedure

Progressive Band Classifier Training Procedure

Input: A hyperspectral training dataset 𝑹$ ∈ 𝔑$×(and sampling matrix 𝚽 ∈

ℜ(+7é¤%

1. Choose an initial number of CSBs, 𝑚 = 𝑚7�« and a CSB step size 𝛿.

2. Form a sub-matrix, 𝚽. ∈ 𝔑(×7, by selecting columns 1 to 𝑚 from 𝚽 and re-

normalizing along the columns.

3. Project all of the training pixels into the CSBD, 𝑹O¸ê� = 𝑹𝚽. .

4. Train the classifier 𝑓7(𝒓).

5. Increment the number of compressed bands, 𝑚 = 𝑚 + 𝛿.

6. Repeat steps 2 through 5 until 𝑚 = 𝑚7ª+.

Output: A set of trained classifiers 𝐹 = {𝑓7(𝒓), 𝑓7ìí(𝒓), 𝑓7ì^í(𝒓),… , 𝑓7é¤%(𝒓)}

4 It is important to stress that on a physical system, 𝚽 is implemented directly in the sampling hardware
and must be coordinated with the classifier training procedure.

 95

The presented approach has two desirable traits. First, this procedure does not

require the classifier to be altered in any way. This allows for any classifier to be

implemented without modification and for all of the standard classifier training

procedures to be leveraged. Second, since the compressed classifier is not directly tied

to the progression metrics or stopping criteria, the variations of the CPBC algorithm

can be easily created by simply including a different set of classifiers. Moreover, it is

even possible to train multiple sets of classifiers and employ classifier fusion

techniques.

The main shortcoming to this approach is that for very complicated classifiers,

such as deep neural networks, the required training time may become intractable.

However, the free parameters 𝛿7 and 𝑚7ª+, provide a mechanism for trading between

training time and progressive band resolution. Additionally, it is possible to develop

adaptive training procedures that use the classifier performance of the training data to

update 𝛿 and to inform what 𝑚7ª+ should be.

Progression Metrics

Progression metrics are required to measure the change in classifier performance

between progressive iterations. Such metrics are essential for determining if classifier

performance has converged or if additional CSBs should be collected. As it was shown

in Chapter 3, a compressed classifier performance tends to asymptote at a particular

number of CSBs, based on the individual scene complexity. A progression metric is

desired that will correlate well with classification performance, since classification

performance cannot be measured in-situ. In this section, the notion of a progressive

band confusion matrix is introduced and a number of metrics are derived from it. A

 96

connection is made between the derived metrics and the well-known Tanimoto

Coefficient (TC). Finally, the progression metrics are cast into a probabilistic

framework to provide additional insight into the subtleties of the proposed metrics.

Confusion Matrix Approach

The proposed approach leverages the specific nature of the classification problem to

develop progression metrics that can be used for determining stopping criteria. For each

progression of the progressive band algorithm, an estimate of class membership is

produced for each of the current pixels. Let 𝑪/(𝑚) represent the class predictions for 𝑚

-CSBs and 𝑪/(𝑚 + 𝛿7) represent the class predictions for (𝑚 + 𝛿7)-CSBs, where 𝛿7

is any positive integer and 𝑚 + 𝛿7 < 𝐿. The relationship between the predicted class

membership at subsequent iterations can be exploited to provide several measures of

progression. The notion of a progressive band confusion matrix is introduced to aid in

the exploration of the relationship between these class predictions.

Refer to the progressive band confusion matrix shown in Figure 44. The progressive

band confusion matrix is similar to the standard classification confusion matrix shown

in Figure 5; however, the rows and the columns both represent class predictions.

Specifically, 𝑛�b represents the number of pixels to belong to the 𝑖’𝑡ℎ class with 𝑚 -

CSBs and to the 𝑗’𝑡ℎ class with (𝑚 + 𝛿7)-CSBs. The presented convention treats the

predictions for 𝑚-CSBs as the confusion “predictions” and the predictions for (𝑚 +

𝛿7)-CSBs as the confusion “truth”5. This convention is motivated by the fact that

5 It is important to note that the terms “prediction” and “truth” are used here to be consistent with the
traditional classification confusion matrix; however, class membership ground truth is not available in-
situ and this approach is indeed completely unsupervised.

 97

predictions made using more CSBs will, with high probability, provide more accurate

estimates, thus they should be assumed to be more reliable.

Figure 44: Progressive band confusion matrix.

Using the progressive band confusion matrix and following an analogous

approach to classification performance, it is possible to define several progression

metrics. Based on the class accuracy shown in equation (1), the progression accuracy

is defined in equation (37). The progression accuracy, for the 𝑝’𝑡ℎ class, is the number

of pixels predicted, in both iterations, to belong to class 𝐶J divided by the number of

pixels whose prediction change to 𝐶J from a different class. Based on the classification

precision shown in equation (2), the progression precision is defined in equation (38).

The progression precision, for the 𝑝’𝑡ℎ class, is the number of pixels predicted, in both

iterations, to belong to class 𝐶J divided by the number of pixels that were previously

predicted as 𝐶J and are now predicted to belong to a different class. Finally, based on

 98

the classification overall accuracy shown in equation (3), the overall progression

accuracy is defined in equation (39). The overall progression accuracy is the number

of pixels that share class predictions in both iterations divided by the total number of

pixels.

 𝑃SP(𝑝) =
𝑛JJ

∑ 𝑛bJS
bc3

	

(37)

 𝑃SS(𝑝) =
𝑛JJ

∑ 𝑛JbS
bc3

	

(38)

𝑃TSP =

∑ 𝑛bbS
bc3

𝑁
	 (39)

Similar to the measure of classification performance, it is also convenient to consider

the average progression accuracy, 𝑃PSP =
3
S
∑ 𝑃SP(𝑝)S
3 , and the average progression

precision, 𝑃PSS =
3
S
∑ 𝑃SS(𝑝)S
3 .

Relationship to the Tanimoto Coefficient

An interesting connection can be made between the proposed progression metrics and

a binary similarity metric referred to as the Tanimoto coefficient6 (Rogers and

Tanimoto 1960). In the context of a progression metric, the Tanimoto coefficient (TC),

for class 𝐶J, is defined in equation (40) as the ratio of the intersection of class

6 This is also referred to as the Jaccard Index (Jaccard 1901).

 99

predictions to the union of the class predictions, where |∙| denotes the number of

elements in the set. In this context, 𝑪/J ∈ 𝔑$%×$' is a Boolean matrix where a true value

indicates that a particular pixel belongs to class 𝐶J.

 𝑃YO(𝑝) =
u𝑪/J(𝑚) ∩ 𝑪/J(𝑚 + 𝛿)u
u𝑪/J(𝑚) ∪ 𝑪/J(𝑚 + 𝛿)u

	 (40)

The Tanimoto coefficient, for a single class, can be written in terms of the progression

confusion matrix, as shown in equation (41).

 𝑃YO(𝑝) =
𝑛JJ

∑ 𝑛bJS
bc3 + ∑ 𝑛JbS

bc3 − 𝑛JJ
	 (41)

In this form, it is clear to see that 𝑃YO is very similar to 𝑃SP and 𝑃SS, but with a

normalization term in the denominator that incorporates all predictions from both

iterations, simultaneously. Another very important difference is that 𝑃YO is a symmetric

measure, while 𝑃SP and 𝑃SS are not. More specifically, 𝑃YO does not depend on the

convention that is adopted to define the confusion matrix “truth”, whereas, both 𝑃SP

and 𝑃SS depend on it.

These differences can be further explored by posing the problem in a

probabilistic framework. Substituting in the basic definitions for a conditional and a

joint probability, 𝑃YO(𝑝), can be re-written in terms of probabilities as shown in

equation (42).

 100

𝑃YO(𝑝) =
𝑃®𝑪/J(𝑚) ∩ 𝑪/J(𝑚 + 𝛿)¯
𝑃®𝑪/J(𝑚) ∪ 𝑪/J(𝑚 + 𝛿)¯

=
𝑝(𝑪/J(𝑚), 𝑪/J(𝑚 + 𝛿))

𝑃 �𝑪/J(𝑚)� + 𝑃 �𝑪/J(𝑚 + 𝛿)� − 𝑃®𝑪/J(𝑚), 𝑪/J(𝑚 + 𝛿)¯
	

(42)

Similarly, the proposed progression accuracy and progression precision can also be re-

written in terms of probabilities, as shown in equations (43) and (44).

𝑃SP(𝑝) =
𝑃 �𝑪/J(𝑚), 𝑪/J(𝑚 + 𝛿)�

𝑃 �𝑪/J(𝑚)�

=
𝑃 �𝑪/J(𝑚 + 𝛿)|𝑪/J(𝑚)�𝑃 �𝑪/J(𝑚)�

𝑃 �𝑪/J(𝑚)�
=

𝑃®𝑪/J(𝑚 + 𝛿)|𝑪/J(𝑚)¯	

(43)

𝑃SS(𝑝) =
𝑃 �𝑪/J(𝑚),𝑪/J(𝑚 + 𝛿)�

𝑃 �𝑪/J(𝑚)�

=
𝑃 �𝑪/J(𝑚)|𝑪/J(𝑚 + 𝛿)�𝑃 �𝑪/J(𝑚 + 𝛿)�

𝑃 �𝑪/J(𝑚 + 𝛿)�

= 𝑃 �𝑪/J(𝑚)|𝑪/J(𝑚 + 𝛿)�	

(44)

Interestingly, for the adopted convention, the progression accuracy is the a priori

conditional probability and the progression precision is the a posteriori conditional

probability. That is, 𝑃SP(𝑝) is conditioned on the previous iteration, while 𝑃SS(𝑝) is

conditioned on the most recent iteration. Comparatively, 𝑃YO(𝑝) is the joint probability

 101

conditioned by the union of the marginal probabilities. It is again obvious from this

form that 𝑃YO(𝑝) is indeed symmetric and will not depend on the particular convention

that is adopted.

The Overall Tanimoto Coefficient

Finally, an overall Tanimoto coefficient (OTC) can be defined by considering all

classes simultaneously, as shown in equation (45).

 𝑃TYO =
∑ u𝑪/J(𝑚) ∩ 𝑪/J(𝑚 + 𝛿)uS
Jc3

∑ u𝑪/J(𝑚) ∪ 𝑪/J(𝑚 + 𝛿)uS
Jc3

	 (45)

By recognizing that the denominator of this expression is equal to the total number of

pixels, 𝑁, and that the intersection is the sum of the diagonal elements of the

progression confusion matrix, ∑ 𝑛bbS
bc3 , it can then be shown that the overall

progression accuracy and the overall TI are indeed equivalent.

𝑃TYO =

∑ 𝑛bbS
bc3

𝑁 = 𝑃TSP	 (46)

Each of these metrics are explored in the experiment section and an analysis is

performed to select the most appropriate measure for use with a stopping rule.

Stopping Criteria

Stopping criteria must be defined, based on the progression metrics, to indicate when

enough CSBs have been collected. At first glance, this seems similar to the changepoint

detection problem posed in Chapter 4, for determining the appropriate number of CSBs

 102

a-priori. However, a key difference is that for progressive band processing, the

stopping criterion must be causal, which was not the case for the changepoint detection

algorithm. There are, however, a few specific considerations that can be made for the

progressive band convergence. First, all of the progression metrics defined in the

previous section are normalized between 0 and 1, which allows for target values to be

directly included in a stopping rule. Second, in a noise free system, the progression

metrics should all be monotonically increasing, which can further reduce some of the

complexity in the stopping rules.

To identify convergence in progression, a set of rules based on the absolute

progression metric value and the magnitude of the difference in successive iterations

are proposed. The stopping rule is based on two user inputs: a progression metric

threshold, 𝜏S4, and a difference threshold, 𝜏í . The first threshold is simply the

minimum progression metric that must be reached before convergence can be declared.

This threshold is useful for preventing the algorithm converging at local minimum due

to noise in the system. The second threshold represents the maximum change that is

tolerated for a converged sequence. Values that are greater than this threshold are

considered to have not yet converged. To make this threshold more intuitive, it is

applied as a relative percentage of the current progression metric value. For a set of

arbitrary progression metrics, 𝑃S4, with 𝑚 and (𝑚 + 𝛿7) CSBS, the stopping rule can

be defined as shown in the following pseudo-code.

If (𝑃S4(𝑚 + 𝛿7) − 𝑃S4	(𝑚)) > 0
 If 𝑃S4(𝑚) > 𝜏S4 and

S67(7ìíé)²S67	(7)
S67	(7)

< 𝜏í
 Declare convergence
 Else

 103

 Continue
Else
 Ignore negative values

Experiments

Setup

For these experiments, the experimental procedure presented in Chapter 3 was repeated

to calculated the progression metrics. However, to properly simulate the in-situ nature

of the progressive band processing, the results from a single trial are analyzed rather

than the average of a collection of experiments. Similarly, the same number of

training/testing samples, and classifier hyperparameters were maintained. In the

interest of brevity, the performance metrics presented within this section are limited to

the classification accuracy metrics, 𝑃TP and 𝑃PP; however, the results of the precision

metrics were also in agreement. The experiments were again conducted on all four of

the real-world hyperspectral images introduced in Chapter 1.

Training Step Size and Maximum Bound

One potential concern is that for classifiers with a computationally burdensome

inference process, using small step sizes may become intractable. This raises the

question of how fine the step size must be to adequately capture the performance

progression. To answer this question, a simple experiment was conducted to explore

the effects of step size on the classification progression. The spectral-spatial classifier

was trained on Indian Pines image with a step size of 1 additional CSB at each iteration.

Multiple subsets of results were then created by sub-sampling with step-sizes of 2, 5,

7, and 10, to simulate the process of using larger step sizes. Finally, the root-mean-

 104

square (RMS) error of the overall accuracy was calculated between the step size of 1

and all of the larger step sizes. A simple linear interpolation was used for the sub-

sampled results to align them with the finely sampled results. It should be noted that,

for simplicity, only a single experiment was conducted and the 𝑃TP achieved on the

training data has been reported.

The step-size experiment results, for the Indian Pines image, are shown in Figure

45, and the RMS errors are tabulated and displayed as annotations. It is immediately

obvious that the step size will have minimal impact on the progression metric. The

larger step sizes adequately track the performance progression and result in RMS errors

that less than 1% 𝑃TP. This result is re-assuring, as it suggests that the step size can be

chosen completely based on the desired fidelity and the available computational

resources.

Figure 45: Step-size experiment for Indian Pines.

 105

Progressive Band Classification

To fully illustrate the progressive classification sequence, a collection of classification

maps and difference maps have been generate for each of the images. The classification

maps display the current class predictions for each pixel, and the difference maps

highlight the pixels that have changed between updates. The corresponding number of

CSBs for each of the maps is annotated directly on the figure. For reference, the ground

truth and the full band predictions are shown in the top left corner of each plot.

The progressive band classification sequence for the Indian Pines image is

shown in Figure 46. The progressions from 𝑚 = 5 to 𝑚 = 30, 𝑚 = 35 to 𝑚 = 60, and

𝑚 = 65 to 𝑚 = 90 are grouped together in the top two rows, middle two rows, and

bottom two rows, respectively. It is readily apparent from the difference maps that the

class predictions rapidly change in the early iterations, with large clusters of pixels

changing within the first 20 CSBs. While the majority of the pixels eventually

converge, there are still small number of pixels that continue to change through 90

CSBs. Given that the Indian Pines is the more difficult of the test images and that the

classification accuracy is limited to the lower 90% range, it is not unreasonable to

expect for some pixels to continually change, even for the larger number of CSBs.

Nevertheless, the classification maps, with as few as 20 CSBs, provide a useful view

of the scene and could be used to inform real-time decision making for many potential

applications.

 106

Figure 46: Indian Pines progressive classification sequence

The progressive band classification sequence for the Salinas image is shown in

Figure 47. Even with only 10 CSBs, the class predictions provide an excellent

approximation to the ground truth, and could potentially inform many real-time

decisions. The largest change in class predictions occur between 5 and 10 CSBs, and

the changes are predominantly limited to two specific classes. Similar to the Indian

Pines image, the overall accuracy of the image is limited to ~96%, thus it is plausible

that 4% of the pixels may be subject to fluctuations if they are close to the class

boundaries.

 107

Figure 47: Salinas progressive classification sequence

The progressive band classification sequence for Pavia University is shown in

Figure 48. Similar to Indian Pines, there multiple large clusters of pixels that change

within the first 20 CSBs; however, the class predictions begin to converge around 30

CSBs and show minimal changes beyond that point.

 108

Figure 48: Pavia University progressive classification sequence

The progressive band classification sequence for Pavia Centre is shown in

Figure 49. This image converges faster than all of the other three images. Even with

the minimum of 5 CSBs the classification map looks nearly identical to the ground

truth. The difference maps show minimal changes as the number of CSBs is increased.

 109

Figure 49: Pavia Centre progressive classification sequence

For each of the test images, the progressive classification sequence shows that

there is large amount of useful information available, even with as few as 20 CSBs.

The current class predictions and knowledge of which pixels are changing between

iterations can be coupled to inform many different real-time decisions. The difference

maps could also be used in-situ to isolate a sub-set of pixels for further analysis or for

transmission in a remote system.

Progression Metric Experiment

One of the most important tasks of these experiments was to quantify the effectiveness

of the proposed progression metrics as indicators of performance convergence. More

simply put, how reliably could the progression metrics be used to determine when

enough CSBs have been collected in-situ. In this section, the classification accuracy

metrics, 𝑃TP and 𝑃PP, are compared with the progression metrics. The Pearson

correlation coefficient introduced in Chapter 4, was again used to quantify the utility

of the progression metrics. For each of the plots, the solid blue and red lines represent

 110

the 𝑃TP and 𝑃PP, respectively. The dashed lines represent the various progression

metrics: overall progression accuracy (yellow), average progression accuracy (purple),

average progression precision (green), and overall Tanimoto coefficient (cyan).

Furthermore, the Pearson coefficient is tabulated, for each combination of accuracy and

progression metric, and is annotated directly on the plots.

There are a few notes worth mentioning regarding the background pixels. First,

excluding the background pixels in the progression metrics will result in a more

optimistic estimate of performance, with a higher correlation between the classifier

performance. This can be understood intuitively by recalling the effect that the

background pixels had on the precision metrics. Since many of the background pixels

tend to be mixtures of the other classes, this can create some instability in the

progression metric as the assigned label will tend to jump around more for the

background pixels. Second, it is important to recognize that some additional training

techniques could potentially be employed to improve the classifiers robustness to the

background pixels. This line of effort is adjacent to the central thesis of this work and

has been left for future research.

Figure 50 shows a comparison between the classification accuracy and the

progression metrics, for the Indian Pines image. For both the cases with and without

background pixels, all of the progression metrics correlate very well with the classifier

performance. There is a notable turning point in all of the curves around 25 CSBs and

then a more gradual increase until about 100 CSBS were the curves converge. The, the

progression metrics result in a correlation coefficient greater than or equal to 0.94 and

a maximum correlation of 0.99.

 111

Figure 50: Indian Pines progression metrics.

Figure 51 shows a comparison between the classification accuracy and the

progression metrics, for the Salinas image. In this case, there is a stark difference

between including and excluding the background pixels. When the background pixels

are excluded, the progression metrics show relatively high correlation with

performance. However, when background pixels are considered, the correlation drops

from 0.9 to 0.65. Fortunately, there is still an obvious changepoint around 40 CSBs,

where the progression metrics asymptote. While a progressive band algorithm based

on this particular classifier, will likely overestimate the total number of CSBs, it will

still converge at a value less than 25% of the total number of bands.

 112

Figure 51: Salinas progression metrics.

Figure 52 shows a comparison between the classification accuracy and the

progression metrics, for the Pavia University image. This is another example of where

background pixels negatively impact the performance the progression metrics.

Interestingly, this also the image that shows the largest discrepancies between the

different progression metrics. When the background pixels are included, there is a

difference of 0.22 between the lowest and the highest correlation coefficients. In

general, correlation is better with the average accuracy for all metrics.

 113

Figure 52: Pavia University progression metrics

Finally, Figure 53 shows a comparison between the classification accuracy and the

progression metrics, for the Pavia Centre image. In this case, the reported correlation

coefficients are reasonably high (>0.9) even if background pixels are included.

However, it is still apparent that the turning point with background pixels is close to

about 20 CSBs higher than the turning point in the performance metrics.

Figure 53: Pavia Centre progression metrics

 114

Stopping Criteria Experiment

As a final test, the proposed stopping rule was applied to the progression metrics

calculated in the previous section. The difference threshold was held constant at 0.01

and the progression metric threshold was varied from 0.90 to 0.99. The resulting CSBR,

𝑃TPUVV , and 𝑃PPUVV are reported for each of the thresholds, and displayed as bar plots.

For the cases where the algorithm failed to converge (i.e. stopping criteria were never

satisfied), values were simply excluded from the plot. The experiment was conducted

both with and without the inclusion of background pixels.

The results for each of the images, without including background pixels, are

shown in Figure 54, Figure 55, Figure 56, and Figure 57. In general, the stopping

criterion performs exceptionally well for all of the proposed summary progression

metrics. For three of the four images, an efficacy of nearly exactly 1 is obtained, while

maintaining a CSBR less than 0.25. For the fourth image, an efficacy of 0.95 is

achieved with the same CSBR.

The algorithm also appears to be fairly robust to the specific choice of the

progression metric threshold. Increasing the threshold does not result in an

overestimate of the number of CSBs. There was a single case, for the Indian Pines

image, where the algorithm failed to converge with the 𝑃PYO and 𝜏S4 = 0.99. This was

due to the fact that 𝑃PYO never reached a value of 0.99.

Regarding the choice of a particular progression metric, each of the proposed

progression metrics provide fairly similar results. There were no consistent trends

across all of the images that would suggest one metric to be better than another.

 115

Figure 54: Indian Pines progressive band statistics without BKG pixels

Figure 55: Salinas progressive band statistics without BKG pixels

 116

Figure 56: Pavia University progressive band statistics without BKG pixels

Figure 57: Pavia Centre progressive band statistics without BKG pixels

 117

When considering the case were background pixels are included, there are two

primary effects on the performance of the algorithm. First, the absolute value of the

progression metrics tend to decrease. This reduction will directly affect the valid range

of values that can be chosen for 𝜏S4. To illustrate the effects on the threshold, refer to

the Indian Pines results in Figure 58. Note that values of 𝜏S4 are now displayed from

0.85 to 0.99. In this case, the lower threshold values result in CSBR and performance

efficacies that are similar to those reported when excluding the background pixels. For

the higher thresholds, less than half of the cases converged, because the progression

metrics never exceeded the threshold. Interestingly, 𝑃TSP and 𝑃PSP converged in all

cases but one. Conversely, 𝑃PSS converged less than half of the time and 𝑃PYO only

converged once. This observation was limited to the Indian Pines image. For the other

three images, the algorithm converged almost every time.

 118

Figure 58: Indian Pines progressive band statistics with BKG pixels

Second, as it was shown in the previous section, the correlation between the

progression metrics and classifier performance decreases. For two of the images, this

introduced an obvious lag between the classifier performance improvements and the

progression metric. This lag will manifest as an overestimate of the required number of

CSBs, and consequently a higher CSBR. This effect was most evident in the Pavia

University image, shown in Figure 59. For the case where background pixels were

excluded, CSBR around 0.25 with full efficacy was achieved; however, with the

inclusion of background pixels, the CSBR has nearly doubled.

 119

Figure 59: Pavia University progressive band statistics with BKG pixels

Conclusion

This chapter presented an in-situ approach to estimating the appropriate number of

CSBs, based on a compressed progressive band classifier. This approach coupled band

sequential processing with iterative compressive sensing. The resulting algorithm

provides intermediate class predictions that could be used for decision making, as well

as adaptively determines when enough CSBs have been collected. The progressive

band algorithm was defined in three parts: progressive classifier, progression metrics,

and stopping criteria. Each of these parts was discussed in detail, and a corresponding

experiment was performed to analyze the proposed approach.

 120

Several important conclusions were drawn from the experiments. First, the algorithm

is not sensitive to the step-size between iterations. This allows for the step-size to be

chosen based on practical constraints; such as computational resources and system

latency. Second, all of the progression metrics showed very high correlation with

classifier performance. The effects of background pixels were specifically considered,

and were shown, for two of the images, to drastically reduce correlation. The proposed

explanation for this decorrelation is that background pixels that fall near class

boundaries, will tend to jump back and forth. However, potential mitigation strategies

were proposed to lessen the effects of background pixels. Finally, the proposed

stopping criteria was demonstrated to be well-suited. In general, the user thresholds

were fairly robust across all of the images. For the case without the inclusion of

background pixels, the algorithm was able to achieved nearly full efficacy for all

images, with a CSBR less than 0.25. The case with inclusion of background pixels was

also considered and some isolated effects were noted.

 121

Chapter 6: Summary and Conclusions

The contributions of this dissertation provide the fundamental foundation for

compressed classification of hyperspectral images. A new approach for hyperspectral

classification in the compressively-sensed band domain (CSBD) was presented.

Compressive sensing (CS) was proposed as an enabling technology to reduce the high

spectral band count, through the creation of compressively-sensed bands (CSBs). A CS

model based on the universality of random sensing was proposed for the analysis of

hyperspectral classification in the compressed domain. It was shown that the universal

model satisfied the restricted isometry property (RIP) and guaranteed optimal

performance could be achieved, without the need of identifying the sparse

representation. An experiment was performed to demonstrate the proposed model and

universality property that it possesses.

A spectral-spatial classifier based on the support vector machine and guided

filters was analyzed in the CSBD. An error analysis, based on RIP, was derived and

used to show that compressed classifier will indeed asymptote to full band

performance, as the number of CSBs are increased. These findings were empirically

validated through a set of simulated experiments, based on four common hyperspectral

images. The experiments demonstrated that full classification performance could be

achieved with as few as 10% of the total bands for some of the images. The analysis

also concluded that the scene complexity was a major driver in the required number of

CSBs to achieve full performance, and that additional methods are required to

intelligently determine the correct number of CSBs.

 122

Two supervised algorithms based on a feature selection framework were

proposed for estimating the minimum lower bound on the required number of CSBs.

The first algorithm was based on feature filtering techniques and the second algorithm

is based on classifier wrapping. Three variants of the filtering approach were

implemented, based on Euclidean distance, spectral angle mapper, and spectral

information divergence. All of the filter algorithms showed excellent agreement and

were robust across all images. The wrapper method also showed excellent agreement

with the employed classifier, demonstrating that the relationship between the number

of CSBs and performance is maintained between training and test data.

Finally, a compressed progressive band classification algorithm was developed

that is able to adaptively determine the required number of CSBs in-situ. Several new

progression metrics were developed and showed to correlate well with classifier

accuracy performance. A fully automated algorithm was developed based on a

difference threshold and a progression metric threshold. The experimental results

showed that the algorithm performed excellently and that performance was fairly robust

to the choice of threshold. In addition to the ability to adaptively determine a sufficient

number of compressed bands, the progressive classifier is also capable of providing

intermediate class predictions at each iteration. The iterative class predictions can be

combined with logic to develop new types of autonomy.

While this work provided a fairly complete analysis of compressed

hyperspectral classification, there are still many open research questions. First, this

research has focused on the signal processing and machine learning aspects of the

compressed system, and there a number of hardware considerations that need to be

 123

researched further before a practical system can be deployed. Second, the compressive

sensing models explored so far have been limited to Gaussian sampling, which is likely

not the most practical. Additional random sampling distributions and deterministic

sampling approaches should be considered. Third, this research was limited to a single

type of classifier. A more comprehensive analysis of various types of classifiers, such

as modern neural networks, should be examined in the CSBD. Finally, specific

applications should be considered and the appropriate logic and autonomy should be

developed to fully exploit the new capabilities presented within this work.

 124

Bibliography

Amhed, N, T Natarajan, and K R Rao. 1974. "Discrete Cosine Transform." IEEE

transactions on Computers (IEEE) 100 (1): 90-93.

Antonini, M, M Barlaud, P Mathieu, and I Daubechies. 1992. "Image coding using

wavelet transform." IEEE Transactions on image processing (IEEE) 1 (2): 205-

220.

Baraniuk, R, M Davenport, R De Vore, and M B Wakin. 2008. "A Simple Proof of the

Restricted Isometry Property for Random Matrices." Constructive

Approximation 28 (3): 253-263.

Basseville, Michèle, and Igor V. Nikiforov. 1993. Detection of abrupt changes: theory

and application. Vol. 104. Englewood Cliffs: Prentice Hall.

Baumgardner, M F, L L Biehl, and D A Landgrebe. 2015. "220 Band AVIRIS

Hyperspectral Image Data Set: June 12, 1992 Indian Pines Test Site 3." Purdue

University Research Repository.

Bioucas-Dias, J M, and M Figueiredo. 2010. "Alternating direction algorithms for

constrained sparse regression: Application to hyperspectral unmixing."

Hyperspectral Image and Signal Processing: Evolution in Remote Sensing

(WHISPERS). IEEE. 1-4.

Bishop, C M. 1995. Neural Networks for Pattern Recognition. New York: Oxford

Univ. Press.

Boureau, Y-Ian, and Yann l Cun. 2008. "Sparse feature learning for deep belief

networks." In Advances in neural information processing systems 1185-1192.

 125

Calderbank, R, S Jafarpour, and R Schapire. 2009. "Compressed learning: universal

sparse dimensionality reduction and learning in the measurement domain."

Preprint.

Camps-Valls, Gustavo, and Lorenzo Bruzzone. 2005. "Kernel-based methods for

hyperspectral image classification." IEEE Transactions on Geoscience and

Remote Sensing.

Camps-Valls, Gustavo, Devis Tuia, Lorenzo Bruzzone, and Jon Atli Benediktsson.

2014. "Advances in hyperspectral image classification: Earth monitoring with

statistical learning methods." IEEE Signal Processing Magazine.

Camps-Valls, Gustavo, Luiz Gomez-Chova, Jordi Muñoz-Marí, Joan Vila-Francés,

and Javier Calpe-Maravilla. 2006. "Composite kernels for hyperspectral image

classification." IEEE Geoscience and Remote Sensing Letters.

Candes, E J, and M B Wakin. 2008. "An Introduction to Compressive Sampling." IEEE

Signal Processing Magazine 25 (2): 21-30.

Candes, E. J., and T. Tao. 2005. "Decoding by Linear Programming." (IEEE Trans.

Inform. Theory,) 51 (12): 4203-4215.

Chang, Chein-I. 2012. "Progressive hyperspectral imaging." International Society for

Optics and Photonics. SPIE. 853907.

—. 1999. "Spectral information divergence for hyperspectral image analysis." In IEEE

1999 International Geoscience and Remote Sensing Symposium (Cat. No.

99CH36293). IEEE. 509-511.

 126

Chang, Chein-I, and Keng-Hao Liu. 2014. "Progressive band selection of spectral

unmixing for hyperspectral imagery." IEEE Transactions on Geoscience and

Remote Sensing 52 (4): 2002-2017.

Chang, Chein-I, Su Wang, Keng-Hao Liu, Mann-Li Chang, and Chinsu Lin. 2011.

"Progressive band dimensionality expansion and reduction via band

prioritization for hyperspectral imagery." IEEE Journal of Selected Topics in

Applied Earth Observations and Remote Sensing 4 (3): 591-614.

Chang, Chein-I, Yao Li, Marissa C Hobbs, Robert Schultz, and Wei-Min Liu. 2015.

"Progressive band processing of anomaly detection in hyperspectral imagery."

EEE Journal of Selected Topics in Applied Earth Observations and Remote

Sensing 8 (7): 3558-3571.

Chen, Chen, Wei Li, Hongjun Su, and Kui Liu. 2014. "Spectral-spatial classification

of hyperspectral image based on kernel extreme learning machine." Remote

Sensing 6 (6): 5795-5814.

Chen, S. S., D. L. Donoho, and M. A. Saunders. 2001. "Atomic Decomposition by

Basis Pursuit." SIAM Review 43 (1): 129-159.

Chen, Y, M Nasrabadi, and T D Tran. 2011. "Hyperspectral image classification using

dictionary-bases sparse representation." IEEE Transactions on Geoscience and

Remote Sensing (IEEE) 49 (10): 3973-3985.

Chen, Y, M Nasrabadi, and T D Tran. 2013. "Hyperspectral image classification via

kernel sparse representation." IEEE Transactions on Geoscience and Remote

Sensing 51 (1): 217-231.

 127

Chen, Yushi, Xing Zhao, and Xiuping Jia. 2015. "Spectral–spatial classification of

hyperspectral data based on deep belief network." IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing 8 (6): 2381-2392.

Chen, Yushi, Zhouhan Lin, Zing Zhao, Gang Wang, and Yanfeng Gu. 2014. "Deep

learning-based classification of hyperspectral data." EEE Journal of Selected

topics in applied earth observations and remote sensing 7 (6): 2094-2107.

Cortes, Corinna, and Vladimir Vapnik. 1995. "Support-Vector Machines." Machine

Learning 20: 273-297.

Davenport, M A, M F Duarte, M B Wakin, J N Laska, D Takhar, K F Kelly, and R G

Baraniuk. 2007. "The smashed filter for compressive classification and target

recognition." Computational Imaging V (SPIE) 6498: 64980H.

De Carvalho, O. Abilio, and Paulo Roberto Meneses. 2000. "Spectral correlation

mapper (SCM): an improvement on the spectral angle mapper (SAM)." In

Summaries of the 9th JPL Airborne Earth Science Workshop 00-18. Pasadena:

JPL Publication.

Du, Q, J M Bioucas-Dias, and A Plaza. 2012. "Hyperspectral band selection using a

collaborative sparse model." Geoscience and Remote Sensing Symposium

(IGARSS). IEEE. 3054-3057.

Duarte, Marco F, Mark A Davenport, Dharmpal Takhar, Jason N Lask, Ting Sun,

Kevin F Kelly, and Richard G Baraniuk. 2008. "Single-pixel imaging via

compressive sampling." IEEE signal processing magazine (IEEE) 25 (2): 83-

91.

 128

Fauvel, Mathieu, Jon Atli Benediktsson, Jocelyn Chanussot, and Johannes R

Sveinsson. 2008. "Spectral and spatial classification of hyperspectral data using

SVMs and morphological profiles." IEEE Transactions on Geoscience and

Remote Sensing.

Fauvel, Mathieu, Yuliya Tarabalka, Jon Atli Benediktsson, Jocelyn Chanussot, and

James C Tilton. 2013. "Advances in spectral-spatial classification of

hyperspectral images." Proceedings of the IEEE.

Fornasier, M., and S. Peter. n.d. "An Overview on Algorithms for Sparse Recovery."

(Sparse Reconstruction and Compressive Sensing in Remote Sensing).

Green, Robert O, Micheal L Eastwood, Charles M Sarture, Thomas G Chrien, Mikael

Aronsson, Bruce J Chippendale, Jessica A Faust, et al. 1998. "Imaging

Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer

(AVIRIS)." Remote sensing of environment 65 (3): 227-248.

Haar, Alfred. 1910. "Zur Theorie der orthogonalen Funktionensysteme."

Mathematische Annalen 69 (3): 331-371.

Hadoon, David R, Sandor Szedmak, and John Shawe-Taylor. 2004. "Canonical

correlation analysis: An overview with application to learning methods."

Neural computation 16 (12): 2639-2664.

Hagen, Nathan A, and Michael W Kudenov. 2013. "Review of snapshot spectral

imaging technologies." Optical Engineering 52 (9): 090901.

Hahm, J, S Rosenkranz, and A M Zoubir. 2014. "Adaptive compressed classification

for hyperspectral imagery." Acoustics, Speed and Signal Processing (ICASSP)

1020-1024.

 129

Holzwarth, S, A Muller, M Habermayer, R Richter, A Hausold, S Thiemann, and P

Strobl. 2003. "HySens-DAIS 7915/ROSIS imaging spectrometers at DLR." In

Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy. 3-14.

Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. 2006. "Extreme learning

machine: theory and applications." Neurocomputing 70 (1-3): 489-501.

Jaccard, Paul. 1901. "Étude comparative de la distribution florale dans une portion des

Alpes et des Jura." Bulletin de la Société Vaudoise des Sciences Naturelles 37:

547–579.

Jordache, M, J M Bioucas-Dias, and A Plaza. 2011. "Sparse unmixing of hyperspectral

data." IEEE Transactions on Geoscience and Remote Sensing 49 (6): 2014-

2039.

Kang, Xudong, Shutao Li, and Jon Atli Benediktsson. 2014. "Spectral-spatial

hyperspectral image classification with edge-preserving filtering." IEEE

Transactions on Geoscience and Remote Sensing.

Krizhevsky, Alex, IIya Sutskever, and Geoffrey E Hinton. 2012. "Imagenet

classification with deep convolutional neural networks." In Advances in neural

information processing systems 1097-1105.

Kruse, Fred A., A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J.

Barloon, and A. F. Goetz. 1993. "The spectral image processing system

(SIPS)—interactive visualization and analysis of imaging spectrometer data."

Remote sensing of environment 44 (2-3): 145-163.

Lavielle, Marc. 2005. "Using penalized contrasts for the change-point problem." Signal

processing 85 (8): 1501-1510.

 130

Li, C, L Ma, Q Wang, Y Zhou, and N Wang. 2013. "Construction of Sparse Basis By

Dictionary Training for Compressive Sensing Hyperspectral Imaging." IEEE

International Geosicence and Remote Sensing Symposium (IGARSS). 1442-

1445.

Li, Tong, Junping Zhang, and Ye Zhang. 2014. "Classification of hyperspectral image

based on deep belief networks." IEEE Image Processing (ICIP).

Lv, Qi, Xin Niu, Yong Dou, Jiaqing Xu, and Yuanwu Lei. 2016. "Classification of

hyperspectral remote sensing image using hierarchical local-receptive-field-

based extreme learning machine." IEEE Geoscience and Remote Sensing

Letters 13 (3): 434-438.

Rogers, David J, and Taffee T Tanimoto. 1960. "A Computer Program for Classifying

Plants." Science 132 (3434): 1115-1118.

Samat, Alim, Peijun Du, Sicong Liu, Jun Li, and Liang Cheng. 2014. "E2LMs:

Ensemble Extreme Learning Machines for Hyperspectral Image

Classification." Journal of Selected Topics in Applied Earth Observations and

Remote Sensing (IEEE) 7 (4): 1060-1069.

Schölkopf, Bernhard, Ralf Herbrich, and Alex J Smola. 2001. "A generalized

representer theorem." International Conference on Computational Learning

Theory. Berlin.

Scholkopf, N, and A.J. Smola. 2002. Learning with Kernels, Support Vector Learning.

Cambridge, MA: MIT Press.

Schultz, Robert C, Marissa Hobbs, and Chein-I Chang. 2014. "Progressive band

processing of simplex growing algorithm for finding endmembers in

 131

hyperspectral imagery." Satellite Data Compression, Communications, and

Processing X. International Society for Optics and Photonics. 91240L.

Shannon, Claude E. 1949. "Communication in the presence of noise." Proceedings of

the Institute of Radio Engineers. 37 (1): 10-21.

Tang, Jiliang, Salem Alelyani, and Huan Liu. 2014. "Feature Selection for

Classification: A Review." Data Classifications: Algorithms and Applications

37.

Tropp, J. A., and A. C. Gilbert. 2007. "Signal Recovery from Random Measurements

Via Orthogonal Matching Pursuit." IEEE Transactions on Information Theory

53 (12): 4655-4666.

Tuia, D, R Flamary, and N Courty. 2015. "Multiclass feature learning for hyperspectral

image classification: Sparse and hiearchical solutions." ISPRS Journal of

Photogrammetry and Remote Sensing (105): 272-285.

n.d. Universidad del Pais Vasco Grupo de Inteligencia Computacional. Accessed June

2018.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing

_Scenes#Salinas.

Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

2008. "Extracting and composing robust features with denoising autoencoders."

n Proceedings of the 25th international conference on Machine learning. ACM.

1096-1103.

Wang, Yulei, Robert Schultz, Shih-Yu Chen, Chunhong Liu, and Chein-I Chang. 2013.

"Progressive constrained energy minimization for subpixel detection."

 132

Algorithms and Technologies for Multispectral, Hyperspectral, and

Ultraspectral Imagery XIX. International Society for Optics and Photonics.

874321.

Wold, Savante, Kim Esbensen, and Paul Geladi. 1987. "Principal Component

Analysis." Chemometrics and Intelligent Laboratory Systems 2 (1-3): 37-52.

Zhong, P, and R Wang. 2008. "Learning sparse CRFs for feature selection and

classification of hyperspectral imagery." IEEE Transactions on Geoscience and

Remote Sensing (IEEE) 46 (12): 4186-4197.

Zhou, Yicong, Jiangtao Peng, and Chen Chen. 2015. "Extreme learning machine with

composite kernels for hyperspectral image classification." Journal of Selected

Topics in Applied Earth Observations and Remote Sensing (IEEE) 8 (6): 2351-

2360.

