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Abstract. We study a method based on Balancing Domain Decomposition by Constraints
(BDDC) for numerical solution of a single-phase flow in heterogeneous porous media. The
method solves for both flux and pressure variables. The fluxes are resolved in three steps:
the coarse solve is followed by subdomain solves and last we look for a divergence-free
flux correction and pressures using conjugate gradients with the BDDC preconditioner.
Our main contribution is an application of the adaptive algorithm for selection of flux
constraints. Performance of the method is illustrated on the benchmark problem from the
10th SPE Comparative Solution Project (SPE 10). Numerical experiments in both 2D and
3D demonstrate that the first two steps of the method exhibit some numerical upscaling
properties, and the adaptive preconditioner in the last step allows a significant decrease in
the number of iterations of conjugate gradients at a small additional cost.
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1. Introduction

The Balancing Domain Decomposition by Constraints (BDDC), proposed inde-

pendently by Cros [7], Dohrmann [9], and Fragakis and Papadrakakis [16], is one

of the most popular methods of iterative substructuring. The method was devel-

oped as a preconditioner for the solution of systems of linear equations obtained

by finite element discretizations of elliptic problems, and it was originally derived

as a primal counterpart of the Finite Element Tearing and Interconnecting—Dual,

Primal (FETI-DP) method by Farhat et al. [14], [15]. Over the years the BDDC
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has been extended to other types of problems, for example to the nearly incompress-

ible elasticity by Dohrmann [10], the Stokes problem by Li and Widlund [27], or

advection-diffusion problems by Tu and Li [26], [47]. It is also relatively straight-

forward to extend the BDDC into multiple levels, as noted by Dohrmann [9]. The

three-level methods were developed in two and three dimensions by Tu [44], [45],

and Mandel et al. [30] extended the algorithm into a multilevel method within a

more general multispace BDDC setting. Another class of problems, important in the

context of this paper, is the flow in porous media based on mixed and mixed-hybrid

finite element discretizations. Probably the first domain decomposition methods of

this class were proposed by Glowinski and Wheeler [17]. Their Method II was pre-

conditioned using BDD by Cowsar et al. [6], using BDDC by Tu [43], and Šístek

et al. [37] extended this methodology to the flow in porous media with combined

mesh dimensions. This approach is regarded as hybrid, because the method iter-

ates on a system of dual variables (as Lagrange multipliers) enforcing the continuity

of flux variables across the substructure interfaces. An alternative strategy, retain-

ing the original primal variables was proposed by Tu [42], [46], who combined the

BDDC preconditioner with an earlier algorithmic framework developed by Ewing

and Wang [13], cf. also Mathew [32], which allows to solve the saddle-point problem

obtained frommixed finite element discretization by conjugate gradients. The Nested

BDDC by Sousedík [38] provided a multilevel extension by applying the framework

from [42] recursively. Most recently, Zampini and Tu [50] presented another approach

to multilevel BDDC including an adaptive coarse space construction, which relies on

a special, so-called, deluxe scaling.

There are two main ingredients of a BDDC method: a coarse space, which is

defined by constraints on the values of degrees of freedom, and a scaling (averaging)

operator, which provides a mapping between the solution space and the space in

which the solves in the preconditioner are performed. The algorithm for adaptive

selection of constraints for both methods, the BDDC and FETI-DP, was originally

proposed by Mandel and Sousedík [29]. The algorithm was later generalized in a joint

work with Šístek [31] into three spatial dimensions and implemented for the BDDC

using an approach inspired by a partial subassembly and a change of variables by Li

and Widlund [28]. Finally, we also reformulated the algorithm to treat the coarse

space explicitly [39]. We note that there are many other approaches to the adaptive

construction of the coarse spaces in BDDC, see [35] and the references therein, as

well as for BDD, see e.g. [40] and FETI-DP, see e.g. [21]. There have been several

scalings studied in the literature. In the multiplicity scaling, the weights are chosen

proportionally to the number of subdomains sharing a given degree of freedom, and

it is regarded as not robust for coefficient jumps. The ̺-scaling leads to robustness,

but it relies on the knowledge of the problem coefficients [23]. The stiffness scaling is
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based on the diagonal of the stiffness matrix, but in some cases with irregular meshes

it may lead to high condition numbers [34], [36]. All these scalings involve diagonal

matrices. Finally, the deluxe scaling introduced in [11] uses dense matrices, which

are computed from inverses of localized Schur complements. It has been observed to

be quite robust [33], [50] but also computationally intensive.

In this paper, we build on the primal strategy. The starting point is the two-

level algorithm from [38], which we combine with adaptive selection of constraints

following [39] and apply it to the flow in heterogeneous porous media. To this

end, we use a reservoir from the 10th SPE Comparative Solution Project (SPE 10),

cf. e.g. [1], [5] as the benchmark problem. The BDDC method from [38] solves for

both the flux and pressure variables. The fluxes are resolved in three steps: the

coarse solve is followed by mutually independent subdomain solves, and last we look

for a divergence-free flux correction and pressure using conjugate gradients (CG)

with the BDDC preconditioner. The coarse solve in the first step is exactly the same

as the coarse solve used in the BDDC preconditioner in the step three. It is assumed

that the initial constraints preserve the iterates in a balanced subspace, in which the

preconditioned operator is positive definite. Our goal here is to adapt the method

to the flow in realistic reservoirs, characterized by highly heterogeneous permeability

coefficients in as simple way as possible. In particular, we translate the ideas used for

elliptic problems in [39] to mixed formulations of the flow in porous media discretized

by the lowest-order Raviart-Thomas finite elements (RT0). The main component of

the extension is the use of additional adaptive flux coarse basis functions. The

starting point is the condition number bound formulated as a generalized eigenvalue

problem, which is replaced by a number of local eigenvalue problems formulated for

pairs of adjacent subdomains, and the eigenvectors, corresponding to the eigenvalues

larger than a target condition number are used to construct the additional flux coarse

basis functions. We note that from this perspective our method can be viewed as

a way of numerical upscaling via the coarse basis functions known from the BDDC.

Unlike [50] we do not use a change of basis and partial assembly of operators, and we

also illustrate that for this problem the multiplicity scaling in combination with

the adaptive algorithm and a simple diagonal rescaling of the pressure block in

the setup of the problem is sufficient to construct a robust algorithm. Numerical

experiments in both 2D and 3D demonstrate that the first two steps of the method

exhibit some numerical upscaling properties, and the convergence rate of conjugate

gradients in the last step can be estimated a priori in the setup of the adaptive

algorithm.

The paper is organized as follows. In Section 2 we introduce the model problem,

in Section 3 we recall the BDDC method and the preconditioner, in Section 4 we

formulate the algorithm for adaptive selection of the flux constraints, in Section 5 we
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discuss some details of implementation, in Section 6 we present results of numerical

experiments, and finallly in Section 7 we summarize and conclude our work.

For convenience, we identify finite element functions with the vectors of their

coefficients in the corresponding finite element basis. These coefficients are also

called variables or degrees of freedom. At a few places we will also identify linear

operators with their matrices, in bases that will be clear from the context. For

a symmetric positive definite bilinear form a, we will denote the energy norm by

‖u‖a =
√
a(u, u).

2. Model problem

Let Ω be a bounded domain in R
n, where n = 2 or 3. We would like to find the

solution of the following mixed problem, which combines Darcy’s law relating flux u

and pressure p, and the equation of continuity,

k−1
u+∇p = 0 in Ω,(2.1)

∇ · u = fΩ in Ω,(2.2)

p = pN on ∂ΓN ,(2.3)

u · n = gE on ∂ΓE ,(2.4)

where ∂Ω = ΓE ∪ ΓN , and n denotes the unit outward normal of Ω. The coefficient

k = kp/µ, where kp is the permeability of the porous medium and µ is the viscosity of

the fluid. For simplicity, we will set µ = 1 and so k = kp. Without loss of generality

we will also assume that ΓN = ∅, which requires the compatibility condition

(2.5) −

∫

Ω

fΩ dx+

∫

∂Ω

gE ds = 0,

and the pressure p will be uniquely determined up to an additive constant. We will

further assume that gE = 0. These assumptions motivate the definition of a space

H0(Ω; div) = {v ∈ L2(Ω); ∇ · v ∈ L2(Ω) and v · n = 0 on ∂Ω},

equipped with the norm

‖v‖2
H0(Ω;div) = ‖v‖2L2(Ω) +H2

Ω‖∇ · v‖2L2(Ω),

where HΩ is the characteristic size of Ω, and the definition of a space

L2
0(Ω) =

{
q : q ∈ L2(Ω) and

∫

Ω

q dx = 0

}
.
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The weak form of the problem we wish to solve, is

∫

Ω

k−1
u · v dx−

∫

Ω

p(∇ · v) dx = 0 ∀v ∈ H0(Ω; div),(2.6)

−

∫

Ω

(∇ · u)q dx = −

∫

Ω

fΩq dx ∀ q ∈ L2
0(Ω).(2.7)

We refer, e.g., to the monographs [4], [41] for additional details and discussion.

Next, let U be the lowest-order Raviart-Thomas (RT0) finite element space with

a zero normal component on ∂Ω and let Q be a space of piecewise constant finite

element basis functions with zero mean on Ω. These two spaces, defined on the

triangulation Th of Ω, where h denotes the mesh size, are finite dimensional subspaces

of H0(Ω; div) and L2
0(Ω), respectively, and they satisfy a uniform inf-sup condition,

see [4]. Let us define the bilinear forms and the right-hand side by

a(u, v) =

∫

Ω

k−1
u · v dx,(2.8)

b(u, q) = −

∫

Ω

(∇ · u)q dx,(2.9)

〈f, q〉 = −

∫

Ω

fΩq dx.(2.10)

In the mixed finite element approximation of problem (2.6)–(2.7), we would like

to find a pair of fluxes and pressures (u, p) ∈ (U,Q) such that

a(u, v) + b(v, p) = 0 ∀ v ∈ U,(2.11)

b(u, q) = 〈f, q〉 ∀ q ∈ Q.(2.12)

We note that Q is a finite-dimensional subspace of L2
0(Ω) and therefore the unique

solvability of the mixed problem (2.11)–(2.12) is guaranteed.

In the next section, we will describe the components of the two-level Nested BDDC,

which allows an efficient iterative solution of problem (2.11)–(2.12).

3. The BDDC method

Let us consider a decomposition of Ω into a set of nonoverlapping subdomains Ωi,

i = 1, . . . , N, also called substructures, forming a quasi-uniform triangulation of Ω

and denote the characteristic subdomain size by H . Each substructure is a union of

finite elements with a matching discretization across the substructure interfaces. Let

Γi = ∂Ωi \∂Ω be the set of boundary degrees of freedom of a substructure Ωi shared
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with another substructure Ωj , j 6= i, and define the interface by Γ =
N⋃
i=1

Γi. Let us

define a face as an intersection Γij = Γi ∩ Γj, i 6= j and let us denote by F the set

of all faces between substructures. Note that with respect to the RT0 discretization

we define only faces, but no corners (nor edges in 3D) known from other types of

substructuring.

We will solve problems similar to (2.11)–(2.12) on each substructure. As we have

noted, such problems determine the pressure uniquely up to a constant, so we con-

sider the decomposition of the pressure space

(3.1) Q = Q0 ⊕QI , QI = Q1 × . . .×QN ,

where Q0 consists of functions that are constant in each subdomain and have zero

average over the whole domain Ω, and the product space QI consists of functions

that have zero weighted average over one subdomain at a time. That is,

(3.2)

∫

Ω

q0 dx = 0 ∀ q0 ∈ Q0 and

∫

Ωi

qi dx = 0 ∀ qi ∈ Qi, i = 1, . . . , N.

Next, let W i be the space of flux finite element functions on a substructure Ωi

such that all of their degrees of freedom on ∂Ωi ∩ ∂Ω are zero, and let

W = W 1 × . . .×WN .

Hence U ⊂ W can be viewed as the subspace of flux functions from W such that

u · n is continuous across substructure interfaces. Define UI ⊂ U as the subspace of

flux functions such that u · n is zero on the interface Γ, i.e., the space of “interior”

flux functions, and let us also define a mapping P : w ∈ W 7−→ uI ∈ UI such that

a(uI , vI) + b(vI , pI) = a(w, vI ) ∀ vI ∈ UI ,

b(uI , qI) = b(w, qI) ∀ qI ∈ QI .

Functions from (I − P )W will be called Stokes harmonic, cf. [41], Section 9.4.2.

Let Ŵ be the space of Stokes harmonic functions that are continuous across sub-

structure interfaces, and such that

(3.3) U = Ŵ ⊕ UI , Ŵ ⊥a UI .

We note that from the divergence theorem, for all uI ∈ UI and q0 ∈ Q0, we obtain

b(uI , q0) = −

∫

Ω

(∇ · uI)q0 dx = 0.
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The BDDC is a two-level method characterized by a selection of certain coarse

degrees of freedom. In the present setting these will be flux averages over faces shared

by a pair of substructures at a time and pressure averages over each substructure.

Let us denote by W̃ ⊂ (I − P )W the subspace of Stokes harmonic functions such

that their flux coarse degrees of freedom on adjacent substructures coincide; for this

reason we will use the terms coarse degrees freedom and constraints interchangeably.

Specifically, we define a zero-net flux constraint for a face Γij as

(3.4)

∫

Γij

(wi − wj) · ni ds = 0, wi ∈ W i, wj ∈ W j ,

where ni denotes the unit outward normal of Ωi.

Assumption 3.1. Initial flux constraints (3.4) are prescribed over all faces.

This set of initial constraints will be enriched by the adaptive method described

in Section 4. Now, let us define W̃Π ⊂ W̃ as the subspace of functions with values

given by the flux coarse degrees of freedom between adjacent substructures, and such

that they are Stokes harmonic, and let us also define W̃∆ ⊂ W̃ as the subspace of

all functions such that their flux coarse degrees of freedom vanish. The functions in

W̃Π are uniquely determined by the values of their coarse degrees of freedom, and

(3.5) W̃ = W̃∆ ⊕ W̃Π.

The next ingredient is the projection E : W̃ → Ŵ defined by taking a weighted

average of the corresponding degrees of freedom on substructure interfaces, cf. Re-

mark 3.3.

In implementation, we define W̃ using a matrix CU , which is a block diagonal with

blocks Ci
U , i = 1, . . . , N , and is constructed exactly as matrix C in [29], Section 2.3,

(3.6) W̃ = {w ∈ (I − P )W : CU (I − E)w = 0}.

The values CUv will be called local flux coarse degrees of freedom, and the space W̃

consists of all functions such that their flux coarse degrees of freedom on adjacent

substructures have zero jumps. The decomposition of the space QI given by (3.1)

can be also managed by constraints. We remark that this is somewhat non-standard

practice in substructuring, because the constraints are commonly related only to the

degrees of freedom at the interfaces. So, we define a space Qi, for i = 1, . . . , N , as

(3.7) Qi = {(q ∈ Q)|Ωi : Ci
Qq = 0},

where the matrices Ci
Q are selected so that (3.2) is satisfied. In implementation, C

i
Q

is a row vector with entries given by volumes of finite elements in subdomain i. Now

we have all ingredients to recall the two-level BDDC method [38], Algorithm 2.
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A l g o r i t hm 3.2 (BDDC method). Find the solution (u, p) ∈ (U,Q) of problem

(2.11)–(2.12) by computing:

1. the coarse component u0 ∈ Ŵ : solving (w̃0, p0) ∈ (W̃Π, Q0) from

a(w̃0, ṽΠ) + b(ṽΠ, p0) = 0 ∀ ṽΠ ∈ W̃Π,(3.8)

b(w̃0, q0) = 〈f, q0〉 ∀ q0 ∈ Q0,(3.9)

dropping p0, and applying the projection

u0 = Ew̃0;

2. the substructure components (uI , pI) ∈ (UI , QI) from

a(uI , vI) + b(vI , pI) = −a(u0, vI) ∀ vI ∈ UI ,

b(uI , qI) = 〈f, qI〉 − b(u0, qI) ∀ qI ∈ QI ,

dropping pI , and adding the solutions as

(3.10) u∗ = u0 + uI ;

3. the correction and the pressure (ucorr, p) ∈ (U,Q) from

a(ucorr, v) + b(v, p) = −a(u∗, v) ∀ v ∈ U,(3.11)

b(ucorr, q) = 0 ∀ q ∈ Q.(3.12)

Specifically, use the CG method with the BDDC preconditioner defined in Algo-

rithm 3.4, using the same setup of the coarse problem as in (3.8)–(3.9).

Finally, the flux variables are obtained as

u = u∗ + ucorr.

R em a r k 3.3. The difference between problems (2.11)–(2.12) and (3.11)–(3.12)

is that the latter problem has a vanishing second component, and therefore the

correction ucorr is divergence-free by (3.12). Also, we note that the initial flux con-

straints constructed according to (3.4) do not allow scaling weights in the scaling

operator E to vary along the interface in order for u∗ to satisfy

b(u∗, q) = 〈f, q〉 ∀ q ∈ Q.

Therefore, in our numerical experiments, we use the multiplicity scaling unless the

coefficient jumps are aligned with subdomain interfaces, see also [38], Remark 2.
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The application of the BDDC preconditioner for the computation of ucorr using

two- or three-level method was studied by Tu [42], [46]. In [38], we applied Algo-

rithm 3.2 recursively. Here, we will introduce a specific construction of the space

W̃Π but before doing so, let us discuss Step 3 of Algorithm 3.2 in more detail.

The first step in substructuring is typically the reduction of the problem to inter-

faces. In particular, problem (3.11)–(3.12) is reduced to finding (ŵ, p0) ∈ (Ŵ ,Q0)

such that

a(ŵ, v̂) + b(v̂, p0) = 〈f∗, v̂〉 ∀ v̂ ∈ Ŵ ,(3.13)

b(û, q0) = 0 ∀ q0 ∈ Q0,(3.14)

where f∗ ∈ Ŵ ′ is the reduced right-hand side. In implementation, the interiors are

eliminated by the static condensation, problem (3.13)–(3.14) is solved iteratively,

and the interiors (uI , pI) ∈ (UI , QI) are recovered in the post-correction. The key

observation is, cf. [41], Section 9.4.2, that if we define a balanced subspace

ŴB = {ŵ ∈ Ŵ : b(ŵ, q0) = 0 ∀ q0 ∈ Q0},

problem (3.13)–(3.14) becomes equivalent to the positive definite problem

û ∈ ŴB : a(û, v̂) = 〈f∗, v〉 ∀ v̂ ∈ ŴB .

This observation justifies the use of the CG method preconditioned by the BDDC

provided that the initial guess is balanced, e.g., zero, and the outputs of the precon-

ditioner are also balanced. It also implies that the iterates are effectively performed

with the flux unknowns, and the pressure components p0 are resolved in the coarse

correction of the preconditioner. The precise formulation of the two-level BDDC

preconditioner for saddle-point problems follows. It is the reduced variant of [38],

Algorithm 3.

A l g o r i t hm 3.4 (BDDC preconditioner). Define the preconditioner (rB , 0) ∈

(Ŵ ′, Q′

0) 7−→ (ŵ, p0) ∈ (Ŵ ,Q0) by computing:

1. the coarse correction (wΠ, p0) ∈ (W̃Π, Q0) from

a(wΠ, zΠ) + b(zΠ, p0) = 〈rB, EzΠ〉 ∀ zΠ ∈ W̃Π,(3.15)

b(wΠ, q0) = 0 ∀ q0 ∈ Q0;(3.16)

2. the substructure correction w∆ ∈ W̃∆ from

a(w∆, z∆) + b(z∆, pI∆) = 〈rB , Ez∆〉 ∀ z∆ ∈ W̃∆,

b(w∆, qI) = 0 ∀ qI ∈ QI ;
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3. the sum and average of the two corrections

(3.17) ŵ = E(wΠ + w∆).

In order to state the condition number bound, we also need to introduce a larger

space of balanced functions W̃B such that ŴB ⊂ W̃B defined as

W̃B = {w ∈ W̃ : b(v, q0) = 0 ∀ q0 ∈ Q0}.

The space W̃Π is also balanced, i.e., W̃Π ⊂ W̃B by (3.16). Then also the output of

the preconditioner (3.17) satisfies ŵ ∈ ŴB, and we refer to [38], Lemma 3 for the

proof.

Finally, we formulate the condition number bound. If we note that E is a projec-

tion, it is the same as [38], Theorem 4 or [42], Theorem 6.1, cf. also [29], Theorem 3.

Theorem 3.5. The condition number κ of the BDDC preconditioner from Algo-

rithm 3.4 satisfies

(3.18) κ 6 ω = max
{

sup
w∈W̃B

‖(I − E)w‖2a
‖w‖2a

, 1
}
6 C

(
1 + log

H

h

)2
.

The bound ω in (3.18) inspires the adaptive selection of the flux constraints.

4. Adaptive selection of the flux constraints

The basic idea is the same as in our previous work on adaptive BDDC for elliptic

problems [29], [31], [39]. The bound ω in (3.18) is equal to the maximal eigenvalue

λmax of the generalized eigenvalue problem

(4.1) w ∈ W̃B : a((I − E)w, (I − E)z) = λa(w, z) ∀ z ∈ W̃B .

From the Courant-Fisher-Weyl minimax principle, cf. e.g. [8], Theorem 5.2, the

bound ω can be decreased by adding constraints in the definition of the space W̃B:

Lemma 4.1 ([31], [39]). The generalized eigenvalue problem (4.1) has eigenvalues

λ1 > λ2 > . . . λn > 0. Denote the corresponding eigenvectors by wl. Then, for any

k = 1, . . . , n− 1, and any linear functionals Ll, l = 1, . . . , k,

max
{‖(I − E)w‖2a

‖w‖2a
: w ∈ W̃B , Ll(w) = 0 ∀ l = 1, . . . , k

}
> λk+1,

with equality if

Ll(w) = a((I − E)wl, (I − E)w).
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Because solving the global eigenvalue problem (4.1) is computationally expensive,

we replace it by a collection of much smaller problems defined for all pairs of adjacent

substructures, where a pair of substructures is adjacent if they share a face. All

quantities associated with a pair of adjacent substructures Ωi and Ωj will be denoted

by a double superscript ij . In particular, we define W ij = W i ×W j , and the local

space W̃ ij of Stokes harmonic functions that satisfy the initial constraints at the face

Γij by

(4.2) W̃ ij
B = {w ∈ (I − P ij)W ij : Cij

U (I − Eij)w = 0}.

We note that the space W̃ ij
B is balanced, which is an implication of Assumption 3.1.

In these settings (4.1) becomes a local problem to find w ∈ W̃ ij
B such that

(4.3) aij((I − Eij)w, (I − Eij)z) = λaij(w, z) ∀ z ∈ W̃ ij
B .

The bilinear form aij is associated on W̃ ij
B with the Schur complement S

ij defined

with respect to the interfaces Γi, Γj , and is positive-definite, cf. [42], Lemma 3.1.

Now we can proceed in the same way as in [39]. Let us denote by C the matrix

corresponding to Cij
U (I−Eij). The orthogonal projection onto the null C is given by

Π = I − CT (CCT )−1C,

and we implement the local generalized eigenvalue problems (4.3) as

(4.4) Π(I − Eij)TSij(I − Eij)Πw = λΠSijΠw,

which can be either solved using a dense eigenvalue solver [29] or eventually, since

null[ΠSijΠ] ⊂ null[Π(I − Eij)TSij(I − Eij)Π],

a subspace iterations such as the LOBPCG method [24], which runs effectively in

the factorspace, could be also used. From (4.4), we wish the constraints to satisfy

Ll(w) = wT
l Π(I − Eij)TSij(I − Eij)Πw = 0.

That is, we would add into the matrix Cij
U the rows

(4.5) cijl = wT
l Π(I − Eij)TSij(I − Eij)Π,

but because of [39], Proposition 1 each row can be split as cijl = [ cil −cil ] and either

half of cijl is used to augment the matrices C
i
U and C

j
U , see (5.3). We note that, due

to the discretization using RT0 elements, the added rows are readily available in the

form used in substructuring. The adaptive BDDC algorithm follows.
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A l g o r i t hm 4.2 (Adaptive BDDC). Find the smallest k for every two adjacent

substructures to guarantee that λk+1 6 τ , where τ is a given tolerance threshold

(the target condition number), and add the constraints (4.5) to the definition of W̃ .

After the adaptive constraints are added, we define the heuristic condition number

indicator as the largest eigenvalue ωij of all local eigenvalue problems (4.3), that is

(4.6) ω̃ = max{ωij : Ωi and Ωj are adjacent}.

R em a r k 4.3. It has been shown in [50], Theorem 4.3, see also [35], Theo-

rem 3.10 and [33], Theorem 3.3, that the condition number κ of the adaptive BDDC

operator satisfies

κ 6 ω̃N2
F ,

where NF is the maximum number of faces of any subdomain. We note that this

bound is pessimistic due to the factor N2
F , and in fact we observed κ ≈ ω̃ in all

experiments.

5. Implementation remarks

First, we describe the rescaling used to preserve numerical stability of the method

with highly heterogeneous permeability coefficients. The variational problem (2.11)–

(2.12) can be written in the matrix form as

(5.1)

[
A BT

B 0

] [
u

p

]
=

[
0

f

]
.

Assuming that the mesh size h ≈ 1, the entries in A are O(k−1) and the entries in B

are O(1). In particular, in the case of the SPE 10 data set we get k−1 ≈ 106 − 1012,

and we found that some of the subdomain matrices and the matrix of the coarse

problem may appear numerically singular. Due to the discontinuous approximation

of the pressure, B is a block-diagonal rectangular matrix. Each block corresponds to

a particular subdomain, and it can be rescaled, e.g., by an average of the diagonal

entries ofA corresponding to the degrees of the freedom in this subdomain. Collecting

this scaling coefficients in a diagonal matrix D, we replace (5.1) by

(5.2)

[
A BTD

DB 0

] [
u

p

]
=

[
0

Df

]
,

and the pressure is recovered at the end of computations as p = Dp.
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5.1. Coarse degrees of freedom. The selection of the flux coarse degrees of

freedom or, equivalently, flux constraints entails construction of the matrix CU in the

definition of the space W̃ by (3.6). Similarly, the selection of the pressure constraints,

which facilitate the decomposition (3.1), entails construction of the matrices Ci
Q,

i = 1, . . . , N , in the definition of the spaces Qi by (3.7). Following the standard

practice in substructuring, in implementation we work with global and local degrees

of freedom and the corresponding spaces, and vectors from these spaces are related by

a restriction operator (a zero-one matrix). Therefore, the matrix CU is constructed

as a block-diagonal matrix using blocks Ci
U that select local flux coarse degrees of

freedom from all degrees of freedom of substructure i, see [29], Section 2.3 for details.

In the mixed finite element settings, each local coarse degrees of the freedom selection

matrix is constructed simply by augmenting the matrix Ci
U by a row Ci

Q as

(5.3)

[
Ci

U

Ci
Q

]
, i = 1, . . . , N,

and the matrices Ci
U may be further augmented by the adaptive algorithm, see (4.5).

5.2. Solution of the local generalized eigenvalue problems. The choice of

an eigensolver for the eigenvalue problems (4.4) is a delicate one. In general, the

decision whether to use a dense or a sparse eigensolver depends on the type of the

eigenvalue problem, size of the substructures, dimension of the problem, availability

of a preconditioner for a sparse solver, and conditioning and numerical sensitivity of

the underlying problem. All these factors will clearly affect the overall computational

cost and performance of the method. We note that the formulation (4.4) allows to

use a matrix-free iterative method such as the LOBPCG [24] in the same way as for

elliptic problems, including that it can be further preconditioned by a local version of

the BDDC as suggested in [39], Section 5, see also [22]. However, we found that dense

eigenvalue solvers are more suitable for the SPE 10 dataset due to their robustness,

and we used Matlab function eig in the numerical experiments.

5.3. Computational cost. Clearly, the two most computationally expensive

parts of the method are the setup of the constraints by solving the set of the lo-

cal eigenvalue problems, and the factorization of the coarse problem. There are

many eigenvalue problems to be solved, but they are small and can be solved in

parallel—this feature is similar to the setup of multiscale finite element methods [12].

Assuming that these can be solved efficiently, the bottleneck in computations is the

factorization of the coarse problem. Specifically, it is crucial for the application of

the method to appropriately balance the effort in the preconditioner and the global

linear solver through a judicious choice of τ . This could be, for example, achieved as
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follows: one can partition the domain into subdomains balancing the sizes of subdo-

mains and assuming certain size of the coarse problem (and ideally also taking into

account the coefficient jumps and minimizing the size of interfaces), solve the set of

local eigenvalue problems, and based on the eigenvalues determine the number of

additional adaptive constraints (and hence the value of ω̃) which minimize the work

needed to factor the coarse problem and the work needed by preconditioned con-

jugate gradients, including the coarse problem back-substitutions, needed to reduce

the error to the desired accuracy based on the well-known error reduction formula

of conjugate gradients, see e.g. [18], Theorem 10.2.6.

6. Numerical experiments

We implemented the method inMatlab and studied its convergence for problems

with large variations in the permeability coefficients k. In all experiments we used

relative residual tolerance 10−6 as the convergence criterion for the conjugate gradi-

ents. First, we ran a test with jumps in k aligned with substructure interfaces, see

Figure 1. For this problem we used stiffness scaling, which is in case of the lowest-

order Raviart-Thomas (RT0) elements equivalent to the ̺-scaling. This also implies

that the stiffness scaling works well for irregular meshes (unlike for nodal elements).

The conjugate gradients with the BDDC preconditioner converged in 15 steps and

the approximate condition number computed from the Lánczos sequence in conju-

gate gradients was κ = 4.046; with k = 1 the method converged in 14 steps and

κ = 4.050, see the rightmost column in Table 2. In the remaining experiments, we

focused on problems with highly heterogeneous coefficients, and we used the multi-

plicity scaling. Specifically, we simulated the flow in a porous media given by Model 2

of the 10th SPE Comparative Solution Project [5], which is publicly available on the

Internet1 and, in particular, we used a Matlab dataset described in [1]. The di-

mensions of the full model are 1200 × 2200 × 170 (ft), and the distribution of the

coefficients k is given over a regular Cartesian grid with 60×220×85 grid-blocks. We

used several layers and two 3D cutouts of the model for our numerical experiments.

For the experiments in 2D, we used layers 1, 20, 60 and 85 shown in Figures 2–3.

In the top layers 1 and 20 the permeability is relatively smooth, whereas the bot-

tom layers 60 and 85 are fluvial and they are characterized by a spaghetti of narrow

high-flow channels. In all layers the permeabilities range over at least six orders of

magnitude. To drive a flow, we imposed an injection (source) and a production well

(sink) in the lower-left and upper-right corners, respectively. The discretization of

each layer by the quadrilateral RT0 finite elements yields 39 880 degrees of freedom.

1 http://www.sintef.no/Projectweb/GeoScale/Results/MsMFEM/SPE10/
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The layers were partitioned into subdomains in four ways: using two geometrically

regular partitionings with the coarsening ratios H/h = 30 and H/h = 10, and two

irregular partitionings. The details of the partitionings are summarized in Table 1
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Figure 1. Substructuring and the base 10 logarithm of the permeability k for the problem
with jumps aligned with the substructure interfaces (left panel) and the largest
300 eigenvalues of the BDDC preconditioned operator for this problem (right
panel).

type of partitioning N nΓ nf nc

2D
regular (H/h = 30) 14 580 19 33

regular (H/h = 10) 132 2360 236 368

irregular A 16 756 29 70

irregular B 64 1746 152 315

3D
regular (H/h = 10) 27 5400 54 81

irregular 32 7267 129 335

Table 1. Substructuring of the 2D and 3D problems: N is the number of subdomains, nΓ
is the number of (flux) degrees of freedom on interfaces, nf is the number of faces,
and nc is the number of (initial) coarse degrees of freedom.

and illustrated by Figures 2–3. For the experiments in 3D, we used two domains con-

sisting of 30× 30× 30 elements extracted from layers 1–30 and 56–85 of the SPE 10

problem shown in Figure 6. To drive a flow, we imposed an injection (source) and

a production well (sink) in two distant corners of the domain. The discretization
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by the hexahedral lowest-order Raviart-Thomas (RT0) finite elements yields 110 700

degrees of freedom. The domain was partitioned into subdomains in two ways: us-

ing one geometrically regular partitioning with the coarsening ratio H/h = 10, and

an irregular partitioning. The details of the partitionings are summarized in Ta-

ble 1 and illustrated by Figure 7. All irregular partitionings were obtained using

METIS 4.0 [20], and in order to test the adaptive algorithm we did not take into

account the permeability coefficients.

It is interesting to note that the adaptive flux coarse basis functions capture to

some extent the features of the solution on the finite element mesh, and the quality

of this approximation improves as the threshold τ in Algorithm 4.2 decreases. We

illustrate this fact by relative errors of solutions u0 and u∗ obtained in Steps 1 and 2

of Algorithm 3.2 with respect to the exact solution uexact obtained by a direct solve

of the full problem. Specifically, the two relative errors are reported in tables as

(6.1) ε0 =
‖u0 − uexact‖

‖uexact‖
, ε∗ =

‖u∗ − uexact‖

‖uexact‖
.

We also compare the adaptive method with constraints inspired by Multiscale

mixed finite element method (MsMFEM), cf. [12], Algorithm 2.5.2 or [2], Sec-

tion 3.2.1. In particular, instead of the local eigenvalue problems we solved local

Darcy’s flow problems, that is local counterparts of problem (2.1)–(2.2), with the

source term

f(x) =

{
wi for x ∈ Ωi,

−wj for x ∈ Ωj ,

and zero flux boundary condition on ∂Ωi ∩ ∂Ωj . The source distribution function is

set to wi(x) = 1/|Ωi| in all subdomains except those containing a well, in which

wi(x) = f(x)
/ ∫

Ωi

f(ξ) dξ,

to ensure a conservative approximation on the fine grid. In the numerical experi-

ments we then used the set of basic constraints (3.4) enriched by solving the above

problem and taking the values of flux degrees of freedom on ∂Ωi ∩ ∂Ωj as additional

constraints. Nevertheless, we note that there are other more advanced solvers based

on multiscale strategies available in the literature see, e.g. Yang et al. [49] or la

Cour Christensen et al. [25], and a thorough comparison of the methods would be of

independent interest.

The results of numerical experiments in 2D are summarized in Tables 2–4. Table 2

shows performance of the nonadaptive method for a homogeneous case with k = 1

and the layers of the SPE 10 problem. It can be seen that for layers 1 and 20 the
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Figure 2. Substructuring and the base 10 logarithm of the permeability k in layer 1 (left
panel) and layer 20 (right panel) of the SPE 10 problem. The left panel also
illustrates irregular partitioning A, and the right panel illustrates irregular par-
titioning B.
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Figure 3. Substructuring and the base 10 logarithm of the permeability k in layer 60 (left
panel) and layer 85 (right panel) of the SPE 10 problem. The left panel illustrates
irregular partitioning A, and the right panel illustrates irregular partitioning B.
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convergence does not significantly depend on the partitioning and it is also quite

comparable to the homogeneous case with k = 1. On the other hand, for layers 60

and 85 the variations in coefficients aggravate convergence, which is also quite sen-

sitive to the partitioning. This holds, in particular, for layer 60 which contains both

regions that are highly heterogeneous and relatively homogeneous. It can be also

seen by comparing the left and right columns in Table 2 that increasing the number

of subdomains (that is decreasing the coarsening ratio H/h) leads to higher condi-

tion numbers and an increase in iteration counts for both the regular and irregular

partitionings. This is not the case in the standard theory of domain decomposi-

tion methods, but here we suspect it can be attributed to the jumps in coefficients

and larger interfaces. The performance of the adaptive algorithm is illustrated by

Tables 3–4. Table 3 shows convergence for layer 1 with irregular partitioning A,

and Table 4 shows convergence for layer 85 with irregular partitioning B. It can be

seen that in all cases lower values of the threshold τ lead to fewer iterations, and

the value of the condition number indicator ω̃ < τ is in a good agreement with

κ, which is the approximate condition number estimate obtained from the Lánczos

sequence in conjugate gradients. The adaptive constraints also lead to more signifi-

cant improvement in convergence than the multiscale constraints. The problem for

layer 85 is particularly interesting. From the right panel in Figure 3 we see that

the coefficient jumps have very large variations even on the interfaces, which can be

seen in the left panel of Figure 4. The right panel displays the eigenvalues of the

corresponding eigenproblem: λ1 ≈ 3769.5 and all other eigenvalues are less than 20.

Figure 5 then displays 300 largest eigenvalues of the (global) BDDC preconditioned

Figure 4. The base 10 logarithm of the permeability k in the subdomains 1 and 2 from the
layer 85 of the SPE 10 problem (Fig. 3, right panel), and the first 12 eigenvalues
of the corresponding local generalized eigenvalue problem (4.3). Here λi = 0 for
i = 11 and 12.
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layer
H/h = 30 H/h = 10 irregular A irregular B

it κ it κ it κ it κ
(k = 1) 11 2.790 14 3.980 12 3.151 14 4.050

1 15 8.879 22 9.491 17 6.714 19 11.197

20 14 5.749 19 6.926 15 6.524 18 6.429

60 162 4564.1 513 26 359.3 244 11 272.6 292 7301.7

85 183 9310.7 446 24 492.8 208 7170.4 392 58 931.7

Table 2. Convergence of the non-adaptive method for the homogeneous case (k = 1)
and the six layers of the SPE 10 problem. Here ε0 and ε∗ are the errors (in %)
defined by (6.1), ω̃ is the condition number indicator from (4.6), it is the number
of iterations for relative residual tolerance 10−6, and κ is the approximate condition
number computed from the Lánczos sequence in conjugate gradients.

τ ε0 [%] ε∗ [%] ω̃ nc it κ
∞ 73.21 30.55 13.586 70 17 6.714

(ms) 72.55 27.15 -na- 121 15 5.998

10 71.86 29.11 8.404 73 16 6.231

5 70.77 18.89 4.765 81 13 5.517

3 69.19 11.64 2.997 104 11 2.842

2 69.23 9.42 1.970 153 8 1.915

Table 3. Convergence of the adaptive method for layer 1 of the SPE 10 problem with the
irregular partitioning A. Here τ is the target condition number from Algorithm 4.2,
ε0 and ε∗ are the errors (in %) defined by (6.1), ω̃ is the condition number indicator
from (4.6), it is the number of iterations for relative residual tolerance 10−6, and κ is
the approximate condition number computed from the Lánczos sequence in conjugate
gradients. With τ =∞ no adaptive constraints were used, and (ms) indicates use of
the multiscale constraints.

τ ε0 [%] ε∗ [%] ω̃ nc it κ
∞ 69.34 42.11 59 491.702 315 392 58 931.700

(ms) 68.76 39.00 -na- 494 297 8931.930

10 000 69.34 42.11 9275.614 316 347 9170.830

1000 68.03 40.29 898.754 360 152 836.227

100 67.21 38.38 98.117 430 54 95.439

10 66.16 35.68 9.885 489 19 9.672

5 63.07 31.85 4.888 536 13 4.836

3 56.19 18.87 2.988 614 10 3.010

2 53.44 14.87 1.997 743 7 1.879

Table 4. Convergence of the adaptive method for layer 85 with the irregular partitioning B.
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operator without adaptivity and with adaptive BDDC and target condition num-

ber τ = 100. We see that without adaptivity there is a single largest eigenvalue:

specifically λ1 = 59.492 and λ2 = 9.258. For the adaptive BDDC with τ = 100 we

get λ1 = 96.3. Comparing this plot with Table 4 we see that the adaptive BDDC

with τ = 100 introduces 115 adaptive constraints, which corresponds to the number

of the largest eigenvalues removed from the spectrum of the BDDC preconditioned

operator. We also note that adding a single adaptive constraint reduces the itera-

tion count from 392 to 347, which corresponds to the large gap in the spectrum of

the operator without adaptivity. Setting τ to a lower value, for example, τ = 3,

roughly doubles the number of constraints and the number of iterations is reduced

to approximately 10. Also, the lower value of τ improves the approximation quality

of the first two steps of Algorithm 3.2 and, for example, with τ < 3 we get the error

ε∗ < 20%.

0 50 100 150 200 250 300
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2
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4
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=
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Figure 5. The largest 300 eigenvalues of the BDDC preconditioned operator for the layer 85
of the SPE 10 problem (Fig. 3, right panel) without adaptivity (τ =∞) and for
the adaptive BDDC with the target condition number τ = 100.

The results of numerical experiments in 3D are summarized in Tables 5–7. It can

be seen from Table 5 that the numbers of iterations are significantly higher than

in 2D, and the convergence is slower for the fluvial bottom layers 56–85 comparing

with the relatively smooth top layers 1–30. The increase in iterations becomes even

more pronounced in the case of the irregular partitioning also due to larger interfaces.

The results of experiments with the adaptive algorithm are summarized in Tables 6–7.

As in the 2D case, lower values of the threshold τ lead in all cases to fewer iterations,
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layer
H/h = 10 irregular part.

it κ it κ
(k = 1) 25 17.099 35 22.029

1–30 779 49 075.600 1968 1.096× 106

56–85 3762 2.576× 106 5277 3.676× 106

Table 5. Convergence of the non-adaptive method for the homogeneous case (k = 1) and
the two 3D cutouts of the SPE 10 problem from Figure 6. The headings are the same
as in Table 2.

τ ε0 [%] ε∗ [%] ω̃ nc it κ
∞ 98.41 86.05 1.191× 106 335 1968 1.096× 106

(ms) 98.29 86.05 -na- 571 1943 1.079× 106

100 000 98.39 85.95 94 328.862 349 1280 92 307.000

10 000 98.14 84.27 9862.559 514 514 10 512.200

1000 97.41 82.73 995.230 989 175 1014.150

100 92.93 72.63 97.989 1331 60 108.673

10 87.47 66.66 9.993 1617 18 11.711

5 85.82 65.46 4.985 1898 13 6.069

3 82.90 63.22 2.997 2331 9 3.007

2 81.62 62.81 2.000 2997 6 1.930

Table 6. Convergence of the adaptive method for layers 1–30 of the SPE 10 with irregular
partitioning.

τ ε0 [%] ε∗ [%] ω̃ nc it κ
∞ 99.31 66.24 3.435× 106 81 3762 2.576× 106

(ms) 99.30 66.24 -na- 99 3735 2.566× 106

100 000 99.33 65.78 95 129.959 122 1267 93 040.500

10 000 98.63 62.19 9834.429 188 498 9487.840

1000 98.25 63.81 990.920 373 183 1200.070

100 97.26 64.08 99.793 766 59 124.896

10 91.79 49.39 9.965 1154 17 9.506

5 88.88 43.77 4.991 1342 13 5.545

3 86.52 41.75 2.997 1610 9 3.205

2 85.18 41.05 2.000 1960 6 1.918

Table 7. Convergence of the adaptive method for layers 56–85 of the SPE 10 with the
regular partitioning.
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Figure 6. Base 10 logarithm of the permeability k in x and y directions (left), and in z

direction (right) in two cutouts of the SPE 10 problem consisting of 30× 30× 30
elements.

and the values of τ , ω̃ and κ are in close agreement. Again, the multiscale constraints

provide only a slight improvement of convergence. Table 6 shows convergence for

layers 1–30. It can be seen that despite higher condition number of the problem

corresponding to the irregular partitioning, the adaptive algorithm allows to decrease

the iteration counts for lower values of τ . As in 2D, the first few adaptive constraints

allow to decrease the number of iterations by a fairly large amount: here adding 14

constraints reduces the number of iterations from the initial value 1968 to 1280.

However, for example with τ = 10 the number of iterations decreases to 18, while

the number of constraints grows rather significantly from 335 to 1617. Finally, the

values of ε0 and ε∗ are quite larger compared to the 2D experiments. Table 7
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shows convergence for layers 56–85 and the regular partitioning H/h = 10, and

the trends are quite similar to the previous case. That is, the adaptive algorithm

allows to control the convergence of conjugate gradients, but the number of adaptive

constraints is relatively high in particular for lower values of τ . These trends are in

agreement with the qualitative observations made from Figure 5.

Figure 7. Irregular partitioning of the domain from Figure 6 into 32 subdomains.

7. Conclusion

We studied a method for solution of the single-phase flow in heterogeneous porous

media. We have, in particular, shown that the idea of adaptive BDDC, previously

used for elliptic problems, can be also applied in the context of the BDDC method

for mixed finite element discretizations using the lowest-order Raviart-Thomas finite

elements, and that the adaptive method works well with the usual types of scaling

used in substructuring. We illustrated that the resulting algorithm can be success-

fully applied for adaptive selection of the coarse flux degrees of freedom using several

examples corresponding to the SPE 10 benchmark model. The effect of the adaptive

construction of the flux coarse basis functions is twofold. First, the first two steps

of the BDDC method provide some approximation properties with respect to the

exact solution of the full problem, in particular in 2D. Second, the coarse problem

provides a better preconditioner for conjugate gradients used in the third step. We

also compared the adaptive constraints with constraints inspired by multiscale mixed

finite element method, and we found that the adaptive constraints outperform the

multiscale constraints.

Next, we experimented with different partitioning of the domains into substruc-

tures. While the adaptive method is able to overcome these issues in many cases,
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it is evident that a suitable partitioning makes the adaptive method more efficient.

We note that the development of optimal partitioning strategies is an open problem,

cf. e.g. [3], [48]. However, our experiments indicate that if it is not possible to find

a suitable partitioning, the best strategy is to simply minimize the size of interfaces,

which may be achieved by a simple geometric partitioning, see also [19].
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