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ABSTRACT 

This study developed methods for the quantification of benthic autotroph 

coverage in the Upper Potomac using digital imagery captured with drone-mounted 

cameras. Submerged aquatic vegetation (SAV) is an integral part of freshwater 

ecosystems and the presence or absence and abundance of SAV can be used as a 

barometer for ecosystem health. Cyanobacteria blooms occur regularly in the Upper 

Potomac during summer months and may be releasing cyanotoxins into the water. Drone 

imagery offers an easy and inexpensive way of generating coverage estimate of SAV and 

cyanobacteria which can then be used to assess ecological conditions. This study was 

able to differentiate substrate and benthic autotrophs with imagery captured at low 

altitude with 3 and 5-band cameras. This study also offers suggestions for differentiating 

between SAV and cyanobacteria if equipment with finer spectral resolution is available. 
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INTRODUCTION 

Upper Potomac 

 The Potomac River stretches 650 km from its source in western Maryland to its 

terminus in the Chesapeake Bay and delineates the southern boundary of Maryland. This 

stretch of the river is divided into four sections: the North Branch Potomac runs from the 

Fairfax Stone to the confluence of the North and South Branches of the Potomac River, 

the Upper Potomac runs from the confluence to Harper’s Ferry, and the Middle Potomac 

runs from Harper’s Ferry to Great Falls. The final section of the Potomac is the tidal 

reach, named so because it is affected by the tides of the Chesapeake Bay, and runs from 

Great Falls to the Chesapeake Bay. A portion of the Upper Potomac near Brunswick, 

Maryland will be the focus of this study. 

The Upper Potomac Basin incorporates 1,600 km2 of West Virginia, Maryland, 

and Pennsylvania. Land use associated with the Upper Potomac basin is 69% forest, 22% 

agriculture, and 1% urban (MD DNR, 2016a). Sediment, nitrogen, and phosphorus loads 

in the Upper Potomac have been gradually reduced over the last three decades by a 

concerted effort between multiple states in the Chesapeake Bay watershed to improve the 

health of the Chesapeake Bay (MD DNR, 2016a). These efforts have reduced the 

sediment load that reaches the bay from 1,400 metric tons in 1985 to 1,100 tons in 2014, 

the nitrogen load from 31,750 metric tons in 1985 to 20,400 metric tons in 2014, and the 

phosphorus load from 2,700 metric tons in 1985 to 1,800 metric tons in 2014 (Moyer et 

al., 2017). The majority of these pollutants are the result of agriculture in the basin 

(Moyer et al., 2017). Although the health of the Upper Potomac has been improving in 

recent years, large amounts of nitrogen and phosphorus are still entering the Potomac and 

degrading the ecosystem (MD DNR, 2016a). 
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Submerged Aquatic Vegetation 

 Submerged aquatic vegetation (SAV) are vascular plants that grow beneath the 

surface of the water and serve as important ecosystem engineers in fluvial systems. SAV 

stabilize stream beds and slow water velocity, which increases sediment deposition and 

nutrient retention, and retains detritus (Carpenter et al., 1986). They increase invertebrate 

and vertebrate diversity by providing habitat and protection from predators (Flynn et al., 

2014). They are a food source for fish, birds, macroinvertebrates, and mammals; they 

also remove toxins and pollutants from the water (Anker et al., 2014). SAV biomass 

fluctuates constantly, and these fluctuations impact the chemical environment of fluvial 

systems. SAV oxygenate water and substrate, and act as nitrogen and phosphorus sinks 

when growing, but when senescing and dying they release large amounts of nitrogen and 

phosphorus into the water and their decay consumes large amounts of oxygen (Carpenter 

et al., 1986). 

 Many anthropogenic activities, such as agriculture, water diversion, and riparian 

zone destruction, can alter macrophyte composition (Anker et al., 2014). Increased 

nutrient availability from agricultural runoff and increased light availability from riparian 

zone destruction can lead to SAV overgrowth, which can block water flow and increase 

the likelihood of local flooding and eutrophication (Flynn et al., 2014). Eutrophication 

often shifts the species assemblage towards fast growing species which decreases species 

diversity and lowers ecosystem stability (Flynn et al., 2014). These authors suggest that 

SAV presence and composition can be used as an environmental health barometer which 

incorporates temperature, light availability, and nutrient load. According to J. Henesey of 

MD DNR, Heteranthera dubia and Vallisneria americana are the two dominant species 
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of SAV in the Potomac in the area near Brunswick and Point of Rocks (personal 

communication, 4/4/2017). 

 

Benthic Macroalgae 

 Benthic macroalgae are filamentous macroscopic algae that grow on hard 

substrate such as gravel or rocks, but they can also grow on SAV as epiphytes (Dean et 

al., 2015). These algae perform similar ecosystem services as SAV, such as oxygenating 

water and absorbing nutrients and pollutants, but they are more easily scoured 

downstream by strong water flow (Davie et al., 2012). These algae can also contribute to 

eutrophication if water nutrient levels are too high. Chara sp., Hydrodictyon sp., 

Cladophora sp., Spirogyra sp., and Rhizoclonium sp. are eukaryotic benthic macroalgae 

commonly found in the Potomac (Dean et al., 2015).  

 

Benthic Cyanobacteria 

Planktothrix isothrix and Microseira wollei (formerly classified as Lyngbya 

wollei) are filamentous cyanobacteria currently found co-occurring with SAV in the 

Potomac River (MD DNR, 2016b). It is likely that the presence of these cyanobacteria is 

governed by flow, temperature, and nutrient availability. P. isothrix generally blooms in 

June and July when the river flow slows and water temperature is between 21° and 27°C 

(MD DNR, 2016b). During these periods growth is likely limited by nutrient availability; 

nitrogen is abundant in the Potomac, but phosphorus is very low (MD DNR, 2016b). 

However, P. isothrix seems to thrive even when phosphorus is not abundant. It is possible 

that the benthic nature of both species allows them to obtain phosphorus from the 
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sediment as has been shown in another benthic cyanobacterium, Moorea producens 

(formerly Lyngbya majuscula) (Hanington et al., 2016). It is important to identify these 

cyanobacteria because it has been reported that some strains produce toxic secondary 

metabolites that benefit the cyanobacteria by discouraging foraging and combating 

infection and may contribute to the ability of these species to outcompete other algae in 

the Potomac (Kurmayer et al., 2016).  

Microcystin is one of the secondary metabolites produced by some P. isothrix. 

While P. isothrix produces a variety of toxins, microcystin is of particular concern 

because it is a hepatotoxin that can damage the liver, heart, gills and kidneys (Funari and 

Testai, 2008). Results of a study on the bioaccumulation and sub-lethal effects of 

microcystin on aquatic animals by Ferrão-Filho and Kozlowsky-Suzuki (2011) indicate 

that damage caused by the toxin is generally reversible, but substantial energy is required 

to detoxify the compound. Sub-lethal doses in macroinvertebrates reduce coordination, 

inhibit growth, and increase mortality, while chronic exposure to the toxin causes hepatic 

tumors (Ferrão-Filho et al., 2011). Bioaccumulation of microcystin has been observed in 

fish, snails, and mussels, and can reach concentrations harmful to humans consuming the 

contaminated organisms (U.S. EPA, 2015). The poisoning and death of sea otters has 

been linked to bioaccumulation of microcystin in their invertebrate food sources (Miller 

et al., 2010).  The toxins are released into the surrounding water when cyanobacteria die 

and microcystin can persist in water for up to three months before biodegrading or being 

adsorbed onto sediment (Funari and Testai, 2008).  

Cyanobacteria blooms can reach levels that yield sufficient toxin to harm or kill 

mammals that drink the contaminated water (WHO, 1998). The EPA guidelines on 
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microcystin exposure identify 1 µgL-1 as a safe level of the toxin in drinking water. 

However, the toxicity of microcystin is proportional to the weight of the consuming 

animal (U.S. EPA, 2015; WHO, 1998). A human health risk assessment of microcystin 

by Funari and Testai (2008) suggested 0.04 µg kg body weight-1 as the limit of safe daily 

exposure for humans. External exposure in humans can cause skin and eye irritation; 

when ingested, the toxin attacks the kidneys, brain, and liver (Funari and Testai, 2008). 

The highest levels of toxicity occur when a bloom collapses naturally or due to treatment, 

releasing all of the cyanotoxins in the bloom at one time (Paerl et al., 2013). Water 

samples taken on June 30th, 2017 in the Potomac River near Brunswick, MD found 

microcystin levels of 0.014 µg L-1 as well as 0.003 µg g-1 of P. isothrix (Hudson and 

Mattheiss, 2017). 

Microcystin is the best studied of the many toxins associated with cyanobacteria, 

but it is hypothesized that simultaneous exposure to multiple cyanotoxins may increase 

the detrimental effects on organisms (Funari and Testai, 2008). Funari and Testai (2008) 

describe several incidences of human exposure to cyanotoxins, the most significant from 

the treatment of cyanobacteria blooms in a Brazilian reservoir resulting in 2,000 sick and 

88 dead among the people who were exposed to the reservoir water. A similar treatment 

of a reservoir in Australia led to the hospitalization of 150 people (Funari and Testai, 

2008). 

In local riverine ecosystems, smallmouth bass are used as an indicator of 

environmental health. A study by Blazer and colleagues (2012) states that 80 to 100 

percent of the smallmouth bass in the Potomac are currently intersexed, i.e., individual 

fish with both male and female reproductive tissue. While still able to reproduce, 
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fecundity is decreased due to lower sperm quantity and quality (Blazer et al., 2012). 

Microcystin is a known endocrine disruptor, possibly contributing to the occurrence of 

intersex in these Potomac fish populations (Rogers et al., 2011). 

 

Mitigation Potential of Remote Sensing 

Remote sensing offers an opportunity to frequently and easily assess the 

vegetation composition of fluvial systems. The SAV and benthic cyanobacteria species 

assemblages have been established as good measures of ecosystem health (Flynn et al., 

2014). While long term daily monitoring may be burdensome, frequent assessment of the 

autotrophs may lead to a better understanding of natural seasonal fluctuations in these 

taxa and anthropogenic influences on their distribution (Flynn et al., 2014). Further, 

remote detection of biomass coupled with field measures of water temperature, flow, and 

nutrient loading could better define the environmental conditions associated with these 

potentially harmful blooms. Thereafter, weekly or biweekly remote sensing of fluvial 

systems could suffice to identify potentially hazardous blooms. 

Beaulieu et al. (2013) states that cyanobacteria blooms are common across the 

United States and will become more common as water temperatures rise. The best means 

to mitigate cyanobacteria and algae blooms in the Potomac is to reduce nutrient input 

from agricultural lands around the river and its tributaries (Beaulieu et al., 2013; Dean et 

al., 2015). Quantitative data on SAV, benthic algae, and benthic cyanobacteria could be 

used as an indicator of point and non-point sources of excess nutrients. Also, timely and 

accurate mapping of possibly toxic areas can facilitate treatment, mitigation, or avoidance 

efforts (Van der Merwe et al., 2015). 
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Existing Survey Methods 

The most common method of estimating SAV and benthic algae is a visual survey 

either along transects of a specified length and width or with the aid of a quadrat (Anker 

et al., 2014). Visual surveys are difficult and time-consuming and the resulting data are 

subjective (Flynn et al., 2014). Remote sensing is another option as high spatial 

resolution and 3-5 spectral bands have been proven sufficient for species level 

identification in some terrestrial environments (Anker et al., 2014). Also, depending on 

the method, remote sensing may be cheaper and easier than visual surveys. Current 

survey methods are summarized in Table 1. 
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Table 1: Annotated table of available survey methods for benthic autotrophs in streams 

and rivers (Alexander et al., 2008; Anker et al., 2014; Van der Merwe et al., 2015; Visser 

et al., 2013; and Yong et al., 2010). 

 

 

Aerial photography and remote sensing are common methods for quantifying 

water quality parameters, such as turbidity, chlorophyll a, and pollutant concentration 

over large areas (Gholizadeh et al., 2016). Satellite remote sensing is often used for large 

lakes, and coastal and oceanic areas, but it does not provide the spatial resolution to 

accurately differentiate macroalgae species (30 m pixel-1) (Alexander et al., 2008). At a 

Method Advantages Disadvantages 

Visual 

 
 Inexpensive 

 Flexible scheduling 

 

 Time consuming 

 Coverage estimates are 

subjective 

 

Unmanned 

Aerial 

Vehicle 

 

 

 High resolution (1 cm pixel-1) allows 

differentiation of individual benthic 

autotrophs 

 Cheap, fast, and easy  

 Flexible scheduling 

 

 Very small payload severely 

limits capabilities of 

mounted camera 

 Drones with hyperspectral 

payload are expensive 

 Ideal weather required 

 Short flight time 

 

Manned 

Aerial 

Vehicle 

 

 

 High resolution (0.5 cm pixel-1) allows 

differentiation of individual benthic 

autotrophs 

 Large payload allows mounting of high 

resolution multispectral or hyperspectral 

cameras 

 

 Expensive 

 Requires detailed scheduling 

 Weather dependent 

Free 

Satellite 

 

 

 Free 

 Hyperspectral imagery increases ability 

to differentiate spectral targets 

 

 Low resolution (30 m pixel-1) 

does not allow differentiation 

of individual benthic 

autotrophs 

 Weather dependent, cloud 

cover may obscure area of 

interest 

 Satellite path is set, unable to 

target specific areas 

 

Contract 

Satellite 

 High resolution (30 cm pixel-1) allows 

differentiation of benthic autotroph 

communities 

 Hyperspectral imagery increases ability 

to differentiate spectral targets 

 Able to target specific areas 

 Expensive 

 Weather dependent, cloud 

cover may obscure area of 

interest 
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resolution of 30 m pixel-1, the majority of the Upper Potomac River would be 10 pixels in 

width, and many of these pixels would be compromised by overhanging vegetation from 

the river banks. Aerial photography from planes can cover large areas at a higher spatial 

resolution (0.5 cm pixel-1), but it is expensive and the resolution may still be inadequate 

for species-level identification of macroalgae and cyanobacteria. Planes and satellites are 

also susceptible to adverse weather conditions such as cloud cover. Further, it is 

necessary to schedule plane and satellite coverage ahead of time, which may make it 

difficult to quickly obtain information on transient cyanobacteria blooms and adds 

difficulty to planning around adverse weather.  

Aerial drones are able to cheaply and quickly provide high resolution images of 

specific areas (1 cm pixel-1) and have much more manageable logistics. However, they 

can only carry a light payload, which means they must use a less sophisticated camera 

than a plane or satellite, and they are only able to cover small areas (e.g., 10,000 m2 in a 

20-minute flight) (Van der Merwe et al., 2015). Aerial drones are restricted to surveying 

on sunny days with low winds which may limit their usefulness (Alexander et al., 2008). 

Regardless of the method used, ground-truthing on the same day as the flight is necessary 

to calibrate collected imagery (Nezlin et al., 2007). It was decided that an aerial drone 

would be the most efficient method of gathering data for this project because it allows 

rapid survey of large areas and is able to capture much higher resolution imagery than a 

plane or satellite.  

A study by Flynn et al. (2014) demonstrated the use of an unmanned aerial 

vehicle (UAV) with a mounted three band Red, Green, Blue (RGB) camera in 

quantifying the coverage of Cladophora glomerata in a shallow non-turbid river. A 
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visual survey was used to ground truth the remote sensing data and the authors concluded 

that the digital photography was able to accurately differentiate the filamentous alga from 

the river substrate. Repeated surveys over the course of a summer captured the seasonal 

progression of accrual, peak levels, and sloughing of the benthic algae. 

Infrared photography is a standard tool for differentiating terrestrial vegetation, 

and a study by Yong et al. (2010) has demonstrated its ability to differentiate SAV and 

macroalgae. This author concluded that turbidity and depth are important variables when 

photographing benthic vegetation. This study also defined some of the limitations of 

using infrared photography; in particular, water absorbs most wavelengths between 1300 

and 2500 nm which limits underwater photography to the near-infrared range of 700 to 

1300 nm. This limitation makes vegetation differentiation more difficult in underwater 

photography than in above water photography, and differentiation was only attempted at 

the class level (Yong et al., 2010).  

 

Application to the Potomac 

The Brunswick portion of the Upper Potomac was an excellent environment in 

which to test drone remote sensing methods. A several year monitoring project targeting 

cyanobacteria blooms in the area had recorded baseline occurrence data which allowed 

this project to target an area that was likely to experience a bloom (MD DNR, 2016b). 

Additionally, the overall health of Upper Potomac has improved over the previous 

several decades as efforts were made to reduce nutrient and sediment pollution in the 

Chesapeake Bay, but cyanobacterial blooms are still common (MD DNR, 2016a). This 



11 

 

area provided a good sample of nutrient pollution-driven cyanobacterial blooms and 

native SAV targets on which spectral differentiation techniques could be attempted. 

Radiometer measurements taken at Point of Rocks indicate that SAV and benthic 

cyanobacteria in the Brunswick area of the Potomac have consistent and distinct 

signatures that can be differentiated in the visible and near-infrared range (Figure 1) (M. 

Tomlinson, personal communication, 9/21/2016). The benthic cyanobacterium P. isothrix 

had higher reflectance values than SAV at approximately 650 nm due to phycocyanin, a 

unique accessory pigment to cyanobacteria. M. wollei also had high reflectance at 650 

nm, but it was not as distinctive due to its lower general reflectance relative to SAV. M. 

wollei could be differentiated from SAV and P. isothrix more easily at 560 nm or 710 

nm. 

 
Figure 1: The spectral signatures of the target benthic autotrophs in the Potomac near 

Brunswick. The vertical black line at 650 nm marks the spike in reflectance associated 

with phycocyanin. 

  

Digital cameras with high spectral and spatial resolution can capture images in 

which SAV, substrate, and cyanobacteria can be identified. The ratio of values in each of 

the captured bands in the digital images should be unique to each autotrophic species, and 
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each species should be readily identifiable from bottom substrate. The band values 

associated with each pixel of a delineated species can be used to generate a statistical 

distribution of values for each band for each species. The difficulty in differentiating 

species or features is dependent on the uniqueness of the spectral signatures of the 

targets. Unfortunately, camera equipment that might increase the chance of successful 

differentiation is prohibitively expensive. If the distribution and ratio of bands is distinct 

from other species, computer software can identify all other pixels in an image matching 

that profile.  

 

Project Objective 

This study attempted to estimate SAV and benthic cyanobacteria coverage in the 

Potomac River with a four band, RGB and Infrared, camera mounted on an aerial drone. 

This study also attempted to differentiate SAV and cyanobacteria to the genus level using 

the digital spectral data provided in the aerial survey. The objective of this study was to 

provide methodology for inexpensive and accurate surveys that can be performed quickly 

to assess benthic autotrophic species composition and an indication of ecosystem health 

of an area of the Potomac. If successful, use in other shallow water, benthic freshwater 

systems might be feasible.  
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METHODS 

Survey Equipment 

 This project utilized both commercially available and custom built survey 

equipment. Two aerial drones were used, a Phantom 3 quadcopter (registered trademark 

of DJI Inc., 2017) and a 3DR Solo quadcopter (registered trademark of 3DR Inc., 2017). 

The Phantom 3 drone was mounted with a Phantom 3 camera. The 3DR Solo was 

mounted with three different camera configurations: a GoPro Hero 4 Black (registered 

trademark of GoPro Inc., 2017), a GoPro Hero 4 Black with the fisheye lens and IR filter 

removed, and a MicaSense RedEdge (registered trademark of MicaSense Inc., 2017) with 

filters for the default bands. Each drone was capable of approximately 20 minutes of 

flight time with mounted cameras. Only one camera was mounted for each flight, and 

several additional batteries were available to allow for multiple drone flights in quick 

succession. The Phantom 3 and GoPro cameras have identical specifications with varying 

options for attached lenses. Both cameras can record images in JPEG format, and the 

Phantom 3 camera can also record in DNG, which is an uncompressed 24-bit format. An 

annotated list of drone cameras with specifications, advantages, disadvantages, and costs 

is available in Table 2. 

Table 2: Drone mounted camera capabilities and cost. 

Camera Image Quality Bands Cost (2017) 

GoPro Hero 

4 Black 

12-megapixel (4,000 x 3,000 pixels) 

8-bit JPEG 

 

3-bands (Red, Green, Blue) $250 

Phantom 3 

Camera 

12-megapixel (4,000 x 3,000 pixels) 

8-bit JPEG or 24-bit DNG 

 

3-bands (Red, Green, Blue) $280 

MicaSense 

RedEdge 

1.2-megapixel (1,280 x 960 pixels) 

16-bit TIFF 

5-bands (Red, Green, Blue, RedEdge, 

Near-IR) 

$4,900 
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A handheld hyperspectral radiometer (Satlantic Hypergun) was used to collect 

spectral profiles of the dominant SAV and cyanobacteria taxa in the Brunswick area. M. 

Tomlinson of NOAA used the Hypergun to capture data from a flat-bottomed boat 

piloted by J. Henesy of MD DNR; the sensor remained above the water, thereby 

capturing the target spectra as well as any light attenuation or distortion effects from the 

water in the Potomac. The Hypergun has a spectral range of 350-800 nm and a spectral 

resolution of 3.3 nm pixel-1. This information was used to identify bands within which the 

spectral signatures of the target taxa differed the most.  

 Several pieces of equipment were constructed to aid in data collection and 

analysis. Kayaks were used to navigate the Potomac during survey and environmental 

monitoring; all equipment was designed and constructed to operate from a single person 

kayak. To test the effects of depth, turbidity, and spatial resolution on the cameras used in 

the survey, a resolution board (Figure 2) was constructed with colors matching the 

dominant spectral signatures in that area of the Potomac: one substrate color, two SAV 

colors, and two benthic cyanobacteria colors. A known area of the board was painted in 

each color and in an increasingly complex pattern of increasingly small squares. 
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Figure 2: The resolution board placed on the bottom of the Potomac to enable 

examination of the spatial and spectral resolution of the cameras. From left to right, sizes 

of rectangles are 2.5 x 2.5 cm, 5 x 5 cm, 10 x 10 cm, and 15 x 20 cm. The black, red, 

green, blue, and white rectangles on the right edge of the board were included as an 

attempt to aid in image calibration. The board consists of ½ inch (1.27 cm) plexiglass, 

painted with latex semi-gloss paint, and covered in a clear matte polyurethane finish. 

Color A imitates substrate, colors B and C imitate cyanobacteria, and colors D and E 

imitate SAV. 

 

A floating camera rig (Figure 3) was constructed to maintain a stable platform for 

the in-water images taken at each control marker (Figure 4). The rig was constructed of 

PVC, plexiglass, and construction lumber. Two parallel capped tubes of 4-inch (10.16 

cm) PVC were used as pontoons, which were connected by two pieces of construction 

lumber. A ¼-inch (0.635 cm) plexiglass sheet was attached to the boards with industrial 

Velcro. A 4-inch hole was cut into the center of the plexiglass sheet so that a view tube 

with a mounted camera could be fitted through the hole. The view tube was constructed 

from female threaded PVC with a clear acrylic disc glued into the end; the tube was fixed 

by screwing it onto a male threaded PVC tube through the hole in the plexiglass. The 

camera mount was taken from the GoPro camera hardware and was fixed with PVC 

A 

B 

C 

D 

E 
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adhesive. In addition to creating a stable camera platform, the rig held the view-scope just 

beneath the surface of the water, avoiding distortion from the water surface. The camera 

rig also allowed an open air connection between the GoPro and an iPhone screen which 

was necessary for maintaining a Wi-Fi connection between the camera and phone. 

 

 

Figure 3: Floating camera rig built to provide a stable platform from which to capture 

images of locations with georeferenced control markers. Pontoons (A) and view scope 

(B) were made of plumbing grade PVC, deck (C) was made of ½ inch (1.27 cm) 

plexiglass and construction lumber, and the GoPro Camera was placed in a GoPro 

waterproof case and fastened into the view tube and scope with a GoPro Camera mount. 

 

Two-and-a-half-pound (1.13 kg) iron bar weights were spray painted Blaze 

Orange (Figure 4). After the paint had dried, 5 m lines of 100-pound (45.35 kg) line with 

4-inch (10.16 cm) pool floats were attached to each weight. These weights served as 

control markers that could also be clearly seen in the aerial imagery. The float allowed 

for them to be quickly located during survey and for easy retrieval afterwards.  

A 
A A 

A 

B 
B 

C 
C 
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Figure 4: Control markers were placed in the survey area before the drone flights to mark 

locations that would be used to validate drone imagery, as they were easily spotted from 

all flight altitudes. The pink float aided in finding the markers from the kayak and was 

used for retrieval. Markers consisted of 14 cm diameter 2.5 lbs. (1.13 kg) weight (A), 

painted orange, and attached to a section of pool float (B) by a 5 m length of line. 

 

A scale, to allow length width estimates, was built from a 10-foot length of ¾-

inch (1.905 cm) PVC and ¼-inch (0.635 cm) plexiglass. Two 20 x 70 cm sheets of 

plexiglass were attached so that one end of each completely overlapped creating a right 

angle (Figure 5). The two 20 x 50 cm portions that did not overlap were then painted in a 

black and white 10 x 10 cm grid, except for three of the squares, which were painted red, 

green, and blue. This scale could be attached and detached from a PVC pole by means of 

a corner bracket and machine screws with wing nuts. The scale was designed to be placed 

in the view of the camera mounted on the floating rig and held in place with the PVC 

pole beneath the floating rig until an image had been taken. 

 

B A 
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Figure 5: A scale designed to be lowered into the water on the end of a PVC pole and 

placed adjacent to control markers to give scale and a color palette to control marker 

images. Painted rectangles are 5 x 10 cm. Scale is built from ¼-inch plexiglass, painted 

with semi-gloss latex paint, covered in a matte polyurethane finish, and assembled with 

zinc-coated hardware. 

 

Equipment Efficacy 

The survey equipment constructed for the project had mixed success. The 

resolution test board proved valuable and was able to provide a tangible estimate of 

camera resolution, as well as a demonstration of the difficulties faced in separating 

similar colored features with computer software. The orange markers were also very 

useful. They were easy to deploy and retrieve, did not move while deployed, were clearly 

visible in the drone images, and the attached floats provided good reference points while 

navigating between control points on the water.  

 The floating camera rig was very difficult to maneuver over the control points due 

to river current; it was much easier to paddle upstream of a marker and slowly float past a 

marker, capturing the image by hand. The camera rig may prove useful in a lake or pond 
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where there is little or no current. The graduated scale was used in most of the control 

point images, but was very time-consuming and difficult to manage in the current. With 

limited practical use, the project would have moved more efficiently without these 

constraints. 

 

Preliminary Data Collection 

 An initial test was performed to determine camera and drone capabilities. Spatial 

resolution had been cited as the most important variable in attempting species 

differentiation with digital photography (Anker et al., 2014). Depth and turbidity had 

been cited as the two most important variables in recording sub-surface water features 

(Yong et al., 2010). Hence, the resolution board was placed on the ground in an open area 

and images were recorded with a Phantom 3 camera mounted on a Phantom 3 aerial 

drone from directly above at altitudes increasing in 5 m increments between 10 m and 50 

m. This test was performed to determine the effect of camera altitude and subsequent 

changes in image resolution on the ability of Terrset software (Clark Labs, 2017) to 

differentiate and estimate coverage of each of the colors on the board.  The results of this 

test were used to determine the altitude of the aerial drone during the surveys. 

An additional experiment was performed to determine the ideal altitude for future 

surveys because the altitudes identified by the original survey did not provide sufficient 

resolution. The resolution board and three markers were deployed near the Brunswick 

boat ramp during a cyanobacteria bloom. The markers and the resolution board were 

placed approximately 40 m from shore in an area with SAV and some benthic 
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cyanobacteria. The Phantom 3 drone was used to capture images of the location at 10 m 

graduated altitudes between 10 and 50 m.  

 

Site Selection 

An area near the Brunswick Potomac boat ramp (Figure 6) was selected for the 

study. The survey area was a 50 x 75 m transect, running north-south near the center of 

the Potomac, and located 400 m southwest of where US 17 crosses the Potomac south of 

Brunswick, MD. The survey area was established 70 m south of the northern shoreline to 

avoid overhanging trees and debris and ensure that the depth was sufficient for a picture 

to be taken. The survey area was further divided into six 25 x 25 m squares. The drone 

was launched from a clear area on the western tip of the island immediately south of the 

Brunswick boat ramp. 

The area was chosen for ease of access and because this area had been part of an 

on-going MD DNR cyanobacteria monitoring project, which had identified 

cyanobacterial blooms in this location in previous years (J. Henesy, personal 

communication, 6/27/2017). A USGS flow gauge located at Point of Rocks provided 

reliable depth and flow data for the Potomac in the survey area. The USGS Little Falls 

Pump Station, located near Washington, D.C., provided turbidity estimates of the river. 

Data from the last five years indicated that turbidity was generally low, ranging from 0-

10 Formazin Nephelometric Units (FNU), which is considered very clear (USGS, 2017). 

However, on the days immediately following rain events, turbidity could rise above 300 

FNU (USGS, 2017).  
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Figure 6: The 50 x 75 m survey area, outlined in red, at Brunswick, MD. Kayaks were 

launched from the Brunswick Boat Ramp (A). Drones were launched from a clear area on 

the western tip of the island at the marked location (B). The survey area was divided into 

a 25 x 25 m grid which was loaded onto a Trimble Juno GPS to aid in marker and board 

placement (C).  

 

Environmental Monitoring 

Constant environmental monitoring was required throughout the field season, 

May to mid-September 2017. The Brunswick site was visited twice a week and the 

survey area was inspected for benthic cyanobacteria by kayak. This inspection was not 

performed if there had been a major rain event or the USGS Point of Rocks flood gauge 

indicated that the water level and river flow were too high to be safely navigable by 

B 

C 

A 
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kayak, and a low likelihood of a cyanobacteria bloom. This monitoring strategy ensured 

that any cyanobacteria blooms formed during the 2017 field season were noted. 

When a cyanobacteria bloom was present, water quality and weather forecasts for 

the survey area were assessed to determine the nearest day most likely to meet the 

conditions required for aerial survey. During the mid-summer, when it was suspected that 

water temperatures in the Potomac were too high for a cyanobacterial bloom to occur 

based on the temperature threshold of 21-27°C observed during previous MD DNR 

surveys, one survey was conducted to record the SAV present in the survey area. All 

surveys were conducted under the following conditions: winds less than 4.5 m sec-1, 

scattered cloud cover or clear skies, no precipitation, a 2°C or greater dew point humidity 

spread, and a minimum of 1-mile (1.61 km) visibility. 

 

Survey Protocol 

The following methods were adopted from studies conducted by Flynn et al. 

(2014), Levin et al. (2005), Marcus et al. (2008), and Visser et al. (2013). Three survey 

methods were used to estimate SAV and benthic cyanobacteria abundance: a visual 

survey, an underwater camera survey, and an aerial drone-mounted camera survey. On 

each day of survey, temperature, dissolved oxygen (DO) and conductivity were measured 

with a YSI Multi-Parameter Water Quality Meter at the survey area. After water quality 

parameters had been recorded, orange control markers with attached floats were placed 

near the center of each 25 x 25 m square in the survey area. A Trimble Juno GPS loaded 

with a shape file of the survey area was used to aid in the placement of each marker. 

Three additional markers were placed in locations with representative examples of one of 
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the species of SAV or cyanobacteria targeted by the study. Two resolution boards were 

also placed in the survey area, one in the northeastern and one in the southwestern portion 

of the site. The drone survey was performed first, after the markers had been placed, and 

then the visual and camera surveys were performed simultaneously.  

The target time for the drone survey was late morning, approximately two hours 

before solar noon, when the river bottom was illuminated, shadows were reduced, and 

before the angle of the sun was so high that reflections might obscure the images. The 

survey consisted of programming two aerial drones to take pictures in a grid across the 

project area. One drone was a Phantom 3 with a Phantom RGB camera and the other was 

a 3DR Solo which could be mounted with a GoPro Hero 4 Black RBG IR camera or a 

MicaSense RedEdge camera. Mission Planner software (Open source software, 

ArduPilot, 2017) was used to program each drone to undertake flights at two different 

altitudes, 10 and 50 m. Each flight collected images with 75% longitudinal and lateral 

coverage. This was necessary to reduce any distortion effects from the camera lens or the 

water and to ensure enough overlap for the orthomosaic processing software. 

The visual survey consisted of visually estimating SAV and benthic cyanobacteria 

coverage within an approximately 1 m2 area around each survey marker. After the 

estimated coverage had been recorded, depth measurements were taken with an electronic 

depth finder and confirmed with a graduated PVC pole. After these data were recorded, a 

GoPro Hero 4 Black in a waterproof case was used to capture images of each control 

marker and surrounding area from just beneath the surface of the water. The GoPro was 

connected through Wi-Fi to an Apple iPhone 5 in a waterproof case, and the smartphone 

served as a view screen for the camera. Both surveys were conducted from a kayak. 
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Images and depth measurements were also recorded for each resolution board. The visual 

and in-water camera surveys continued until the survey area had been covered or 

atmospheric conditions made further survey impossible. 

 

Data Processing Protocol 

 Several computer programs were used to process and analyze the collected 

imagery. A complete processing protocol with instructions for performing each 

manipulation is located in Appendix I. Many of the tasks for this project were completed 

within the free trial window of the following programs.  

IBM SPSS 23 (registered trademark of IBM corp., 2013) was used to identify 

possible correlations between the available environmental data and the observed 

cyanobacteria blooms. A linear regression was performed to compare water temperatures 

in the Brunswick area of the Potomac River to water temperatures in the Potomac near 

Little Falls. Binary logistic regressions were performed using bloom presence or absence 

by day as the dependent variable and average daily water flow and average daily water 

temperature as independent variables. 

Adobe Lightroom (registered trademark of Adobe Systems Inc., 2017) is image 

processing software for photographers. It was used to remove lens distortion from images 

taken with the GoPro camera with the fisheye lens because it has a standard program for 

correcting the distortions for that specific model camera. This program was also used to 

convert the 24-bit DNG images taken with the Phantom 3 camera into 16-bit TIFF 

images that were compatible with ESRI ArcMap (registered trademark of ESRI, 2017) 

and Terrset IDRISI software. 
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 ArcMap was used to clip aerial images taken from different altitudes to the same 

spatial extent for comparisons of coverage estimates generated by the methods described 

below. The images were uploaded as 8-bit JPEG or 16-bit TIFF images and then exported 

in the same format and bit depth. ArcMap was also used to align each of the five bands 

captured by the MicaSense camera into the same spatial area.  

 Pix4D (registered trademark of Pix4D, 2017) is an image processing program 

designed to create orthomosaics from drone imagery. This program uses the spatial data 

attached to geotagged images, such as camera altitude, longitude and latitude, and the 

time stamp to find the relative position of each image. This process orthorectifies images 

by removing distortions caused by camera angle and altitude, standardizing the 

perspective and scale of each image. The program then finds matching points in the 

overlapping areas of each pair of adjacent images; if sufficient matching points are found, 

the program combines all of the geotagged drone images into one large georeferenced 

orthomosaic. Pix4D requires high spatial overlap between images and has difficulty 

finding common points between areas that lack large distinct features which run through 

multiple images. If successful, the mosaics it generates can be used to analyze large 

areas. 

 Drone2Map (registered trademark of ESRI, 2017) is a program that used Pix4D 

software to orthorectify image sets but has increased compatibility with other ESRI 

software such as ArcMap. This program was able to create orthomosaics of much higher 

spatial resolution than the standard Pix4D software. The images captured by the 

MicaSense RedEdge camera could only be processed by Pix4D or by Drone2Map. The 

MicaSense camera had five sensors, each filtered to a specific band; each time the camera 
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recorded an image, it recorded five, one from each sensor. Pix4D and Drone2Map had an 

algorithm for correcting the distortion caused by the sensors recording from slightly 

different physical locations on the camera and combined all of the bands into a single 

image.  

Terrset IDRISI (registered trademark of Clark Labs, hereafter referred to as 

IDRISI) is an image analysis program used to manipulate and analyze individual images 

as well as orthomosaics. It was used to perform supervised and unsupervised 

classifications of images and orthomosaics. Parallel piped is a supervised classification 

method which groups pixels based on training areas. Training areas are user-identified 

areas of an image that are representative of a feature class. After training areas had been 

identified, the computer analyzed the pixels within the areas to develop spectral 

signatures. The Parallel Piped technique places each pixel in an image into the category 

of whichever spectral signature it most closely resembles. Pixels are left unclassified if 

they are not represented by any signature. The signatures developed for this project were 

SAV, Substrate, Marker, and Glare; the processed images were classified into these four 

categories with the exception of the pixels that did not match any signatures, which were 

all given null values. 

Isocluster is a common unsupervised classification method which assigned pixels 

to a predetermined number of categories, usually 20, based on how similar the pixels are 

to each other. Each category contains pixels that are more similar to each other in each 

available band than they are to pixels in any other category. Using this software, the 

resulting image was coded into 20 categories which were identified by comparison with 

the original true color image. These categories, once identified, could be recoded into any 
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classes desired. This project reclassified the categories into SAV, Substrate, Marker, and 

Glare. After one of the above processes has been completed, IDRISI was used to estimate 

the coverage of each of the final discrete categories into an area estimate by multiplying 

the number of pixels in the category by the area of a single pixel.  

IDRISI was also used to create image ratios, which standardize the difference 

between two bands in each pixel of the image. These image ratios can be useful for 

separating classes such as vegetation and substrate. The resulting image has one value for 

each pixel, ranging between -1 and 1, instead of one value for each band for each pixel. 

These values can be organized into discrete categories by assigning each range of values 

a unique color. For example, in the Normalized Green Red Difference Index (NGRDI), 

values below zero are generally substrate or rock while values above zero are generally 

vegetation. 

IDRISI was also used to sample classified images to determine their classification 

accuracy. Sampling is the standard remote sensing method for testing the accuracy of 

image classification. The sample function generated a vector file consisting of a stratified 

random sample of point locations, which were then overlaid on an image. The points 

were manually classified with the aid of the true color raster image and then compared 

with the computer-generated classifications of those same point locations. The computer 

generated an accuracy score based on the number of sample locations correctly classified. 
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RESULTS 

Environmental Monitoring Results 

 Three cyanobacteria blooms occurred in the Brunswick area of the Potomac 

between May and September, 2017. The environmental parameters associated with these 

blooms were consistent with those observed in the MD DNR 2015 Freshwater Fisheries 

annual performance report (MD DNR, 2016b). Blooms were observed from June 29th to 

July 6th, August 23rd to 29th, and from September 18th to the end of survey on September 

30th. These blooms were observed when Potomac flow was under 5000 ft3 sec-1 (142 m3 

sec-1); other recorded parameters from each day of survey such as water temperature, 

conductivity, and DO are summarized in Table 3. Figure 7 overlays bloom occurrence on 

a graph of flow and water temperature data for the 2017 field season from the Point of 

Rocks USGS Gage1 Station. 

 

Table 3: Observed environmental parameters at Brunswick on each survey day. 

 

Date 
Flow  

(ft3 sec-1) 

Water Temp 

 (C°) 

Conductivity 

(µS cm-1) 

DO  

(mg L-1) 
Bloom 

12-Jun 4940 24.3 349 3.6 No 

30-Jun 3950 27.4 382.3 2.3 Yes 

18-Aug 870 25.5 398 8.3 No 

25-Aug 2860 24.7 437.5 9.6 Yes 

28-Sep 1500 23.9 529 7.4 Yes 

 

 

 

________________________________________________________________________ 

1 Gage is the correct spelling of Gauge in the context of USGS Gage Stations. 
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Figure 7: USGS Point of Rocks Gage Station flow data for the 2017 May to October field 

season (blue), and Brunswick water temperature data (orange). Periods when a 

cyanobacterial bloom was present in the Brunswick Survey area are highlighted in red. 

The blue rectangles show the suspected temperature threshold of 21-27°C and the 

suspected glow threshold of 0-5,000 ft3 sec-1. It is suspected that there was no bloom 

during the low flow period in mid-July due to high water temperatures; this period is 

highlighted in green. It is unknown why the late August bloom ceased and it is unknown 

why there was no bloom in early September. 

 

The water temperature data used in Figure 7 are based on water temperature data 

obtained from the USGS Gage Station in Little Falls, D.C., approximately 75 km south of 

the project area at Brunswick. A linear regression was performed to compare the water 

temperatures at Brunswick to those at Little Falls water. Forty-one temperature 

measurements, taken by J. Henesy of MD DNR in the Brunswick area between 2013 and 

2016, were compared to the daily average water temperature as recorded by the USGS 

station at Little Falls. The linear regression indicated that there was a significant 

relationship (p < 0.001 between the daily average temperature at Little Falls and 

Brunswick. The statistical methods used to justify the validity of the Little Falls daily 
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water temperature data as a proxy for Brunswick daily water temperature are detailed in 

Appendix II. 

The linear regression generated to analyze the relationship between the water 

temperatures at Brunswick and Little Falls was also used to transform the Little Falls 

water temperature for each day when a cyanobacterial bloom was observed in Brunswick. 

The transformed water temperature data for these 28 days have a mean of 25.3°C, a low 

of 24.0°C, and a high of 27.4°C. These data closely matched the 21-27°C threshold 

observed by MD DNR. 

A binary logistic regression was performed using average daily flow (recorded at 

the Point of Rocks USGS Gage Station) and daily average water temperatures (recorded 

by the USGS Gage Station at Little Falls, D.C.) as independent variables; daily 

cyanobacterial bloom presence or absence was the dependent variable. Flow and 

temperature data from the Point of Rocks and Little Falls USGS Flood Gages were 

obtained from the USGS National Water Information Center website (USGS, 2017). The 

regression indicated that flow and water temperature were both significantly correlated 

with the presence or absence of cyanobacterial blooms (p < 0.002). The statistical 

methods used to perform this binary logistic regression are outlined in Appendix II. 

 This binary regression was repeated seven times; in each regression the 

independent variables were offset one day further back in time. This was done in an 

attempt to find possible lagged trends predicting bloom occurrence in the Brunswick 

area. The statistical significance of the correlation between the independent and 

dependent variables decreased with each regression. The Hosmer-Lemeshow test, which 

checks how well the generated model matches the data, was insignificant for the 
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regressions offset 0, 1, and 2 days indicating that these regressions were valid. The 

significant Hosmer-Lemeshow tests for the remainder of the regressions indicated that a 

binary regression is a poor fit for the data. These tests indicated that offsetting the data 

does not produce valid information and hence, river conditions beyond two days did not 

affect cyanobacteria in the river. 

 Binary logistic regressions were used to analyze the data because the dependent 

variable was a categorical variable consisting of two mutually exclusive categories: 

bloom and no bloom. If more detailed bloom information is available in the future, such 

as total benthic cyanobacteria coverage, a multiple linear regression may be more 

appropriate. 

 

Survey Results 

 Five surveys were performed but of those five, only three were performed during 

a cyanobacteria bloom. The first survey was performed on June 12th when there was no 

SAV or cyanobacteria in the Brunswick portion of the Potomac. This survey was 

performed to test the methodology proposed for the project. The August 18th survey was 

performed to gather data on the two dominant SAV taxa while cyanobacteria were 

absent. The June 30th, August 25th, and September 28th surveys were performed during a 

cyanobacteria bloom. The drones, cameras, taxa present, and altitudes of the flights 

specific to each survey date are summarized in Table 4. 
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Table 4: Survey dates, equipment, altitude, and target taxa presence or absence. 

 

Date Drone Camera Altitude Target Taxa Present 

12-

Jun 

Phantom 3, 

DJI Solo 

Phantom 3, GoPro Hero 

4 Black 
10 m, 50 m none 

30-

Jun 

Phantom 3, 

DJI Solo 

Phantom 3, GoPro Hero 

4 Black 
10 m, 50 m 

M. wollei, 

P. isothrix, 

H. dubia, 

V. americana 

18-

Aug 

Phantom 3, 

DJI Solo 

MicaSense RedEdge, 

GoPro IR 
10 m, 50 m 

H. dubia, 

V. americana 

25-

Aug 
DJI Solo MicaSense RedEdge 10 m, 50 m 

M. wollei, 

P. isothrix, 

H. dubia, 

V. Americana 

 

28-

Sep 
Phantom 3 Phantom 3 

10 m, 20 m, 

30 m, 40 m, 

50 m 

M. wollei, 

P. isothrix, 

H. dubia, 

V. americana 

  

Data Processing Results 

Signature Development 

 Spectral signatures were developed for P. isothrix, SAV, and substrate in images 

recorded by the GoPro from under the water’s surface, the Phantom at 10 m altitude, and 

the MicaSense RedEdge at 10 m altitude. A signature was not developed for M. wollei 

because it could not be distinguished from the substrate in the images. A Parallel Piped 

supervised classification was not able to identify the features in the 8-bit images from the 

Phantom and GoPro, but it was able to identify the majority of the areas of SAV and 

substrate in the 16-bit MicaSense image. This failure was due to the large amount of 

variation in the composition of the bottom of the Potomac as well as shadow effects from 

rocks and SAV. 
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 The signatures are graphed according to band and camera type to demonstrate 

similarities and differences in the bit values of each pixel (Figures 8 and 9). The GoPro 

Hero 4 Black and Phantom 3 have the same technical specifications but different lenses; 

however, the Phantom 3 camera was capturing images from the Phantom 3 aerial drone at 

an altitude of 10 m and the GoPro was capturing images from just beneath the surface of 

the water. Both cameras capture images in three bands, Red, Green and Blue; the spectral 

signature of a target is the statistical distribution of bit values for each of these bands in 

all pixels identified as belonging to that target. Only three bands are graphed for the 5-

band MicaSense RedEdge, Green, Red, and RedEdge, because two of the bands, blue and 

near-infrared, were of very poor quality.  

The box-plots in Figure 8 show the distribution of pixel values associated with the 

spectral signatures for P. isothrix, SAV, and substrate in the three available bands. Each 

section of the box-plot (bars and shaded rectangles) represents one quarter of the total 

pixel values. Signatures can be differentiated easiest when there is little overlap between 

the pixel values of each band and when each target signature has a different ratio of 

bands. Plots A and B in Figure 8 show that while the three signatures have different band 

ratios, there is a lot of overlap between the ranges of pixel values. The 10 m Phantom 3 

signature in Plot B shows that P. isothrix signature can be more easily differentiated from 

SAV in the Phantom images than in the in-water images.  This is demonstrated by the 

lesser overlap of the pixel values in each band; the P. isothrix pixel values are generally 

higher than the SAV values. 

Figure 9 displays the spectral signatures of the target features developed from 

images captured at 10 m altitude with the MicaSense RedEdge camera. These images 
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were not compressed and provided 16-bit pixel values as opposed to the 8-bit values of 

the GoPro and Phantom cameras. This difference in quality means that each pixel has a 

possible value of 0-65,536 for the 16-bit images as opposed to 0-255 for the 8-bit images. 

The difference in image quality is apparent in the box-plots in Figure 9, which show 

much more distinct pixel value ranges than the box-plots in Figure 8. Each signature in 

Figure 9 also has a distinct band ratio, but if all five of the MicaSense bands were 

available, the bands would be even more distinct.  The combination of more distinct pixel 

value ranges and distinct band ratios makes the MicaSense camera the better option for 

differentiating features in the Potomac. 

The wide ranges of pixel values for the majority of the bands in each signature are 

caused by shadow effects and other distortions in the images. For example, the SAV 

signature includes SAV in full sun and in shadow, new and old growth, damaged and 

undamaged, and SAV in areas of variable amounts of sun glare off the surface of the 

water. Each of these variables extends the range of pixel values associated with the 

signature for each target spectra. 
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Figure 8: The spectral signatures of the three targets, P. isothrix, SAV, and Substrate; 

these were generated from images captured with the GoPro Hero 4 Black camera (A) 

from just beneath the surface of the water, and with the Phantom 3 (B) at an altitude of 10 

m. The lined box-plots show the signature in the Red band, the dotted box-plots show the 

signature in the Green band, and the bricked box-plots show the signature in the Blue 

band. Each of the four sections (bars and shaded rectangles) of each box-plot represent 

25% of the pixel values in the signature. The x marks the mean pixel value for each band. 

 

  

  A 

B 
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Figure 9: The spectral signatures of the three targets, P. isothrix, SAV, and Substrate, 

generated from an image captured with the MicaSense camera at an altitude of 10 m. The 

dotted box-plots show the signature in the Green band, the lined box-plots show the 

signature in the Red band, and the checkered box-plots show the signature in the 

RedEdge band. The blue and Near IR bands are not graphed because the data from these 

bands were very poor. Each of the four sections (bars and shaded rectangles) of each box-

plot represent 25% of the pixel values in the signature. The x marks the mean pixel value 

for each band. 

 

Supervised Classification 

Figure 10 is a side-by-side comparison of the False Color Composite (FCC) of the 

Green, Red, and RedEdge bands from the MicaSense Camera, and the result of a Parallel 

Piped supervised classification. The Parallel Piped classification assigns pixels to 

categories based on how each band value in each pixel relates to the statistical 

distribution of each band in the signatures. This procedure was moderately successful for 

the MicaSense images, but it failed completely when attempted on the GoPro and 

Phantom images; the transformed images bore little resemblance to the original images, 

there were no identifiable features. Therefore, only the MicaSense image is shown. 
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Figure 10: Supervised classification isocluster results. Frame A shows the FCC that is 

created when the MicaSense bands RedEdge, Green, and Red bands are portrayed as 

Blue, Green, and Red, respectively. This image was captured from an aerial drone at an 

altitude of 10 m. Frame B depicts the results of the Parallel Piped supervised 

classification that classified each pixel according to the spectral signatures of the classes 

shown in Figure 9. Frames C and D are closer views with labeled features. In the 

supervised classification, Green corresponds to SAV, blue to cyanobacteria, brown to 

substrate, and black is undefined. 
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Unsupervised Classification 

 Unlike the supervised classification above, an unsupervised classification allows 

the computer to create its own categories and assign pixels to them in a process called 

Isocluster Analysis. The program uses pixel values for each band to create a specified 

number of unique categories and assigns each pixel in the image to the category that it 

matches most closely. Each generated category is then compared to the original true color 

image to determine to which of the desired target categories it corresponds (substrate, 

SAV, P. isothrix).  

 Figure 11 shows the isocluster unsupervised classification result in Panel B and 

the reclassification of the isocluster output in Panel D. While the 20 categories from the 

raw isocluster output in Panel B can be difficult to interpret, some patterns are clear. 

When compared to the true-color image in Panel A, the areas of SAV are distinct from 

the substrate, the Marker is distinct from both substrate and SAV, and some substrate 

features such as the large rock near the center of the image are distinct from the 

surrounding substrate. Unfortunately, the area of P. isothrix contains pixel values that are 

indistinguishable from the areas of SAV. These differences are made clear in Panel D 

where the isocluster-generated categories have been reclassified into the desired 

categories of SAV, substrate, and Marker. P. isothrix is classified as SAV because it 

shared similar pixel values, but the SAV and substrate classifications accurately reflect 

the features in the true color image in Panel C. 
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Figure 11: Unsupervised classification isocluster results. Frames A and C portray the 

FCC created when the MicaSense bands RedEdge, Green, and Red bands are portrayed 

as Blue, Green, and Red, respectively. This image was captured from an aerial drone at 

an altitude of 10 m. Frame B shows the results of the isocluster analysis unsupervised 

classification that assigned each pixel to categories created by the program so that each 

pixel in each category is more alike to the other pixels in its category than to the pixels in 

other categories. Frame D is the reclassified isocluster image; each of the 20 classes 

assigned by the computer was placed into four categories: Substrate, SAV, P. isothrix, 

and Marker. Substrate is brown, SAV is green, and Marker is orange. The analysis was 

not able to separate P. isothrix from SAV. 

 

Image Transformation 

The process of transforming images involves mathematically manipulating the 

values of different bands within each pixel to expose information by simplifying the data 
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shown in the image. Two image transformations were found to be useful for interpreting 

the images collected for this project, the Normalized Green Red Difference Index 

(NGRDI) and the Normalized Difference RedEdge Index (NDREI). The NGRDI formula 

[(Green – Red) / (Green + Red)] emphasizes the differences between vegetated areas and 

non-vegetated areas, while reducing shadow and glare effects. The NDREI formula 

[(RedEdge – Red) / (RedEdge + Red)] also emphasizes the differences between vegetated 

and non-vegetated areas, but it requires a camera capable of capturing Near Infrared 

bands.  

Figures 12 and 13 show the effects of transforming images with these formulas. 

Both figures are transformations of the same portion of an image captured with the 

MicaSense RedEdge camera from an altitude of 10 m. Both transformations were able to 

utilize the three bands that were effective in the Potomac environment: Green, Red, and 

RedEdge. After the formula had been calculated, a point near zero was chosen as the 

dividing line between substrate and vegetation. The FCC of the original image was used 

to aid in this process. All pixels containing a value below the dividing line were classified 

as substrate, and all values above the line were classified as vegetation. Of the two 

methods, NDREI has better feature definition. Neither transformation was able to 

distinguish between benthic cyanobacteria and SAV, but their ability to distinguish 

benthic autotrophs from substrate was tested by sampling the images (Figure 14).  
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Figure 12: Normalized Green Red Difference Index transformation results. Frames A and 

C show the FCC created when the MicaSense bands RedEdge, Green, and Red bands are 

portrayed as Blue, Green, and Red, respectively. This image was captured from an aerial 

drone at an altitude of 10 m. Frame B shows the process of transforming a 16-bit 

MicaSense image with a NGRDI formula. Pixel values in the image range from -1 to 1 

but the contrast has been adjusted to display the greatest amount of information. Positive 

values are on the green side of the scale and show vegetation. Negative values are on the 

red side of the scale and show substrate. Frame D shows the same transformation after 

the values have been simplified further into a binary distinction between vegetation and 

substrate. Substrate is shown in brown and vegetation is shown in green. This 

transformation was useful for obtaining quantitative coverage estimates of benthic 

autotroph and substrate, but this transformation was unable to differentiate SAV from 

cyanobacteria. 
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Figure 13: Normalized Difference Red Edge Index transformation results. Frame A and C 

show the FCC created when the MicaSense bands RedEdge, Green, and Red bands are 

portrayed as Blue, Green, and Red, respectively. This image was captured from an aerial 

drone at an altitude of 10 m. Frame B shows the process of transforming a 16-bit 

MicaSense image with a NDREI formula. Pixel values in the image range from -1 to 1 

but the contrast has been adjusted to display the greatest amount of information. Positive 

values are on the green side of the scale and show vegetation. Negative values are on the 

red side of the scale and show substrate. Frame D shows the same transformation after 

the values have been simplified further into a binary distinction between vegetation and 

substrate. Substrate is shown in brown and vegetation is shown in green. This 

transformation was useful for obtaining quantitative coverage estimates of benthic 

autotroph and substrate, but a lot of information was lost in the transformation process. 

This transformation was unable to differentiate SAV from cyanobacteria. 
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Accuracy Assessment 

The accuracy of each of the feature classification methods shown in Figures 10-13 

was tested with Terrset IDRISI, which provides dedicated accuracy assessment programs. 

A stratified random sample of 50 pixels was generated for the image as a vector file 

which was then overlaid on the original FCC (Figure 14). Each sample location was 

manually assigned to a category, which the computer then compared to the classified 

image. An error matrix was generated which showed how well each category was defined 

based on how many of the sample pixels were correctly classified. The accuracy 

assessments of the classification methods attempted in Figures 10 - 13 are shown in Table 

5. 

The accuracy of the various classification methods varied from 48% to 64%; the 

percent is the proportion of correctly classified pixels. The Parallel Piped supervised 

classification correctly classified 48% of the pixels, the isocluster unsupervised 

classification correctly classified 62%, the NGRDI correctly classified 52% and the 

NDREI correctly classified 64%. The majority of the error in each of the four 

classification methods was caused by an overestimation of SAV coverage. 
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Figure 14: Sample locations for accuracy assessment. Red dots mark the stratified 

random sample locations generated for the accuracy assessment. Each location was 

manually assigned a category. The manually assigned categories for the sample pixels 

were then compared with the results of the classification methods for the sample pixels to 

generate an error matrix of correctly and incorrectly identified cells. 

 

Table 5: Summary of classification error matrices for the attempted classification 

methods. The rows are the mapped category values and the columns are the true values of 

the sample locations. Cells at the intersection of identical row and column headings were 

correctly identified, other cell values were misidentified. The Accuracy column shows 

the percent of the sample points that were correctly categorized by each method.  

 
Parallel Piped Supervised Classification   Isocluster Unsupervised Classification 

  Substrate SAV Accuracy 

 

  Substrate SAV Accuracy 

None 3 3 

48% 
 

Substrate 14 13 

62% Substrate 12 16 

 

SAV 5 17 

SAV 4 12 

 

Marker 0 1 

P. isothrix 0 0 

    

  

  

       

  

NGRDI Image Transformation 

 

NDREI Image Transformation 

  Substrate SAV Accuracy 

 

  Substrate SAV Accuracy 

Substrate 15 20 
52% 

 

Substrate 15 14 
64% 

SAV 4 11   SAV 4 17 
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Orthomosaics 

 Orthorectification was attempted with several different programs for each altitude 

and camera used in each day of survey. Figures 15, 16, and 17 show the orthomosaics 

generated with Drone2Map from the Phantom 3 June 30th 10 and 50 m altitude image sets 

and Pix4d from the MicaSense August 18th 50 m altitude image set. Only three of the five 

MicaSense camera bands, Green, Red, and RedEdge, collected usable data, while Blue 

and Near Infrared did not. The MicaSense mosaic shown in Figure 15 is an FCC with 

RedEdge, Green, and Red in the Blue, Green, and Red bands, respectively. All images 

were captured in the same survey area; however, the total area covered by each mosaic 

differs considerably due to different environmental conditions, pilot errors, and other 

delays affecting battery life and image quality. 
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Figure 15: August 18th 50 m MicaSense orthomosaic and NDREI. Frame A shows the 

FCC orthomosaic created when the MicaSense bands RedEdge, Green, and Red bands 

are portrayed as Blue, Green, and Red, respectively for the image set captured on August 

18th at an altitude of 50 m. Frame B shows the results of the NDREI transformation of the 

orthomosaic. Frames C and D are closer views of the outlined areas of Frames A and B 

with labeled features. 

 

SAV SAV 

Test Board Test Board 
Substrate Substrate 

A B 

C D 



47 

 

 

Figure 16: June 30th 10 m Phantom 3 orthomosaic and NGRDI transformation. Frame A 

shows the true color orthomosaic created from the image set captured with the Phantom 3 

Camera on June 30th at an altitude of 10 m. Frame B shows the results of the NGRDI 

transformation of the orthomosaic. Frames C and D are closer views of the outlined areas 

of Frames A and B with labeled features. 
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Figure 17: June 30th 50 m Phantom 3 orthomosaic and NGRDI transformation. Frame A 

shows the true color orthomosaic created from the image set captured with the Phantom 3 

Camera on June 30th at an altitude of 50 m. Frame B shows the results of the NGRDI 

transformation of the orthomosaic. Frames C and D are closer views of the outlined areas 

of Frames A and B with labeled features. 
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The linear discolorations running through each orthomosaic are relics of sun 

glare. High overlap between images, 70 to 80 percent, is necessary for the orthomosaic 

process. After the images had been standardized to remove slight variations in camera 

altitude and angle, the pixel values in areas of overlap were averaged to smooth the 

transition from image to image. However, all of the surveys for this project were 

performed later in the day than had been planned, and the higher sun angle resulted in 

sections of glare in each image. As the glare was in the southeastern portion of each 

image, long streaks of brighter pixels were created in the orthomosaic. The glare issue 

was more pronounced in the 10 m than in the 50 m altitude flights because at the lower 

altitude, a greater portion of each image was glare. 

 These streaks confounded attempts at supervised and unsupervised classifications 

because there were many different spectral signatures for each target. Signatures were 

developed for both glare and non-glare portions of targets, but there was too much 

overlap in the resulting signatures to accurately classify the images. The unsupervised 

classification failed because the areas of glare exaggerated the range of pixel values so 

that different targets within an area of glare were more alike to each other than the same 

target in non-glare areas. 

 The glare issue was partially resolved by using the normalized difference 

transformations in the orthomosaics shown in Figures 15-17. In an image with few 

shadows and uniform lighting, a Red Green Difference Index, [Green – Red] would be 

sufficient to expose the differences between vegetation and substrate. Images from the 

Potomac had substantial glare and shadow effects and the lighting sometimes changed 

between shots as environmental conditions shifted. The NGDRI was able to reduce or 
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resolve light and shadow effects by standardizing the difference, [(Green – Red) / (Green 

+ Red)], making each pixel value a ratio of the Green Red difference to its total Red and 

Green. As can be seen in Figures 16 and 17, this method greatly reduced distortion from 

light effects, but it was much less successful when applied to the MicaSense image 

orthomosaic in Figure 15. 

 

Relationship between Altitude and Image Resolution 

 The GoPro Hero 4 Black and the Phantom 3 camera were both 12 megapixel 

cameras, meaning they recorded 3,000 x 4,000 pixel images. This camera resolution was 

standard for drone-mounted cameras as a compromise between technical ability and 

weight. As camera altitude increased, more ground area was captured in each image, but 

image resolution decreased. A resolution board was created and placed on the bottom of 

the Potomac before each survey so that it was captured during the programed flights. The 

resolution test board provided a way to find the size of the smallest area that could be 

differentiated from the surrounding area at each altitude.  

Spectral resolution was tested by cropping the test board out of the surrounding 

environment in images taken at different altitudes and running an isocluster analysis. The 

resulting image demonstrated the ability of the program to differentiate similar colors at 

different levels of spatial complexity. The isocluster image was reclassified to more 

closely reflect the colors found on the actual board to aid in interpretation. The spatial 

resolution was tested by the increasing spatial complexity of the resolution board across 

its length. As the camera altitude increased, the proportion of pixels that contained 

information from two or more of the colors on the resolution board to the pixels that only 
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contain information from a single color on the resolution board increased. This had the 

effect of averaging the spectral characteristics of the different colors in the pixels that 

overlap multiple categories. The program was then unable to differentiate the colors 

because the pixel values formed a smooth curve instead of distinct groups.  

Figure 18 shows the resolution board as it was captured by the Phantom 3 camera 

at altitudes of 10, 30, and 50 m. Only the images from the 10 m altitude flight were able 

to differentiate most of the 6.25 cm2 squares, while some of the squares with similar 

colors were muddled. The program was unable to classify any of the sections of the 50 m 

altitude image of the resolution board. Decreasing image resolution quickly decreases the 

ability of the image analysis software to distinguish similar spectra. It is important to note 

that the human eye can distinguish the different colored squares much better than the 

computer. 

The compromise between area coverage and image resolution was central to this 

project. Most of the SAV present in the survey area covered sufficient bottom area that 

each individual plant could be distinguished at an altitude of 50 m. However, growths of 

P. isothrix and M. wollei varied greatly in the area they covered: the smallest patches 

were about 5 cm2 while the larger patches carpeted the substrate. The cameras used for 

the survey did not possess the spectral resolution necessary to differentiate benthic 

cyanobacteria from the SAV and substrate. Therefore, the remainder of the results will 

focus on the accuracy of the total benthic autotroph coverage that could be differentiated 

from the substrate both spatially and spectrally with the available data. 
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Figure 18: Resolution board captured from different altitudes. The images demonstrate 

the effect of image resolution on the ability of the unsupervised classification to 

distinguish unique spectra. The left column is the true color images of the resolution 

board cropped from the aerial images. The middle is the isocluster analysis result and the 

right is a reclassification of the isocluster into more identifiable colors. Decreasing image 

resolution quickly decreases the ability of the image analysis software to distinguish 

similar spectra.  
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Effect of Camera Altitude on Vegetation Coverage Estimates 

 The effect of camera altitude and the resulting image resolution on the vegetation 

and substrate coverage estimates of the unsupervised isocluster analysis and NGRDI 

transformation was tested using the sampling strategy shown in Figure 14. Five images 

were captured in an area near the Brunswick boat ramp at altitudes of 10, 20, 30, 40, and 

50 m; the images were then clipped to cover an identical spatial area. The images were 

captured during a cyanobacteria bloom; living P. isothrix, senescing P. isothrix, SAV, 

and substrate along with the resolution board and three markers were within the chosen 

spatial extent. 

 The isocluster analysis and NGRDI images for each altitude were each tested with 

50 sample locations; the resulting 10 classification error tables are shown in Table 6. 

Camera altitude did not seem to have an effect on the estimate accuracy of each method 

within the range of altitudes tested. The error analysis indicates that the NGRDI is a more 

accurate representation of autotroph and substrate than the isocluster analysis. However, 

the results were confounded by the senescing cyanobacteria, which covered much of the 

substrate and SAV in the survey area. The senescing cyanobacteria was spectrally unique 

in the isocluster analysis and received its own class while apparently actively growing P. 

isothrix was classified as SAV. In the binary NGRDI classification, senescing P. isothrix 

was classified as substrate while living cyanobacteria was classified as SAV (Figure 19).  
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Table 6: Summary of classification error matrices of the isocluster analysis and NGRDI 

transformation of Phantom 3 images captured at altitudes of 10, 20, 30, 40, and 50 m. 

The error analysis indicates that altitude does not have a large effect on classification 

accuracy at the attempted altitudes. The NGRDI seems to be the more accurate of the two 

methods but the transformation classified living P. isothrix as SAV and senescing P. 

isothrix as substrate, whereas the isocluster analysis classified living P. isothrix as SAV 

and differentiated between senescing P. isothrix and substrate. 

 

10 m Isocluster  10 m NGRDI 

 
Substrate SAV Marker Senescing Accuracy 

 
Substrate SAV Accuracy 

Substrate 0 0 0 2 

58% 

 
32 11 

76% 
SAV 1 7 0 4 

 
1 6 

Marker 0 0 1 0 

    Senescing 5 9 0 21 

    20 m Isocluster  20 m NGRDI 

 
Substrate SAV Marker Senescing Accuracy 

 
Substrate SAV Accuracy 

Substrate 0 0 0 1 

78% 

 
34 7 

86% 
SAV 0 12 0 4 

 
0 9 

Marker 0 0 0 0 

    Senescing 2 4 0 27 

    30 m Isocluster  30 m NGRDI 

 
Substrate SAV Marker Senescing Accuracy 

 
Substrate SAV Accuracy 

Substrate 1 0 0 2 

60% 

 
26 16 

64% 
SAV 0 8 0 3 

 
2 6 

Marker 0 0 0 0 

    Senescing 1 14 0 21 

    40 m Isocluster  40 m NGRDI 

 
Substrate SAV Marker Senescing Accuracy 

 
Substrate SAV Accuracy 

Substrate 0 1 0 1 

74% 

 
28 12 

72% 
SAV 0 12 0 0 

 
2 8 

Marker 0 0 0 1 

    Senescing 3 7 0 25 

    50 m Isocluster  50 m NGRDI 

 
Substrate SAV Marker Senescing Accuracy 

 
Substrate SAV Accuracy 

Substrate 0 4 0 0 

56% 

 
27 15 

66% 
SAV 0 4 0 0 

 
2 6 

Marker 0 0 0 0 

    Senescing 4 14 0 24 
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Figure 19: 10 m Isocluster Analysis and NRGDI of senescing P. isothrix bloom. Frames 

A and C show the true color image captured with the Phantom 3 Camera at an altitude of 

10 m. Frame B shows the reclassified isocluster analysis: brown is substrate, green is 

SAV, pink is senescing P. isothrix, and orange is the resolution board. Frame D shows 

the results of the reclassified NGRDI transformation: brown is substrate and senescing P. 

isothrix, green is SAV. Of special note is the way P. isothrix covers substrate and SAV. 

In the top right image (B), shadow is misclassified as substrate and substrate is 

misclassified as senescing P. isothrix. 
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DISCUSSION 

Environmental Monitoring Discussion 

 The environmental monitoring strategy of twice-a-week visits to the project area 

combined with input from weather stations and USGS Gage Stations seems to have been 

sufficient for noting every cyanobacterial bloom between the beginning of June to the 

end of September, 2017. Binary logistic regression was performed using flow data from 

the USGS Gage Station at Point of Rocks and water temperature data from the USGS 

Gage Station at Little Falls, D.C. The regression indicated that flow was a significant 

predictor of the presence of a bloom; all of the blooms occurred when flow was less than 

5,000 ft3 sec-1 (142 m3 sec-1). During the 2017 field season, there were two roughly 2-

week periods without a bloom when flow was below the 5000 ft3 sec-1 (142 m3 sec-1) 

threshold found to be significant in the logistic regression. It is suspected that the water 

temperature in the Brunswick area was too high for a bloom to occur. Previous studies 

have found a lower threshold of 21°C and an upper threshold of 27°C for P. isothrix 

blooms (MD DNR, 2016b).  

 

Survey Discussion 

Survey Protocol 

 The survey protocol developed for this study seems to be sound; however, it is 

difficult to assess because the protocol was only followed in its entirety on one of the 

survey days. Most of the issues encountered were logistical, such as the coordination of 

several volunteers traveling from different areas or conflicts in the availability of 

volunteers who were providing drones or cameras. This was compounded by the nature 
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of the survey which allowed for only a few days warning once a bloom had been 

identified before the survey was to be completed. There were also some technical issues 

such as drone mechanical failures or software incompatibilities between drones, drone 

controllers, and computers. These issues had two impacts on the proposed surveys: a 

delay in start time and depletion of the limited number of available drone batteries. 

 The protocol called for drone flights at approximately two hours before solar noon 

so that the sun was high enough to illuminate the substrate but not so high as to reflect 

back into the drone-mounted camera. Any delay in start time increased the glare effects 

in the captured imagery; some datasets were lost entirely due to glare. Limited battery 

availability to fly the drones affected the amount of area that could be covered during a 

survey. False starts were common due to the complexity of calibrating a drone and a 

camera and starting them on the correct pre-planned flight; one flight was cancelled due 

to incorrectly calibrated gyroscopes, and another because the camera had not been turned 

on. 

 All of the major impediments faced during these surveys were a result of human 

error. If the original protocol was followed, the resulting dataset should be of much 

higher quality than attained by these surveys. Additionally, many of the errors were made 

due to a lack of familiarity with the equipment, a situation easily remedied by experience. 

 

Data Processing Discussion 

Signature Development 

 The spectral signatures produced by the data from the GoPro and Phantom 

cameras showed little variation. This can be seen in Figures 8 and 9: there is a large 
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amount of overlap between each band in each target spectra. The bit-depth of the 

processed images was 8-bit, which yields a 0 to 255 value for each band in each pixel. 

The signatures produced from the 16-bit images were more distinct because the value for 

each pixel runs from 0 to 65,535, allowing the uncompressed image to record more 

nuanced variations in each band.  

Only three of the five available MicaSense bands were used in the signature 

development process because two of the bands were not effective in this environment. 

The Blue band was almost entirely surface reflection from water in the Potomac and few 

of the sub-surface features were visible through the noise. The Near IR band was mostly 

dark; the water absorbed the longer IR wavelengths so that there was nothing in this 

range reflected back to the sensor on the drone. If five bands had been available for the 

signature development progress, it is likely that the signatures developed for each target 

spectra would have been much more distinct, possibly allowing differentiation between 

genera of cyanobacteria and SAV. 

While the failure of two of the bands to provide usable data was inconvenient for 

the immediate study, it did provide effective bounds on sensor range for future research. 

The MicaSense camera used for this project was equipped with the default filters on its 

sensors, but it can be ordered with other desired filters. The research from this project 

suggests that 525 and 725 nm are the effective lower and upper usable band ranges for 

recording sub-surface targets in the Potomac River. Any future research in shallow non-

turbid freshwater systems would benefit from custom filters chosen from within this 

range, thus ensuring five usable bands. 
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The supervised and unsupervised classification techniques used in this project 

would have both benefited from additional bands. The extra bands would have aided in 

the differentiation of the SAV and P. isothrix, not accomplished in this study. Figure 20 

shows the spectral signatures of P. isothrix, M. wollei, and SAV and is overlaid with four 

of the bands captured by the MicaSense camera. The graph shows reflectance values for 

every 3 nm between 340 and 820 nm, as recorded by the Satlantic Hypergun. The Near 

IR band records light at 840 nm, just out of the range of the Hypergun, and was not 

included in the graph. A 5-band camera with its default blue and Near IR filters 

exchanged for bands centered on 525 and 650 nm is recommended for identifying and 

differentiating the spectral targets in this project. This modification would ensure that all 

five bands were usable for targeting sub-surface features in the river and that the 

available bands are centered on the areas of greatest difference between the targets 

(Figure 21). 

 

Figure 20: Spectral signatures of P. isothrix, M. wollei, and SAV overlain with the four 

default MicaSense bands that fall within the range of the Satlantic Hypergun. The vertical 

lines mark the bands captured by the current camera. The bands that line up with the 

largest differences between signatures are the bands most suited for differentiating the 

targets. 
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Figure 21: Spectral signatures of P. isothrix, M. wollei, and SAV overlain with the five 

suggested MicaSense bands. The vertical lines mark the proposed bands to be captured 

by a MicaSense camera. The bands were chosen to line up with the largest differences 

between signatures are the bands most suited for differentiating the targets.  

 

Supervised Classification 

 The Parallel Piped supervised classification of the Phantom and GoPro images 

using the identified signatures for the target spectra was unsuccessful. The large amount 

of variation in the spectral signature of each target resulted in large areas of overlap, 

impeding the ability of the program to differentiate targets. However, the supervised 

classification of the MicaSense 10 m altitude imagery was able to create a good 

approximation of the areas of substrate and SAV, but it was unable to distinguish the 

SAV from the patches of P. isothrix. It seems that this cyanobacterium is 

indistinguishable from areas of shaded SAV in the three available bands.  
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 The isocluster analysis unsupervised classification of 16-bit MicaSense and 16-bit 

Phantom images was able to differentiate substrate and SAV, but it was not able to 

separate SAV from P. isothrix. The process was disrupted in some images by areas of 

glare that altered the reflectance values of the targets; this was mitigated by cropping 

glare out of the original images. The reclassified results of the isocluster analysis, while 

fairly accurate, were somewhat obscured by noise from mis-identified pixels. This was 

probably a result of the complex colors and textures of the substrate, as well as some 

shadow effects. 

 

Image Transformations 

 Image transformations were attempted because the supervised and unsupervised 

methods were very time-consuming and produced mediocre results. NGRDI and NDREI 

were quicker methods that resulted in a binary classification, changing each pixel to 

either a SAV or substrate class. It was hoped that this method would create a more 

accurate representation of total SAV coverage by reducing shadow and glare effects. This 

method requires some subjective user input on where to make a distinction between SAV 

and substrate; this was done with the aid of the original true color imagery.  

  

Accuracy Assessment 

 The accuracy of the above methods was tested by overlaying a random sample of 

points with known class on the reclassified images. None of the attempted methods 

produced satisfactorily accurate reclassifications of the original image. All of the methods 

substantially overestimated SAV coverage, creating the vast majority of the errors in each 
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assessment. Of the attempted methods, the supervised classification was the least 

accurate, correctly identifying the targets 48% of the time, and the NDREI transformation 

was the most accurate, correctly identifying the targets 64% of the time (Table 5). The 

NGRDI was much more successful when applied to 16-bit Phantom images while testing 

the effect of altitude on accuracy, achieving 86% accuracy (Table 6). The Phantom 

images used in that test were captured on the only day that the protocol was successfully 

followed; it is likely that the minimal glare and shadow effects contributed to the better 

quality of the reclassification. 

 

Modifications to Original Study Design for Accuracy Assessment 

 The original study called for comparing the coverage estimates of the in-water 

camera images to the coverage estimate of the same spatial extent cut from the 10 and 50 

m altitude imagery. However, it quickly became apparent that the 10 m flight images 

were of sufficient quality that the target features were easily identifiable. The in-water 

camera images remained useful as controls to confirm identified features. This increased 

the amount of area that could be used to test the accuracy of the images from the area 

immediately surrounding each control point, where the in-water images were captured, to 

the entirety of the 10 and 50 m datasets. The 10 m images were very clear, and the 50 m 

images were fairly clear and, when in doubt, could be checked against the 10 m images. 

In future studies, it may be advisable to capture a much larger area at 50 m altitude and 

descend to 10 m only to capture images of each of the control markers.  

 

Orthomosaics 
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 The orthomosaics created with the images collected with the MicaSense camera 

during this project were not suitable for quantifying vegetation coverage. The change in 

reflectance values caused by sun glare was so great that normalizing the difference with 

an image transformation only partially corrected the problem. In addition, exposed rock 

reflected as strongly as the areas of densest vegetation, confounding attempts to 

differentiate SAV and substrate. The transformations attempted on the Phantom 

orthomosaics were more successful, partially because there was less glare distortion than 

in the MicaSense orthomosaic.  

 Two alterations would likely improve the orthomosaics and the information that 

can be obtained from them. If the protocol were followed correctly, and the aerial survey 

was completed two hours before solar noon, the glare effects would be greatly reduced, 

improving the image quality. Second, several different programs were used to process the 

image sets to create orthomosaics. Of the utilized programs, Drone2Map was found to 

produce the best quality orthomosaics. Pix4D was used to process the MicaSense images 

because it is the only program capable of correcting for the distortion caused by multiple 

lenses and recombining all of the bands into a single image. DroneDeploy (registered 

trademark of IBM corp., 2017) and Pix4d were also used for the Phantom images but the 

resulting orthomosaics were of much lower resolution. Drone2Map uses Pix4D 

orthorectification software, but it allows the user to export the orthomosaic in its original 

resolution. ArcGIS Pro was not used due to budget constraints, but it would be the ideal 

program for this or similar projects. ArcGIS Pro allows the user to adjust every variable 

in the orthorectification process. This would allow a researcher to use the non-glare 
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portions of images wherever there is overlap instead of averaging the pixel values, 

reducing much of the light effects that confounded attempts to analyze the orthomosaics. 

 The orthomosaics provide other benefits, despite their shortcomings. While target 

features were difficult to identify with software, they were easily identifiable by sight. 

This could allow a researcher to visually estimate vegetation coverage or the severity of a 

cyanobacteria bloom and would cover much more area than a visual estimate. The 

orthomosaic could also be revisited and analyzed by other researchers.  

 

Relationship between Altitude and Image Resolution 

Drone flight altitude requires a compromise between image resolution and area 

coverage. Drone flights were conducted at altitudes of 10 and 50 m; a 10 m flight 

requires approximately eight times as many images to cover the same amount of area as a 

50 m flight. The maximum flight time for the two drones used in this project was 

approximately 20 minutes, meaning that area coverage potential is much higher in a 50 m 

flight than a 10 m flight. Initial tests with altitude and image resolution indicated that a 

camera altitude of 50 m would have insufficient image resolution for differentiating SAV 

from cyanobacteria. However, the cameras used lacked the spectral resolution to 

differentiate these two targets. When the focus of the research was simplified to 

differentiating SAV and P. isothrix from substrate, the range of altitudes attempted did 

not seem to have an effect on the accuracy of the survey. The summarized error 

assessment results in Table 6 indicate that the accuracy of the NGRDI transformation 

remained fairly constant despite changes in altitude. 
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Comparison with Similar Studies 

 Two previous studies were considered when planning the survey protocol for this 

research. In 2014, Flynn and Chapra published a paper describing their work using an 

aerial drone with a mounted RGB camera to detect Cladophora glomerata, a green 

nuisance alga. The goal of their project was very similar to this one, to differentiate major 

features in the survey area to reliably determine total algal coverage. The scope of their 

project was larger, covering 1 km of non-turbid river, and they flew at an altitude of 120 

m to complete the survey in a single pass. They were able to mosaic the resulting images 

and differentiate target features with approximately 90% accuracy using a supervised 

classification method. However, C. glomerata seems to have been the only vegetation in 

the project area as the only features mentioned in their study were algae and substrate. 

The high altitude of the flights and resulting coarser images may have also contributed to 

the high accuracy of their results. 

 This project on the Potomac River attempted to build on their work, using similar 

equipment to differentiate a more diverse set of targets at much higher spatial resolution. 

The final results of both projects offer similar conclusions, mainly that consistent and 

accurate total vegetation coverage estimates are possible in shallow non-turbid waters 

and can be useful for studying and monitoring growth and distribution of SAV. This also 

probably indicates that the separation of substrate and SAV is the limit of the spectral 

analysis of any images captured by an RGB camera.  
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A project by Zwieg et al. (2014) attempted to use aerial drones to identify 

vegetation types in a wetland, flying a drone with an RGB camera at an altitude of 150 m 

and creating an orthomosaic of the resulting images. This team suffered a similar problem 

with glare, but it was not as detrimental to their results, because only part of their survey 

area was under water. They also used a supervised classification method to differentiate 

the vegetation communities in their study area and achieved similar results as in the 

supervised classification attempts in the Potomac project, i.e. very low accuracy. 

Zwieg et al. solved the accuracy issue by reducing the resolution of their 

orthomosaic from 5 cm pixel-1 to 50 cm pixel-1. This increased the accuracy of their 

classification by eliminating most of the detail that confused the classification, such as 

shadows and textures. This solution was appropriate to their project as the goal was to 

identify vegetation communities, but it was not applicable to this Potomac River project, 

as it would have eliminated any chance of differentiating benthic cyanobacteria from 

surrounding features. 

 

Conclusion 

 Aerial drone imaging with a three band RGB camera is an inexpensive and 

practical way of assessing vegetation coverage in shallow, non-turbid, freshwater 

environments. With proper attention to protocol and weather, large areas can quickly be 

captured at sufficient resolution to observe SAV coverage and distribution and to visually 

search for cyanobacteria bloom presence or abundance. Given sufficient funds, a five 

band camera with filters to capture bands centered on 525, 560, 650, 680, and 717 nm 
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(Figure 21) will likely be able to differentiate substrate, SAV, and cyanobacteria 

coverage. 

 This research has demonstrated the efficacy of two methods of using UAVs to 

examine shallow, non-turbid, freshwater areas. Both use the same protocol and the 

differences in the methods are dependent on the research objectives and the available 

funding. The first method involves using a Phantom 3 drone with a mounted Phantom 3 

camera to estimate the vegetation coverage of an area. This equipment can be used to 

capture 24-bit DNG images of an area from an altitude of 50m. An orthomosaic can be 

created from these images using Drone2Map software. The orthomosaic can then be 

transformed using Terrset or a similar program and the NGRDI formula to differentiate 

areas of vegetation from areas of substrate. The resulting image can then be reclassified 

into a binary image divided into vegetation and substrate, and it can provide total 

vegetation coverage estimates for the project area. The drone with a mounted camera 

should cost approximately $800, Terrset software $1,250 (but academic and student 

licenses are cheaper), and Drone2Map $3,500 for a one-year subscription. 

 The second method involves using a 3DR SOLO with a mounted MicaSense 

RedEdge camera to differentiate and quantify coverage of spectral targets in an area. The 

filters on the MicaSense RedEdge can be customized as desired; the proposed bands in 

Figure 21 are specific to the spectral targets of interest in the Brunswick, MD area of the 

Potomac River. The spatial resolution of the MicaSense camera is lower than that of the 

Phantom camera, but an altitude of 50 m may still be low enough to differentiate targets 

depending on the goals of the study; if higher resolution is needed, an altitude of 10 m 

may be more appropriate. An orthomosaic can be created from these images using 
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Drone2Map software. Terrset should then be used to perform an isocluster analysis of all 

data from the five available bands. The resulting image will be automatically classified 

into spectrally similar groups; these groups can be compared with a true color image of 

the project area to determine which of the spectral targets they most correspond to as was 

done in Figure 11. An isocluster analysis was found to be the best option for 

differentiating targets in this study, but a supervised classification may be better suited to 

differentiating multiple targets. Terrset could be used to perform a supervised 

classification utilizing all five of the available bands and using features in the control 

points as training areas. The 3DR SOLO drone costs approximately $300 and a 

MicaSense RedEdge camera $4,900; costs of Terrset and Drone2Map are the same as 

above.  

 

Proposed Future Work 

Benthic Autotroph Coverage 

 This study made progress towards the original goal of quantifying benthic 

autotroph coverage in the Upper Potomac, but it was unable to obtain an estimate for 

submerged plant growth. Here I describe the methodology I believe will be the most 

successful in quantifying benthic autotroph coverage in the future. 

Using the methods described in the conclusion, an attempt should be made to 

estimate benthic autotroph coverage in a portion of the River. Four 20-minute flights at 

an altitude of 10 m should be able to cover a 50 x 200 m transect across the Potomac, a 

single fifth 50 m altitude flight should be able to cover the same spatial area. These five 

flights should be completed with both a MicaSense RedEdge camera and a Phantom 3 
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camera. Four orthomosaics should be completed from the collected images; one at each 

altitude for each camera.  

ArcGIS Pro (ESRI, 2018) is developing tools that allow better control over how 

orthomosaics are constructed. This program may be able to eliminate some of the image 

glare problems by allowing the researcher to choose which pixels are represented in areas 

of overlap between images instead of averaging the values. If a researcher were able to 

choose to keep the lowest reflectance values in overlap areas and discard higher values, 

there should be no glare effects. 

A supervised classification, using known benthic autotroph locations from control 

points, should then be used to identify spectral targets in the project area. Classification 

accuracy can be assessed using sample points and an error matrix as was done above. If 

low accuracy is attained, additional training areas should be identified using the low 

altitude imagery and the control point images. When high classification accuracy is 

achieved, above 80%, total coverage of each target in the survey area can be quantified. 

 Further work should to be done to determine how much of the Potomac can be 

characterized based on a survey such as the one described, which covers approximately 

10,000 m2. This could be accomplished with several simultaneous drone surveys along a 

stretch of river or by comparing the results of the drone surveys with the results of nearby 

traditional visual surveys. 

 

Spectral Library 

 A library should be collected containing the spectral signatures of common 

autotrophs and substrate types in the Upper Potomac. These spectral signatures should be 
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collected with a radiometer such as the Satlantic Hypergun. This library would allow 

future researchers to better decide which camera or camera filters would be best for 

differentiating targets, as was done with the MicaSense RedEdge camera for the known 

spectral targets in the Brunswick area. Bands should be chosen to collect reflectance in 

the areas of the spectrum that show the largest differences in the spectral signatures of the 

targets. 

 

Hyperspectral Camera 

 Drone-mounted hyperspectral cameras are expensive but if one were available it 

would provide imagery that would almost certainly be able to differentiate all spectral 

targets in the Upper Potomac. A hyperspectral camera records images with hundreds of 

bands for each pixel, i.e. one band for every 3 nm, providing much better spectral 

resolution. The spectral resolution may even be sufficient to differentiate between species 

of SAV or cyanobacteria, between new growth and old growth of the same species, and 

to estimate thickness of benthic cyanobacteria or macroalgal mats. Data collected with a 

hyperspectral camera could also be used to identify spectral signatures which could be 

incorporated into a spectral library such as described above. Terrset IDRISI is capable of 

processing hyperspectral data and can perform both unsupervised and supervised 

classifications. 

 

Benthic Cyanobacteria Toxicity 

 If benthic autotroph coverage can be quantified and SAV can be differentiated 

from benthic cyanobacteria, it may be possible to estimate cyanotoxin levels in the water. 
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This would require multiple drone surveys a day throughout a cyanobacteria bloom and 

simultaneous collection and toxin analysis of water and cyanobacteria samples. With 

these data, it may be possible to establish a correlation between cyanobacteria coverage 

and levels of dissolved toxin. Cyanotoxins are mainly released during senescence 

(Carpenter et al., 1986), so it may be necessary to estimate coverage of both healthy and 

senescing cyanobacteria. If it is possible to estimate biomass of spectral targets with 

hyperspectral data, a better correlation could be expected.  
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APPENDIX I 

Data Processing Protocol 

 

1. RAW to 16-bit TIFF compatible with ArcMap and Terrset 

a. Adobe Lightroom 

i. File 

1. Import Photos and Video 

a. Select RAW Files 

i. Export as TIFF 

ii. No compression 

iii. AdobeRGB (1998) Color Space 

iv. 16 bits/component 

2. Crop to same spatial extent 

a. ArcMap 

i. Add 8 and 16 bit images 

ii. Draw toolbar 

1. Draw rectangle around spatial extent of lowest altitude 

image 

a. Select ‘Convert Graphics to Features’ on Draw 

toolbar 

i. Save as shape file 

iii. Change transparency of lowest altitude image to 50% and place 

first in the drawing order 

iv. Place image from higher altitude second in drawing order 

v. Open Georeferencing toolbar 

1. Use ‘Shift’ and ‘Scale’ tools to align reference markers in 

the images 

a. Update Georeferencing when aligned 

vi. Windows 

1. Image Analysis 

a. Select image and rectangular shapefile 

i. Export (if 16-bit TIFF original) 

1. Selected Graphics (Clipping) 

2. Compression type: None 

3. Format: TIFF 

ii. Export (if JPEG original) 

1. Selected Graphics (Clipping) 

2. Compression Type: JPEG 

3. Compression Quality: 100 
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3. NGRDI (Normalized Green Red Difference Index) 

a. Terrset 

i. IDRISI GIS Analysis 

1. Mathematical Operators 

a. OVERLAY 

i. First-Second/First+Second 

1. First band is Green band 

2. Second band is Red band 

3. Output image is NGRDI 

2. Database Query 

a. RECLASS 

i. Use aerial and transformed image to find 

point in -1 to 1 scale where substrate gives 

way to vegetation 

ii. Reclass values below this point as substrate, 

reclass values above this point as vegetation 

1. Assign a common palette to each 

image to ease interpretation 

4. NDREI (Normalized Difference RedEdge Index) 

a. Terrset 

i. IDRISI GIS Analysis 

1. Mathematical Operators 

a. OVERLAY 

i. First-Second/First + Second 

1. First band is RedEdge band 

2. Second band is Red band 

3. Output image is NDREI 

2. Database Query 

a. RECLASS 

i. Use aerial and transformed image to find 

point in -1 to 1 scale where substrate gives 

way to vegetation 

ii. Reclass values below this point as substrate, 

reclass values above this point as vegetation 
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5. ISOCLUSTER (Unsupervised Classification) 

a. Terrset 

i. IDRISI Image Processing 

1. Hard Classifiers 

a. ISOCLUST 

i. Enter all available bands 

ii. Enter ‘20’ as number of desired categories 

iii. Output image is isocluster analysis 

ii. File 

1. Display 

a. Symbol workshop 

i. Open Palette 

1. Beginning in square 0 at top left and 

moving right choose, color scheme 

for isocluster reclassification 

2. Example: Square 1 is Dark Green 

and will correspond to isocluster 

classes identified as SAV 

iii. File 

1. Data Entry 

a. Edit 

i. Enter a single column numbered 1 through 

20 

ii. Save as Attribute Values File (AVL File) 

iii. Create Raster Group with True color image 

and isocluster output 

iv. Link images 

v. Enter one space after each number in first 

column and enter category number from 

palette file based on visual identification of 

isocluster classes by comparison with linked 

true color image 

b. Assign 

i. Feature definition image is Isocluster 

ii. Feature output is reclassed image 

iii. Attribute Values File is from above step 

after all 20 classes have been reclassified 

with numbers corresponding to custom 

palette 
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iv. Layer Properties 

1. Palette File 

a. Choose palette file created above 

b. Resulting image is reclassed isocluster image with 

palette colors reflecting desired categories 

6. Error Assessment 

a. Terrset 

i. IDRISI Image Processing 

1. Accuracy Assessment 

a. SAMPLE 

i. Reference image is true color image 

ii. Select Stratified random sampling scheme 

iii. Number of points: 50 

iv. Output file as desired 

v. Vector output type 

ii. File 

1. Data Entry 

a. Edit 

i. Open new AVI file  

ii. Number through 50 followed by a space 

2. Display 

a. Choose true color image 

i. Add layer 

1. Add sample vector file 

a. Identify class of each of 50 

vector locations based on true 

color image and enter in AVI 

file 

3. File 

a. Reformat 

i. RASTERVECTOR 

1. Select sample vector set 

2. Let file to be updated blank 

a. Create new image file 

b. Copy spatial extent from true 

color image 

b. Data Entry 

i. Assign 

1. Feature definition image is rasterized 

sample location file 

2. Feature output is reclassed sample 

file 
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3. Attribute Values File is from above 

step after all 50 sample locations 

have been assigned a class based on 

the true color image 

iii. IDRISI Image Processing 

1. Accuracy Assessment 

a. ERRMAT 

i. Ground truth image is reclassed sample 

raster 

ii. Categorical map image is either a reclassed 

isocluster of the true color image or a 

transformed version of the true color image 

iii. Output consists of a confusion matrix 

detailing correctly and incorrectly classed 

sample locations as well as an overall 

accuracy estimate 
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APPENDIX II 

Bloom Occurrence Statistics 

 

 A binary logistic regression was performed to examine the relationship between 

Potomac River flow, water temperature, and cyanobacteria blooms in the portion of the 

Potomac near Brunswick, MD. River flow data were obtained from the Point of Rocks 

USGS Gage station located near Point of Rocks, MD, approximately 10 km downstream 

from Brunswick. Water temperature data were obtained from the Little Falls USGS Gage 

station near Washington D.C., approximately 75 km downstream from Brunswick. A 

linear regression was performed to examine the relationship between the water 

temperature at Little Falls and Brunswick to determine whether the Little Falls 

temperature data were a valid proxy for the temperatures at Brunswick. 

 

Water Temperature Linear Regression 

 Brunswick water temperature data were collected on each of the five survey days 

in the summer of 2017. Thirty-six additional data points were obtained from MD DNR 

survey data collected by J. Henesy of MD DNR during a Potomac River monitoring 

project conducted between 2013 and 2016. A linear regression was performed to 

determine if the water temperature in the two areas was significantly correlated, by 

comparing water temperature measurements taken at Brunswick to the water temperature 

recorded at Little Falls on that day. The water temperature data are located in Table AII-

1. 

 The data met all of the assumptions necessary to validate a linear regression; the 

Little Falls data were used as the independent variable and the Brunswick data were the 

dependent variable. The variables have a linear relationship as can be seen in Figure AII-
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1, both variables were distributed normally, and the data exhibit a homoscedastic 

distribution. The results of the SPSS regression calculations can be found in Tables AII-

2, 3, and 4. The null hypothesis was that there is no relationship between the water 

temperature at Little Falls and the water temperature at Brunswick. 

 

Table AII-1: Water temperature data measured manually at Brunswick and automatically 

at the Little Falls USGS Gage Station. 

 

Date Brunswick 

Little 

Falls Date Brunswick 

Little 

Falls Date Brunswick 

Little 

Falls 

5/30/13 23.4 21.8 6/26/14 24.0 26.3 6/2/16 25.6 26.9 

6/5/13 23.3 23.7 7/3/14 25.1 28.4 6/15/16 23.8 26 

6/11/13 23.8 22 7/21/14 25.6 25.9 6/29/16 26.2 27.9 

6/19/13 23.5 23.5 7/29/14 23.3 25.8 7/13/16 27.8 30.1 

6/27/13 26.6 27.8 8/14/14 24.4 23.9 7/27/16 29.6 32.6 

7/10/13 27.6 28.4 8/21/14 23.9 25.9 8/10/16 26.4 29.1 

7/23/13 29.5 29.6 9/18/14 19.6 21.8 8/24/16 26.9 28.6 

7/30/13 26.0 25.7 5/7/15 17.5 22.3 9/7/16 26.1 27.5 

8/7/13 23.6 24.9 6/1/15 21.5 29.5 6/12/17 24.3 28.3 

8/14/13 23.5 26.3 6/17/15 22.2 29.4 6/30/17 27.4 28.8 

8/26/13 25.1 25.1 7/1/15 25.5 23.2 8/18/17 25.5 29.4 

9/18/13 21.0 21.1 7/29/15 27.6 31.1 8/25/17 24.7 28.7 

6/4/14 21.0 23.2 8/17/15 29.0 30.4 9/28/17 23.9 27.1 

6/11/14 23.8 22.4 9/9/15 29.4 29.6 
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Figure AII-1: Water temperature data from each station plotted against each other and 

overlain with the regression line generated by SPSS. The Little Falls water temperature 

was the independent variable and the Brunswick water temperature measurements were 

the dependent variable.  

 

Table AII-2 contains the SPSS generated model summary of the linear regression 

of the water temperature data from Brunswick and Little Falls. The R, R2, and adjusted 

R2 values indicate the correlation between the independent and dependent variables; R2 is 

the square of the R score and the Adjusted R2 score penalizes the R2 score based on the 

number of independent variables included in the model. An Adjusted R2 of 0.479 

indicates that 47.9% of the variability of the dependent variable is accounted for by the 

independent variable. The standard error of the residual is the square root of the residual 

mean square located in Table AII-3.  

 

Table AII-2: SPSS generated model summary of the linear regression.  

 

R R2 Adjusted R2 Std. Error of the Estimate 

0.708 0.502 0.489 1.882 
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Table AII-3 contains the SPSS generated Analysis of Variance of the linear 

regression. The Sum of Squares column details the square of the difference between each 

datum and the regression line. The Regression Sum of Squares is the variance that can be 

explained by the independent variable while the Residual Sum of Squares is the variance 

that cannot be explained by the independent variable. The Total Degrees of Freedom are 

equal to N - 1 where N is the number of data in the sample. The Regression Degrees of 

Freedom are equal to the number of coefficients in the model – 1; in this model, there are 

two coefficients (the Y-intercept and the slope). The Residual Degrees of Freedom are 

equal to the Total Degrees of Freedom – the Regression Degrees of Freedom. The F-

score was obtained by dividing the Regression Mean Square by the Residual Mean 

Square and has an associated p-value based on the degrees of freedom and the desired 

alpha error of 0.05%. The F-score of 39.27 surpasses the F-table threshold of 4.08 and 

indicates that the null hypothesis can be rejected, with a 0.1% chance of an alpha error.  

 

Table AII-3: SPSS generated Analysis of Variance of the linear regression.  

 

 
Sum of Squares 

Degrees of 

Freedom 
Mean Square F-score Significance 

Regression 139.03 1 139.03 39.27 .001 

Residual 138.073 39 3.54 
  

Total 277.103 40 
   

 

Based on the F-score and the R2-score, this linear regression suggests that the 

water temperature at Brunswick is highly correlated with the water temperature at Little 

Falls. The regression describing the relationship between the water temperature in the 

two areas is explained in Table AII-4. The line for the regression is built from the 

coefficient column, Brunswick Temperature = 8.045 + 0.632Little Falls Temperature; 
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this is the regression line graphed in Figure AII-1. The standard error and confidence 

interval columns show the variability within the relationship. A t-score is given for both 

the Y-intercept and the slope. These t-scores describe whether the respective coefficients 

are significantly different from 0; a coefficient of 0 would indicate that there was no 

correlation between the independent and dependent variables. The t-score of 0.005 for the 

Y-intercept indicates that there is a significant relationship with a 0.5% chance of an 

alpha error. The t-score of 0 for the slope indicates that the relationship between the 

independent and dependent variables is significant with a 0% chance of an alpha error. 

 

Table AII-4: SPSS generated linear regression model coefficients. 

 

 

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t-score Sig. 

95.0% Confidence 

Interval for 

Coefficient 

 
Coefficient 

Std. 

Error 
Coefficient 

  

Lower 

Bound 

Upper 

Bound 

Y-intercept 8.045 2.696 
 

2.984 0.005 2.591 13.498 

Slope 0.632 0.101 0.708 6.267 0 0.428 0.836 

 

Potomac River Flow and Water Temperature Binary Regression 

 A binary logistic regression was performed to determine the relationship between 

Potomac River Flow, water temperature, and the presence of a benthic cyanobacteria 

bloom. This statistical test was chosen because the aerial drone surveys failed to provide 

quantitative coverage estimates of benthic cyanobacteria in the Potomac. The available 

data for the survey period (May – October, 2017) consisted of daily average flow data 

from the USGS Point of Rocks Gage Station, daily average water temperature data from 

the USGS Little Falls Gage Station, and cyanobacterial bloom presence/absence data. 

The binary logistic regression is the only statistical test capable of analyzing two 
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independent variables consisting of ratio data and a dependent variable consisting of 

binary categorical data. 

 The data met all of the assumptions necessary to validate a binary logistic 

regression; the independent variables consisted of scale data and the dependent variable 

consisted of two mutually exclusive categories. The Little Falls water temperature data 

and the Point of Rocks flow data were used as the independent variables and the 

Brunswick bloom presence-absence data were used as the dependent variable. The results 

of the SPSS regression calculations can be found in Tables AII-5-10. The null hypothesis 

was that there is no relationship between flow and water temperature and cyanobacteria 

blooms during the period May – October, 2017 at Brunswick, MD. 

 The SPSS binary regression program begins by defaulting to an assumption that 

will result in the best prediction of the known data (Table AII-5). The program assumed 

that there would not be any cyanobacteria blooms that allowed the program to correctly 

guess 81.5% of the cases. Tables AII-6 and 7 contain additional output for the null model. 

Table AII-6 contains the coefficient and standard error for the null model; the Wald 

statistic is obtained by dividing the coefficient by the standard error. The resulting Wald 

statistic is compared to a chi square critical values table for 1 degree of freedom and a p-

value of 0.05 to get a significance value. The significance value of p < 0.001 generated 

by SPSS implies that the null hypothesis can be rejected with a 0.1% chance of alpha 

error.  
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Table AII-5: SPSS generated classification table output. 

 

Observed Predicted Percentage Correct 

 No Bloom Bloom  

No Bloom 123 0 100.0 

Bloom 28 0 .0 

Overall Percentage   81.5 

 

Table AII-6: SPSS generated null model significance output. 

 

Coefficient Std. Error Wald Degrees of Freedom Significance 

-1.480 0.209 49.957 1 0.001 

 

 The preliminary results in Tables AII-5 and 6 reject the null hypothesis that there 

is no relationship between the independent and dependent variables. The SPSS output in 

Tables AII-7, 8, 9, and 10 explain the relationship between the independent and 

dependent variables. Table AII-7 contains the likelihood that the addition of the 

independent variables will improve the model. The flow and water temperatures both 

significantly improve the model; flow with a 0.0% chance of alpha error and water 

temperature with a 0.5% chance of alpha error; the addition of both variables entails a 

0.2% chance of alpha error. The Hosmer-Lemeshow goodness-of-fit statistic rates how 

well the model fits the data; the chi-square score of 5.857 was not significant (Table AII-

8). The non-significant chi-square value of this test indicated that the data fit the model. 

This test was accomplished by sub-sampling the dataset to see if the proportions of bloom 

to no bloom data remained the same as in the overall model. 
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Table AII-7: SPSS generated output detailing the whether the addition of independent 

variables significantly improves the model. 

 

  Score Degrees of Freedom Significance 

Variables 

Flow 12.489 1 0.001 

Water Temp 7.817 1 0.005 

Overall Statistics 12.718 2 0.002 

 

Table AII-8: SPSS generated Hosmer-Lemeshow goodness-of-fit statistic. 

 

Chi-square Degrees of Freedom Sig. 

5.857 8 0.663 

 

 Table AII-9 illustrates the efficacy of the SPSS generated model and Table AII-10 

shows the significance of the independent variables as well as the coefficients for the 

model formula. Table AII-9 is very similar to Table AII-5, but this table uses the SPSS 

generated model instead of placing all cases in whichever category resulted in a higher 

accuracy prediction. The model correctly predicted 86.1% of the cases while the null 

model correctly predicted 81.5% of the cases. Table AII-10 contains the coefficients for 

each independent variable and the Y-intercept, which were inserted into a logistic 

regression formula to create the binary regression model: Probability of Bloom = (1 + 

exp (-(-0.002 * Flow + 0.241 * Water Temperature - 2.767)))-1. The significance values 

attached to the independent variables reject the null hypothesis that there is no 

relationship between the independent and dependent variables.  
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Table AII-9: SPSS generated classification table output with independent variables 

included. 

 

Observed Predicted Percentage Correct 

 No Bloom Bloom  

No Bloom 117 6 95.1 

Bloom 15 13 46.4 

Overall Percentage   86.1 

 

Table AII-10: SPSS generated binary regression formula. 
      

Variable Coefficient Std. Error Wald Degrees of Freedom Significance 

Flow -0.002 0.000 14.949 1 0.001 

Water Temp 0.241 0.108 5.007 1 0.025 

Y-intercept -2.767 2.509 1.216 1 0.270 
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