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On the Accuracy of the One-step UKF and the Two-step UKF

Ankit Goel and Dennis S. Bernstein

Abstract— The most accurate version of the unscented
Kalman filter (UKF) involves the construction of two ensem-
bles. To reduce computational cost, however, UKF is often
implemented without the second ensemble. This simplification
comes at a price, however, since, for linear systems, the one-step
variation of the two-step UKF does not specialize to the classical
Kalman filter, with an associated loss of accuracy. This paper
remedies this drawback by developing a modified one-step UKF
that recovers the classical Kalman filter for linear systems.
Numerical examples show that the modified one-step UKF also
recovers the accuracy of the two-step UKF in nonlinear systems
with linear outputs.

I. INTRODUCTION

The Unscented Kalman filter (UKF) is widely applied to

nonlinear estimation problems [1]. UKF was introduced in

[2], [3] has been applied to a wide array of engineering

and scientific applications including attitude estimation [4],

navigation [5], battery-charge estimation [6], and state and

parameter estimation in atmospheric models [7].

Like the Ensemble Kalman filter (EnKF) [8], UKF prop-

agates an ensemble in order to compute the mean and

covariance of the state estimate. However, unlike EnKF,

which approximates the covariance using statistics of the

propagated ensembles, UKF uses unscented transformations

to approximate the covariances, which allows UKF to reduce

the size of the ensemble to 2n+1, where n is the dimension

of the state of the system [9]. Since UKF propagates the

ensemble using the nonlinear dynamics map, the accuracy

of UKF is expected and is also reported to be better than

that of the Extended Kalman filter, which is based on the

linearized dynamics [10].

The classical UKF requires generation of a 2n + 1 size

ensemble twice at every step[1, p. 447], [11, p. 86]. The

first ensemble is used to propagate the estimated state and

compute the prior covariance, whereas the second ensemble

is used to approximate cross-covariance matrices needed to

compute the filter gain. This is the two-step UKF. Since

the UKF gain and covariance update are motivated by the

corresponding expressions used in the Kalman filter, it is

reasonable to expect that, in the case of a linear system,

the UKF gain and the covariance update will coincide

with Kalman filter. As expected, the two-step UKF indeed

specializes to the classical Kalman filter when applied to a

linear system, as explicitly shown in Section III.
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In the two-step UKF, the prior estimate and the prior

covariance computed after propagating the first ensemble

through the dynamics of the system are used to generate

the second ensemble, which is then further transformed into

the output ensemble using the algebraic output equation.

In order to reduce implementation complexity and reduce

computational cost, second ensemble generation is often

omitted. Instead, the propagated ensemble is used for further

computations. This is the one-step UKF. In fact, the UKF

originally introduced in [2], [3], [9] presented the one-

step formulation. However, it turns out that, the one-step

UKF does not specialize to the classical Kalman filter when

applied to a linear system. This is due to the fact that effect

of the process noise does not pass through to the output-

error covariance. In fact, one-step UKF output covariances

and the propagated state covariance are found to be missing

the process noise term when applied to a linear system, as

shown in this paper.

This paper presents a modification of the one-step UKF

that recovers the accuracy of the two-step UKF for systems

where the output equation is linear with only one ensemble

generation. Like the two-step UKF, the one-step modified

UKF (MUKF) specializes to the Kalman filter for linear

systems. In particular, we show explicitly that the two-step

UKF specializes to the the Kalman filter in the case of a

linear system. Next, we show that the accuracy of the one-

step UKF is worse than the accuracy of the two-step UKF

in the case of linear system by explicitly stating the missing

terms. Finally, by including the missing terms, we present

the one-step modified UKF that recovers the accuracy of the

two-step UKF.

This paper is organized as follows. Section II briefly

reviews the Kalman filter to introduce the terminology and

notation used in this paper. Section III briefly reviews the

two-step UKF and shows that, for linear systems, it special-

izes to the classical Kalman filter. Section IV reviews the

one-step UKF to a linear system and shows that, for linear

systems, it does not specialize to the classical Kalman filter.

Section V presents a modification of the one-step UKF that

specializes to the classical Kalman filter in the case of linear

systems. Section VI applies the proposed extension to two

nonlinear systems and compares the accuracy of uncertainty

propagation. Finally, the paper concludes with a discussion

in Section VII.

II. SUMMARY OF THE KALMAN FILTER

This section briefly reviews the Kalman filter to introduce

terminology and notation for later sections. Consider a linear
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system

xk+1 = Akxk +Bkuk + wk, (1)

yk = Ckxk + vk, (2)

where, for all k ≥ 0, Ak, Bk, Ck are real matrices, wk ∼
N (0, Qk) is the disturbance, and vk ∼ N (0, Rk) is the

sensor noise.

For the system (1), (2), the Kalman filter is

x̂k+1|k = Akx̂k|k +Bkuk, (3)

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − Ck+1x̂k+1|k), (4)

where x̂k+1|k is the prior estimate, x̂k+1|k+1 is the posterior

estimate at step k + 1, and the Kalman gain Kk+1 is given

by

Kk+1 = Pk+1|kC
T
k+1R

−1

k+1. (5)

The prior covariance Pk+1|k at step k + 1 is given by

Pk+1|k = AkPk|kA
T
k +Qk, (6)

and the posterior covariance at step k + 1 is given by

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
k+1R

−1

k+1Ck+1Pk+1|k. (7)

where

Rk+1
△
= Ck+1Pk+1|kC

T
k+1 +Rk+1. (8)

The Kalman filter is (3), (4) where Kk+1 is given by (5) and

the covariance matrices are updated by (6), (7).

Next, in order to establish connections with UKF, (5), (7)

are reformulated in terms of covariance matrices instead of

Ak and Ck+1. Defining

Pzk+1|k+1

△
= Ck+1Pk+1|kC

T
k+1 +Rk+1, (9)

Pe,zk+1|k

△
= Pk+1|kC

T
k+1, (10)

and substituting (9) and (10) in (5) and (7), the Kalman gain

can be written as

Kk+1 = Pe,zk+1|k
P−1
zk+1|k+1

, (11)

and the corresponding optimized posterior covariance at step

k + 1 can be written as

Pk+1|k+1 = Pk+1|k −Kk+1P
T
e,zk+1|k

. (12)

As shown in the next section, UKF approximates the co-

variance matrices Pk+1|k, Pzk+1|k+1
, and Pe,zk+1|k

by using

ensembles instead of Ak and Ck+1.

III. SUMMARY OF TWO-STEP UKF

This section briefly reviews the classical two-step un-

scented Kalman filter to establish notation and terminology

for use in the rest of the paper. The UKF algorithm is

formulated using a compact matrix-based notation and is

based on the algorithm presented in [11, p. 86].

Consider a system

xk+1 = fk(xk, uk) + wk, (13)

yk = gk(xk) + vk, (14)

where, for all k ≥ 0, fk, gk, Ck are real-valued vector

functions, wk ∼ N (0, Qk) is the disturbance, and vk ∼
N (0, Rk) is the sensor noise.

The following notation is used to present ensembles in a

compact manner. Let x ∈ R
lx and P ∈ R

lx×lx be positive

definite. The ensemble X(x, P ) ∈ R
lx×(2lx+1) is the matrix

X(x, P )
△
= [x x+ p1 · · · x+ plx x− p1 · · · x− plx ],

where pi is the i-th column of P. Let α > 0. Define

W
△
=

1

2α2lx

[

2(α2 − 1)lx
12lx×1

]

∈ R
2lx+1.

The weighted mean of the ensemble X is x̄
△
= XW, and

the ensemble perturbation is X̃
△
= X − H(x̄), where, for

v ∈ R
n, H(v)

△
= 11×2lx+1 ⊗ v ∈ R

n×(2lx+1). Note that ⊗
is the Kronecker product [12].

In order to compute the filter gain Kk+1 and the poste-

rior covariance Pk+1|k+1, UKF approximates the covariance

matrices Pk+1|k, Pzk+1|k+1
, and Pe,zk+1|k

in (11) and (12)

by propagating an ensemble of 2lx + 1 sigma points.

For all k ≥ 0, the i-th sigma point x̂σi,k is defined as the

i-th column of

Xk|k
△
= X

(

x̂k|k, α
√

lxPk|k

)

, (15)

where α ∈ R is a tuning parameter and Pk|k is the

posterior covariance given by UKF at step k. Then, for

i = 1, . . . , 2lx + 1, the sigma points are propagated as

x̂σi,k+1 = fk(x̂σi,k, uk). (16)

The prior estimate and the prior covariance at step k+1 are

given by

x̂k+1|k = Xk+1|kW, (17)

Pk+1|k = X̃k+1|kWdX̃
T
k+1|k +Qk, (18)

where

Xk+1|k
△
=

[

x̂σ1,k+1 · · · x̂σ2lx+1,k+1

]

. (19)

Next, the posterior estimate and the posterior covariance

at step k + 1 are computed by regenerating sigma points as

shown next. Defining

X ′
k+1|k

△
= X

(

x̂k+1|k, α
√

lxPk+1|k

)

, (20)

the output of the i-th sigma point is given by

ŷσi,k+1 = gk+1(X
′
k+1|kei), (21)

where ei is the i-th column of I2lx+1. The covariance

matrices Pzk+1|k+1
and Pe,zk+1|k are then given by

Pzk+1|k+1
= Ỹk+1WdỸ

T
k+1 +Rk+1, (22)

Pe,zk+1|k
= X̃ ′

k+1|kWdỸ
T
k+1, (23)

where

Yk+1
△
=

[

ŷσ1,k+1 · · · ŷσ2lx+1,k+1

]

∈ R
ly×2lx+1. (24)



Finally, the posterior estimate at step k + 1 is

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − Yk+1W ), (25)

and the posterior covariance at step k + 1 is

Pk+1|k+1 = Pk+1|k −Kk+1P
T
e,zk+1|k

, (26)

where

Kk+1 = Pe,zk+1|k
P−1
zk+1|k+1

. (27)

The two-step UKF is (17), (25) where the posterior covari-

ance is given by (26) and the filter gain is given by (27).

Note that (26), (27) are similar to and are in fact motivated

by (11), (12). The various covariance matrices computed in

the two-step UKF are summarized in Table I.

The following result shows that the two-step UKF special-

izes to the Kalman filter when applied to a linear system.

Proposition 3.1: Consider the linear system (1), (2). Let

Pk|k be the posterior covariance given by the Kalman filter

and let PUKF
k|k be the posterior covariance given by the two-

step UKF. Let x̂ ∈ R
n and let P be positive definite. Assume

that x̂UKF
k|k = x̂KF

k|k = x̂ and PUKF
k|k = PKF

k|k = P. Then,

PUKF
zk+1|k+1

= PKF
e,zk+1|k

, (28)

PUKF
e,zk+1|k

= PKF
e,zk+1|k

. (29)

Furthermore,

x̂UKF
k+1|k+1 = x̂KF

k+1|k+1, (30)

KUKF
k+1 = Kk+1, (31)

PUKF
k+1|k+1 = PKF

k+1|k+1. (32)

Proof: See Appendix VIII-A.

Proposition 3.1 implies that, in a linear system, the two-

step UKF reduces to the Kalman filter. Furthermore, note

that, in linear systems, the choice of α does not affect KUKF
k+1

and PUKF
k+1|k+1.

IV. ONE-STEP UKF

This section reviews the one-step UKF presented in [1]–

[3], [9], where the second ensemble generation step, given

by (20), is omitted in order to reduce computational effort

and cost.

In this case, the output of the i-th sigma point is given by

ŷσi,k+1 = gk+1(Xk+1|kei), (33)

which uses the propagated ensemble Xk+1|k given by (19),

instead of regenerating a new ensemble using the prior

estimate and the prior covariance. In the one-step UKF, the

covariance matrices Pzk+1|k+1
and Pe,zk+1|k are given by

Pzk+1|k+1
= Ỹk+1WdỸ

T
k+1 +Rk+1, (34)

Pe,zk+1|k
= X̃k+1|kWdỸ

T
k+1. (35)

Note that (34) and (35) use the propagated ensemble Xk+1|k

to compute the perturbed ensembles instead of using the

regenerated ensemble X ′
k+1|k.

The one-step UKF is (17), (25) where the posterior

covariance is given by (26) and the filter gain is given by

(27), However Pzk+1|k+1
and Pe,zk+1|k

used in (26), (27) are

now given by (34), (35). The various covariance matrices

computed in the one-step UKF are summarized in Table I.

The following result shows that the one-step UKF does

not specialize to the Kalman filter when applied to a linear

system.

Proposition 4.1: Consider the linear system (1), (2). Let

Pk|k be the posterior covariance given by the Kalman filter

and let PUKF1
k|k be the posterior covariance given by the one-

step UKF. Let x̂ ∈ R
n and let P be positive definite. Assume

that x̂UKF1
k|k = x̂KF

k|k = x̂ and PUKF1
k|k = PKF

k|k = P. Then,

PUKF1
zk+1|k+1

= PKF
e,zk+1|k

− Ck+1QkC
T
k+1, (36)

PUKF1
e,zk+1|k

= PKF
e,zk+1|k

−QkC
T
k+1, (37)

Furthermore, assume that Qk 6= 0, and Ck /∈ N (Qk). Then,

x̂UKF1
k+1|k+1 6= x̂KF

k+1|k+1, (38)

KUKF1
k+1 6= Kk+1, (39)

PUKF1
k+1|k+1 6= PKF

k+1|k+1, (40)

tr (PUKF1
k+1|k+1) ≤ tr (PKF

k+1|k+1). (41)

Proof: See Appendix VIII-B.

Proposition 4.1 implies that, in a linear system where

disturbance is not zero, the one-step UKF does not reduce to

the Kalman filter. That is, the posterior covariance propagated

by the one-step UKF is not equal to the covariance given by

(7). This inequality arises due to the fact that the output error

covariance Pzk+1|k+1
is missing the term Ck+1QkC

T
k+1 and

the cross-covariance Pe,zk+1|k
is missing the term QkC

T
k+1.

The next section presents a modification of the one-step UKF

that includes the missing term and is thus more accurate than

the one-step UKF. This modification is expecially beneficial

for high-dimension nonlinear systems where the second

sigma-point generation step adds considerable computational

cost. Furthermore, the second sigma-point generation step

makes the algorithm non-modular.

V. ONE-STEP MODIFIED UKF

As shown in the previous section, the covariances

Pzk+1|k+1
and Pe,zk+1|k

in (58) and (59) are missing terms

that depend on the disturbance statistics Qk, thus preventing

one-step UKF from specializing to the Kalman filter for

linear systems. To remedy this omission, this section presents

the one-step modified UKF (MUKF), which specialize to the

Kalman filter for linear systems. In this modification, the

UKF covariance matrices (34), (35) are modified such that

they specialize to (9), (10) in the case of linear systems.

Using the output matrix, MUKF adds the missing terms

to Pzk+1|k+1
and Pe,zk+1|k

. In particular, in MUKF, the

covariance matrices Pzk+1|k+1
and Pe,zk+1|k are given by

Pzk+1|k+1
= Ỹk+1WdỸ

T
k+1 + Ck+1QkC

T
k+1 +Rk+1, (42)

Pe,zk+1|k
= X̃k+1|kWdỸ

T
k+1 +QkC

T
k+1. (43)

Note that, in the case of nonlinear systems, Ck+1 can be

computed using the Jacobian of the output map.



Variable Two-step UKF One-step UKF Modified One-step UKF

Xk|k X(x̂k|k, α
√

Pk|k) X(x̂k|k, α
√

Pk|k) X(x̂k|k, α
√

Pk|k)

(15) (15) (15)

Pk+1|k X̃k+1|kWdX̃
T
k+1|k +Qk X̃k+1|kWdX̃

T
k+1|k +Qk X̃k+1|kWdX̃

T
k+1|k +Qk

(18) (18) (18)

X ′
k+1|k X(x̂k+1|k, α

√

Pk+1|k) Xk+1|k Xk+1|k

(20) (19) (19)

Pzk+1|k+1
Ỹk+1WdỸ

T
k+1 Ỹk+1WdỸ

T
k+1 Ỹk+1WdỸ

T
k+1 +QkC

T
k+1

(22) (34) (42)

Pez,k+1|k
X̃ ′

k+1|kWdỸ
T
k+1 +Rk+1 X̃k+1|kWdỸ

T
k+1 +Rk+1 X̃k+1|kWdỸ

T
k+1 + Ck+1QkC

T
k+1 +Rk+1

(23) (35) (43)

TABLE I: Ensembles and covariance matrices used in the two-step UKF, the one-step UKF, and the modified one-step UKF.

Since, in the case of linear systems, the intermediate

covariance matrices in MUKF include the missing terms, the

one-step modified UKF recovers the accuracy of the classical

two-step UKF. The next section applies the MUKF to two

nonlinear systems to demonstrate this fact.

VI. NUMERICAL EXAMPLES

In this section, the two-step UKF, one-step UKF, and

the one-step MUKF are applied to two nonlinear systems,

namely, the Van der Pol Oscillator and the chaotic Lorenz

system to demonstrate the erroneous covariance update in

the one-step UKF and the recovery of the correct covariance

update in the one-step MUKF.

Example 6.1: Van der Pol Oscillator. Consider the dis-

cretized Van der Pol Oscillator.

xk+1 = f(xk) + wk, (44)

where

f(x) =

[

x1 + Tsx2

x2 + Ts(µ(1 − x2
1)x2 − x1)

]

, (45)

and µ = 1.2. Let the measurement be given by

yk = Cxk + vk, (46)

where C
△
= [1 0]. For all k ≥ 0, let Qk = 0.01I2 and

Rk = 10−4. Furthermore, let x(0) = [1 1]T and P0|0 = I3.

Letting α = 1.5 in the two-step UKF, the one-step UKF,

and the one-step MUKF, Figure 1 shows the trace of the

posterior covariance computed by the three filters. Note

that one-step UKF posterior covariance is larger than the

two-step UKF posterior covariance, whereas the one-step

UKF recovers the two-step posterior covariance in spite

of generating only one ensemble per step. Figure 2 shows

the relative error of the one-step UKF and the one-step

MUKF posterior covariance relative to the two-step UKF.

Specifically, the relative error is given by the ratio

trP s
k|k − trPUKF

k|k

trPUKF
k|k

, (47)

where s = UKF1 or MUKF. Note that, in this particular

example, the one-step UKF relative error is almost 100%,

whereas the one-step MUKF relative error is less than the

machine precision, that is, the one-step MUKF recovers the

two-step UKF.

This example shows that the one-step MUKF posterior

covariance estimate is more accurate than the one-step UKF

posterior covariance and is numerically equal to the two-step

UKF posterior covariance. ⋄

Fig. 1: Example 6.1. Trace of the posterior covariance computed using the
two-step UKF, the one-step UKF, and the one-step MUKF on a log scale
with a zoomed-in inset showing the last 1000 steps of the simulation. Note
that the one-step MUKF recovers the accuracy of the two-step UKF.

Example 6.2: Lorenz System. Consider the Lorenz system






ẋ1

ẋ2

ẋ3






=







σ(x2 − x1)

x1(ρ− x3)− x2

x1x2 − βx3






, (48)

which exhibits a choatic behaviour for σ = 10, ρ = 28,
and β = 8/3. The Lorenz system (48) is integrated using

the forward Euler method with step size Ts = 0.01. Let the

discrete system be modeled as

xk+1 = f(xk) + wk, (49)



Fig. 2: Example 6.1. Relative error in the trace of the posterior covariance
computed using the one-step UKF, and the one-step MUKF with respect
to the two-step UKF. Note that the posterior covariance computed by the
one-step MUKF is numerically within the machine precision of the two-step
UKF posterior covariance, whereas the posterior covariance computed by
the one-step UKF is almost twice the two-step UKF posterior covariance.

where

f(x)
△
= x+ Ts







σ(x2 − x1)

x1(ρ− x3)− x2

x1x2 − βx3






(50)

and wk ∼ N (0, Qk). For all k ≥ 0, let

yk = Cxk + vk, (51)

where C
△
= [0 1 0] and vk ∼ N (0, Rk). For all k ≥ 0,

let Qk = 0.01I2 and Rk = 10−4. Furthermore, let x(0) =
[1 1 1]T and P0|0 = I3.

Letting α = 1.5 in the two-step UKF, the one-step UKF,

and the one-step MUKF, Figure 3 shows the trace of the

posterior covariance computed by the three filters. Note

that one-step UKF posterior covariance is larger than the

two-step UKF posterior covariance, whereas the one-step

UKF recovers the two-step posterior covariance in spite of

generating only one ensemble per step. Figure 4 shows the

relative error of the one-step UKF and the one-step MUKF

posterior covariance relative to the two-step UKF. Note that,

in this particular example, the one-step UKF relative error

is almost 15%, whereas the one-step MUKF relative error is

less than the machine precision, that is, the one-step MUKF

recovers the two-step UKF.

This example shows that the one-step MUKF posterior

covariance estimate is more accurate than the one-step UKF

posterior covariance and is numerically equal to the two-step

UKF posterior covariance. ⋄
VII. CONCLUSIONS

This paper explicitly showed that the two-step UKF spe-

cialize to the classical Kalman filter for linear systems,

whereas the one-step UKF does not. Consequently, the

accuracy of the one-step UKF is inferior than the two-step

UKF since the Kalman filter provides the optimal accuracy.

500 1000 1500
10-1

100

101 2 step UKF
1 step UKF
1 step MUKF

1485 1490 1495 1500
0.14
0.16
0.18
0.2

0.22

Fig. 3: Example 6.2. Trace of the posterior covariance computed using the
two-step UKF, the one-step UKF, and the one-step MUKF on a log scale
with a zoomed-in inset showing the last 15 steps of the simulation. Note
that the one-step MUKF recovers the accuracy of the two-step UKF.

0 500 1000 1500

10-15

10-10

10-5

100

1 step UKF
1 step MUKF

Fig. 4: Example 6.2. Relative error in the trace of the posterior covariance
computed using the one-step UKF, and the one-step MUKF with respect
to the two-step UKF. Note that the posterior covariance computed by the
one-step MUKF is numerically within the machine precision of the two-step
UKF posterior covariance, whereas the posterior covariance computed by
the one-step UKF is about 15 % larger than the two-step UKF posterior
covariance.

Next, a modification of the one-step UKF is presented that

recovers the accuracy of the two-step UKF filter in the

case of linear systems, that is, it specializes to the classical

Kalman filter for linear systems without requiring the second

ensemble generation. Finally, it is numerically shown that in

nonlinear systems with linear output, the modified one-step

UKF recovers the accuracy of the two-step UKF filter.
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VIII. APPENDIX

A. Proof of Proposition 3.1

Proof: Note that , for i = 1, . . . , 2lx + 1,

x̂σi,k+1 = Akx̂σi,k +Bkuk,

ŷσi,k+1 = Ck+1x̂σi,k+1,

and thus

Xk+1|k = AkXk|k +H(Bkuk),

which implies

x̂UKF
k+1|k = Xk+1|kW = Akx̂+Bkuk = x̂KF

k+1|k. (52)

The perturbed ensemble is thus

X̃k+1|k = Xk+1|k −H(X̃k+1|kW )

= Ak

[

0 α
√
lxP −α

√
lxP

]

,

and thus the prior covariance is

PUKF
k+1|k = Ak

[

0 α
√
lxP −α

√
lxP

]

Wd

·
[

0 α
√
lxP −α

√
lxP

]T

AT
k +Qk

= AkPAT
k +Qk

= PKF
k+1|k. (53)

The second ensemble is

X ′
k+1|k =

[

x̂KF
k+1|k x̂KF

k+1|k + α
√

lxPKF
k+1|k

x̂KF
k+1|k − α

√

lxPKF
k+1|k

]

,

and thus

X̃ ′
k+1|k =

[

0 α
√

lxPKF
k+1|k −α

√

lxPKF
k+1|k

]

,

Ỹk+1 = Ck+1X̃
′
k+1|k

Using (22), (23), it follows that

PUKF
zk+1|k+1

= Ck+1X̃
′
k+1|kWdX̃

′ T
k+1|kC

T
k+1 +Rk+1

= Ck+1P
KF
k+1|kC

T
k+1 +Rk+1

= PKF
zk+1|k+1

, (54)

PUKF
e,zk+1|k

= X̃ ′
k+1|kWdỸ

T
k+1

= X̃ ′
k+1|kWdX̃

′ T
k+1|kC

T
k+1

= PKF
k+1|kC

T
k+1

= PKF
e,zk+1|k

. (55)

Finally, (52)-(55) imply (30)-(32).

B. Proof of Proposition 4.1

Proof: Note that

Xk+1|k = AkXk|k +H(Bkuk),

Yk+1 = Ck+1Xk+1|k.

and thus

Xk+1|kW = Akx̂k|k +Bkuk,

Yk+1W = Ck+1Akx̂k|k + Ck+1Bkuk,

which implies

X̃k+1|k = AkXk −H(Akx̂k|k)

= Ak

[

0 α
√

lxPUKF
k|k −α

√

lxPUKF
k|k

]

, (56)

Ỹk+1 = Yk+1 −H(Yk+1W )

= Ck+1X̃k+1. (57)

The prior covariance is

PUKF
k+1|k = Ak

[

0 α
√

lxPk|k −α
√

lxPk|k

]

Wd

·
[

0 α
√

lxPk|k −α
√

lxPk|k

]T

AT
k +Qk

= AkPk|kA
T
k +Qk

= Pk+1|k.

It follows from (34) and (35) that

PUKF
zk+1|k+1

= Ck+1X̃k+1WdX̃
T
k+1C

T
k+1 +Rk+1

= Ck+1AkPk|kA
T
kC

T
k+1 +Rk+1

= Ck+1(Pk+1|k −Qk)C
T
k+1 +Rk+1

= Ck+1Pk+1|kC
T
k+1 − Ck+1QkC

T
k+1 +Rk+1

= Pzk+1|k+1
− Ck+1QkC

T
k+1, (58)



and

PUKF
e,zk+1|k

= X̃k+1WdỸ
T
k+1

= X̃k+1WdX̃
T
k+1C

T
k+1

= AkPk|kA
T
kC

T
k+1

= Pk+1|kC
T
k+1 −QkC

T
k+1

= Pe,zk+1|k
−QkC

T
k+1. (59)

Since Qk 6= 0 and Ck /∈ N (Qk), it follows that

PUKF
zk+1|k+1

6= Pzk+1|k+1
and PUKF

e,zk+1|k
6= Pe,zk+1|k

are missing

Ck+1QkC
T
k+1 and QkC

T
k+1, respectively, , thus implying

(40).

To prove (39), note that

KUKF
k+1 = (Pe,zk+1|k

−QkC
T
k+1)

· (Pzk+1|k+1
− Ck+1QkC

T
k+1)

−1,

6= Kk+1. (60)

Finally, since Kk+1 minimizes trPk+1|k+1, (60) implies

(41).
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