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Abstract-The multicriterion_ simplex methods of Evans and Steuer(!} and Yu and Zeleny[2) have 
encouraged model builders to consider matrix criteria. When conflicting objectives are simultaneously 
considered, there is no such thing as an optimum solution. Rather, a preferred class of basic feasible 
solutions called the nondominated set results. Since this set can be extremely large, some means must be 
found to prune it. Steuer[3] has proposed a filtering method. Another mechanistic aid to the decision make:r · 
(DM), based on cluster analysis, is presented in this paper. 

The idea is to portray the nondominated set N by a representative subset. Cluster analysis partitions N
into groups of relatively homogeneous elements. In this research I added a very general evaluative 
criterion: minimum redundancy. Since there is a threshold of resolution beyond which the OM cannot 
perceive the difference between two very similar solution vectors, there is little point in making him waste 
time processing all of N in the search for a final solution. 

Two forms of cluster analysis are tested-<lirect clustering and hierarchical clustering. Within the group 
of hierarchical methods there are eight algorithms. In the present application the two worst things that 
could happen are clusiers that "chain" and outlying vectors (the residue set) that are obscured. Taking 
account of these two undesirable outcomes, three algorithms worked best on the particular data used­
Ward's Method, the Group Average Method, and the Centroid Method. 

The hierarchical methods are recommended over direct clustering. {However, some similarity between 
direct and hierarchical clustering is discovered.) Hierarchical clustering serves to minimize redundancy, and 
thereby reduces the chance that the selection of a final solution will stress the decision maker beyond his 
information endurance. 

The concepts stressed in this paper are very similar to those expressed in Tom[4]. This article presents 
computational experience with the cluster analysis which was developed independently by Torn, 
whose approach and mine will be combined under an algorithmic strategy called Two-Stage Pruning (TSP). 
TSP first reduces the nondominated set to a representative set. This set, in turn, is interactively manipulated 
until a decision evolves. 

I. INTRODUCTION

Matrix criteria can be implemented in the linear case by the multicriterion simplex methods of 
Evans and Steuer[4] and Yu and Zeleny[2]. The problem is as follows: 

MaxCx 

s.t.

Ax�b 

x�O (1) 

where C is a p x n matrix with rows equal to the criteria) coefficients of each objective function 
of the problem, and A, x, and b are properly dimensioned as in a standard linear programming 
problem. 

It is known that (I) yields a set of nondominated (also known as efficient or Pareto-optimal) 
solutions. This set is denoted N, or Ne� when the extreme points are to be considered. Of the 
basic solutions to (1), the elements x of Nex are identified by the absence of feasible i such 
that: 

Ci�Cx 

and 

Ci-¥= Ci. (2) 

tJoel N. Morse received the A. B. degree in Political Economy at Williams College, and the PhD. in Business 
Administration at tile University of Massachusetts (Amherst). Since 1976, he has been Assistant Professor of Finance at 
the University of Delaware. Current research interests include pruning strategies in MCDM, and capital budgeting 
applications of 0-1 multiobjective programming. 
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Under the multiobjective linear programming (MOLP) paradigm, Nex can become immense. 
For example, Zeleny [5, p. 117 ff.) shows that a certain problem with eight decision variables, 
five objective functions, and eight constraints has seventy nondominated extreme points. If 
points along nondominated faces are considered, the size of N obviously is infinite. 

To represent the process of reducing Nex to one action, we will use the word pruning. The 
decision maker's (DM) perusal of N•x can be pictured as a search on a tree; thus the etymology 
of pruning becomes clear. Whether pruning is heuristic or aided by algorithmic devices, it is a 
search process through which the DM may discover new goals, relationships, and cultural or 
strategic externalities. To be precise, pruning involves, by definition, minimizing redundancy 
among the decision vectors of N. Implementing the idea, the methods of the paper are applicable to 

· both Nex and to any other finite subset of N. t
In concrete multiple objective applications new criteria and constraints will emerge to 

guide the DM toward a choice. Or some of the original criteria, if found to be redundant, can be 
dropped, which might reduce the size of N". However, this natural pruning is not costless. 
When Nex is very large the DM cannot process it; time runs out and information stress ensues. 
All problems can be reduced to some degree by minimizing redundancy. In this paper cluster 
analysis is proposed for this universal aspect of pruning. Since the concepts of this approach are 
very similar to those developed independently by Torn[4], I will suggest a unifying description 
called Two-Stage Pruning (see Sec. 3 below). 

2. CLUSTER ANALYSIS

The formation of m groups or clusters of similar objects, directly from the n original 
objects, is called cluster analysis (see Anderberg(6], Bijnen [7], Hartigan[8], Sneath and 
Sobl[9] and Sokal and Sneath [ 10]). The clusters are usually mutually exclusive, or non­
overlapping. In some measurable way, the clusters are to be composed of objects that are 
similar, either qualitatively or quantitatively. Operationally, a cluster can be defined as wha­
tever results from a clustering algorithm. Or it can be one of the set of groups that emerges 
when some objective function, such as within-groups sum of squares, is minimized (Rao[ll]). 

Formally speaking, a clustering is a mapping {3: OTU--> L, when OTU is the set of objects to 
be clustered (called operational taxonomic units) and Lis the set of clusters. Each element of 
{L} is naturally a non-empty subset of {OTU}, but the mapping {3 is of very general form. If {3 is
such that each element of {OTU}, is mapped into one and only one cluster, then f3 is said to be a
partition. If {3 forms clusters that are nested (i.e. some may be disjointed but others may be
within larger clusters then it is called a tree.

The most appealing view of a cluster comes from Carmichael et al.[12). They define natural 

clusters as areas where the OTUs are dense, surrounded by areas where they are sparse. 
Implementing this computationally led to a myriad of attempts as described in the literature; 
many are, in some way, optimization algorithms themselves. 

There are three types of clustering strategies. First, the divisive approach starts with the n 
objects as a cluster, and successively refines this into smaller clusters. Second, the agglomera­
tive approach starts each trial cluster as one object. Then other objects are linked to the first 
and larger and larger clusters are formed. Third, the iterative approach begins with an artibrary 
choice of clusters and moves objects from cluster to cluster until some homogeneity criterion is 
met (see Anderberg[6, p. 156 ff.]). 

In clustering large sets of data, optimal search techniques converge too slowly to be of 
practical use. Heuristic methods exist; the obvious drawback is that an optimal set of clusters is 
not guaranteed. 

We are using cluster analysis as an aid in multiobjective programming problems.t There is 
an important difference between the treatment of outliers in most statistical applications and 
that of the present paper. Statisticians normally develop methods to reduce the influence of 
outliers because they are interested in measures of central tendency and higher moments which 

t A referee has pointed out the high cost of meticulously computing N", 0,11I¥,:.� delete many of its elements. There are, 

as he points out, i:neth<:<fs that �pproxi�ate the nondominated set. If that a�pr<>)flfation turns out to be unwieldy in size 
the methods of this article remam applicable. .!it ,;J;j;' 
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characterize dispersion. But in pruning Nex we wish to stress the outliers and the boundaries of 
the dense central areas. 

The vectors of criteria! achievement (z = Cx, XEN) are geometric rays that are "inter­
preted" according to the DM's· preferences. One ray will be the final solution vector. Some of 
the z vectors are so close to each other that the finite sensibility of the human mind cannot 
distinguish between them. This near-collinearity is most apparent in the dense central areas of 
N. It is precisely at this point that cluster analysis can be used to eliminate redundancy.

But the outlying z vectors carry much information. They are solutions to the MOLP
problem that will not join any cluster. They represent unique combinations of criteria! 
achievement, or unusual weights on those same criteria. Therefore it is important to collect and 
display these points systematically, even though they do not join any clusters. The RESIDUE 
facility of CLUSTAN (see Wishart[l4]) does exactly this. The set composed of the outliers plus 
a representation of each cluster (this could be the centroid or any other element) will be the 
subject of managerial attention. Letting z' be any value vector which represents a clus!er and 
z" be any one that doesn't, we can form the set 

{g} = G(Nex) = {z'} U{z"} � Nex C N.

We will refer to this set as the generators of N (or of Ncx).

(3) 

Summing up, clustering involves choosing distance and joining rules so that the DM and the 
analyst can draw a picture of the infra-structure of N. The {z"} must be accentuated by means 
of the RESIDUE facility because they carry more information (surprise value) than do the {z'}. 
This is analogous to simplifying and interpreting a painting by choosing the points that show 
what the artist wishes us to see and feel. For example, in a picture of a mountai11, the point that 
marks the top is more crucial than one of the thousands of points that convey the details of the 
foothills. If the pruning process that accompanies MOLP does not expose the DM to {z'1, it 
fails in the same way that goal programming does. Steuer[15, p. 5] has written that GP presents 
the DM with "too sparse" a representation of the nondominated set. 

2.1 Block clustering

Block (also known as direct) clustering was introduced in Hartigan[l6] with slight amend­
ments added in computer codes written by the author in Hartigan [8] and Biomedical Computer 
Programs [17]. This type of clustering is initially very appealing to the researcher in fields where 
taxonomic methods are relatively new. This is because block clustering does not require the 
specification of a distance function. 

The distance function describes inter-object distances which are used to create a similarity 
matrix. An example is the Euclidean distance 

[ n ]l/2 

d;i = ? (x;i-xkj)
2 

J=I 

(4) 

When one considers binary, continuous, and mixed data, the literature includes at least fifty 
different distance coefficients. Since the resulting clusters depend on the definition of distance, 
the analyst must be wary of spurious clusters. Theories of distance exist in disciplines such as 
zoology, where the use of cluster analytic methods dates back to the first brush with 
twentieth-century empirical research methods. It is known, for instance, that particular distance 
coefficients perform well with particular types of zoological and biological data. 

In the administrative and policy sciences, only marketing research has passed the beginning 
of the learning curve with cluster analysis. The application at hand, pruning the nondominated 
sets in MOLP problems, is the first attempt of its kind. Steuer (3, p. 1 I] uses a filtering technique 
that is equivalent to forming clusters from given cluster centroids. But he does not call the 
procedure cluster analysis, nor is the implied algorithm one that really finds clusters. 

Since clustering in this context is new, there is no applicable theory of distance. The 
question remains: "Of all the possible distance measures, which best describes the DM's 
CAOR Vol. 1. No. 1-2.---'E 
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(psychological) reactions as he compares elements of N"?" Zeleny [5] addresses this issue. His 
distance functions are part of a rather mechanistic approach requiring the use of an ideal point. 

This point is that intersection of rays (usually not feasible) where each objective function finds 
its maximum in z space (criterion space). 

In this Sec. I will assume that the DM wishes to do some searching before the learning from 
the display of an ideal point is initiated. Owing to a lack of such an_ anchor and to 
interdependencies of the structure of the feasible set, block clustering is very appealing because 
it is not necessary to specify a distance function. Seventy block clustering runs were completed 
using the data associated with a solved problem of Zeleny [5, pp. 117 ff.]. t The objects clustered 
are the seventy nondominated solutions (in criterion space). The criteria and constraints are 
arbitrary; thus the extreme points themselves have no intuitive meaning. The clustering 
behavior of various algorithmic strategies is what interests us. 

Block clustering transforms the original multidimensional data (in this case nondominated 
solution vectors) by classifying each observation as follows. For a z vector to be pruned, each 
criteria! dimension is partitioned into intervals. The actual components of z become 1, 2, 3, etc. 
as they happen to fall in the first, second or third divisions of the range spanned by the numbers 
attained on each objective function. For example, if the nondominated solutions for the ith 
objective ranged from one to four, with three intervals specified, a 1.6 would be recoded as a 
one. 

This "classified" data set is manipulated (for details see Hartigan[8, 16}) into data blocks.

These are obtained by switching rows and columns until similar values are positioned near each 
other. Then at the horizontal margin one can perceive clusters of objectives, and along the 
vertical margin appear clusters of Nex points. Since only clusters with rriore than one z vector 
achieve the goal of reducing the redundancy within the nondominated set, we change various 
technical parameters of the computer code until we achieve a manageable number of multiple 
element clusters. From each one we arbitrarily choose a z vector to represent its cluster and 
thus obtain G(N"), the generators of the nondominated set. 

Table I summarizes the block clustering of the solutions (Ne") of the Zeleny[3, pp. 117 ff.] 
problem. 

The data blocks which consist of only one solution are often discarded or joined to other 
clusters; however they do contain important information. As stated previously, these outliers 

Table I. Zeleny data-block clustering 

i� of intervals // of blocks Objective functions 

�ithin each obj. not single that cluster 

1, l, 1, 1, l 1 2nd, 4th, 3rd 
1, l, 6, 6, l 11 2nd, 5th, 4th 
2, 2, 2' 2. 2 10 3rd, 2nd, 1st 

2, 2, 4, 4, 2 22 

3, 3, 4, 4, 3 36 3rd, 5th, 2nd 
3, 3, 3, 3, J 23 5th, 2nd, 3rd 

4, 4, 3, J, 4 30 3rd, 5th, 1st 
4, 4, 4, 4, 4 32 3rd, 5th, 1st: 
5, 5, 5, 4, 5 42 3rd, 5th, 1st 

5, 5, 5, 5, 5 39 3rd, 5th, 1st 
6, 6, 6, 6, 6 46 3rd, 5th, 1st: 
7, 1, 1, 1, 1 7 2nd, 5th, 4th 

7' 7, 7, 7, 7 52 3rd, 5th, 1st 
8, 8, 8, 8, 8 55 3rd, 5th, 1st: 
9, 9, 9, 9, 9 50 3rd, 2nd, 1st 

10,10,10,10,10 55 3rd, 2nd, 1st 
11,11,11,11,11 56 3rd, 2nd, 1st 
12,12,12,12,12 51 Jrd, 2nd, 1st: 

tThe reader may obtain the data and the computer analysis by corresponding with the author. Also available is similar 
experience with a problem of Steuer[ 18]. 
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are associated with unusual weights on objectives. Since they represent areas of value space 
that the DM should consider, some portion of the single element data blocks should be included 
in G(Ne•). An appealing sampling procedure is suggested in Torn[4]. 

Block clustering is a. two-way splitting technique, That means that clustering occurs 
simultaneously for the rows and for the columns. Revealed clusters in the columns show goal 
collinearity, or correlation. Since this may indicate the need for model respecification, it is 
necessary for the analyst to check for this phenomenon. The methods of Morse[l9] help do that 
job in a formal manner. This non-orthogonality of objective functions leads to unwanted 
amplification and distortion of goals (see, for example, Morse[l9) or Einhorn[20)). But since 
block clustering reveals this pathology in a very unstable way, we are led to consider more 
classical numerical approaches to clustering.·

Suppose that the DM deemed it practical to consider about ten clusters, plus a small
sampling of outliers. Note in Table 1 that we must drop the interval specification to two in
order to achieve that goal. In other words, block clustering degrades the data, in this case, to a
"high-low" categorization. This might result in a loss of information. If that loss is warranted in
order to conform to practical size constraints, then the data has simply .been recoded into
ordinally-scaled data. For example, the set of N .. values (7, 9.41, 3, 27) could be coded into
three intervals on the range 3-27. The new data would be (1, 1, 1,3). But there is a cluster
analysis literature on distance functions for· non-ratio-scaled data such as this. The claim that
block clustering does not require the user to define a distance function is misleading. Hartigan's
methodology[16) does implicitly define one when it chooses the level of aggregation (number of
intervals) for each objective. As a matter of face, Hartigan's thresholds explicitly use distance·
concepts. Pert,aps this is why he found "disappointingly few" differences .,between block
clustering and average distance linkage (to be explained fo Sec. 2.2) when .both y.rere applied to
state voting data.

There is one more way in which direct clustering behaves like the hierarchical distance
methods which are discussed in the next section. Hartigan[16, p. 126) explains that direct
clustering "splits up" the data matrix in such a way that the downside change in error

· sum-of-squares (SSQ) is maximized at each stage. Ward's method (described below) is one of
the best hierarchical methods, and it fuses clusters at each stage using essentially the same
minimizing objective function!

2.2 Hierarchical clustering.

· As the attractiveness of block clustering diminishes, the use of the hierarchical methods is
motivated. This type of clustering system does not "split" data blocks as does direct clustering. 
Instead it proceeds only on cases to join OTUs into successively larger clusters. 

Eight different hierarchical algorithms were applied to the Zeleny Nex points. In the 
following paragraphs, brief summaries of these methods are given. The original references can 
be found in the bibliographies of Anderberg[6], Hartigan[8) and Wishart[14). 

First, there are three linkage methods. In single linkage algorithms the similarity between 
any two clusters is equal to the highest single similarity coefficient between two cases, each of 
which resides in a different clu.ster. In other words, when searching for two intermediate 
clusters to fuse, the nearest neighbor rule prevails. The single linkage method finds long 
serpentine clusters very well. But on larger data sets this can lead to chaining. Chaining occurs 
when most of the OTUs join one cluster, and the rest form a meaningless residue. 

The complete linkage method uses the smallest similarity (or highest dissimilarity) to 
amalgamate two points or two clusters into a new one. In other words a farthest neighbor rule is 
employed. This strategy produces spherical clusters. But these may be spurious clusters, since 
group structure is not considered. Outliers may be too influential in forcing clustering. 

The third method is the average linkage method, which considers the average of all the 
similarity coefficients for all pairs of individuals across clusters. Thus group structure is 
recognized. This algorithm, which has been introduced independently by several authors, is a 
well-behaved search strategy which creates spherical clusters. 

The fourth hierarchical option employed was centroid sorting (also known in the literature as 
the weighted group method of Sokal and Michener). Clusters are joined by finding the center of 
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gravity, or the mean of the clusters. Chaining occurs, but less perniciousfy than in the single 
linkage method. 

The fifth approach is the median method. Valid mainly with distance type coefficients, this 
method computes a distance s(r, p + q) where r is an arbitrary cluster and p + q is a cluster 
fused during the last stage of the process. T_he distance s(r, p + q) is measured from the 
centroid of r and the midpoint of the line which joins the centroids of Ji and q. Again, chaining 
is likely for large populations. 

The sixth type is known as Ward's method, although Orloci and Wishart have also written 
about it. First, the distance. of each OTU to the centroid of its parent cluster is recorded. For 
each cluster these distances are added up and called the error sum of squares. The next two 
clusters to be joined are those for which the increase in this error sum of squares is minimized. 
Recall that block clustering reversed this; a split was performed which maximized the decrease 
in the error sum of squares. Ward's method computes minimum-variance spherical clusters. 

The Lance-Williams flexible beta method offers the chance to dilate or contract space by 
varying only one parameter of a joining measure. In the expression 

s(r, p + q) = {[s(r, p) + s(r, q)(l - {3)]/2s(p, q)}/3 (5) 

it is f3 that acts like the dilation and contraction operators of Zeleny [3, p. 172] or Zadeh [21]. 
With f3 = -0.25, the flexible beta method is reported to act like Ward's method. 

The last major variant of hierarchical clustering is McQuitty.' s similarity analysis. Two 
clusters. Two clusters are joined to form one new one by minimizing the coefficient 

s(r, p + q) = [s(r, p) + s(r+ q)]/2. (6) 

Notice that this is equivalent to the Lance-Williams method with /3 = 0. Again, chaining occurs 
with large populations. 

All eight of the hierarchical clustering algorithms were used on the Zeleny N" points. t As 
Table 2 indicates, five of these methods caused chaining problems. About 60 of the 70 
nondominated points tended to join one cluster, with the remainder forming clusters each with only 
one, two, or three elements. This outcome was useless managerially, since it does not reduce the 
redundancy within the N°" set. The DM would still have to process all the points in the "chained" 
cluster heurist1cally. The human brain may be poorly suited to this task. 

Three of the methods performed well on the Zeleny test data. They were Ward's method, 
the group average method, and the centroid method. as Appendix I shows, the three methods 
produce clusters with fairly similar composition. There is too much data to subject to a 

Table 2. Hierarchical clustering methods that .caused chaining 

1. The single linkage method. NOTE: This method was implemented by both 

BMDP02M (Biomedical Computer Programs /17/) and CLUSTAN le {Wishart 

/14/).

2. The complete linkage method (i.e., the farthest neighbor rule}. 

J. Gowers median method. 

4. The Lance-Williams flexible beta method. 

5. McQuitty's similarity analysis. 

tSample print-outs for problems of both Zeleny and Steuer are available from the author. Of particular interest are features 
pf CLUST AN which help the analyst understand the sliucture of N", such as the order of agglomeration, a dendrogram table, 
and k-linkage lists. 
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contingency analysis or chi-square tesfs. But since each method was tested with between ten 
and five clusters "requested," the behavior of the three clustering strategies is not extremely 
difficult to follow by inspection. 

Only one method guarantees minimum-variance spherical clusters. This feature makes 
Ward's method the most attractive of the three non-chaining algorithms that appear in Table 2. 
It is important that the DM be exposed to a wide sample of the efficient region. Since we 
propose that G(N°') be composed of one representative of each cluster plus some outliers, 
unequal size clusters lead to a superficial review of regions that are dense in nondominated 
points. Too many such points would be represented by only one generator gcG(N°x). An even 
more subtle coverage concept due to Steuer and Harrison[22] is described in Sec. 3. For the 
present discussion, Ward's method is favored because of its tendency to yield clusters of fairly 
equal size and shape. 

There are commonly used methods to help absorb the masses of information provided by a 
good computer code for clustering. For example, in Fig. 1 the positions of the N•x points are 
plotted and numbered. Since the portrayal occurs in the plane, only objective function No. 1 vs 
objective function No. 2 can be visualized. Naturally, in a real business decision all pairs of 
9bjective functions could be so plotted. 
· Figure 2 reduces some of the visual clutter of Fig. 1 by drawing circles around the points in
each cluster, and eliminating the actual case, numbers. Since the computer, in this particular case,
was coded to produce seven clusters, there are seven circles. Except for cluster No. 6, the clusters
are reasonably tight, spherical and disjointed as seen along the first two criteria! dimensions.

The most informative graphical aid is the dendrogram, as seen in Fig. 3. The dendrogram 
draws the joining of two OTUs and indicates, on its vertical axis, the level of similarity at which 
this occurs. This is similar to, but much clearer than, the tree joining diagrams which are 
provided by Hartigan's block clustering. Figure 3 shows both the clusters that are formed at 
varying levels of amalgamation and the order of that joining. 

For theDM who prefers to think algebraically rather than graphically, some interesting data 
manipulations are available via the minimum spanning tree. This has appeared in graph theory 
and in operations research (for example, see f<:ruskal[23]). 

Consider this structure as it appears in what is called the traveling salesman problem. A 
group of cities is to be connected by a system of roadways. Various pairs of cities will be 
linked, and over each link there will be a known fixed cost per mile. The problem is to find a 
route through the maze of cities, such that each one is visited and the cost is minimized. 

The solution to the problem, in graph theory terms is the minimum spanning tree (MST). 
The DM can develop clusters directly from an examination of the MST. By deleting links 
whose length is greater than g, maximal single-linkage type clusters of diameter g are 
discovered. Table 3 gives the minimal spanning tree for. the Zeleny problem. 

VARIABLE OBJ. NO. I 

•14 

<13 

Fig. L Scatter diagram of Zeleny problem. 
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VARIABLE OBJ. NO. I 
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Fig. 2. Cluster diagram of Zeleny problem. 

Conceptually similar to the minimum spanning tree is the k-linkage list. This shows the k 
nearest neighbors for each OTU. It is rather like Steuer's and Harrison's "filter" method [22], 
which focuses the DM's attention on a particular set of Ne• points. These authors suggest 
exhibiting a subset of Nex and asking, "Which point do you like best?" Then the k nearest 
neighbors to that point are printed. 

This procedure is appealing but non-optimal. Certain attractive areas of the nondominated 
set may be prematurely discarded in this way, The DM should be encouraged to examine a 
neighborhood around a tentatively desirable point and compare it to several other neighbor­
hoods. 

2.3 Block clustering vs hierarchical clustering: A summary 
Block clustering has two main advantages, computational speed and direct interpretation of 

the data. With modern computers the first is only relevant on extremely large problems. 
Hartigan[8, p; 267] states that two-way splitting (another name for the type of direct clustering 
used in this chapter) draws "beautiful (data) pictures." But he cautions that the data must be 
rescaled so that ·an error of one unit along one variable dimension will be equal to a one-unit 
error along another dimension. The rescaling creates problems when the data are of several 
sorts such as binary, nominal, interval or ratio. Hierarchical clustering also has difficulty 
overcoming mixed data bases. Shift phenomena are particularly well captured by block 
clustering. In Hartigan[l6] presidential election data is analyzed. In South Carolina, Louisiana, 
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Table 3. The minimum spanning tree of the Zeleny problem * 

Edge First: Second Edge Edge First Second edge 

No. Verte.--c V�r'C!.X Len th !lo. Vertex V'!rr.ex Len th 

1 l 7 0.005 36 36 38 O.lll

2 2 1 0.001 37 37 49 0.042 
3 3 53 0.093 38 38 41 0:000 
4 4 53 0.032 39 39 41 0.000 
5 s 7 0.007 40 40 39 0.000 
6 6 56 0.099 41 41 48 0.044 
7 7 50 0.007 42 42 43 0.008 
8 8 55 0.031 43 43 45 0.001 
9 9 55 0.092 44 44 35 0.082 

.10 10 51 0.062 45 45 44 0.012 
46 46 69 0.017 

11 11 51 0.047 46 46 69 0.017 
.12 12 65 0.021 47 47 30 0.014 
13 13 65 0.046 48 48 58 0.020 . .  , 

14 14 12 o. 212 49 49 67 0.052 
15 15 14 0.147 50 50 24 -0. l!.3
16 16 70 0.167 51 51 8 0.016
17 17 37 0.071 52 52 ll 0.061
18 18 19 0.011 53 53 66 0.084
19 l9 21 0.021 54 S4 69 0.003 
20 20 ::.8 0.016 55 55 67 0.179. .

21 21 63 0.511 56 56 53 0.336
22 22 19 o. 059 57 57 54 O.C40
23 23 6 0.140 58 53 25 0.089
24 24 56 0.178 59 59 28 0.180
�5 25 4 0.053 60 60 29 0.074
,6 26 58 0.033 61 61 4 0.064 
27 27 24 0.051 62 62 59 ·o.414 
28 28 60 0,174 63 63 62- 0:395

29.
29 52 O.DO 64 64 62 '0.015 

30 30 54 0.003 6.S 65 52 0.016 

31 31 42 0.081 66 66 70 0.086 
32 32 31 0.074 67 67 58 0.110 
33 33 31 0.006 68 58 16 0.016 
34 34 36 0.052 69 69 33 0.051 
35 35 34 0.002 

* Edge length is Euclidean distance. 

and Mississippi the percentage of votes cast for Republicans went up greatly from 1%0 to 1%4, 
and then down again in 1%8. This shift over time would not be tracked well by hierarchical 
methods because states and years would not be simultaneously clustered. 

From a managerial point of view, block clustering, as mentioned earlier, cannot pre-specify 
the desired number of clusters. An allied problem is the interpretation of a case cluster. Since 
these form separately along various subsets of the objectives, the DM cannot tell how the cases 
would cluster if all objectives (or criteria) were considered. This is an implicit 0- 1 weighting of 
criteria; formation of the case clusters in this way does not interface well with the DM's need to 
learn· his preference structure. 

In the section on hierarchical clustering we saw how important the RESIDUE facility of 
CL UST AN was. In block clustering this feature could be copied by taking the small data blocks 
and listing them as additions to the list of generators gcG(Nex). But sometimes to keep the size 
of G(Nex} manageable, we need to assign outlying z vectors to existing clusters. This can be 
done with the RELOCATE option of CLUSTAN, but cannot be done in direct clustering. 

The conclusion here is that hierarchical clustering methods show more promise than block 
clustering for the purpose of pruning the nondominated set Nex_ However, the choice of 
clustering strategy is not as risky as it is in a static taxonomic study. In the dynamic decision 
context we are never quite certain of the effects of our strategies. As the problem evolves, new 
information overwhelms the effect of less than optimal clustering in the previous stage. 

3. TWO STAGE PRUNING

Next we .discuss pruning by clustering in the broader context of Multiple Criteria Decision 
Making. The process of decision making could be divided into two stages. In the first stage, 
most of the work is done by a computer.based model. In the second stage, much more of the 
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task is completed by the decision maker. Since both stages drive toward the adoption of one of 
the nondominated solutions, the name Two Stage Pruning (TSP) is appropriate. 

Cluster analysis has been suggested as a mechanistic decision aid. A new evaluative 
criterion, minimizing redundancy, has been used to discover the generators of Ne•, much as an 
artist creates a picture by accentuating a limited set of points which suggest the whole visual 
mass. As a matter of fact, the proper choice of points can be more informative than the original 
flood of sensory data. In the MCDM case, the generators G{Nex) focus the DM on the bunching 
of solutions, the dispersions of implied preference weights, and the trade-offs among objectives. 

Two other papers in this issue address themselves to pruning. Torn samples points from the 
feasible region. Then he uses optimization techniques to move toward an efficient frontier. If 
there are any points to be presented to the DM, he proposes cluster analysis to obtain solution
types. These techniques of Tom are first stage strategies in a TSP paradigm. The second stage 
(recall that this part involves much greater interaction with the DM) invokes a confidence 
concept. The DM, with the aid of a decision analyst (DA), tries different efficient regions of the 
feasible space; he adds new evaluative constraints as desired. The problem is considered solved 
when the DM has confidence that he is near an optimum. 

The paper of Steuer and Harris can also be viewed as TSP. In stage one the efficient points 
are found. Forward filtering is used to temporarily discard redundant solutions. When a 
particular point causes a positive response from the DM, nearby nondominated points are 
displayed. This opportunity for detailed assessment of a subset of }{ex is called reverse filtering.
A further decision aid is intra-set point generation. Since attention to the extreme points of N
may fail to represent its infinity adequately, we may wish to consider non-extreme points on 
efficient faces. For example, imagine a non-equilateral triangle in criterion space. a very long 
edge might have a higher probability of containing the best choice than do the shorter edges of 
the corner points. 

This is an important addition to the body of first stage tools. Steuer and Harrison can 
generate the intra-set points by drawing weight vectors from the uniform and the Weibull 
distributions. f;mbedded in this is another check for efficiency, since not all convex com­
binations of efficient points are themselves efficient. Given an expanded candidate list, the DM 
can filter forw�rd and backward to the final solution. 

The two papers just cited rely almost exclusively on the heuristic processes of the DM for 
the second stage of pruning. It is desirable to continue computer-based aid in stage two also. 
This is a lengthy subject, but tentative ideas can be found in Morse [24]. 

4. SUMMARY AND CONCLUSIONS

A draw back of the very promising MCDM approach is the sheer size of the nondominated 
set. For this reason a decision support system to pre-process Nex has been outlined; The 
redundancy inherent in that set is reduced by using a statistical technique called cluster 
analysis. 

Numerical experiments were conducted with block clustering and hierarchical clustering. 
The best dispersion of generators G(Ne') wa� obtained for this limited data base by means of 
Ward's method (one of the hierarchical strategies). 

Linkages with the similar research of Torn[4] and Steuer and Harris[22] were possible by 
exploiting Two Stage Pruning. The passage of control from machine to human is thus described 
and facilitated. 
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APPENDIX I 

A comparison of three hierarchical clustering algorithms on the Zeleny data 
Note: The CLUSTAN code was s et to yield ten clusters. It can be seen that the seventy (numbered consecutively) 

nondominated extreme points of the Zeleny solutions join to form ten fairly equal clusters under Ward's method, and ten 
unequal clusters under the group average method and the centroid method. 

Ward's method Group average method Centroid method 

(with 10 clusters specified) 
No. l I 1 50 1 

2 2 56 2 

5 5 5 

7 6 6 
50 7 7 

24 24 
27 27 

50 
56 

No. 2 3 46 3 44 3 42 
30 47 30 45 4 43 
31 54 31 46 . 25 44 
32 57 32 47 26 45 
33 69  33 54 30 46 

34 57 31 47 
35 59 32' 48 

36 33 53 
42 34 54 
43 35 57 

38 61 
39 66 
40 69 
41 70 

No. 3 4 48 4 48 8 51 
25 53 25 53 9 52 
26 58 26 58 10 55 

38 61 38 61 II 60 
39 66 39 66 12 65 
40 70 40 70 13 
41 41 29 
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Ward's method Group average method Centroid method 

No. 4 6 8 55 14 

23 9 60 15 
24 IO 65 
27 II 

56 12 
13 
29 
51 
52 

No. 5 8 51 14 16 
10 52 15 17 

l 155 37 
12 65 49 
13 68 

No. 6 9 68 16 18 
16 17 19 
17 37 20 
37 49 21 
49 67 22 
67 68 

No.·7 14 18 23 
15 19 

20 
21 
22 

No. 8 18 23 28 
19 28 59 

20 59 

21 
22 

No. 9 28 63 62 62 
29 64 64 64 
59 

;;. t 60 
62 

No. 10 34 63 63 
35 
36 
42 
43 
43 
44 
45 
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