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Abstract— The multilingual nature of the Internet increases
complications in the cybersecurity community’s ongoing efforts
to strategically mine threat intelligence from OSINT data on
the web. OSINT sources such as social media, blogs, and
dark web vulnerability markets exist in diverse languages and
hinder security analysts, who are unable to draw conclusions
from intelligence in languages they don’t understand. Although
third party translation engines are growing stronger, they
are unsuited for private security environments. First, sensitive
intelligence is not a permitted input to third party engines
due to privacy and confidentiality policies. In addition, third
party engines produce generalized translations that tend to lack
exclusive cybersecurity terminology. In this paper, we address
these issues and describe our system that enables threat intelli-
gence understanding across unfamiliar languages. We create
a neural network based system that takes in cybersecurity
data in a different language and outputs the respective English
translation. The English translation can then be understood
by an analyst, and can also serve as input to an AI based
cyber-defense system that can take mitigative action. As a proof
of concept, we have created a pipeline which takes Russian
threats and generates its corresponding English, RDF, and
vectorized representations. Our network optimizes translations
on specifically, cybersecurity data.

Index Terms— Cybersecurity, Artificial Intelligence, Deep
Learning, Threat Intelligence, Multi-Lingual Understanding

I. INTRODUCTION

Information across political, cultural, and geographical
boundaries is widely communicated over a global Internet.
Today, we have a multilingual Internet where people converse
in a variety of languages like English, Mandarin, Russian,
Hindi, etc. [4]. Cyber threats in particular, originate from
and are mitigated over a broad range of geographic regions.
Although a significant amount cybersecurity web data is
available, it is spread among major natural languages, de-
creasing interoperability between multilingual systems. This
creates difficulty in employing strong cyber risk management
across organizations worldwide. Specifically, amongst state
actors or major criminal networks, it is likely that the threat
information is in a language other than the language of the
analyst.

Intelligence gathering spans an expansive geographic dis-
tribution. As a result, cybersecurity actors, both attackers
and defenders, converse over non-traditional sources such
as social media, blogs, dark web vulnerability markets,
etc. in diverse languages. These non-traditional sources are
becoming an important asset for threat intelligence mining
[31] and many times are first to receive the latest intelligence

about vulnerabilities, exploits, and threats [30]. The multi-
lingual nature of these non-traditional sources is a potential
hindrance for cyber-defense professionals, as they might be
limited by their knowledge of different languages. Despite
this significant issue, the role of language in addressing cyber
threats has been under explored. Multilingual understanding,
adds to the many challenges security analysts continue to
encounter. The security industry is heavily dependent upon
the security analyst’s ability in using specialized experience
to reason over the disparate pieces of intelligence data
available on the web, in order to discover potential threats
and attacks.

The abundance of cybersecurity web data has led to the
use of AI/NLP based cyber-defense systems to help analysts
extract relevant pieces of information that may constitute an
attack. These systems need the ability to process multiple
languages to keep up to date with the most current threat
intelligence. A multilingual Internet needs a multilingual
approach to cybersecurity.

While modern cyber defense systems have the ability to
reason over disparate pieces of threat intelligence data on the
web, we hope to create a defensive system that also under-
stands various languages, by using the English language as a
baseline. In our previous work, we developed CyberTwitter
and Cyber-All-Intel [24], [25], systems that mine threat
intelligence data from various sources, and automatically
issues cybersecurity vulnerability alerts to users. This work
extends these cyber-defense systems to a wider spectrum
of potential threats, by mining threat intelligence data in
a multitude of languages. These systems typically produce
“cyber terminology representations” [24], [25] to categorize
threat-related words, but only learn representations for En-
glish. Consequently, if a certain threat is not gathered under
a specific language, the system will not have a representation
for it, even if it is a known threat in a different language.
We use our multilingual threat intelligence system to align
cyber terminology representations of different languages,
expanding monitoring capabilities across the globe.

In this work, we create a multilingual translation system
that harnesses critical cybersecurity data derived from vari-
ous natural languages to address the international nature of
cyber attacks and assist in defensive cyber operations. Our
system optimizes translations particularly for cybersecurity
data. Specifically, we investigate semantic representation of
multiple languages with a corpus from Twitter, including
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threats and vulnerabilities in two languages, English and
Russian. We build models to relate the vector space represen-
tations in the two languages to translate threat from Russian
to English.

Fig. 1. Multilingual Threat Intelligence Platform

Our overall use case (see Figure 1), utilizes embeddings
created from Russian and English threat intelligence data.
The embeddings help us understand security terms in Rus-
sian, by aligning semantically similar Russian cyber terms
with their English counterparts. The system first begins
by gathering relevant Russian threat intelligence data from
sources such as Twitter. The data is then assimilated into a
vector representation in order to bring semantically similar
terms together [21]. The data is then fed into CyberTwitter,
which converts the English representation of the Russian data
into a machine understandable format defined using our UCO
Ontology [34] in OWL. This helps cyber-defense systems
gain intelligence about threats mentioned in the Russian text.
The acquired intelligence is then fed into an AI-based cyber
defense system that generates conclusions from a cumulation
of aggregated threat intelligence data.

An issue with directly converting threats in foreign lan-
guages to machine readable formats, is removing the security
analyst from the threat inspection process. Providing analysts
with raw translations help them reason over and expand
upon a new landscape of threats and vulnerabilities. Our
system aims to therefore, serve as an augmentation system
that helps analysts divert full attention on their primary roles
of analyzing and piecing in novel threat information.

The rest of the paper is organized as follows - Section II
contains the related work. We discuss our intelligence trans-
lation framework in Section III. We present our experimental
results and evaluations in Section IV. We discuss how we use
the translation system with an AI based cyber-defense system
in Section V. We conclude in Section VI.

II. RELATED WORK

In this section, we present related work on the vector
space model uses, neural machine translation, AI-based cy-
bersecurity systems, and cybersecurity understanding across
different languages.

A. Text Analysis for domain specific tasks

Text analytics has been utilized in areas such as infor-
mation retrieval [17], machine translation [14], and topic

detection [19]. These areas are especially useful for domain
specific tasks such as cybersecurity.

Vector Space Models: Vector Space Models, or word em-
beddings, hasve been used in Natural Language Processing.
Words are embedded in a continuous vector space such that,
words that appear in the same contexts are semantically
related. One method that generates embeddings based on
word co-occurrence is word2vec [21], [20]. Mikolov et
al. [20], showed that proportional analogies can be solved
by finding the vector closest to the hypothetical vector.
Embeddings have also been utilized in other areas such as
word sense disambiguation [3], semantic search [33], and
discovering inter-linguistic relations in machine translation
studies [23].

Wordnet [22] is a human curated lexical database that
groups together synonyms in the English language. Many
other versions of Wordnet have been produced, such as
ArabicWordNet and ChineseWordnet [28]. These lexical
databases are often times used to aid lexical and term
alignment.

Term Alignment in Vector Spaces: Analogical Relation-
ships are often times utilized to aid term alignment in vector
spaces. Term alignment is known as statistically finding
correspondences between words in different groups [5].
Plas et al. [18] utilize automatic world alignment to find
translations from Dutch to one or more target languages.
Similarly, Brown et al. [29] aligned sentences with their
translations in two parallel corpora, consisting of French and
English. Yang et al. [26] show how the pattern of the context
from word embeddings help to align similar word pairs in
other languages. Piantra et al. [10] created MultiWordnet, an
aligned multilingual database curated to produce an Italian
Wordnet, by aligning synonyms in Italian to EuroWordNet.
Niemann et al. [9] aligned WordNet synonym sets and
Wikipedia articles to group article topics based on synonyms.

B. Neural Machine Translation

Word embeddings have aided in a diversity of machine
translation tasks. Neural machine translation typically oper-
ates through the encoder-decoder-attention architecture [7].
More recently, bilingual word distributions have been trained
using unsupervised methods such as Latent Dirichlet allo-
cation (LDA) and Latent semantic analysis (LSA) to aid
machine neural translation [15]. Giles et al. [12] trained word
embeddings from monolingual data and utilized external
and internal vectors as input for the network utilized to
train unfamiliar instances of words. In terms of semantic
translation tasks, Hill et al. [11] show that translation-based
embeddings work better in applications that require concepts
organized according to similarity.

C. Cybersecurity understanding across multiple languages

Cybersecurity terminology definitions differ across cul-
tures and languages. The Department of Homeland Security
started developing multilingual resources, to help link cy-
bersecurity understanding across international governments
[6]. Klavens et al. [16] outlines the importance of linguistics



in the domain of security and claims language analysis
propels understanding of communication between cyber-
crime activist groups, filtering relevant data collection, and
understanding the intention behind the words.

D. AI-Based Cyber Defense Systems

The use of social media in threat intelligence mining, pro-
vides a new interface between the public and the Intelligence
Community. Twitter data in particular, is seen as a reliable
OISNT resource due to its real time nature during high
impact events, such as terrorist attacks [1]. Mittal et al. [24]
developed CyberTwitter, a threat intelligence framework that
utilizes twitter data to automatically issue security vulnera-
bility alerts to users. Similarly, the Cyber-All-Intel system
collects OISNT data, stores it in a cybersecurity corpus,
and utilizes word vectors for cybersecurity term similarity
searches [25].

III. INTELLIGENCE TRANSLATION ARCHITECTURE

In this section, we describe our data collection methods,
vector space generation, alignment techniques and neural
machine translation framework. We first create a multilingual
cybersecurity corpus that contains tweets about threats and
vulnerabilities in various languages. In this paper, to create
a proof of concept, we focus on English and Russian. Using
the collected corpus,we then produce English and Russian
vector embeddings. Once we create the embeddings, we align
both vector spaces utilizing an alignment database. Once
the spaces are aligned, we are able to undertake semantic
translation of Russian cyber threats and vulnerabilities to
English.

A. Creating a Multi-Lingual Cybersecurity Corpus

We collect data through the Twitter streaming API using
cybersecurity keywords: XSS, CVE, spam, malware, data, at-
tacker, DNS, DDOS, code, ciphertext, cryptography, hacked,
overflow, breach, sniffer, buffer, firewall, domain, hijacking,
checksum, virus, vulnerability, arbitrary, protocol, etc. These
keywords were suggested by multilingual cybersecurity do-
main experts [27] and various security analysts. We use the
Twitter API language capabilities to detect “tweet language”
through a flag (en=English, ru=Russian). Setting this flag
provides us the ability to collect data in both languages. The
data is stored and separated by language in MongoDB.

Collecting data using these keywords, gives us a direct
interface to Russian cyber colloquialisms. For example, the
tweet depicted in figure 2, reveals a regional-specific DDoS
attack, to threat analysts outside of Russia.

Fig. 2. Sample tweet from a Russian corporation on crypto DDoS attacks
that translates to “DDos attacks on cryptocurrency weaken the price of
Bitcon.”

B. Embedding Generation

We generate English and Russian word embeddings using
Word2Vec [21], [20]. We created two separate vector space
models from the English tweets and the Russian tweets.

In our system, these models are used for semantic transla-
tion of Russian cybersecurity text to English (see Section
III-C.1). Words in the embedding space are semantically
similar if grouped together around the same neighborhood.
For example, in our English model, words like, malware,
virus, trojan, etc. will be clustered together. Figure 3, depicts
a 20th iteration training snapshot, of Russian words that start
appearing near “DDoS”, a type of cybersecurity attack.

Fig. 3. Russian Embedding Training Snapshot around the word “DDOS”.
Neighboring words include community and proxy.

C. Intelligence Translation Framework

In this section, we describe our intelligence translation
framework that creates many-many mappings among cyber-
security terms in Russian and English. We use the word em-
beddings produced in Section III-B, and create an alignment
database, later used as the dataset for training our neural
network described in Section III-C.2.

In a high level usecase, a cyber-defense system like Cyber-
Twitter [24], will take as its input Russian threat intelligence
and create machine readable threat intelligence. This scenario
is discussed in detail in Section V.

1) Creating an Alignment Database: In order to create
relationships between English and Russian cybersecurity
words, we created a dataset to align the English and Russian
vector embeddings. An alignment in our system means
creating true positive mappings of Russian cybersecurity
terms to their English counterparts. We derived cybersecurity
synsets for the Russian and English vocabulary embeddings,
created in section III-B. These cybersecurity synsets include
contextually similar words to each vocabulary word in the
Russian and English vector spaces. We emphasize that,
when we say contextually similar words, we bring together
cybersecurity terms in the same word sense. The lexical
database Wordnet [22], groups similar words into sets of
synonyms called “synsets”. WordNet does not support the
Russian language. We found a similar lexical database called
Russnet [13], specifically for the Russian language. We
utilize the English synsets provided by WordNet, and the



Fig. 4. English and Russian Synset Examples for “intrusion”.

Fig. 5. Intelligence Translation Architecture

Russian synsets provided by Russnet to create our cyberse-
curity synsets. An example of a cyber synset we derived is
shown in Figure 4.

We tasked three native Russian speakers, who served as
annotators, to manually verify the quality of cybersecurity
synsets produced. We use the Cohen’s kappa to compute
the inter-annotator agreement, and keep only those cyberse-
curity synsets that scored higher than 0.66. The annotators
confirmed that the synsets in Wordnet, and the synsets in
Russnet, were not only similar on a translation level, but
also semantically similar in a cultural context.

We use these cybersecurity synsets to then create a neural
network, that given an input Russian embeddings, outputs its
English equivalent.

2) Intelligence Translation Network: Our intelligence
translation architecture is shown in Figure 5. We implement
a encoder-decoder network, which is a dual Recurrent Neural
Network (RNN). The encoder serves as an input RNN
and the decoder, serves as the output. The encoder-decoder
architecture projects the input Russian word to be translated
into the English embedding space, by returning words with
a representation closest in the English vocabulary.

The encoder-decoder network is implemented using a
“sequence-to-sequence architecture” [8], [32]. The encoder-
decoder network is able to process past and future words in
a sequence, and is also able to map an input sequence to an
output sequence of a different length.

The model uses word embeddings produced in section
III-B. We initialize Russian embeddings as the input in the
encoder state, and the English embeddings as the output of
the decoder state. We utilize the cybersecurity synsets, from
section III-C.1, as the training set. Our hyperparameters were
set as, batch size = 64, epochs = 100, latent dimentionality
= 256, sample number = 10,000.

The encoder and decoder utilize a Long Short Term
Memory (LSTM) cell [8]. In the hidden layer, we have
one dense layer, with a softmax activation function, which
allows the model to learn a mapping from the Russian
vector representation, to the English vector representation.

The encoder, takes in Russian words and maps them to
their respective vector representations. The decoder then,
creates a translation of the input word and generates its
predicted aligned semantic English embedding. We discuss
the accuracy for this model in Section IV.

IV. EVALUATION

In this section, we describe our experimental setup and
evaluate our intelligence translation system. We first measure
our translation precision through BLEU and accuracy met-
rics. Later, we compare our system against other commercial
translation services.

A. Accuracy and BLEU score

We first evaluate our encoder-decoder architecture through
an accuracy metric and a BLEU (Bilingual Evaluation
Understudy) score (see Table IV-A). The accuracy metric
computes the percentage of times that predictions match
labels. BLEU scores, are standard metrics for evaluating a
generated translation to a reference word [32]. An accuracy
above “60%”, perplexity under “6”, and a BLEU Score
between “15 and 36” is considered robust [32].

Measure Value
Accuracy 97.22%
Perplexity 4.07
BLEU Score 28.4

TABLE I
EVALUATION METRICS

B. Measuring against Commercial Systems

We measure the precision of our translations by checking
a randomly generated sample of the output against Google
Translate1. We proved that our system produces more ef-
fective translations for the security domain. We extracted
1000 randomly selected tweet translations and compared
the output against the Google Translate API. We check our
translations against the ones provided by Google Translate,
both syntactically and semantically. On evaluating 1000
random samples, there was a 64.3% syntactic correlation
between the two systems.

We further evaluated the 357 samples that were not
syntactically equivalent and tasked two security analysts to
manually evaluate the semantic meanings of the translation
outputs. We found that of the 357 outputs, 349 were seman-
tically similar, but not syntactically similar to the Google
translation, showing 97% semantic relevance. The annotators
concluded our translations are preferable through a security
perspective, in that they proliferate terms unique to the
security industry. The commercial translation services are
generalized while our system is domain specific. These secu-
rity specific translations can be attributed to the architecture
of our model, that utilizes a specialized aligned database
made with relevant cybersecurity mappings. Examples of
unequal but semantically similar translations in our system
and Google Translate are listed in figure 6. In example
1, “malware” registers more with a security analyst than

1https://translate.google.com

https://translate.google.com


Fig. 6. Tweet Translation Samples.

“malicious programs”. In example 2, the Google Translate
system translated the relevant Russian text as “spylair”, while
our system gives the correct translation as “spyware”. These
are clear instances in which our translation will provide more
relevant and direct intelligence for a security professional.

Another benefit that our system provides is that it can run
independently in secluded operational settings. A security
analyst may not be able to input their sensitive data into third
party platforms due to privacy, security, and confidentiality
policies.

V. USE BY CYBER-DEFENSE SYSTEMS

Web based unstructured, textual sources such as Twit-
ter, Reddit, blogs, dark web forums, etc. provide a rich
multilingual source of information about cyber threats and
attacks. In addition to providing details of existing attacks,
such sources (especially the dark web) can serve as advance
indicators of attacks in terms of discussions around newly
discovered vulnerabilities. This information is available in
textual sources traditionally associated with Open Sources
Intelligence (OSINT), as well as in data that is present in
hidden sources like dark web vulnerability markets.

The intelligence translation system that we discuss in Sec-
tion III will help us automate this process by taking data from
a variety of multilingual sources, extracting, representing
and integrating the knowledge present in it as embeddings
and knowledge graphs, and then use the resulting artificial
intelligence systems to provide actionable insights to SoC
professionals. Figure 7 showcases our pipeline, which takes
in Russian threat intelligence and stores it in as a VKG
structure [25].

Two such systems that we have developed in the past
are CyberTwitter [24] and Cyber-All-Intel [25]. The systems
store threat intelligence in a knowledge representation that
can be used by AI based cyber-defense systems (See Figure
7). Such systems generally have a knowledge representation
engine, a reasoning engine, and few applications like an alert
generation system, recommender system, query processing
system, etc.

The knowledge representation system, converts input
threat intelligence (usually in a textual format) into a machine
readable format. In our system we represent it in RDF2,
with cybersecurity domain knowledge provided by the Uni-
fied Cybersecurity Ontology (UCO) [34]. The intelligence
ontology [24] provides information about the intelligence

2https://www.w3.org/RDF/

Fig. 7. Using the intelligence translation system with an AI based cyber
defense system.

domain. We also include specific conceptual embeddings for
security concepts in our threat representation format [25].
The knowledge reasoning part of the system provides domain
specific reasoning capability generally encoded as logical
rules by a domain expert. The applications and the reasoning
engine generally use the machine readable representation
to provide specific functionality. Figure 7 also provides the
graph structure for the translated English intelligence: “URL
Command Injection Remote Code Execution Vulnerability in
Microsoft Skype”. Figure 8 provides the RDF representation
for the same intelligence.

@prefix uco: <http://accl.umbc.edu/ns/ontology/uco#> .
@prefix intel: <http://accl.umbc.edu/ns/ontology/intelligence#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix dbp: <http://dbpedia.org/resource#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .

<Int534962883> a intel:Intelligence ;
intel:hasVulnerability <remote code execution> ;

<command injection> a uco:Means .

<Microsoft Skype> a uco:Product ;
uco:hasVulnerability <remote code execution> ;
owl:sameAs dbp:Skype .

<remote code execution> a uco:Vulnerability ;
uco:affectsProduct <Microsoft Skype> ;
uco:hasMeans <command injection> ;
owl:sameAs dbp:remote code execution .

Fig. 8. RDF for textual input “URL Command Injection Remote Code
Execution Vulnerability in Microsoft Skype”. Also, owl : sameAs property
has been used to augment the data using an external source ‘DBpedia’ [2].

VI. CONCLUSION & FUTURE WORK

In this paper, we described the design, implementation,
and evaluation of a multilingual threat intelligence translation
system. The system uses Russian and English word em-
beddings created from cybersecurity data, an aligned cyber

https://www.w3.org/RDF/
http://accl.umbc.edu/ns/ontology/uco
http://accl.umbc.edu/ns/ontology/intelligence
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/XML/1998/namespace
http://www.w3.org/2001/XMLSchema
http://dbpedia.org/resource
http://www.w3.org/2002/07/owl


term database, and a LSTM based neural machine translation
architecture, to translate cybersecurity text from Russian to
English. With the help of Russian speaking cyber analysts,
we created an alignment database by generating synonyms
for the Russian and English corpus vocabularies, along with
their respective translated Russian and English words. We
utilize this database in neural machine translation, where
we use an encoder-decoder architecture to map unfamiliar
Russian cyber inputs to their English counterparts. We show
that our model not only has high syntactic correlation to
third party translation systems, but also registers prevalent
cybersecurity terms in translation better than third party en-
gines. We extend third party translation systems by creating
a domain specific model that can provide more pertinent
intelligence for an analyst. Our system can be utilized in
private operational settings that do not permit the use of third
party applications when dealing with sensitive intelligence
data.

A weakness of our system, is the requirement of a
cybersecurity rich alignment to train the model. Although
we derived a Russian and English cybersecurity synonym
sets in this proof of concept, it is an expensive task that
will take dispersed effort across the linguistic and security
communities, to derive across many other languages. In
order to create more mappings for cyber terms across other
languages like, Mandarin, Cantonese, Portuguese, Arabic,
Hindi, etc. future research can include creation of multi-
lingual cyber alignment databases. We can also consider
transferring knowledge from languages with an abundance
of intelligence to other unknown languages with no or few
alignments. We expect that aligned cyber embeddings across
many languages can promote international incident response
collaboration.
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[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard
Cyganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open
data. In The semantic web, pages 722–735. Springer, 2007.

[3] Amir Bakarov. Improving word representations via global context and
multiple word prototypes. 2018.

[4] The U.S. Census Bureau. Internet world stats. https://www.
internetworldstats.com/, Dec 2017.

[5] R.Priyanga C.Sundar. Mining words and targets using alignment
model. 2016.

[6] dhs. Stop.think.connect. multilingual re-
sources. https://www.dhs.gov/
stopthinkconnect-multilingual-resources/, 2015.

[7] Yoshua Bengio Dzmitry Bahdanau, Kyunghyun Cho. Neural machine
translation by jointly learning to align and translate. 2014.

[8] Yoshua Bengio Dzmitry Bahdanau, KyungHyun Cho. Neural machine
translation by jointly learning to align and translate. 2015.

[9] JorgTiedemann Elisabeth Niemanna. The peoples web meets linguistic
knowledge: Automatic sense alignment of wikipedia and wordnet.
2006.

[10] Christian Girardi Emanuele Pianta, Luisa Bentivogli. Developing an
aligned multilingual database. 2002.

[11] Sebastien Jean Coline Devin Yoshua Bengio Felix Hill,
Kyunghyun Cho. Embedding word similarity with neural machine
translation. 2014.

[12] Ludovic Denoyer Marc’Aurelio Ranzato Guillaume Lample,
Alexis Conneau. Unsupervised machine translation using monolingual
corpora only. 2017.

[13] Anna Sinopalnikova Maria Yavorskaya Ilya Oparin Irina Azarova,
Olga Mitrofanova. Russnet: Building a lexical database for the russian
language. 2002.

[14] Ashok C. Popat Moshe Dubiner Jakob Uszkoreit, Jay M. Ponte. Large
scale parallel document mining for machine translation. 2010.

[15] Chengqing Zong Jiajun Zhang. Bridging neural machine translation
and bilingual dictionaries. 2016.

[16] Judith L. Klavans. Cybersecurity - whats language got to do with it?
2015.

[17] Ray R. Larson. Introduction to information retrieval. 2009.
[18] Jorg Tiedemann Lonneke van der Plas. Finding synonyms using

automatic word alignment and measures of distributional similarity.
2006.

[19] Claudio Schifanella Mario Cataldi, Luigi Di Caro. Emerging topic
detection on twitter based on temporal and social terms evaluation.
2010.

[20] T Mikolov and J Dean. Distributed representations of words and
phrases and their compositionality. Advances in neural information
processing systems, 2013.

[21] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Effi-
cient estimation of word representations in vector space. preprint
arXiv:1301.3781, 2013.

[22] George A Miller. Wordnet: a lexical database for english. 1995.
[23] Piyush Kedia Pushpak Bhattacharyya Mitesh M. Khapra, Sapan Shah.

Projecting parameters for multilingual word sense disambiguation.
2009.

[24] Sudip Mittal, Prajit Kumar Das, Varish Mulwad, Anupam Joshi,
and Tim Finin. Cybertwitter: Using twitter to generate alerts for
cybersecurity threats and vulnerabilities. In Advances in Social Net-
works Analysis and Mining (ASONAM), 2016 IEEE/ACM International
Conference on, pages 860–867. IEEE, 2016.

[25] Sudip Mittal, Anupam Joshi, and Tim Finin. Thinking, fast and slow:
Combining vector spaces and knowledge graphs. corpus, 2:3, 2017.

[26] Mu Li Ming Zhou Nan Yang, Shujie Liu and Nenghai Yu. Word
alignment modeling with context dependent deep neural network.
2002.

[27] NIST. Cybersecurity — nist. https://www.nist.gov/
topics/cybersecurity/, 2018.

[28] The Global WordNet Organization. Wordnets in the world. http:
//globalwordnet.org/wordnets-in-the-world/.

[29] a nd Robert L. Mercer Peter F. Brown, Jennifer C. Lai. Aligning
sentences in parallel corproa. 1990.

[30] The Register. Most vulnerabilities first blabbed about online or on
the dark web. https://www.theregister.co.uk/2017/06/
08/vuln_disclosure_lag/, Jun 2017.

[31] The Register. Make america late again: Us ’lags’ china in it security
bug reporting. https://www.theregister.co.uk/2017/
10/20/us_china_vuln_reporting/, Oct 2017.

[32] Alexandra Birch Rico Sennrich, Barry Haddow. Neural machine
translation of rare words with subword units. 2016.

[33] Deepali Vora Suraj Subramanian. Unsupervised text classification and
search using word embeddings on a self-organizing map. 2016.

[34] Zareen Syed, Ankur Padia, M. Lisa Mathews, Tim Finin, and Anupam
Joshi. UCO: A unified cybersecurity ontology. In AAAI Workshop on
Artificial Intelligence for Cyber Security, pages 14–21. AAAI Press,
2015.

https://www.internetworldstats.com/
https://www.internetworldstats.com/
https://www.dhs.gov/stopthinkconnect-multilingual-resources/
https://www.dhs.gov/stopthinkconnect-multilingual-resources/
https://www.nist.gov/topics/cybersecurity/
https://www.nist.gov/topics/cybersecurity/
http://globalwordnet.org/wordnets-in-the-world/
http://globalwordnet.org/wordnets-in-the-world/
https://www.theregister.co.uk/2017/06/08/vuln_disclosure_lag/
https://www.theregister.co.uk/2017/06/08/vuln_disclosure_lag/
https://www.theregister.co.uk/2017/10/20/us_china_vuln_reporting/
https://www.theregister.co.uk/2017/10/20/us_china_vuln_reporting/

	I Introduction
	II Related Work
	II-A Text Analysis for domain specific tasks
	II-B Neural Machine Translation
	II-C Cybersecurity understanding across multiple languages
	II-D AI-Based Cyber Defense Systems

	III Intelligence Translation Architecture 
	III-A Creating a Multi-Lingual Cybersecurity Corpus
	III-B Embedding Generation
	III-C Intelligence Translation Framework
	III-C.1 Creating an Alignment Database
	III-C.2 Intelligence Translation Network


	IV Evaluation
	IV-A Accuracy and BLEU score
	IV-B Measuring against Commercial Systems

	V Use by Cyber-Defense Systems
	VI Conclusion & Future Work
	References

