An Active Transcoding Proxy to Support Mobile Web Access

*

Harini Bharadvaj, Anupam Joshi and Sansanee Auephanwiriyakul
Department of Computer Engineering & Computer Science,
University of Missouri-Columbia,

Columbia, MO 65211 USA

E-mails: {harini,sansanee}@meru.cecs.missouri.edu, joshi@cecs.missouri.edu

Abstract

In this paper, we present a proxy based system
(MOWSER) to support web browsing from mobile clients
over wireless networks. Mowser is a proxy agent between
the mobile host and the web server, which performs active
transcoding of data on both upstream and downstream traf-
fic to present web information to the mobile user according
to the QoS parameters set by the user. Active transcoding is
defined as modifying the HTTP stream in situ, and it is en-
tirely transparent to the user. Further, our system does not
pose any additional requirements on the mobile user. This
18 an improvement over other proxy based systems, which
only transcode images on the downstream and are mostly
not configurable. While developed for mobile users, such a
system can actually be useful in any low bandwidth scenario.

1. Introduction

With an ever increasing amount of information “out
there” on the World Wide Web, and mobility becoming
the need of the hour, users want to have information at
their fingertips wherever they may be. Recent develop-
ments in mobile computing and web technologies have re-
sulted in an increase in the number of "road warriors”, peo-
ple who use mobile computers to access their business in-
formation repositories, often through the web. These users
need speedy access to that data. One cannot expect them
to wait for hours to download a web page containing a lot
of multimedia data over a wireless network, most of which
cannot be handled by the small and “easy-to-carry” lap-
top/palmtop computer anyway. Most mobile computers
have very limited cpu, memory & disk resources. They
communicate over wireless links which are characterized by
lower bandwidths, higher error rates, and more frequent dis-
connections. Moreover, in a mobile environment, changes
to the network bandwidth and resources are very common.
These are only some of the challenges of mobile computing,
more of which are discussed in [4]. In the context of web
browsing, web servers do not consider the network connec-
tion between them and the client. They also have no con-
cern for the hardware capabilities of the client. They just

*This work was supported in part by an IBM Faculty Devel-
opment Award to A. Joshi

return the document asked for assuming that the client is
capable of properly receiving and displaying the data. Peo-
ple are commonly creating web pages rich in multimedia
data, pages with several images and videos have become
very common. Presenting all this multimedia-rich data over
wireless networks to the mobile user is a major challenge.
The mobile computer either does not have the appropriate
hardware or adequate bandwidth (or both) to handle the
content, and the web servers also cannot be modified to
suit the mobile user. Therefore, the only way of bridging
the gap between the highly resource-rich web servey at one
end and the highly resource-poor mobile client at the other,
is by introducing a system in between which modifies the
contents on the web and present it in the most appropriate
form to the mobile user. Hence, the need for middleware,
which adapts to the mobile environment, gets the best of
what 1s available on the web and does not pose any addi-
tional requirements on the mobile client.

We have devised such a middleware based solution which
allows the user of a mobile computer to control the way
in which the data from the web is retrieved, dynamically
transform the data in a way that is transparent to the user,
without requiring the mobile computer to do any additional
work. We achieve this by introducing a proxy agent be-
tween the mobile client and the web server. Our proxy,
Mowser, lets the user specify and control the viewing pref-
erences and hardware capabilities of the client, transforms
the data to and from the web server, without requiring any
change on the client. We talk about related work in section
2 and describe the software architecture of our system in
section 3. In section 4, we describe the various methods of
transforming data that we have used. The results of our
experiments are presented in section 5 and we discuss it in
section 6.

2. Related Work

The Client-Proxy-Server model has begun to feature in
many mobile applications to overcome the challenges faced
in the mobile computing scenario. However, only some of
them actually transform the stream between the client and
the server.

In the GloMop model described in [5],[11] the proxy
performs “distillation” of the document received from the
server before sending it to the client. Distillation is defined
here as highly lossy, real-time, datatype-specific compres-
sion that preserves most of the semantic content of a docu-
ment. The approach of transcoding image files is similar to
our approach first outlined in [9], but video files are handled

differently. They perform real-time transcoding of motion
JPEG to sub-sampled H.261, while our approach, described
later in this paper, represents a video stream using repre-
sentative frames. GloMop also allows refinement of selected
portions of the document.

The Mowgli model [14] consists of two mediators, the
Mowgli Agent and the Mowgli Proxy located on the mo-
bile host and the mobile-connection host respectively. They
use the Mowgh HTTP protocol to communicate with each
other, which reduces the number of round-trips between
client and server. A specialized transport service, the
Mowgli Data Channel Service is used for reliable communi-
cation between the mobile-connection host and the mobile
host. Mowgli WWW reduces the data transfer over the
wireless link in three ways: data compression, caching, and
intelligent filtering. It only performs GIF to JPEG conver-
sion, and large embedded images are not transferred at all
to the mobile node.

Zenel proposes an architecture in [19] in which the proxy
is made up of three components: High Level Proxy, Low
Level Proxy and Event Manager. The High Level Proxy al-
lows filters for application layer protocols to be downloaded
dynamically from mobile host applications. The Low Level
Proxy is used to create and install filters for the transport
and network layers. A control interface is provided for the
filters running within these proxies by the Event Manager.

HTTP transducers called OreOs (defined in [3]) are spe-
cialized processing modules having four classes of function-
ality: filtering HT'TP requests and responses, characterizing
sets of messages, transforming message contents and addi-
tional processing indicated by the messages. The “stream
model” approach of signal processing is used to perform
complicated processing.

In the work of Sathyanarayanan et. al, a module called
Cellophane [17] on the client transforms HTTP requests
from Netscape into file operations on Odyssey [16] web ob-
jects and makes use of Odyssey API to select fidelity levels
for images which are forwarded to a distillation server. The
distillation server distills the images to the requested fidelity
before passing them back to the client. However, this ap-
proach is specific to the Odyssey file system and requires a
modified version of the Net BSD kernel. This also requires
the addition of a module on the client.

Intel’s Quick Web Technology [7] which sits on ISP
servers compresses images by selectively dropping bits or
pixels out of an image using lossy compression techniques,
thereby speeding up the download of graphically- rich web
pages. It also caches data to overcome the problem of band-
width bulge. This can be used only when the access to
the Internet is through ISP, and the user requires a Java-
enabled browser to have control over the compression.

IBM’s Web Express [6] consists of two components: AR-
Tour (Advanced Radio Communications on Tour) Gateway
and ARTour Client. The Gateway provides secure, com-
pressed data across the selected network with authentica-
tion. It can automatically retrieve Web requests in the
background while mobile users are performing other tasks.

In our system, the proxy performs active transcoding
of HTTP requests from the client while sending it to the
server, according to the preferences set by the mobile host,
so that the document in the most suitable format is re-
trieved. [t also processes the received HT'TP data before
sending i1t to the mobile host if necessary.

3. Software Architecture

Mowser is a proxy HTTP server agent (written in Perl)
[18] which allows a mobile user to specify his or her view-
ing preferences, based on the network connection and avail-
able resources, and performs active transcoding of HTTP
streams accordingly. The software architecture that we
propose introduces a proxy server on each Mobile Support
Station (MSS) to the basic MSS-MH (Mobile Host) model
which accepts and stores the preferences for each of its mo-
bile hosts, acts as the server to the mobile host, and as a
client to the WWW server. No modifications to the web
client on the MH is required. So any WWW browser that
can handle forms and has the provision of a proxy can be
used. No additional software is required on the mobile host.
Also, setting and updating preferences is done by just fill-
ing up a CGI form on a URL at the web site maintained
by the proxy server.

In the initial versions of Mowser [9],[10], the proxy dealt
with getting the viewing preferences for a MH from the user
and storing it according to its [P address. The current ver-
sion also stores the accept headers that will be most suitable
for the MH based on the preferences set by the user. The
viewing preferences stored for each MH include a starting
point, color capability, video resolution, sound capability,
maximum allowed size for text, image, video, audio files
and files of unknown type, and the size reduction technique
for image files. Not all of these variables are presently used
by the proxy. The preferences can be updated by the user of
the MH whenever there is a change in the network connec-
tion or available resources. We are using an Apache HTTP
server to store the preferences, and CGI scripts written in
Tcl and Perl are used to update and save the preferences.

Once the MH sets the Proxy server as its proxy, all com-
munication between the MH and the WWW servers is di-
rected through this proxy. When the proxy receives a re-
quest from the MH, it looks up the preferences stored with
the IP address of the MH and processes the request accord-
ingly. Default preferences are used if no preferences had
been specified. The proxy processes requests to set pref-
erences and the GET requests. All other requests are for-
warded to the target WWW server. In the next section, we
detail how the proxy performs active transcoding of HT'TP
streams.

4. Active Transcoding

Modifying the HTTP stream and changing its content in
situ 1s called active transcoding. This is done dynamically
without any user intervention. For example, if an image file
does not meet the size or color specifications, it is reduced
before being sent to the MH (described in section 4.2). Sim-
ilarly, sound files will not be sent to a MH with no sound
capabilities, and so on.

Traditionally, transcoding is a unidirectional process [9],
[5],[6],[7]. In other words, the request from the client is
passed as is to the target server, while the return stream’s
multimedia content is altered. In our work, we alter the
request as well, so as to take advantage of some net-friendly
features of HTTP/1.1.

After setting preferences and making our MOWSER as
its proxy, the user can browse the web as s/he would with
any web client. On receiving a request from the MH, the
proxy fetches the preferences set by the MH and serves the
MH with files in the most suitable format. Default pref-
erences are used if no values had been set by the MH. We

process HTTP GET requests received from the MH be-
fore sending it to the WWW server, and modify image and
video files received from the WWW server before transmit-
ting it to the MH if necessary. To support MHs with very
limited resources and hardware capabilities like PDAs, we
even parse the HTML stream to remove the active content
and any tags that the MH cannot handle. The user may
even choose to block any HTML file greater than a given
size. With transcoding being done at two steps indepen-
dently as shown in Figure 1, we are making sure that we
match the preferences of the MH, while using the wired
bandwidth in the most efficient manner.

4.1. Transcoding of HTTP Requests

HTTP/1.1 introduces the concept of content negotia-
tion. The basic idea is that a WWW server may have sev-
eral different representations of a resource. For example, it
may store a document as postscript or word or HT'ML, etc.
The server can automatically choose the file to send if the
client sends the preferred representations as part of each
request. Most servers (e.g., apache), even though not fully
1.1 compliant, already support content negotiation and will
store files in several formats and in several variations of a
format. We use this idea to get the file in the most ap-
propriate format for the MH. For example, an image file
may be made available in varying resolutions by the con-
tent provider on the server. We request the server to send
the image file which has the resolution appropriate to the
present QoS and client parameters, by including the prefer-
ence in the request. This requires that the variants of a file
have different mime types. For example, in our experiments
we have used image/x-sgif to denote an image file with very
low resolution, image/x-mgif to denote one with medium
resolution and image/x-lgif to denote one with large resolu-
tion. We have also introduced video/x-rmpg to denote rep-
resentative frames of video files (discussed in section 4.3).

Any HTTP GET request received from the MH is
munged to an HTTP 1.1 request and the complete URI
is included in the request line. The Accept headers stored
for the MH are then appended to the outgoing stream to
request for the file in the format most suited for the MH.
A Host header is added to complete the HT'TP 1.1 request.
The server performs content negotiation and sends the file
which closely meets the format specified in the request.
Thus, the process is transparent to the user, and works even
if the request comes from an HTTP /1.0 compliant browser,
like most present commercial systems.

For example, for a MH host on a low bandwidth line,
the proxy may append the following Accept headers to the
request after making it a HT'TP 1.1 request:

Accept: image/x-sgif, video/x-rmpg

For a MH like the PalmPilot, which can handle only text
and images, the proxy greatly reduces the data transfer by
selectively GETing the files. That is, when the proxy re-
ceives a GET request from a PDA, it sends a HEAD request
to the WWW server to get information about the content
type of the file, and then GETs the file only if the PDA
can handle it. For example, the proxy does not request for
audio, video and application files for a PDA. Since a page
has the URLs of additional files to be fetched embedded in
it, we could prevent the client on the MH from generating
the additional GET requests and design the proxy to decide
whether to GET the file or not by just looking at the exten-
sion of the file name in the embedded URLs. However, the
content-type of the file is a better indicator of the format of

the file than the extension in the filename, though getting
this information requires an additional HEAD request to
be sent.

4.2. Transcoding Image Files

When the proxy finds an image tag in the HT'TP stream
received from the server, it reads the URI of the image
file to be fetched and first sends a HEAD request to the
server. It checks the content-type and content-length in-
formation received from the server. If the content-length
is small enough to be handled on the MH, the image file
is sent to the MH unmodified. But if the image is larger
than what can be handled by the MH, it is reduced in size
or color as requested by the MH. The image files are scaled
down in size, or the number of colors is reduced, or both
without sacrificing semantics. On an image map for in-
stance, size is not changed, only colors are, to preserve the
semantics. The content-type information is used to decide
the transformations that the image file has to go through.
We convert all images to be reduced to portable pixmap
format for processing and then convert them back to gif
format for displaying. Then the original URL in the image
tag is replaced with the URL of the modified image stored
locally by the proxy and sent to the MH. This makes the
MH GET the modified image file from the proxy. To display
images on PDAs, the proxy might have to reduce images to
2-bit gray scale and thumb size.

4.3. Transcoding Video Data

Unlike image data where transcoding steps are obvi-
ous, video data represents a great challenge. Simple sub-
sampling, as proposed in [5], is still not adequate as some
clients may not have enough computational resources to do
software decoding of MPEG or H.261. We use the struc-
ture inherent in video streams to do the transcoding. The
structure of video i1s a hierarchy of the movie or episode.
This hierarchy is segments, scenes, and shots. Each seg-
ment consists of sequence of scenes, each scene consists of
several shots, and each shot is composed of several frames
which have similar visual properties. Thus one of these
frames can be selected as a Representative frame (Rframe)
for the shot.

We present the video to the user by the representative
frames which are picked from each shot. Using techniques,
we have developed [1],[8] to support content based access
to networked video databases. We have used several fuzzy
clustering algorithms, such as fuzzy c-mean, hard c-mean,
fuzzy c-median, hard c-median and possibilistic c-mean
[2],[13],[12]. We use luminance and chrominance features,
and 1-norm and 2-norm distance measures [1], [8] in order
to group the frames which have similar properties together.
Each group is classified as one shot. We pick the frame
that is closest to center of each group to be Rframe. We do
not explicitly use any scene change detection algorithms.
The fuzzy techniques are used since frames can belong to
the clusters to different degrees (membership values). Tra-
ditional scene change algorithms, which insist on a frame
belonging to only one group, break down when confronted
with gradual scene changes typically found in videos. While
Rframes can be computed dynamically by the proxy, we feel
that from a computational perspective, this should be done
at the server side. In fact, it can be argued [1],[8] that
these will typically be available at the server side already
to support querying and browsing of the video database.

4.4. Transcoding Active Content

For mobile hosts with limited memory and computa-
tional resources, the user can decide not to receive any Java
applets, JavaScripts, VBScripts, etc. When such a prefer-
ence is set, the document to be transmitted is parsed and
all the active content is eliminated before sending it to the
MH. This is specifically suitable for the PDAs which have
very small disk space and low speed CPUs. Also, given re-
strictions on the memory footprints of the applications that
can reside on such machines, it is not clear that browsers
will be able to support the virtual machines needed for ac-
tive content languages such as Java.

Often though, Java (and JavaScript) are used to provide
functionality that can be duplicated using CGI callbacks or
server parsed HTML. An interesting option that we wish
to pursue here is to see if we could have the forms capable
client request for a CGI version instead of the JavaScript
from the server. In other words, replace active content of
a page with equivalent dynamic content. This feature will
be supported via content negotiation. Like all content ne-
gotiation, it assumes that the server provides alternative
versions (CGI based vs Java based) of a particular URL.

4.5. Transcoding HTML

We can reduce the computation on the MH by parsing
HTML tags on the proxy itself, rather that on the MH. We
can eliminate all the tags that the MH does not support,
and references to any file that the MH is not capable of
handling. For example, we can eliminate the italics tag,
cascade style sheets, etc. for a PDA such as the PalmPilot.
For such severely resource constrained MHs, the set of tags
that it can handle may be so small, that it is advantageous
to strip of all unwanted tags at the proxy, and encode the
remaining tags using a few bits.

By choosing the specific options, the user can use any or
all of these transcoding methods depending on the limita-
tions of the client or network connection, and can change it
when resources change. This makes our proxy very adapt-
able to serve the varying needs of the user. For example, a
user on a laptop may want to only limit the size of video and
audio files when s/he is connected via a slow telephone mo-
dem, and remove this restriction when connected through
the ethernet. A user on a PDA, on the other hand, will
want to filter out everything except text and small images.

5. Experimental results

Our proxy server is a modified version of a HT'TP server
written in Perl. We are using an Apache server to store
the preferences and to act as the WWW server capable of
content-negotiation. We stored multiple formats of some
files and requested them with different preference settings.

An example of transcoding due to content negotiation:

We set the following preferences for one computer (A
desktop) Maximum Image file size = 20K Maximum Video
file size = 500K

The accept headers added to its request were: Accept:
image/x-1gif, image/gif;q=0.6, video/mpeg

We requested for the page http:// bochi. cecs. missouri.
edu: 9021/ demo.html

Figure 2 shows the response received.

We set the following preferences for another computer (A
laptop) Maximum Image file size = 6K Maximum Video file
size = 25K

The accept headers added to its request were:
Accept: image/x-sgif, image/gif;q=0.6, video/x-rmpg,
video/mpeg;q=0.6

We requested for the same page http:// bochi. cecs.
missouri. edu: 9021/ demo.html

Figure 3 shows the response received.

An example of transcoding of images received from the
server:

For the same two computers, (same preferences set as
above) we requested the page
http://www.missouri.edu/ csacm The image file existed
only in gif format on the server. The image in the doc-
ument is small enough for the desktop and hence passed
through without any reduction as seen in Figure 4. But
the image is large for the laptop (larger than 6K). There-
fore, the proxy reduced the resolution of the image as seen
in Figure 5.

To see some video files and their representative frames,
please visit
http://meru.cecs.missouri.edu/ “sansanee/mpeg

We kept different settings on two computers and ac-
cessed the same web page to see the difference. For the
first computer we set a large value for the maximum size
of image and video files allowed, and sent accept headers
to allow large gif files and mpeg movie files. Therefore, we
received large image files and the entire movie file. For the
second computer, we limited the size of image and video
files, and sent accept headers requesting for small images
and representative frames of mpeg files. Hence, we received
smaller versions of the images and only the representative
frames for the movie file. Our request did not specify the
extension of the file name, and the file was available in mul-
tiple formats. If the size of the received image files is larger
than the maximum size specified, the proxy scales it down
either by size or by color as set by the user.

Clearly, the results are best understood by experienc-
ing the proxy based model. We have made the proxy
available on the web, it may be accessed at the URL
http://nirvana.cecs.missouri.edu:8001. A major drawback
of the present implementation is its overhead. Slnce this
is a demonstation prototype, it has been mostly in PERL,
and is thus may slow to execute.

6. Discussion

In this paper, we have presented a proxy based system
(MOWSER) to support web browsing from mobile plat-
forms. It follows the client-proxy-server model which is
the basis of most mobile applications and uses the proxy
to provide active transcoding. Proxies are mostly used for
forwarding data between the mobile client and the station-
ary server. The idea of using transcoding at the proxy to
support mobility is not new per se. Many proxy based sys-
tems [5],[14],[19] have been developed to provide web access
to mobile users. However, they typically transcode the im-
age data received from the WWW server before sending
it to the mobile client, and are often not configurable. In
Mowser, we extend the notion of transcoding to both the
upstream and the downstream traffic. More specifically, the
upstream request is munged into a HTTP/1.1 request, to
make use of the content negotiation feature, and Accept
headers are appended, to request for the document in the
format most appropriate for the QoS parameters set by the
mobile user. On the downstream, in addition to transcoding
of images, we also provide the options of removing the active
content and transcoding HTML. The mobile user can select
any or all of these options. This is to support the changing

requirements of a wide variety of mobile hosts ranging from
a powerful notebook with 233MHz CPU, 2GB RAM, which
may require only image and video data transcoding, to a
PDA with 64KB dynamic RAM, which requires all possible
transcoding and filtering of data.

In ongoing work, we are extending the proxy to effec-
tively use all the preferences set by the user to limit or
transform the data before serving the MH. Further, our
proxy adds a performance overhead due to two reasons.
First, it is written in Perl and uses netpbm for the process-
ing of image files. The speed could be increased by writing
optimized C code and image conversion routines. Second,
messages go all the way up to the application layer in the
proxy even if data just needs to be written from one socket
to another. Research is going on in the IBM Watson Labs
to avoid this by using TCP Splice [15] which allows data to
flow through without going to the application layer in the
proxy if necessary and such techniques could eventually be
integrated into our system. The overhead is justifiable be-
cause we are trading proxy side CPU cycles for the more
expensive client side CPU cycles and network bandwidth.
In experimental situations, it has been observed that extra
time taken by the proxy is still less than the time needed
to send untransformed data on the wireless network.

References

[1] S. Auephanwiriyakul, A. Joshi and R. Krishnapu-
ram, “Fuzzy Shot Clustering to Support Networked
Video Databases,” IEEE FUZZ-IEEE 98/WCCI98
May 1998.

[2] J. C. Bezdek, “Pattern Recognition with Fuzzy Objec-
tive Function Algorithms,” Plenum Press New York,
1981.

[3] C. Brooks, M. S. Mager, S. Meeks
and J. Miller, “Application-Specific Proxy Servers as
HTTP Stream Transducers,” Proc. WWW-4, Boston,

hitp://www.w3.org/pub/Conferences/ WWW/ /Papers/56

May 1996.

[4] G. Forman and J. Zahorjan, “The Challenges of Mobile
Computing,” TFEE Computer, 27:38-47 April 1994.

[5] A. Fox and E. A. Brewer, “Reducing WWW Latency
and Bandwidth Requirements by Real-Time Distilla-
tions,” Fifth International World Wide Web Confer-
ence May 1996.

[6] IBM Corporation, “Ringing in Wireless Services: Web
Access Without Wires,” hitp://www.ibm.com/ Sto-
ries/ 1997/08/ wireless4.himl.

[7] Intel Corpo-
ration, “Intel Quick Web Technology: White Paper,”
hitp://www.intel.com/quickweb /white.htm.

[8] A. Joshi, S. Auephanwiriyakul and R. Krishnapuram,
“On Fuzzy Clustering and Content Based Access to
Networked Video Databases,” 8th IEEE Workshop on
Research Issue in Data Engineering 1998.

[9] A. Joshi, R. Weerasinghe, S. P. McDermott, B. K. Tan,
G. Benhardt and S. Weerawarna, “Mowser: Mobile
Platforms and Web Browsers,” Bulletin of the IFEFE
Technical Commuttee on Operating Systems and Ap-
plication Fnvironments Vol 8, no. 1, 1996.

[10] A. Joshi, S. Weerawarna and E. N. Houstis, “On
Disconnected Browsing of Distributed Information,”
Proceedings of the seventh International workshop on

RIDFE pp 101-107, IEEE Press, 1997.

[11] R. H. Katz, E. A. Brewer, E. Amir, H. Balakrish-
nan, A. Fox, S. Gribble, T. Hodes, D. Jiang, G. T.
Nguyen, V. Padmanabhan, M. Stemm, “The Bay Area
Research Wireless Access Network (BARWAN),” Pro-
ceedings Spring COMPCON Conference 1996.

[12] P. R. Kersten, “Fuzzy Order Statistics and Its Applica-
tion to Fuzzy Clustering,” Nowval Air Warfare Center
Weapons division Report August 1995.

[13] R. Krishnapuram and J. M. Keller,“A Possibility Ap-
proach to Clustering,” [IFEF Transactions of Fuzzy
Systems vol. 1 No. 2, pp 98-110, May 1993.

[14] M. Liljeberg, H. Helin, M. Kojo, and K. Raatikainen,
“Enhanced Services for World-Wide Web in Mobile
WAN Environment,” Report C-1996-28 April 1996.

[15] D. Maltz and P. Bhagwat, “MSOCKS: An Architec-
ture for Transport Layer Mobility,” IFEF Infocom 98,
San Francisco pp 1037-1045, April 1998.

[16] B. D. Noble, M. Price, M. Sathyanarayanan, “A
Programming Interface for Application-Aware Adap-
tation in Mobile Computing,” Proceedings of the
Second USENIX Symposium on Mobile & Location-
Independent Computing Ann Arbor, MI, April 1995.

[17] B. D. Noble, M. Sathyanarayanan, D. Narayanan, J.
E. Tilton, J. Flinn, K. R. Walker, “Agile Application-
Aware Adaptation for Mobility” Proceedings of the
16th ACM Symposium on Operating System Principles

[18] George Vanecek Jr., “Personal Communication,” 1995

[19] B. Zenel. “A Proxy Based Filtering Mechanism for The
Mobile Environment,” Thesis Proposal, Department of
Computer Science, Columbia University.

FEQUEST+ACCEFT HEADER,
EEGUEST FROMAH teg, Avept imagsivagl) (7
—_—* —
MOWSER
— —
TRANSCODED RETURN RESECN S8 FROM SERVEE, || °
MOEILE HOST

REMIOTE SERVER.

Figure 1. Active Transcoding of HTTP Stream

D D

i e SRR i mh._:._. Ve o 22 el
HEE nmu_.umd Lmt 2l

Mowser Demonstration Page

View this page on both statonary and mablle computers and abserve the differcnee!

Ulich o Ui b wieh u s lip,

4 Jzametloe

Figure 2. Example of Content Negotiation:
Response on a Resource rich Client

Mowser Demnmtmtmn Page

¥lew this page on both statlonary and mablle compuiers and ahserve the dfference?

Click om this Lo wideh a nnsie clij

o Jzaretloe

Figure 3. Example of Content Negotiation:

Response on a Resource poor Client

©oorirL ngakn Hep

. y =
|_l ZoieTave & 2018207 [101 (e fimmmet irrmn i on T
1 X ¥ B A » £ & oo
i Zatk e iElen Hove Feme fuds P Sk s N

&

ACM Student Chapter at the
University of Missouri- Columbia

Office Hourz — Roam 4 EBMW:
» Mogday™s 11:15-2:00, S:00—:00
» Wodncaday™s 11:15-2:00, 3:00:00
= Thoesdny 'z 11:30-2:00
= Friday™s 12:00-1:30, 3:00—: 0

[Dok M ol 2

|

Figure 4. Example of Image Transcoding: Re-
sponse on a Resource rich Client

ca e i wn e o~ |

-.|_1|+|._,

ACM Student Chapter at the

Lmr=rrwss m' ey < famslbeg

Office Hourz — Roam 8 EEW:
= Mondny's 11:15-2:00, 3 00-4:00
= Widiewdny'z 11:15-2:00, 3: 00-4:00
® Tlureday™s 11:30-2:00
= Friday™s 12:00-1:30, 3:00:00

o
=l | s . am |

Figure 5. Example of Image Transcoding: Re-
sponse on a Resource poor Client

