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Abstract: Cnoidal waves are the periodic analogs of solitons. Like solitons, they can be
generated in microresonators and correspond to frequency combs. We describe their properties
and potential uses.
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High-Q microresonators with a Kerr nonlinearity that is pumped by continuous-wave laser light can produce frequency
combs. Broadband combs that can achieve nearly an octave of bandwidth have important potential applications to
metrology and high-resolution spectroscopy and have recently attracted a large amount of attention [1, 2]. However,
narrowband combs also have important potential applications, including the nonlinear generation of new frequen-
cies [3], and — because the comb lines of narrowband combs can be entangled — quantum networking [4]. Soliton
generation appears at present to be the best path toward achieving an octave-spanning comb [1, 2]. Solitons are not
always easy to obtain, and it has been found computationally that periodic solutions will often appear instead in a mi-
croresonator [5, 6]. Thus, it is important to understand the circumstances under which these periodic solutions appear
and whether they can be used to create a broadband comb.

Here, we show that cnoidal wave solutions to the Lugiato-Lefever equation exist with a non-zero pump and zero-
damping that can be expressed in terms of Jacobi elliptic functions [7] and that are analogous to the soliton solutions
that Matsko et al. [8] found. Like the soliton solutions, these solutions are unstable, but become stable when the
damping rate becomes sufficiently large. Like solitons, cnoidal wave solutions — also referred to as Turing rolls when
they are stable — develop a chirp when the damping is non-zero and do not have an exactly analytical expression.
However, the exact cnoidal wave solutions when the damping is zero are characterized by an exponential falloff in the
envelope of the comb spectrum, and we find that this exponential falloff is still present when the damping is non-zero.
Due to this exponential falloff, these cnoidal wave solutions are not suitable for broadband comb generation, but are
well-suited to narrowband comb applications, where limiting the number of comb lines and precisely controlling their
amplitudes is desirable.

The starting point of our analysis is the Lugiato-Lefever equation, which in its normalized form may be written

i
∂ψ

∂ t
+

∂ 2ψ

∂x2 −ψ +2|ψ|2ψ =−iαψ−h, (1)

where ψ is the field envelope, t is the normalized time, x is the retarded and normalized azimuthal coordinate, α is the
normalized damping rate, and h is the normalized pump strength. When α = 0, this equation has solutions in terms of
the Jacobi elliptic function dn[(x/g)|k2] that may be written

ψ(x) = ψ0

(
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A1dn[(x/g)|k2]

dn[(x/g)|k2]+A2

)
, (2)

where ψ0, g, A1, and A2 are all expressible as functions of h and the Jacobi modulus k2. A similar solution also exists in
which cn[(x/g)|k2] replaces dn[(x/g)|k2]. When the modulus k→ 1, both these solutions reduce to the soliton solution
that Matsko et al. [8] found. When α 6= 0, we can no longer find the stationary solutions analytically. Instead, we can
find them when they are stable by numerically integrating Eq. (1) using a split-step algorithm with the initial conditions
being the solution of Eq. (2). In Fig. 1 we show an example of these solutions.

Figure 1(a) shows |ψ(x)|2 (dashed line) for a solution of Eq. (2) with k = 0.76 and h = 0.8, these parameters
correspond to a periodicity of 5. This solution is compared to the numerical solution of Eq. (1) with α = 0.5 and
same pump strength. Fig. 1(b) shows their Fourier spectra. Figures 1(c) and 1(d) show another case with the same
parameters except that α = 0.7. In both cases, we find an exponential decay of the envelope of the Fourier spectrum.
We note that the exponential decay of the envelope increases when α increases. To demonstrate that these cnoidal
wave solutions are accessible from a broader set of initial conditions than the analytic cnoidal wave solutions at
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Fig. 1. (a) |ψ(x)|2 (dashed line) for a solution of Eq. (2) with k = 0.76 and h = 0.8 corresponding
to a period of 5. This solution is compared with the numerical solution of Eq. (1) with α = 0.5 and
same pump strength (continuous line). (b) Fourier spectra of the modes. (c) Same as in (a) for the
same parameters except that α = 0.7. (d) Fourier spectra of the modes.

α = 0, we have solved Eq. (1) numerically using two impulsive functions as the initial conditions. The first impulsive
function is 105 at x = 0 and 0 everywhere else. The second impulsive function is 10−5 at x = 0 and 0 everywhere else.
In Fig. 2 we show the accessibility chart in the (h,α) plane. If both initial conditions lead to unstable chaotic behavior,
we plot a black diamond. If both initial conditions lead to breathers that are periodic in t as well as in x, we plot a blue
dot. If both solutions are plane waves, we plot a yellow triangle. If the larger impulsive function leads to a breather and
the smaller impulsive function leads to a plane wave, we plot an inverted red triangle. Finally, if both initial conditions
lead to a cnoidal wave, we plot a green square. We see that there is a broad range of parameters from which the cnoidal
waves are accessible from impulsive initial conditions. We also note that the parameter range over which stable cnoidal
waves exist is significantly larger, but as α decreases, they no longer can be accessed from impulsive initial conditions.

Fig. 2. Accessibility chart in the (h,α) plane for a period 5.

In conclusion, we have demonstrated that the Lugiato-Lefever-equation for microresonators has stable cnoidal-wave
solutions that are analogous to solitons and are accessible from impulsive, as well as cnoidal initial conditions. The
spectrum of these solutions falls off exponentially with the mode number.
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