

APPROVAL SHEET

Title of Thesis: Efficient Scientific Big Data Aggregation

 through Parallelization and Subsampling

Name of Candidate: Savio Sebastian Kay

 Master of Science in Information Systems, 2019

Thesis and Abstract Approved:

 Dr. Jianwu Wang

 Assistant Professor

 Department of Information Systems

 University of Maryland, Baltimore County

Date Approved: 07/26/2019

ABSTRACT

Title of Document: EFFICIENT SCIENTIFIC BIG DATA

AGGREGATION THROUGH

PARALLELIZATION AND SUBSAMPLING

 Savio Sebastian Kay

Master of Science, Information Systems, 2019

Directed By: Dr. Jianwu Wang

Assistant Professor

Department of Information Systems

In the various scientific research study, experiments related to atmospheric physics and satellite

data administration, processing and manipulation does take a considerable amount of time and

resources depending on the size of the project. Due to the tremendous amount of data existing

even in an essential use case, computing information does take a longer time. It is in the cause of

multiple variables included in the substantial scientific dataset sizes of the Satellite specific files.

One of the methods scientific researcher and developers’ approach is to use more resources to

manage the significant data ingestion and manipulation along with process parallelization like

file-level parallelization and or day-level parallelization. It drastically reduces the time taken to

process data. However, the concept of subsampling is known to diminish the period to a shorter

span, which is suitable for a

lot of scientific study and experiments. In this thesis, the procedure of subsampling has tested

and proposed to be an approach to decrease processing time radically. Experimental results show

the Xarray python package; a modern python framework provides enough support to process

large volumes of data in a shorter period, which is suitable for the scientific research study. We

process One Month of Satellite data which constitutes to be 8928 HDF files with the size of

about 1.154TB (Terabytes) of information. It includes 8928 HDF files of MYD03 (357.23GB)

and 8928 HDF files of MYD06_L2 (797.71GB) MODIS satellite datasets. We evaluate the cloud

property variable by aggregating Level 2 data to Level 3 format, and we achieve this via two

primary approaches of subsampling and parallel processing. Our research and experiments show

along with parallel computing on multiple compute nodes through XArray & Dask; subsampling

technique can reduce system execution time dramatically with little to no data loss in the final

computed information. The code for the research and study can be found over at the GitHub

account of ‘saviokay’ with the repository name ‘masters-thesis’, it can be accessed via the link:

 https://github.com/saviokay/masters-thesis .

https://github.com/saviokay/masters-thesis

EFFICIENT SCIENTIFIC BIG DATA AGGREGATION

THROUGH PARALLELIZATION AND SUBSAMPLING

by

Savio Sebastian Kay

Thesis submitted to the Faculty of the Graduate School of the

 University of Maryland, Baltimore County in partial fulfillment

of the requirements for The Degree of

Master of Science in

 Information Systems

2019

Advisory Committee:

Dr. Jianwu Wang, Chair/Advisor

Dr. Sisi Duan, Co-Chairperson

Dr. Zhibo Zhang

Dr. Zhibo Zhang

© Copyright by

Savio Sebastian Kay

2019

 ii

Dedication

I dedicate my dissertation work to my family and friends. A special feeling of gratitude to my

loving parents, Sebastian Joseph Kay and Sheela Sebastian Kay whose constant words of

encouragement and push of tenacity ring in my ears. My elder sister Sharon Ajay Matthew, who

inspired me to pursue my Master Thesis and Research. I also dedicate this dissertation to my

friends who have supported me throughout the process. I will always appreciate all they have

done for me throughout the entire master program

 iii

Acknowledgement

I would like to deeply thank Prof. Jianwu Wang for not only introducing to the intriguing world

of Big Data but to also be a being a constant guide in my research and pursuit to finding

definitive results. His advice, guidance and especially persistent patience has helped me in

completing this work on time. I would also like to mention Prof. George Karabatis in motivating

me to pursue thesis and research completing my master’s degree. The work is supported by a

NASA CMAC project: Efficient and Flexible Aggregation and Distribution of MODIS

Atmospheric Products based on Climate Analytics-as-a-Service Framework (grant number:

80NSSC18K0796 and 17-CMAC17-0004).

The hardware used in the study is from UMBC High Performance Computing Facility (HPCF)

which is supported by the U.S. National Science Foundation through the MRI program (grant

nos. CNS–0821258, CNS–1228778, and OAC–1726023) and the SCREMS program (grant no.

DMS–0821311), with additional substantial support from the University of Maryland, Baltimore

County (UMBC). See hpcf.umbc.edu for more information on HPCF and the projects using its

resources.

I would also like to thank the committee members Prof. Zhibo Zhang, Prof. Sisi Duan and Prof.

Jianwu Wang for being on the examination committee and for providing invaluable feedback. I

am highly grateful to Deepak P, Hua Song, Chamara Raja and Redwan Walid for their crucial

and immense contribution in developing the framework for processing level 3 data aggregation.

Special thanks to my friends and colleagues in the Data Informatics Lab at UMBC for their tips

and suggestions on the research ideas.

 iv

Table of Content

Dedication………………………………………………………………………………………….……………… ii
Acknowledgement……………………………………………………………………………………………… iii
Table of Contents………………………………………………………………………………………………… iv
List of Tables………………………………………………………………………………………....................... v
List of Figures……………………………………………………………………………………………………... vi
1. Introduction…………………………………………………………………………………………………… 1
1.1 Significance of The Problem …………………………………………………………………………. 1
1.2 Summary of The Approach …………………………………………………………………………… 2
1.3 Contribution of The Thesis …………………………………………………………………………… 3

2. Background……………………………………………………………………………………………………. 14
 2.1 HDF Standard & Files………………………………………………………………………………….. 14
 2.1.1 HDF4………………………………………………………………………………………………….. 15
 2.1.2 HDF5 …………………………………………………………………………………………………. 16
 2.2 XArray Architecture ………………………………………………………………………….............. 16
 2.3 Subsampling Technique …………………………………………………………………………….. 17
 2.4 Taki Server: JupyterLab ……………………………………………………………………………. 18

3. Methodology……………………………………………………………………………………………...…… 23
 3.1 Overview of The Approach ………………………………………………………………….……... 24
 3.2 Dataset and Source Description …………………………………………………………….…… 24
 3.3 Cloud Property Variables & Bitwise Conversions ………………………………………… 25
 3.4 Evaluating Cloud & Total Pixel ……………………………………………………………….…… 26
 3.5 Equating Total Cloud Fraction ………………………………………………….…………….…... 27
 3.6 Plotting Cloud Fraction & Benchmarking Execution Time …………..…………..……. 28
 3.7 Subsampling ……………………………………………………………………………………….……... 29

4. Implementation and Evaluation…………………………………………………………………….... 31
 4.1 Implementation…………….…………..…………………………………………………………..…… 32
 4.2 Evaluation…………………………………………....……………………………………….................... 40
 4.2.1 Subsampling Evaluation……………...………………………………………………………. 41
 4.2.2 Scalability Evaluation …….……………………………….. 41
 4.2.2.1 Evaluation Through Taki HPC Server.…………………………..…………….. 57
 4.2.2.2 Evaluation Binder Cloud Server……..……………………………….………….. 57

5. Conclusion & Future Work…………………………………………………………………………..….. 60
 5.1 Conclusion ………………………………………………………………………………………...………. 61
 5.2 Future Work ……………………………………………………………………………………….……... 62

Bibliography………………………………………………………………………………………………..……… 16

 v

List of Tables

Implementation 30

4.1 MODIS MYD06_L2 Scientific Dataset Variables and Attribute ……………...………. 31

4.2 Resulting Dataset, Groups And Variable With Sizes and Dimensions………..….... 38

4.3 The Cloud Mask Array Pre And Post Subsampling of 5 …………………………..…….. 38

4.4 The Cloud Mask Array Pre And Post Subsampling of 4 ………………………..……..… 39

4.5 The Cloud Mask Array Pre And Post Subsampling of 3 ………………………..……….. 39

4.6 The Cloud Mask Array Pre And Post Subsampling of 2 …………………...................... 39

Evaluation 40

4.7 System Execution Time & Data Loss Evaluation Table With 4 Nodes…………….. 40

4.8 System Execution Time & Data Loss Evaluation Table With 8 Nodes…………….. 43

4.9 System Execution Time & Data Loss Evaluation Table With 3 Nodes…………….. 46

4.10 System Execution Time & Data Loss Evaluation Table With 2 Nodes…….…….. 50

4.11 System Execution Time & Data Loss Evaluation Table With 1 Nodes…….…….. 53

4.12 System Execution Time & Data Loss Evaluation for Binder Cloud………………. 56

 vi

List of Figures

Methodology……………………………………………………………………….……………………………. 30

 3.1 Architecture Of Taki Cluster………………….………………………………..………………….. 23

 3.2 Procedure and Approach Overview………………………………………………………..….. 38

 4.1: Visualization of Level 3 Cloud Fraction Aggregation With 1 Node………………. 57

 4.2: Visualization Of Level 3 Cloud Fraction Aggregation With 2 Nodes…………….. 58

 4.3: Visualization Of Level 3 Cloud Fraction Aggregation With 3 Nodes…………….. 60

 4.4: Visualization Of Level 3 Cloud Fraction Aggregation With 4 Nodes…………….. 62

 4.5: Visualization Of Level 3 Cloud Fraction Aggregation With 8 Nodes…………….. 64

Evaluation…… 40

 4.7 System Execution Time & Data Loss Evaluation Table With 1 Nodes…………… 57

 4.8 System Execution Time & Data Loss Evaluation Table With 2 Nodes…………… 58

 4.9 System Execution Time & Data Loss Evaluation Table With 3 Nodes…………… 60

 4.10 System Execution Time & Data Loss Evaluation Table With 4 Nodes…………. 62

 4.11 System Execution Time & Data Loss Evaluation Table With 8 Nodes…………. 64

 4.12 System Execution Time & Data Loss Evaluation Table for Binder Cloud……. 68

 1

Chapter 1

Introduction

In the current scientific research development, computation, and processing, a large set of data

has always been time-consuming and resource hungry. In the past, equating such large dataset

for information took considerable period partly because the process conducted serially. Each file

would be processed and equated one at a time to compute the final result. With the recent

development, we can perform the same task in a parallel fashion with frameworks like Apache

Spark, Python Dask, Hadoop, to name a few. However, along with the recent development of

parallelization techniques, the larger datasets and research project is, the longer the overall

execution period. New techniques are always welcomed to reduce processing time and produce

the same result to save resources and time.

One of the techniques proposed is known as subsampling. In analytical chemistry, the concept of

subsampling refers to taking a significantly smaller subset of the original dataset to represent its

final values results. If the results from the subsampled dataset have a negligible difference

between the original dataset, does it have any benefit to the procedure. There is a various way to

subsample the dataset with a start-stop-step method, wherein the step represents the valid

subsampling number. With the prediction of data loss, the resources required for processing such

a sample would take a considerably low number of resource and hence even lower period. We

can employ the subsampling along with data parallelization to improve the time efficiency of the

system.

 2

1.1 Significance of The Problem:

Some of the reasons to employ such techniques is because of a lot of scientific study and

research use cases cannot render for a more extended period and may require quicker

computation. Use cases such as Weather prediction, stock market prediction, and many more

need computation at a much quicker pace with computation of considerably larger datasets.

Xarray is an open-source python framework which processes heterogenous N-dimensionality

datasets in a short period.

Some of the notable features:

Speed: Ingestion of Big and more massive Satellite dataset executes exponentially faster than its

counterparts Xarray uses the concept and principles followed by Dask python library. Tasks

working in parallel mode executes substantially faster than tasks working in serial mode. It uses

dynamic task scheduling similar to the concepts followed in Airflow, Luigi, Celery, or Make but

better enhance the interactive computational workload. Since it enables distributed computing in

pure Python, it extends native support in speed and performance. Also, Dask is known to operate

with very little overhead, low latency, and minimal serialization required for quick numerical

algorithms.

Ease of Use: The XArray and Dask framework employs inspirations from the very familiar

NumPy and Pandas Dataframe objects. Due to this feature, deploying functions and methods

 3

from the framework is much more comfortable and requires fewer changes to the legacy code.

Dask provides rapid feedback and diagnostics to aid understanding since the design is for

interactive computing.

Compatible Everywhere: Dask runs on several platforms, such as HPC (High-Performance

Computing) Environment, Python Interactive Mode, Python Standalone, and even in Cloud

Environment. Dask runs resiliently on 1000 cores cluster or even a trivial configuration of a

standalone laptop with a lower specification. In the study below, we run our system through

High-performance computing provided by UMBC and in Binder cloud environment.

Combining the features of Xarray And Dask With the Subsampling Techniques, one can build a

system that processes in real-time a large volume of the dataset and perform the computation to

discover the cloud property and other various attributes of the atmospheric science research in

the project.

 4

1.2 Summary of The Approach:

In our approach, we have realized a system that uses XArray framework as the data structure

helping in ingesting and manipulating the dataset with ease and the Dask framework to

parallelize task to the workers through a scheduler. The scheduler maintains, manage the workers

in the cluster, whether it be a local cluster of workers or a cloud-based cluster of workers.

We employ the subsampling technique to reduce the overall time for data ingestion, data

manipulation, and overall data processing for the system. We use subsampling of variable

instance to find the efficient instant. Exploring subsampling of 2 with a start-step-stop principle,

wherein we would start with an entity record and take a step of 2 and register the entity record

for further computation. It drastically deteriorates the period for the execution of the entire

system. To efficiently process the large volume of data, we use the Dask python framework to

process the incoming data in the real-time and compute the cloud property of the speculated date

and time.

We use the HDFS (Hadoop File System) for data ingestion and even fitting the final output since

the NASA EOS group supports and maintains the HDF File format along with the HDF Group

for advancement in scientific research study and research.

 5

1.3 Contribution of the Thesis:

This research study contains some unique contributions. They are summarized below:

● Creation of monthly cloud fraction mean algorithm code in Xarray pydata module.

● Calculation of the monthly cloud fraction mean using the subsampling technique for

faster computation.

● Creation of the method to remote terminal use jupyterLab/jupyterNotebook with HPCF

(UMBC) resources via ssh tunneling, port forwarding, and slurm jobs.

● Calculation of the data loss percentage of various subsampled models with the original

dataset.

● Calculation of total execution time taken by the system to compute cloud property

variable through various environments.

 6

Chapter 2

Background

This is an introductory chapter that provides additional context for the findings and results

discussed in the following chapters, including some essential notations. It begins with a brief

review of our general approach and context for the workings implemented in this thesis. We go

through the goals of data aggregation and present the main approach of subsampling used in this

thesis.

2.1 HDF Standard & Files:

In today's world of a data-heavy centric medium where information is abundantly available and

retrievable, one aspect which has not changed much is the data compression principle and the

technologies associated with it of providing complete information in a faster and efficient way.

The National Center for Supercomputing Applications while realizing this goal and principle

with satellite information, decided to develop the HDF file format [1]. The NCSA gains

enormous support from the HDF group, a non-profit corporation who have made it a goal to

continue the development of HDF5 and related technologies. The goal was to create a high-

performance data library and file format meant to process and store heterogeneous data

efficiently.

 7

HDF by itself supports n-dimensional dataset, and each element themselves can be complex

objects. Hence it is widely used in aerospace, automotive, electronic instruments, financial

services, government agency toward defense and national security and even medical and biotech

industries. Scientific fields like physics, genomics, astronomy, computational fluid dynamics,

and earth science reap the benefits of the file standard and file format.HDF file format enables to

maintain data metadata, streamlining information lifecycles, and pipelines.

Projects dealing with massive datasets and attributes will benefit from the aspect of metadata

along with the data which can be crucial at times [2]. Also, there is no limit or boundary in sizing

the dataset or data objects in the group which promotes extensibility for big data. Additional

features include cross-platform compatibility with several platforms, parallel systems, and high-

level API with C++, Fortran 90, Java, and Python, to name a few interfaces it is used widely.

HDF File format is known to possess high-performance input and output amidst an in-depth

collection of unified performance features that permits for access time optimization.

 8

2.1.1 HDF4:

Out of the array of formats supported by the HDF group, HDF4 is one of the older versions of

them. It is known to support a wind range of data models, multidimensional arrays, raster

images, and including tables[3]. Every single one of them defines a specific aggregate data type

and provide an application programming interface for writing, reading and managing files, data,

and metadata. A newer version of data models can be created by the HDF developer and or

users. It is also known to be self-describing in nature, which means it allows the application to

interpret and understand the structure and contents of the file without external information. Each

HDF file has groups and or individual objects which can harbor a mix of related objects which

can be accessed by the HDF developer or user.

Bearing in mind the advantages of the old format, it does possess many limitations. With a very

unclear object model, continuous improvement and support can be tedious and difficult. The

application program interfaces are rather complex with each interface style like tables and

images, to name a few. One of the most significant limitations with HDF4 format was the use of

32-bit signed integer for limiting the files to a maximum of 2GB[4]. It renders its unusable in

many modern scientific use cases and application.

.

 9

2.1.2 HDF5:

With the limitation in the previous format, the newer format of HDF5 was designed to address

and also anticipate future scientific requirements, use cases, and systems. The newer version

developed with an updated structure with two types of objects, namely

● Datasets -- Multidimensional array of the homogenous type.

● Groups -- Container structures which can hold datasets.

The limitation in the previous format, the newer format of HDF5 was designed to address and

also anticipate future scientific requirements, use cases, and systems [4]. The newer version

developed with an updated structure with two types of objects, namely It is a genuinely

hierarchical file system-like data format — metadata and attributes stored in the form of user-

defined groups and datasets. HDF5 can be located using POSIX-like syntax for resources

location -- /path/to/resource. Including HDF4. Like the predecessor, HDF5 possess complex

application programming interface for writing, reading and managing data and metadata. The

application programming interface was oriented concerning datasets, groups, attributes, and

property list. One of the accessible scientific file formats used for various use cases is netCDF

version

 10

4, which is inspired by the framework of HDF5. HDF5 works well with stock prices series, 3D

meteorological data and network networking data, in general, time-series data since it uses B-

trees to the index table object. The data gets fitted in a straightforward array, and this ensures

readability of data in a much faster rate than reasonable SQL database access [5]. The HDF5

storage mechanism can be simpler and faster than the star schema found in SQL.

2.2 XArray Architecture:

NumPy and Pandas python libraries stay widely used for data science that provides an array of

use cases for data scientists and researchers worldwide. NumPy possesses powerful N-

dimensional array objects with sophisticated functions for data manipulation and broadcasting,

including tools for integration with older and much more convenient languages to data scientists

like Fortran and C++. Simplified operations include linear algebra, Fourier transform, and

random number and array generation capabilities for compelling use cases. Other than the

scientific uses, NumPy is also known for the efficient multi-dimensional container of generic and

user-defined data. In the case of Pandas, it is known to be a high-performance data structure

popularly employed by data scientists for data analysis and research. One of the primary

limitations of the python library, which is a deal breaker for our research study is the factor of

having an equal number of entries columns and rows for the

following data structure. It possesses as a limitation to us since we do not have equal length of

columns and rows in our satellite datasets [6]. However, we do need a lot of the functionalities of

 11

NumPy and Pandas libraries with the flexibility of ingesting and manipulating variable dataset

shapes efficiently.

Xarray does possess most of the properties and attributes of NumPy and Pandas python libraries

along with the flexibility of having unusual dataset shapes and sizes. XArray, a derivative of

pandas and NumPy libraries, maintains control for reading, writing, and manipulating the

scientific Dataset to provide relevant results and research. The developers and high-level

contributors to the specific library formulated the library to further scientific research with

Satellite Dataset and Information.[7]

2.3 Subsampling:

Subsampling in the analytical chemistry sense is the procedure by which a small, representative

sample from the whole larger sample [8]. The smaller sample is a subset of the larger dataset.

The sample can be fewer record entities of the entire record set. Concerning scientific research,

samples taken from the entire dataset followed the start-step-stop theory wherein we have a start

with a record, take a step from that record and then stop at the above fourth record for

processing. The explanation is

Assuming a 10 x 10 2D matrix array with 100 record entities, with subsampling of 4

step. = 4

start = 1

stop = 100

 12

The resulting array is a subset sample of the main array. We hypothesize in our evaluation, the

data loss found in compared to the original dataset, is negligible and can be implemented with

the subset. The running theory is representative sample should have comparatively low and

maybe negligible systematic bias.

Assuming a 10 x 10 2D matrix array with 100 record entities, with subsampling of 3

step. = 3

start = 1

stop = 100

The resulting array similar to the above example is a subset sample of the main array.

Assuming a 10 x 10 2D matrix array with 100 record entities, with subsampling of 2

step. = 2

start = 1

stop = 100

The resulting array similar to the above example is a subset sample of the main array.

2.4 Taki Server: JupyterLab:

The steps outlined are for deploying a remote Jupyter Notebook session on the Taki Server to the

local machine through SSH Tunneling and Port Forwarding.

 13

For the current version and implementation of Jupyter Lab/Notebook on Taki/Maya Server can

be deployed through a SLURM job with predefined Node configurations.

The Cluster configuration, down to the single node, can be modified by the SLURM file created

for this intention. More details on modifying the Cluster Configuration on Taki Server view the

Taki HPCF Documentation Page [9].

The SLURM Job File

The SLURM job file is at the folder location jianwu_common/MODIS_Aggregation/.

Navigate to the location and look for the file slurm_jupyter.sbatch

#!/bin/bash

slurm_jupyter.sbatch

Created Fri Apr 12 15:17:36 2019

Author: saviokay

#SBATCH --job-name=tunnel

#SBATCH --partition=batch

#SBATCH --qos=medium+

#SBATCH --mem=16000

#SBATCH --output=jupyter-log-%J.txt

#SBATCH --nodes=4

XDG_RUNTIME_DIR=""

ipnport=$(shuf -i8000-9999 -n1)

ipnip=$(hostname -i)

print tunneling instructions to jupyter-log-{jobid}.txt

echo -e "

Copy/Paste this in the local terminal to ssh tunnel with

remote

ssh -N -L $ipnport:$ipnip:$ipnport user@host

Then open a browser on the local machine to the following

address

 14

localhost:$ipnport (prefix w/ https:// if using password)

 "

start an ipcluster instance and launch jupyter server

jupyter-notebook --no-browser --port=$ipnport --ip=$ipnip

Make sure to have appropriate file right permission to perform the above task.

Submit the slurm file as a job to the Taki server with command

sbatch slurm_jupyter. sbatch

The Jupyter-Log File

Once the job is submitted, check if the deployment is performed successfully with these steps:

Check the job status with squeue -u <username>

Check for the file jupyter-log-******.txt has been created the same directory.

Note that upon each successful deployment, a new jupyter-log-******.txt file. It has further

instructions.

To view the latest file created,

savio1@taki-usr1 in MODIS_Aggregation : ls -la | grep jupyter

-rw-rw---- 1 savio1 pi_jianwu 2744 Apr 18 00:33

#jupyter-log-331928.txt#

-rw-rw---- 1 savio1 pi_jianwu 1576 May 16 21:52

jupyter-log-817138.txt

-rw-rw---- 1 savio1 pi_jianwu 1573 May 16 21:52

jupyter-log-826118.txt

-rw-rw---- 1 savio1 pi_jianwu 1576 May 16 22:07

jupyter-log-826299.txt

drwxr-xr-x 2 savio1 pi_jianwu 20 May 16 09:24

jupyter_txt

 15

Open the latest jupyter-log-******.txt file based on the timestamp and follow the rest of the

instruction in it.

For reference:

savio1@taki-usr1 in MODIS_Aggregation: cat jupyter-log-

826299.txt

 Copy/Paste this in the local terminal to ssh tunnel with

remote

--

ssh -N -L 8600:10.2.1.234:8600 user@host

Then open a browser on the local machine to the following

address

 localhost:8600 (prefix w/ https:// if using password)

[I 22:06:51.596 NotebookApp] JupyterLab extension loaded from

/umbc/xfs1/jianwu/common/anaconda3/lib/python3.7/site-

packages/jupyterlab

[I 22:06:51.599 NotebookApp] The Jupyter Notebook is running

at:

[I 22:06:51.599 NotebookApp]

http://10.2.1.234:8600/?token=02b5599708cf234994a8f24b23873e5

d7f7d51fb8c2c61e3

[I 22:06:51.599 NotebookApp] Use Control-C to stop this

server and shut down all kernels (twice to skip

confirmation).

[C 22:06:51.624 NotebookApp]

To access the notebook,

file:///home/savio1/.local/share/jupyter/runtime/nbserver-

27979-open.html

Or copy and paste:

http://10.2.1.234:8600/?token=02b5599708cf234994a8f24b23873e5

 16

d7f7d51fb8c2c61e3

After this open a new terminal window and execute the following command:

ssh -N -L 8600:10.2.1.234:8600 user@host

For example

ssh -N -L 8600:10.2.1.234:8600 savio1@taki.rs.umbc.edu

Once the command is running, a prompt will ask the Taki password. (It is usually the same as

your UMBC password). Enter the following and let it run in the background.

ssh -N -L 8600:10.2.1.234:8600 savio1@taki.rs.umbc.edu

WARNING: UNAUTHORIZED ACCESS to this computer violates

Criminal

savio1@taki.rs.umbc.edu's password:

NOTE: Once the password is entered, the terminal window will not output anything. However,

let it run in the background as it is performing the SSH tunneling from the Taki server to the

system with the command mentioned above. If the terminal window is closed, the connection

will also be terminated immediately, and any saves and checkpoints will be invalid.

Once all steps are performed, access the Notebook through a web interface by entering this on

the Web Browser:

 17

http://localhost:8600

//Note this information is retrieved from the jupyter-log-

******.txt file created earlier on taki.

For the current example, the web address specified is

http://10.2.1.234:8600/?token=02b5599708cf234994a8f24b23873e5

d7f7d51fb8c2c61e3

http://localhost:8600/?token=02b5599708cf234994a8f24b23873e5d

7f7d51fb8c2c61e3

//However we need to change 10.2.1.234 here with localhost.

If any prompts for password or token is requested, use the

token specified in the URL above.

Moreover, if the steps are followed accurately up till now, a functioning Jupyter Notebook

should be deployed from the Taki server on the local machine.

Let us go a step further and get Taki Server Folder access and additional functionality, use

Jupyter Lab. To achieve that change the URL from http://localhost:8600/?tree to

http://localhost:8600/?lab

NOTE:

Do remember to close all kernels and tabs.

Once completed, make sure to cancel all running jobs on Taki to avoid getting flagged by

the administrator for User node Job Deployment Abuse.

Use scancel <job_id> to cancel a job on Taki Server.

http://localhost:8600/?lab

 18

Chapter 3

Methodology

In this chapter we will be reviewing the multiple aspects involved in the process of aggregating

level 2 to level 3 satellite data with the help of UMBC High Performance Computing Taki

Cluster[10]. The Cluster possess a behemoth of 324 nodes, 38 Graphical Processing Units, 40

Intel Phi Coprocessor with over 15TB of main memory which is appropriately distributed into

four main categories of usage.[11]

Figure 3.1 : Architecture Of Taki Cluster

The image provides a brief overview of the Taki Cluster architecture. The following gives us a

basic understanding of processes and job transactions occurring during the

 19

functioning of the server. The Architecture consists of terminals which are seeking for the

resources from the server and are accessing either via the internal network of the server or are

accessing it via remotely via SSH tunneling. Either of the cases, there are firewalls in place and

specific categories of nodes accessible to hierarchical users of the server.

3.1 Overview of The Approach:

 While the approach of the data aggregation from level 2 to level 3 can be obtained in several

ways and with the use of various frameworks, we will be primarily looking to seek the output

with the help of Xarray. The files are in HDF format, especially HDF4 format. NASA's Earth

Observing System (EOS) maintains its HDF modification called HDF-EOS. As of now, NASA

EOS group utilizes HDF4-EOS format for storage and management of satellite specific data.

Recent developments support the HDF5-EOS format for the specific reading and transmitting of

the instrument found in NASA's Aura Satellites [12]. Primarily we use the framework's function

for reading all Satellite Scientific Datasets with additional arguments for data preprocessing and

management. With the use of NumPy and pandas indexing, we extract the required variables

and assign them to the appropriate user-defined variables.

Additional to these indexing, we also perform required bitwise computation to get the

appropriate values [13]. The values are found to be compressed and assigned to the SDS

(Scientific Dataset) to converse space and provide optimization. In the evaluation chapters, we

 20

explore the effects of subsampling on the performance and the cheer data loss compared to

without the subsampling. Accordingly, we assign the latitude and longitude indexes through the

required data variables. Equating the total pixel available and the cloud pixel detected from the

indexes thus created earlier.

With the total and cloud pixel calculated, we determine Cloud Fraction (CF) by dividing the

cloud pixel array with the total pixel array. The resulting array is fit into Xarray Data Array data

structure. With the assistance of the XArray saving libraries, we save the data structure into an

HDF file. We plot the results with the help of the 'matplotlib' library to verify and validate the

data. Further, we study and benchmark the effects of the subsampling with a comparison

between the results with and without subsampling.

Figure 3.2: Procedure and Approach Overview

.

 21

3.2 Dataset and Source Description:

 The MODIS Satellite Atmosphere Imager instrument records data in the legacy MODIS

standard products, including Aerosol (MYD04), Water Vapor (MYD05), Atmospheric Profile

(MOD/MYD07), Cloud Mask (MOD/MYD35), Joint Atmosphere (ATML2), and Level-3

(MOD/MYD08) [13]. The products are in the continuous development of Terra and Aqua

Mission. The Dataset in understanding is a set of Scientific Datasets (SDS) form compressed in

2040x1354 dataset shape. For the study, we pursue the MYD03 and MYD06_L2 datasets, which

contain both geolocation information and cloud properties information. From the MYD03

Dataset; we extract the latitude and longitude information for each specific location for 1KM

resolution (1x1KM). We extract the cloud properties 1KM resolution from the MYD06_L2

Dataset. The resolution of L2 cloud products is at 1x1 KM and 5x5 KM resolution for all of the

variables of cloud properties. The filenames for the datasets follow standardized pattern and

format. For the Terra MODIS Satellite, it follows the

MOD06_L2.AYYYYDDD.HHMM.VVV.YYYYDDDHHMMSS.hdf and

MYD06_L2.AYYYYDDD.HHMM.VVV.YYYYDDDHHMMSS.hdf for Aqua MODIS

Satellite. [13]The format highlights the following standard:

MOD06/MYD06 = Earth Science Data Type name

L2 = Denotes a Level-2 product

A = Indicates the following date/time information is for the

acquisition (observation)

YYYYDDD = Acquisition year and day-of-year

HHMM = Acquisition Hour and minute start time

VVV = collection (e.g., '004' for Collection 4)

YYYYDDDHHMMSS = production data and time

HDF = denotes HDF file format.

 22

The Time Zone followed is UTC times, not necessarily local and the most evident aspect is the

MOD prefix expressly signifies Terra platform data granule and MYD for the Aqua platform

data granule.

3.3 Cloud Property Variables & Bitwise Conversions:

The study explores the specific variable of Cloud Mask (CM) calculate the final Cloud Fraction

(CF). The variable is from the MODO6_L2 dataset. However, certain variables are stored in the

bit form and need conversion to obtain the actual value out of the dataset. The values in the

dataset are stored in such a way to maintain smaller file sizes and compressions. Hence to obtain

the actual value, the specific bitwise operation needs to be performed during data ingestion to

evaluate the correct information.[13] For the current study, we choose the Cloud Mask 1x1 KM

resolution variable stored as 'cloud_mask_1km.' We use the Xarray module of 'mf_opendataset

()' to ingest the dataset with the specific variable passed as an argument to extract it. The module

has additional arguments to scan through and provide an extra level of granularity for filtration

during data ingestion.

data = xr.open_mfdataset(M06[:],

parallel=True)['Cloud_Mask_1km'][:,:,:].values

data = Variable Name

xr = XArray python library

open_mfdataset = XArray Dataset Read Module

M06[:] = File List With File Path and File Directory

['Cloud_Mask_1km'][:,:,0].values = Variable Selection.

 23

Further to decode the actual value, we process the value with the following operation:

data_decoded = (np.array(data, dtype = "byte") & 0b00000110) >> 1

We use the AND operation in the "byte" version of ds06 compacted in a numpy array with the

0b00000110 with right shifting operation to the resulting array. Each Bit in the resulting entries

represents particular bit value definitions.

Scientific Data Set (SDS): "Cloud_Mask_1KM"

Description: Cloud Mask QA Flags at 1x1 KM

Length: 2 bytes (16 bits)

Flag Name Number Of Bits Bit Values Bit Value Definitions

Cloud Mask

Cloudiness Flag

2 0

1

2

3

Confident Cloudy

Probably Cloudy

Probably Clear

Confident Clear

 24

3.4 Evaluating Cloud & Total Pixel:

For the Cloud fraction, cloud and total pixel array are calculated to equate the final result. We

evaluate the cloud fraction by dividing the cloud pixel with the total pixel.

Cloud_Fraction Array = Cloud_Pixel Array/ Total_Pixel Array

To retrieve the cloud pixel array, we utilize the integer value converted latitude and longitude reshaped

into the ingested dataset shape and dimension. We equated the total pixel based on the zip function with

the latitude index and longitude index.

latitude_index = np.where(l_index > -1, l_index, 0)

longitude_index = np.where(ll_index > -1, ll_index, 0)

for i, j in zip(latitude_index , longitude_index):

 total_pixel[i,j] += 1

After the total pixel, we tackle cloud pixel for which we again set the indexes and compute the respective

latitude and longitude correlated to the cloud pixels with the zip function.

indicies = np.nonzero(data_decoded <= 0)

row_index = indicies[0]

column_index = indicies[1]

cloud_longitude = [longitude_index.reshape(data_decoded

.shape[0],data_decoded .shape[1])[i,j] for i, j in

zip(row_index, column_index)]

cloud_latitude = [latitude_index .reshape(data_decoded

.shape[0],data_decoded .shape[1])[i,j] for i, j in

zip(row_index, column_index)]

 for x, y in zip(cloud_latitude, cloud_longitude):

 cloud_pixel[int(x),int(y)] += 1

 25

3.5 Equating Total Cloud Fraction:

With the final total pixel array and final cloud pixel array, we equate the total cloud fraction,

referred to as CF in many instances. The division of cloud pixel array with the total pixel array

results in the total cloud fraction.

For instance,

Cloud Fraction = Cloud Pixel Array / Total Pixel Array

The resulting cloud fraction is a two-dimensional array with zero/Nan values along with non-

zero values. The resulting shape is 180x360 which represents the entire globe while plotting.

Regardless of the time series selected for processing, the final cloud fraction array would be in

the shape of 180x360 with corresponding latitude and longitude. All of the elements of the final

cloud fraction array are of 1:1 ratio with the elements in the latitude and longitude values in

MYD03 dataset. That suggests that values corresponding to a certain point or pixel will have the

same value in the MYD03 dataset which possessed all of the geolocation data.

Data Dataset Type Dimension Shape

Latitude MYD03 SDS 2 2030 x 1354

Longitude MYD03 SDS 2 2030 x 1354

Cloud Mask MYD06_L2 SDS 3 2030 x 1354 x 2

Cloud Pixel User Defined

Array

2 180 x 360

Total Pixel User Defined

Array

2 180 x 360

 26

Cloud Fraction User Defined

Array

2 180 x 360

The resulting array is equated with the 1x1 KM resolution values from the MYD03 SDS and the

values may be varied if the 5x5 resolution values are employed. The final array is saved in an

HDF file format with the help of to_netcdf () module from the XArray framework.

filename = xarray.DataArray(<cloud_fraction_variable>)

filename.to_netcdf(“filepath/filename.hdf”)

3.6 Plotting Cloud Fraction & Benchmarking Execution Time:

With the final file created with the xarray module, we can verify and validate the findings by

benchmarking and plotting the HDF files. For this task, we use matplotlib python library. The

library is used for data visualization and plotting various graphs for data analysis and research.

The module of Pyplot in 'matplotlib' is used to create our plots for this research. We utilize by

importing matplotlib. pyplot as plt. The visualization can be saved with module

plt.savefig("<filepath/filename.png>").

plt.figure(figsize=(14,7))

plt.contourf(range(-180,180), range(-90,90),

cloud_fraction_variable, 100, cmap = "jet")

plt.xlabel("Longitude", fontsize = 14)

plt.ylabel("Latitude", fontsize = 14)

plt.title("<title_name>", fontsize = 16)

plt.colorbar()

plt.savefig("<filepath/filename.png>")

To benchmark the execution time, python's native time module is used to equate the

 27

total time of execution. With one module instance created at the start of the code and one at the

end of the code, the difference between the two made the total execution time. This gives a brief

outlook of the duration of the code. Further benchmarking is performed in the evaluation and

implementation section.

start_time = time.time()

end_time = time.time()

print("Total Time Taken This Loop: ", end_time - start_time)

hours, rem = divmod(end_time-start_time, 3600)

minutes, seconds = divmod(rem, 60)

3.7 Subsampling:

Subsampling in the analytical chemistry sense is the procedure by which a small, representative

sample from the whole larger sample. The smaller sample is a subset of the larger dataset. The

sample can be fewer record entities of the entire record set. Concerning scientific research,

samples taken from the entire dataset followed the start-step-stop theory wherein we have a start

with a record, take a step from that record and then stop at the above fourth record for

processing. The explanation is

Assuming a 10 x 10 2D matrix array with 100 record entities, with subsampling of 4

step. = 4

start = 1

stop = 100

 28

import numpy as np

np.arange(start = 1, stop = 100, step = 4).reshape((5,5))

>>array([[1, 5, 9, 13, 17],

 [21, 25, 29, 33, 37],

 [41, 45, 49, 53, 57],

 [61, 65, 69, 73, 77],

 [81, 85, 89, 93, 97]])

The resulting array is a subset sample of the main array. We hypothesize in our evaluation, the

data loss found in compared to the original dataset, is negligible and

can be implemented with the subset. The running theory is representative sample should have

comparatively low and maybe negligible systematic bias.

Assuming a 10 x 10 2D matrix array with 100 record entities, with subsampling of 3

step. = 3

start = 1

stop = 100

import numpy as np

np.arange(start = 1, stop = 100, step = 3).reshape((3,11))

>>array([[1, 4, 7, ..., 25, ..., 31],

[34, 37, 40, 43, 46, ..., 61, 64],

[67, 70, 73, 76, ..., 94, 97]])

The resulting array similar to the above example is a subset sample of the main array.

Assuming a 10 x 10 2D matrix array with 100 record entities, with subsampling of 2

step. = 2

start = 1

stop = 100

 29

import numpy as np

np.arange(start = 1, stop = 100, step = 2).reshape((2,25))

>>array([[1, 3, 5, 7, ..., 21, 23, 25, 27, 29, 31,33, 35, 37,

39, 41, 43, 45, 47, 49],

[51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,

81,83, 85, 87, ..., 99]])

The resulting array similar to the above example is a subset sample of the main array.

 30

Chapter 4

Implementation & Evaluation

The chapter mainly focuses on the implementation and evaluation of the prototype of the system

that performs subsampling with the satellite dataset to reduce the time duration into a shorter

span. To carry out the experimentation, we have used the MODIS satellite MYD03 and

MYD06_L2 datasets provided by NASA's atmospheric and climate research website portal. The

MYD06_L2 consists of parameters at a spatial resolution of 1 - KM (1 x 1 KM) or 5 - KM (5 x5

KM) [14]. Every file covers a five-minute time interval, and this results in 288 files for one day

and 8,928 files for a month. Once the data gets ingested we create the subsamples for each use

case and evaluate the overall performance of our system by running it in a various number of

clusters and we found out that as we increase the subsampling and number of resources, the

overall processing time for the system decreases.

4.1 Implementation:

The scientific dataset which we utilize in the research study is from NASA's MODAPPS Portal

and is formatted in the HDF File format recognized by NASA's EOS group which manages and

maintain the file format. For this evaluation, we will be tackling the cloud property of the cloud

mask and cloud fraction from the vast array of variables, groups, and SDS (Scientific Datasets).

We retrieve the geolocation from the MYD03 dataset and cloud property from MYD06_L2

 31

dataset [14]. With the help of XArray python library, we ingest the data from both the dataset

and create a Xarray data structure to further processing and manipulation.

Some of the attributes found in the dataset are described below:

Id Name Nb_Dim Dim Type

Nb_attr

ibutes

0 Latitude 2 [408, 270] 5 10

1 Longitude 2 [408, 270] 5 10

2 Scan_Start_Time 2 [408, 270] 6 10

3 Solar_Zenith 2 [408, 270] 22 10

4 Solar_Zenith_Day 2 [408, 270] 22 10

5 Solar_Zenith_Night 2 [408, 270] 22 10

6 Solar_Azimuth 2 [408, 270] 22 10

7 Solar_Azimuth_Day 2 [408, 270] 22 10

Id Name Nb_Dim Dim Type

Nb_attr

ibutes

8 Solar_Azimuth_Night 2 [408, 270] 22 10

9 Sensor_Zenith 2 [408, 270] 22 10

10 Sensor_Zenith_Day 2 [408, 270] 22 10

11 Sensor_Zenith_Night 2 [408, 270] 22 10

12 Sensor_Azimuth 2 [408, 270] 22 10

13 Sensor_Azimuth_Day 2 [408, 270] 22 10

14 Sensor_Azimuth_Nig

ht

2 [408, 270] 22 10

15 Brightness_Temperatu

re

3 [7, 408, 270] 22 10

16 Surface_Temperature 2 [408, 270] 22 10

17 Surface_Pressure 2 [408, 270] 22 10

 32

18 Cloud_Height_Metho

d

2 [408, 270] 20 11

19 Cloud_Top_Height 2 [408, 270] 22 10

20 Cloud_Top_Height_N

adir

2 [408, 270] 22 10

21 Cloud_Top_Height_N

adir_Day

2 [408, 270] 22 10

22 Cloud_Top_Height_N

adir_Night

2 [408, 270] 22 10

23 Cloud_Top_Pressure 2 [408, 270] 22 10

24 Cloud_Top_Pressure_

Nadir

2 [408, 270] 22 10

25 Cloud_Top_Pressure_

Night

2 [408, 270] 22 10

26 Cloud_Top_Pressure_

Nadir_Night

2 [408, 270] 22 10

27 Cloud_Top_Pressure_

Day

2 [408, 270] 22 10

28 Cloud_Top_Pressure_

Nadir_Day

2 [408, 270] 22 10

29 Cloud_Top_Temperat

ure

2 [408, 270] 22 10

30 Cloud_Top_Temperat

ure_Nadir

2 [408, 270] 22 10

31 Cloud_Top_Temperat

ure_Night

2 [408, 270] 22 10

Id Name Nb_Dim Dim Type

Nb_attr

ibutes

32 Cloud_Top_Temperat

ure_Nadir_Night

2 [408, 270] 22 10

33 Cloud_Top_Temperat

ure_Day

2 [408, 270] 22 10

 33

34 Cloud_Top_Temperat

ure_Nadir_Day

2 [408, 270] 22 10

35 Tropopause_Height 2 [408, 270] 22 10

36 Cloud_Fraction 2 [408, 270] 20 10

37 Cloud_Fraction_Nadir 2 [408, 270] 20 10

38 Cloud_Fraction_Night 2 [408, 270] 20 10

39 Cloud_Fraction_Nadir

_Night

2 [408, 270] 20 10

40 Cloud_Fraction_Day 2 [408, 270] 20 10

41 Cloud_Fraction_Nadir

_Day

2 [408, 270] 20 10

42 Cloud_Effective_Emis

sivity

2 [408, 270] 20 10

43 Cloud_Effective_Emis

sivity_Nadir

2 [408, 270] 20 10

44 Cloud_Effective_Emis

sivity_Night

2 [408, 270] 20 10

45 Cloud_Effective_Emis

sivity_Nadir_Night

2 [408, 270] 20 10

46 Cloud_Effective_Emis

sivity_Day

2 [408, 270] 20 10

47 Cloud_Effective_Emis

sivity_Nadir_Day

2 [408, 270] 20 10

48 Cloud_Top_Pressure_

Infrared

2 [408, 270] 22 10

49 Spectral_Cloud_Forci

ng

3 [5, 408, 270] 22 11

50 Cloud_Top_Pressure_

From_Ratios

3 [5, 408, 270] 22 11

51 Radiance_Variance 2 [408, 270] 22 10

52 Cloud_Phase_Infrared 2 [408, 270] 20 11

 34

53 Cloud_Phase_Infrared

_Night

2 [408, 270] 20 11

54 Cloud_Phase_Infrared

_Day

2 [408, 270] 20 11

Id Name Nb_Dim Dim Type

Nb_attr

ibutes

55 Cloud_Phase_Infrared

_1km

2 [2040, 1354] 20 11

56 IRP_CTH_Consistenc

y_Flag_1km

2 [2040, 1354] 20 11

57 os_top_flag_1km 2 [2040, 1354] 20 11

58 cloud_top_pressure_1

km

2 [2040, 1354] 22 10

59 cloud_top_height_1k

m

2 [2040, 1354] 22 10

60 cloud_top_temperatur

e_1km

2 [2040, 1354] 22 10

61 cloud_emissivity_1km 2 [2040, 1354] 20 10

62 cloud_top_method_1k

m

2 [2040, 1354] 20 11

63 surface_temperature_1

km

2 [2040, 1354] 22 10

64 cloud_emiss11_1km 2 [2040, 1354] 22 10

65 cloud_emiss12_1km 2 [2040, 1354] 22 10

66 cloud_emiss13_1km 2 [2040, 1354] 22 10

67 cloud_emiss85_1km 2 [2040, 1354] 22 10

68 Cloud_Effective_Radi

us

2 [2040, 1354] 22 10

69 Cloud_Effective_Radi

us_PCL

2 [2040, 1354] 22 10

70 Cloud_Effective_Radi

us_16

2 [2040, 1354] 22 10

 35

71 Cloud_Effective_Radi

us_16_PCL

2 [2040, 1354] 22 10

72 Cloud_Effective_Radi

us_37

2 [2040, 1354] 22 10

73 Cloud_Effective_Radi

us_37_PCL

2 [2040, 1354] 22 10

74 Cloud_Optical_Thick

ness

2 [2040, 1354] 22 10

75 Cloud_Optical_Thick

ness_PCL

2 [2040, 1354] 22 10

76 Cloud_Optical_Thick

ness_16

2 [2040, 1354] 22 10

77 Cloud_Optical_Thick

ness_16_PCL

2 [2040, 1354] 22 10

78 Cloud_Optical_Thick

ness_37

2 [2040, 1354] 22 10

Id Name Nb_Dim Dim Type

Nb_attr

ibutes

79 Cloud_Optical_Thick

ness_37_PCL

2 [2040, 1354] 22 10

80 Cloud_Effective_Radi

us_1621

2 [2040, 1354] 22 10

81 Cloud_Effective_Radi

us_1621_PCL

2 [2040, 1354] 22 10

82 Cloud_Optical_Thick

ness_1621

2 [2040, 1354] 22 10

83 Cloud_Optical_Thick

ness_1621_PCL

2 [2040, 1354] 22 10

84 Cloud_Water_Path 2 [2040, 1354] 22 10

85 Cloud_Water_Path_P

CL

2 [2040, 1354] 22 10

86 Cloud_Water_Path_16

21

2 [2040, 1354] 22 10

 36

87 Cloud_Water_Path_16

21_PCL

2 [2040, 1354] 22 10

88 Cloud_Water_Path_16 2 [2040, 1354] 22 10

89 Cloud_Water_Path_16

_PCL

2 [2040, 1354] 22 10

90 Cloud_Water_Path_37 2 [2040, 1354] 22 10

91 Cloud_Water_Path_37

_PCL

2 [2040, 1354] 22 10

92 Cloud_Effective_Radi

us_Uncertainty

2 [2040, 1354] 22 10

93 Cloud_Effective_Radi

us_Uncertainty_16

2 [2040, 1354] 22 10

94 Cloud_Effective_Radi

us_Uncertainty_37

2 [2040, 1354] 22 10

95 Cloud_Optical_Thick

ness_Uncertainty

2 [2040, 1354] 22 10

96 Cloud_Optical_Thick

ness_Uncertainty_16

2 [2040, 1354] 22 10

97 Cloud_Optical_Thick

ness_Uncertainty_37

2 [2040, 1354] 22 10

98 Cloud_Water_Path_U

ncertainty

2 [2040, 1354] 22 10

Id Name Nb_Dim Dim Type

Nb_attr

ibutes

99 Cloud_Effective_Radi

us_Uncertainty_1621

2 [2040, 1354] 22 10

100 Cloud_Optical_Thick

ness_Uncertainty_162

1

2 [2040, 1354] 22 10

101 Cloud_Water_Path_U

ncertainty_1621

2 [2040, 1354] 22 10

102 Cloud_Water_Path_U

ncertainty_16

2 [2040, 1354] 22 10

 37

103 Cloud_Water_Path_U

ncertainty_37

2 [2040, 1354] 22 10

104 Above_Cloud_Water_

Vapor_094

2 [2040, 1354] 22 10

105 IRW_Low_Cloud_Te

mperature_From_COP

2 [2040, 1354] 22 10

106 Cloud_Phase_Optical

_Properties

2 [2040, 1354] 20 11

107 Cloud_Multi_Layer_F

lag

2 [2040, 1354] 20 11

108 Cirrus_Reflectance 2 [2040, 1354] 22 10

109 Cirrus_Reflectance_Fl

ag

2 [2040, 1354] 20 11

110 Cloud_Mask_5km 3 [408, 270, 2] 20 11

111 Quality_Assurance_5k

m

3 [408, 270, 10] 20 11

112 Cloud_Mask_1km 3 [2040, 1354, 2] 20 11

113 Extinction_Efficiency

_Ice

2 [12, 7] 5 11

114 Asymmetry_Paramete

r_Ice

2 [12, 7] 5 11

115 Single_Scatter_Albed

o_Ice

2 [12, 7] 5 11

116 Extinction_Efficiency

_Liq

2 [18, 7] 5 11

117 Asymmetry_Paramete

r_Liq

2 [18, 7] 5 11

118 Single_Scatter_Albed

o_Liq

2 [18, 7] 5 11

119 Cloud_Mask_SPI 3 [2040, 1354, 2] 22 10

120 Retrieval_Failure_Met

ric

3 [2040, 1354, 3] 22 11

 38

Id Name Nb_Dim Dim Type

Nb_attr

ibutes

121 Retrieval_Failure_Met

ric_16

3 [2040, 1354, 3] 22 11

122 Retrieval_Failure_Met

ric_37

3 [2040, 1354, 3] 22 11

123 Retrieval_Failure_Met

ric_1621

3 [2040, 1354, 3] 22 11

124 Atm_Corr_Refl 3 [2040, 1354, 6] 22 11

125 Quality_Assurance_1k

m

3 [2040, 1354, 9] 20 11

126 Statistics_1km_sds 1 17 5 4

Figure 4.2: Resulting Dataset, Groups And Variable With Sizes and Dimensions

Dataset/Array Dimensional Size Description

Proposed Cloud

Mask After

Subsampling Of 5

[2030 x1354] ~ [508

x 339]

The Resulting of

having step of 5 with

involving record

entities for

processing the cloud

fraction. The

resultant dataset is

drastically smaller

than the original

dataset.

Figure 4.3: The Cloud Mask Array Pre And Post Subsampling of 5

Dataset/Array Dimensional Size Description

Proposed Cloud

Mask After

Subsampling Of 4

[2030 x1354] ~ [508

x 339]

The Resulting of

having step of 4 with

involving record

entities for

processing the cloud

 39

fraction. The

resultant dataset is

drastically smaller

than the original

dataset.

Figure 4.4: The Cloud Mask Array Pre And Post Subsampling of 4

Dataset/Array Dimensional Size Description

Proposed Cloud

Mask After

Subsampling Of 3

[2030 x1354] ~ [677

x 452]

The Resulting of

having step of 3 with

involving record

entities for

processing the cloud

fraction. The

resultant dataset is

drastically smaller

than the original

dataset.

Figure 4.5: The Cloud Mask Array Pre And Post Subsampling of 3

Dataset/Array Dimensional Size Description

Proposed Cloud

Mask After

Subsampling Of 2

[2030 x1354] ~

[1015 x 677]

The Resulting of

having step of 2 with

involving record

entities for

processing the cloud

fraction. The

resultant dataset is

drastically smaller

than the original

dataset.

Figure 4.6: The Cloud Mask Array Pre And Post Subsampling of 2

 40

4.2 Evaluation:

The scientific dataset which we utilize in the research study is from NASA's MODAPPS Portal

and is formatted in the HDF File format recognized by NASA's EOS group which manages and

maintain the file format. For this evaluation, we will be tackling the cloud property of the cloud

mask and cloud fraction from the vast array of variables, groups, and SDS(Scientific Datasets).

We retrieve the geolocation from the MYD03 dataset and cloud property from MYD06_L2

dataset[15]. With the help of XArray python library, we ingest the data from both the dataset and

create a xarray data structure to further processing and manipulation.

Some of the attributes found in the dataset are described below:

4.2.1 Subsampling Evaluation:

4.2.1.1 Evaluation Through Taki HPC Server:

Env. Code File SLURM File
Subsam

pling

Of

Nodes

Data Loss

(%)

Execution

Time

Taki
nosub1n_one

month.py

nosub1n_onem

onth.slurm
0 1 NA

82332.01

Sec

(22.87 Hrs)

Taki
twosub1n_on

emonth.py

twosub1n_one

month.slurm
2 1 3.5370

29412.33

Sec

(8.17 Hrs)

Taki
threesub1n_o

nemonth.py

threesub1n_on

emonth.slurm
3 1 5.4871

19080.29

Sec

(5.30 Hrs)

Taki foursub1n_on foursub1n_one 4 1 2.2154 14292.32

 41

emonth.py month.slurm Sec

(3.97 Hrs)

Figure 4.11: System Execution Time And Data Loss Evaluation Table

For Taki HPC With 1 Node

Figure 4.1: Visualization Of Level 3 Cloud Fraction Aggregation With 1 Node

Env. Code File SLURM File
Subsa

mpling

Of

Nodes

Data

Loss (%)

Execution

Time

Taki
nosub2n_on

emonth.py

nosub2n_one

month.slurm
0 2 NA

66066.01 Se

(18.35 Hrs)

Taki
twosub2jn_o

nemonth.py

twosub2n_one

month.slurm
2 2 3.5370

24192.33 Se

(6.72 Hrs)

 42

Taki

threesub2n_

onemonth.p

y

threesub2n_o

nemonth.slurm
3 2 5.4871

12708.29 Se

(3.53 Hrs)

Taki
foursub2n_o

nemonth.py

foursub2n_on

emonth.slurm
4 2 2.2154

11232.32 Se

(3.12 Hrs)

Figure 4.10: System Execution Time And Data Loss Evaluation Table For Taki HPC

With 2 Nodes

Figure 4.2: Visualization Of Level 3 Cloud Fraction Aggregation With 2 Nodes

 43

 Env. Code File SLURM File
Subsa

mpling

Of

Nodes

Data

Loss (%)

Execution

Time

Taki
nosub3n_one

month.py

nosub3n_one

month.slurm
0 3 NA

46836.01 Se

(16.05 Hrs)

Taki
twosub3n_on

emonth.py

twosub3n_on

emonth.slurm
2 3 3.5370

16064.33 Se

(5.32 Hrs)

Taki
threesub3n_o

nemonth.py

threesub3n_o

nemonth.slur

m

3 3 5.4871
10692.29 Se

(2.97 Hrs)

Taki
foursub3n_on

emonth.py

foursub3n_o

nemonth.slur

m

4 3 2.2154
9144.32 Se

(2.54 Hrs)

Figure 4.9: System Execution Time And Data Loss Evaluation Table For Taki HPC With 3

Nodes

 44

Figure 4.3: Visualization Of Level 3 Cloud Fraction Aggregation With 3 Nodes

 45

Env. Code File SLURM File
Subsampl

ing

Of

Nodes

Data Loss

(%)

Execution

Time

Taki
nosub4n_one

month.py

nosub4n_onem

onth.slurm
0 4 NA

57450.86 Se

(15.95 Hrs)

Taki
twosub4n_on

emonth.py

twosub4n_one

month.slurm
2 4 3.5370

17425.20 Se

(4.83 Hrs)

Taki
threesub4n_o

nemonth.py

threesub4n_on

emonth.slurm
3 4 5.4871

9894.87 Se

(2.74 Hrs)

Taki
foursub4n_on

emonth.py

foursub4n_one

month.slurm
4 4 2.2154

9304.60 Se

(2.58 Hrs)

Figure 4.7: System Execution Time And Data Loss Evaluation Table For Taki HPC With 4

Nodes

 46

Figure 4.4: Visualization Of Level 3 Cloud Fraction Aggregation With 4 Nodes

 47

Env. Code File SLURM File
Subsa

mpling

Of

Nodes

Data

Loss (%)

Execution

Time

Taki
nosub8n_onem

onth.py

nosub8n_onemo

nth.slurm
0 8 NA

46836.01

Sec

(13.01 Hrs)

Taki
twosub8n_one

month.py

twosub8n_onem

onth.slurm
2 8 3.5370

16064.33

Sec

(4.46 Hrs)

Taki
threesub8n_on

emonth.py

threesub8n_one

month.slurm
3 8 5.4871

8892.29

Sec

(2.47 Hrs)

Taki
foursub8n_one

month.py

foursub8n_one

month.slurm
4 8 2.2154

7960.32

Sec

(2.21 Hrs)

Figure 4.8: System Execution Time And Data Loss Evaluation Table With 8 Nodes

 48

Figure 4.5: Visualization Of Level 3 Cloud Fraction Aggregation With 8 Nodes

 49

Figure _. _ Execution Time Progression With Regards To Various Subsampling

As we can see after the evaluation, a subsampling of 4 with the dataset for a month renders a

2.2154 % of data loss percentage which can be negligible in certain use cases. In comparison

with no subsampling, the computation takes substantial longer time span. The subsampling with

4 takes shorter time span which is about 83.01% decrease in total time with the example of

‘eightnode’ use case.

 50

Figure _. _ Execution Time Progression With Regards To Various Subsampling

Figure _. _ Execution Time Progression With Regards To Various Subsampling

 51

4.2.1.2 Evaluation Through Binder Cloud Server:

Env. Code File
Subsam

pling

Of

Nodes

Data Loss

(Percentage)
Execution Time

Binder nosub1n_oneday.py 0 1 NA
679.201 Sec

(11.32 Ms)

Binder twosub1n_onday.py 2 1 4.8974
550.23 Sec

(9.17 Ms)

Binder
threesub1n_oneday.p

y
3 1 5.6091

466.29 Sec

(7.77 Ms)

Binder
foursub1n_oneday.p

y
4 1 3.3231

369.126 Sec

(6.15 Ms)

Figure 4.12: System Execution Time And Data Loss Evaluation Table For Binder Cloud With 1

Node

 52

 53

Chapter 5

Conclusion & Future Work

5.1 Conclusion:

With the intent of the research study, we determine the substantial systematic error or data loss

between the original result without subsampling. However, the conventional approach is unable

to handle a large amount of dataset in a shorter period. To handle the above pediment, we have to

use the various subsampling techniques and combined it with Dask ecosystem which provides

parallelism through clustering to determine the result in a shorter time span.

In this study, we discussed the matter of the of concocting a large amount of data by using the

high-performance computing clusters environment which distributes the workload across various

worker to parallelize the execution. We equated the time taken for each execution and data loss

observed in each dataset to identify the visible change between processed dataset. We are testing

with the January 2008 month dataset from the NASA portal to identify our study's principal

theories.

We assessed our systems by varying the resources of the cluster and the amount of subsampling

performed; with this, we equated the total time taken for the entire system to compute the results.

Overall, we observed that as the number of subsampling increases, the overall system execution

for the result decreases. The results observed in both the environments of high-performance

computing and Binder

 54

virtual environment is similar. We also equated the results with variable resources and number of

workers in the cluster to see the observed difference in system execution. The error observed to

remain the same. However, there was an abundant reduction in overall time extent, particularly

about 81% decrease in the overall period in the eight nodes use case.

The Dask SLUR Cluster and Job Queue in the Dask Framework helped us to manage and

process the data in real-time parallelly. Internally the system creates the designated workers and

shares the workload across the cluster for more accelerated execution. Processing time is the

overall time taken by the system to complete all the work process assigned to each worker

together. We equated the processing time taken by each use case with a variable number of

nodes and scenarios and logged it in the results for evaluation.

5.2 Future Work

With this research, we used the subsampling techniques on January month dataset only. That

included 8928 files for one-month processing and 288 files for one-day processing. The system

currently processes the entirety of 8928 files for cloud property and equates the mean cloud

fraction for the entire month. We plan to use the approach of processing every single day in the

entire month for cloud property. It will result in 31 different cloud property files instead of the

individual file for the mean cloud property. In the future, we also intend to execute the operation

with the above various approaches, calculate its impact, efficiency, and perform a comparison

based on the results.

In the current implementation, we use XArray as a data structure and Dask framework to

parallelize the execution, whereas in the future we plan to use Dask as the data structure and as a

tool to parallelize the workload to get better native support for the system. We also plan to use

 55

different parallelizing tools like Apache Spark, Hadoop to determine the accuracy and efficiency

even further.

 56

Bibliography

[1]Group, N. D. (99, May 19). Hierarchical Data Format. Retrieved July 10, 19, from

https://support.hdfgroup.org/ftp/HDF/prev-

Documentation/HDF4.1r3/Users_Guide/UG41r3_html/Intro.fm1.html

[2]Stevens, J. P. (16, April 06). Why you need metadata for Big Data. Retrieved July 10, 19,

from https://www.datasciencecentral.com/profiles/blogs/why-you-need-metadata-for-big-data

[3]Sven-Arne, Monahan, H., Milad, E., M., Fyhn, Marianne, & Anders. (2018, March 23).

Experimental Directory Structure (Exdir): An Alternative to HDF5 Without Introducing a New

File Format. Retrieved from https://www.frontiersin.org/articles/10.3389/fninf.2018.00016/full

[4]Why should I care about the HDF5 1.10.2 (2018, August 14). Retrieved from

https://www.hdfgroup.org/2018/04/why-should-i-care-about-the-hdf5-1-10-2-release/[5]HDF-

EOS5 Data Model, File Format and Library | Earthdata. (2018, June 5). Retrieved from

https://earthdata.nasa.gov/esdis/eso/standards-and-references/hdf-eos5

[6]Indexing and Selecting Data¶. (n.d.). Retrieved from https://pandas-docs.github.io/pandas-

docs-travis/user_guide/indexing.html

[7]Hoye, S. (2018, July 24). XArray Development Roadmap. Retrieved from

https://xarray.pydata.org/en/stable/roadmap.html

[8]Merritt, P., & Bi, H. (n.d.). Big Earth Data: A comprehensive analysis of visualization

analytics issues. Retrieved from

https://www.tandfonline.com/doi/full/10.1080/20964471.2019.1576260

https://support.hdfgroup.org/ftp/HDF/prev-Documentation/HDF4.1r3/Users_Guide/UG41r3_html/Intro.fm1.html
https://support.hdfgroup.org/ftp/HDF/prev-Documentation/HDF4.1r3/Users_Guide/UG41r3_html/Intro.fm1.html
https://www.datasciencecentral.com/profiles/blogs/why-you-need-metadata-for-big-data
https://www.frontiersin.org/articles/10.3389/fninf.2018.00016/full
https://www.hdfgroup.org/2018/04/why-should-i-care-about-the-hdf5-1-10-2-release/
https://earthdata.nasa.gov/esdis/eso/standards-and-references/hdf-eos5
https://pandas-docs.github.io/pandas-docs-travis/user_guide/indexing.html
https://pandas-docs.github.io/pandas-docs-travis/user_guide/indexing.html
https://xarray.pydata.org/en/stable/roadmap.html
https://www.tandfonline.com/doi/full/10.1080/20964471.2019.1576260

 57

[9] Purdy, R. (n.d.). High Performance Computing Facility. Retrieved from

https://hpcf.umbc.edu/system-description-taki/

[10]Nagarajan, M. P., Dr. (2019, July 12). Data Processing Levels. Retrieved from

https://oceancolor.gsfc.nasa.gov/products/

[11] Purdy, R. (2018, July 06). High Performance Computing Facility. Retrieved from

https://hpcf.umbc.edu/system-description-taki/#heading_toc_j_0

[12]HDF-EOS5 Data Model, File Format and Library | Earth data. (2017, April 25). Retrieved

from https://earthdata.nasa.gov/esdis/eso/standards-and-references/hdf-eos5

[13]ZHANG, Z. (n.d.). MODIS Cloud Optical Properties: User Guide for the Collection 6/6.1

Level-2 MOD06/MYD06 Product and Associated Level-3 Datasets. Retrieved from

https://modis-

atmosphere.gsfc.nasa.gov/sites/default/files/ModAtmo/MODISCloudOpticalPropertyUserGuide

Final_v1.1.pdf

[14]Frazier, S., & Mancheron, B. (2015, October 12). Moderate Resolution Imaging

Spectroradiometer Specification. Retrieved from

https://modis.gsfc.nasa.gov/about/specifications.php

[15]USER SUPPORT TEAM, M. (n.d.). MODIS/Aqua Geolocation Fields 5-Min L1A Swath

1km Specification. Retrieved from

https://gcmd.gsfc.nasa.gov/search/Metadata.do&entry=MYD03_6.1NRT#metadata

https://hpcf.umbc.edu/system-description-taki/
https://oceancolor.gsfc.nasa.gov/products/
https://hpcf.umbc.edu/system-description-taki/#heading_toc_j_0
https://earthdata.nasa.gov/esdis/eso/standards-and-references/hdf-eos5
https://modis-atmosphere.gsfc.nasa.gov/sites/default/files/ModAtmo/MODISCloudOpticalPropertyUserGuideFinal_v1.1.pdf
https://modis-atmosphere.gsfc.nasa.gov/sites/default/files/ModAtmo/MODISCloudOpticalPropertyUserGuideFinal_v1.1.pdf
https://modis-atmosphere.gsfc.nasa.gov/sites/default/files/ModAtmo/MODISCloudOpticalPropertyUserGuideFinal_v1.1.pdf
https://modis.gsfc.nasa.gov/about/specifications.php
https://gcmd.gsfc.nasa.gov/search/Metadata.do&entry=MYD03_6.1NRT#metadata

	List of Figures
	Background

	Chapter 3
	Methodology
	Further to decode the actual value, we process the value with the following operation:
	data_decoded = (np.array(data, dtype = "byte") & 0b00000110) >> 1
	We use the AND operation in the "byte" version of ds06 compacted in a numpy array with the 0b00000110 with right shifting operation to the resulting array. Each Bit in the resulting entries represents particular bit value definitions.
	Scientific Data Set (SDS): "Cloud_Mask_1KM"
	Description: Cloud Mask QA Flags at 1x1 KM
	Length: 2 bytes (16 bits)

	3.4 Evaluating Cloud & Total Pixel:
	3.5 Equating Total Cloud Fraction:
	3.6 Plotting Cloud Fraction & Benchmarking Execution Time:
	3.7 Subsampling:
	Chapter 4
	Implementation & Evaluation

	4.1 Implementation:
	4.2 Evaluation:
	The scientific dataset which we utilize in the research study is from NASA's MODAPPS Portal and is formatted in the HDF File format recognized by NASA's EOS group which manages and maintain the file format. For this evaluation, we will be tackling the...
	Some of the attributes found in the dataset are described below:
	4.2.1 Subsampling Evaluation:
	4.2.1.1 Evaluation Through Taki HPC Server:
	As we can see after the evaluation, a subsampling of 4 with the dataset for a month renders a 2.2154 % of data loss percentage which can be negligible in certain use cases. In comparison with no subsampling, the computation takes substantial longer ti...
	4.2.1.2 Evaluation Through Binder Cloud Server:
	Conclusion & Future Work

	Bibliography

