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Abstract

The complex dynamics of the Venus atmosphere produces a periodic mass redistribution pattern that creates a
time-variable modulation of the gravity field of Venus. This gravity signal depends on the net transport of mass
across the globe and on the response of the solid body to the normal loading of its crust imparted by the
atmosphere. In this work, we explore the possibility of measuring this phenomenon with VERITAS, a NASA
Discovery-class mission. By simulating the gravity science experiment, we explore the possibility of measuring the
response of Venus to the atmospheric loading, parametrized by the loading Love numbers ( ¢kl ), and assess the
dependence of these parameters on fundamental interior structure properties. Using the most recent models of
Venus’ interior, we compute the Venus Love numbers in a compressible viscoelastic setting and compare them
with the predicted uncertainty of the VERITAS measurements. We show that VERITAS will measure ¢k2 at the 4%
level and that this measurement could possibly help to distinguish between different equally plausible interior
structure models, especially allowing us to distinguish different rheological laws. We also show that a
measurement campaign such as the VERITAS gravity science investigation has the potential of measuring ¢k2 not
only at the loading forcing frequency, but also at the tidal frequency, ultimately providing a way to probe the
response of the planet at different forcing periods.

Unified Astronomy Thesaurus concepts: Atmospheric tides (118); Venus (1763); Orbit determination (1175);
Planetary interior (1248); Planetary probes (1252); Planetary dynamics (2173); Planetary science (1255)

1. Introduction

The next decade will be the decade of Venus. The missions
recently selected by NASA and ESA (VERITAS, DAVINCI,
and EnVision) aim to radically advance our understanding of
Earth’s neighboring planet. The questions of the scientific
community pushing for renewing and updating the available
data sets of Venus are compelling. For instance, Venus’ interior
structure has not been probed by a planetary mission since the
conclusion of the Magellan mission in 1994. The data sets
gathered by Magellan were revolutionary for the time, but now
fall far behind in terms of accuracy, resolution, and detail when
compared to our knowledge of the other terrestrial bodies of the
solar system and the capability of current planetary missions
instrumentation. Venus and its remaining mysteries represent a
central comparative case toward understanding the key
elements determining (exo)planetary habitability (Way et al.
2016; Kane et al. 2019).

VERITAS (Venus Emissivity, Radio science, InSAR,
Topography, And Spectroscopy; Smrekar et al. 2022) will
conduct a gravity science investigation mainly devoted to the
measurement of the gravity field, the solid-body tidal response,
and the rotational state of Venus. It is ultimately aimed at
refining our understanding of the interior structure of the
planet. The radio tracking system of VERITAS, enabling the

gravity science experiment, is designed to deliver a sensitivity
that is improved by orders of magnitude with respect to what
NASA’s Magellan was able to achieve. This improved
sensitivity gives access to dynamical effects that were already
present in the Magellan data, but were below the noise floor. As
recently pointed out by Goossens et al. (2018) and Bills et al.
(2020), a reduced noise floor in the tracking data would reveal
the gravitational signature of the complex interplay between the
thick Venusian atmosphere and the solid planetary body
through the mechanism of the atmospheric thermal tides. This
global atmospheric mechanism manifests itself (gravitationally
speaking) both directly in the net gravity anomaly that is
produced by the displacement of atmospheric mass, and
indirectly with the response of the solid planet to this moving
gravitational normal load on its surface. Petricca et al. (2022)
showed that the gravitational response to the atmospheric
loading strongly depends on the interior properties of the planet
through the loading Love numbers, and suggested that its
measurement will provide significant constraints on the
inversion of Venus’ interior structure.
It has previously been shown that VERITAS gravity

measurements will be sensitive to this phenomenon (Cascioli
et al. 2021). This previous study, however, concentrated on
demonstrating that an imperfect knowledge of the atmospheric
thermal tides would not compromise the scientific objectives of
VERITAS. Here, we change our perspective and investigate
whether VERITAS could take advantage of its sensitivity to the
atmospheric dynamics. We assess the capability and quality
of a measurement of Venus’ response to the atmospheric
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loading (i.e., the loading Love numbers ¢kl ) and evaluate the
importance of these measurements for producing additional
constraints on the interior structure of Venus.

Precise knowledge of Venus’ interior structure is essential to
solving major outstanding questions about the evolution of
rocky planets. Key questions include the following: What is the
composition of initial accretionary material? Why does Venus
lack a dynamo-driven magnetic field? How did early
differentiation processes affect the core size and state and the
mantle structure? Absent Earth-like plate tectonics, what is
Venus’ geodynamic system? Specifically, how do interior
structure and heat loss couple to observable surface geology
and atmospheric composition and evolution?

The composition, phase, and convective state of the core
govern how much heat is lost from the core into the mantle. A
better knowledge of the core and the core-mantle boundary is
needed to discriminate between hypotheses to explain why
Venus has no measurable dynamo today (Jacobson et al. 2017).
Nimmo (2002) proposed that Venus lacks core convection and
a dynamo because heat is not lost rapidly enough through the
mantle and lithosphere due to the absence of plate tectonics.
O’Rourke et al. (2018) hypothesized that Venus could have a
basal magma ocean that suppresses heat flow from the core.
The nature of the core-mantle boundary and core heat loss is
also critical for understanding the origin of the ∼10 large
mantle plumes that appear to be active today (e.g., Smrekar &
Sotin 2012). An additional major question is why Venus
exhibits two scales of mantle plumes. The large volcanic rises
are similar in scale and surface features to Earth’s mantle plume
features, e.g., on Hawaii. Hundreds of smaller-scale features
called coronae, with an average diameter of a few hundred
kilometers, also occur, however. Could they also originate at
the core-mantle boundary (Jellinek 2002), or do they require an
additional, shallower transition zone or interface? Why are they
unique to Venus?

On Earth, plate tectonics shapes Earth’s long-term climate
and volatile budget via volcanic outgassing and recycling of
material into the mantle via subduction. An essential question
for Venus is whether surface volcanism is largely constant over
time or if there was a past “catastrophic” event. Catastrophic
resurfacing motivates the hypothesis of episodic plate tectonics
(or mobile lid convection), which would allow for past periods
of mobile lid activity and high heat flow, leading to a current
period of stagnant lid convection and lower heat flow. Mantle
viscosity and lithospheric strength, a function of mantle heat
flow, are the driving parameters for mobile lid versus stagnant
lid behavior, as well as for volcanism. Many have advocated
for an episodic mobile lid (e.g., Rolf et al. 2018; Weller &
Kiefer 2020), but other styles of a stagnant lid convection are
possible, such as a sluggish lid (Davaille et al. 2017) or squishy
lid regimes (Lourenço et al. 2020), incorporating evidence for
likely active subduction and volcanism. Constraints on mantle
viscosity and structure are needed to refine these hypotheses
and discriminate between geodynamic models.

The aim of this work is to demonstrate that VERITAS will
be able to measure the Venus loading Love numbers and to
assess the importance of their retrieved values for gaining more
information on the planet’s interior structure. To this end, we
review the latest published models of the Venus deep interior
and use them to compute the range of expected values of the
tidal and loading Love numbers of Venus under different
assumptions regarding core state, radius, mantle viscosity, and

temperature profile. We simulate the mission scenario by
embedding several sources of possible model errors to
determine VERITAS’ sensitivity to the load Love numbers in
a robust manner. Finally, we assess the relevance of these
estimates for providing improved constraints on Venus’
interior.
This manuscript is structured as follows: in Section 2 we

discuss the gravitational signature of the atmospheric thermal
tides and their modeling. In Section 3 we detail the method we
used to compute the tidal and loading Love numbers of Venus
and discuss their relation to the interior structure. Section 4
follows with a discussion of how the loading Love numbers can
be measured by VERITAS and the description and results of
the numerical simulations we used to assess the sensitivity to
these parameters. Section 5 comments on the implication of
VERITAS measurements in terms of constraints on Venus’
interior structure, and finally, Section 6 provides concluding
remarks.

2. Gravitational Signature of Atmospheric Thermal Tides

Venus rotates in a retrograde direction with a period of ∼243
days and has an orbital period of ∼224 days. The difference
between these two periods gives rise to a solar day with a
duration TS= 116.752 days. The radiative input of the Sun on
the atmosphere determines a hotter zone in proximity of the
subsolar point and a cooler zone in the opposite hemisphere.
This temperature dichotomy of the atmosphere gives rise to a
mass transport phenomenon known asatmospheric thermal tide.
The atmosphere near the subsolar point is hotter than the average
and thus expands (i.e., the density is lower), while on the
opposite hemisphere, the opposite occurs (Gold & Soter 1971;
Dobrovolskis & Ingersoll 1980). Thus, in principle, the solar
input creates a stable atmospheric thermal tide that rotates with
respect to the body-fixed frame with a period equal to the solar
day. The phenomenon, however, is more complex than this
simple description, as the pressure field strongly depends on the
topography of the Venus surface (see Figure 1). Moreover, the
total gravitational perturbation is affected by other small-scale
atmospheric waves. However, the contribution of the planetary-
scale thermal tides to the gravity field is by far the largest (Bills
et al. 2020; Petricca et al. 2022). The total gravitational signal is
due to both the direct contribution (net transport of mass) and the
modification of the solid-body gravitational potential due to
atmospheric loading on the surface (Wahr et al. 1998). To
correctly compute the gravitational signal due to the atmospheric
dynamics, then, a precise global circulation model (GCM) is
needed. In this work, we use the same atmospheric gravity field
model as Goossens et al. (2017, 2018), which is derived from
pressure field simulations by Garate-Lopez et al. (2018). Since
we are interested in the estimation of the low-degree (i.e., large
spatial scale) loading Love numbers, we assume that the total
gravitational perturbation is only due to thermal tides.
Admittedly, the current Venus GCMs are not necessarily
tailored to deliver a fine description of the surface pressure
anomalies, the main quantity driving our modeling of the
gravitational signal of the tides, mainly because of the scarcity of
in situ measurements and of the strong effect that poorly
constrained parameters such as the shortwave heating rate of the
lower haze below the cloud deck, the ground thermal inertia, or
the cloud-top altitude at high latitudes can have on the low-
atmosphere dynamics (e.g., Garate-Lopez & Lebonnois 2018;
Navarro et al. 2023). Indeed, in our work we rely on the GCM

2

The Planetary Science Journal, 4:65 (14pp), 2023 April Cascioli et al.



predictions, but try to mitigate the model dependence of the
results by exploring different perturbed realizations of the
surface pressure fields (see Section 4.1), allowing for a more
robust interpretation.

The GCM model has been evaluated with a sampling of 1
Venus hour (i.e., 24 total samples over 116.752 Earth days) in a
1°× 1° grid. We define the pressure anomaly ΔP as

( ) ( ) ( ) ( )J j J j J jD = - á ñP t P t P t, , , , , , , 1

where P denotes the pressure field, t, ϑ, and j are the time,
latitude, and longitude, respectively, and ·á ñ is the time-average
operator. Figure 1 shows the pressure anomaly field at local
solar times (LST) of 12 hr, 18 hr, 24 hr, and 6h at the prime
meridian (0° longitude). The pressure anomaly field shows
peaks on the order of 1kPa, corresponding to ∼103ppm of the
average surface pressure of Venus (96 atm). For a convenient
comparison with the static gravitational potential, it is useful to
represent the pressure anomaly field in a spherical harmonics
series expansion. We use the standard spherical harmonics 4π
normalization (e.g., Kaula 1966), defined by the inner product
(over the unitary sphere Ω) between two spherical harmonics
base functions Ylm of degree l and order m such that

( )ò pd dW =¢ ¢ ¢ ¢Y Y d 4 2lm l m ll mm

where δij denotes the Kronecker delta operator.
Using this procedure, we can obtain the Stokes coefficients

of the spherical harmonics representation of the pressure
anomalyDClm

atm andDSlm
atm for each time sample, and thus build

a time series of the variation of each individual coefficient.
The transformation from atmospheric pressure anomaly to its

gravitational potential counterpart is obtained through Wahr

et al. (1998; we refer to Petricca et al. (2022) for a thorough
discussion of the topic),
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where R, ρ, and g0 are the planetary radius, mean density, and
surface gravity acceleration, respectively. ¢kl are called the
loading Love numbers of degree l. Similarly to tidal Love
numbers (kl), these are nondimensional coefficients relating the
forcing potential and the planet’s response (Love 1911). While
the tidal Love numbers relate a perturbing gravitational
potential (forcing) to the modification of the gravitational
potential of the perturbed body (response), the loading Love
numbers relate the application of a gravitational normal load to
the induced modification of the perturbed body gravitational
potential. It is clear then from Equations (3a) and (3b) that the
atmosphere-induced gravitational perturbation can be seen as
acting in two different ways. We can identify a direct effect that
is due to the redistribution of atmospheric masses (the 1 in the
( )+ ¢k1 l term in Equations (3a) and (3b), and an indirect effect
that is due to the response of the planetary body to the normal
loading ( ¢kl in the ( )+ ¢k1 l term in Equations (3a) and (3b)). To
assess the magnitude of the gravity anomaly induced by the
atmospheric mass redistribution, it is convenient to compute the
amplitude spectrum of the time-variable atmospheric anomaly
gravity field (Cl in Equation (2.39) of Bertotti et al. 2003).
Being a periodic phenomenon, as pointed out by Bills et al.
(2020), the spectrum of the atmospheric anomaly gravity field is

Figure 1. Atmospheric pressure anomalies sampled over a Venus solar day. The subsolar point is at 0°, 90°, 180°, and 270° in longitude for quadrants a, b, c, and d,
respectively.
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time-invariant; indeed, it will convey the same information
regardless of the time stamp chosen for its computation. Figure 2
reports the comparison between the amplitude spectrum of
Venus’ static gravity field, as measured by Magellan
(MGN180U; Konopliv et al. 1999) and its associated uncer-
tainty, the uncertainty attainable by VERITAS (as simulated by
Mazarico et al. 2019), and the computed spectrum of gravity
anomalies induced by atmospheric mass redistribution.

Figure 2 clearly shows that the gravitational signal of the
atmosphere was beyond Magellan’s reach, but will be above
the noise floor attainable by VERITAS. This fact justifies the
efforts made to study this phenomenon and assess whether the
atmospheric signal, if not properly modeled, might bias the
gravity science experiment results. It must be noted, however,
that the comparison between spectra is not an exact measure of
what will be effectively measurable. While it is generally true
that a phenomenon whose amplitude spectrum is orders of
magnitude above the uncertainty will surely be detectable, this
approach cannot be used for definitive quantitative estimates in
more subtle cases like that of VERITAS, thus justifying and
motivating the need of detailed numerical simulations. In
previous work (Cascioli et al. 2021), it has been shown that
VERITAS will be sensitive to the atmospheric signal and that
with proper data-analysis strategies, the errors due to an
imperfect knowledge of the atmospheric dynamics can be
absorbed in the data reduction process without impacting the
objectives of the gravity science experiment. More interest-
ingly, because the expected gravitational signal is higher than
the measurement noise floor of VERITAS, it could be possible
to probe the main dynamical processes generating it.
Equations (3a) and (3b) show the strong dependence of the
gravitational signal to the loading Love numbers, which in turn
depend on the interior structure of the planet (see Section 3).
Measured loading Love numbers, in combination with the
measurement of the tidal Love number k2 (real and imaginary

parts) and the moment of inertia factor (MOIF), could then
impose new and tighter constraints on the interior knowledge.

3. Relation between Love Numbers and Venus’ Interior
Structure

To determine theoretical values for the Venus’ loading Love
numbers andtidal Love numbers, we must first find a solution
to the viscoelastic-gravitational problem within the planet
(Takeuchi & Saito 1972). This method has been employed in
the study of icy moons (Tobie et al. 2005; Beuthe 2015),
Mercury (Mazarico et al. 2014; Goossens et al. 2022), Earth
(Martens 2016), and exoplanets (Bolmont et al. 2020). It
assumes spherical symmetry (parameters such as density may
only vary with radius) and can describe self-gravitating
deformations from a variety of sources (tides, surface loading,
quakes, or centrifugal flattening). Both the equations of motion
and Poisson’s equations can be cast into a set of four (for liquid
layers; see Equations (11)–(14) of Kamata et al. 2015) or six
(for solid layers; see Equations (4)–(9) of Kamata et al. 2015)
ordinary differential equations that are solved as a system
starting from the center of the planet. It is common practice to
introduce radial functions, yi (i ä [1, 6]), to perform these
calculations. y1 and y3 are associated with the radial and
tangential displacements, respectively, while y2 and y4 are used
to find the radial stresses. The total gravitational potential
inside the planet is provided by scaling the surface-applied
potential by y5. Finally, y6 is defined to assist in the application
of the surface boundary conditions while maintaining a
continuous gravitational potential. The Love numbers are
found using the following relations on these functions,
calculated for either the tidal or loading surface conditions
(e.g., Beuthe 2015),

( ) ( )=h gy R 4a1

( ) ( )=l gy R 4b3

Figure 2. Comparison between the solid body static gravity field and the atmosphere-induced one. The solid and dashed black lines represent the field and associated
uncertainties measured by Magellan, the dash–dotted blue line represents the uncertainty attainable by VERITAS, and the red line represents the amplitude spectrum
of the gravity anomalies due to atmospheric mass redistribution. To highlight the low-degree features of the atmospheric gravity field, we limit the figure to degree 50.
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( ) ( )= -k y R 1, 4c5

where g is the acceleration due to gravity at the surface, and h,
l, and k are the radial, tangential, and gravitational Love
numbers, respectively (Love 1911). For a viscoelastic planet,
the radial yi functions are complex-valued; their imaginary
parts exist due to the dissipation of energy via frictional heating
during tidal or surface loading (see Bagheri et al. 2022, and
references therein). These imaginary parts are passed along to
the Love numbers and can be used as additional observational
constraints if the phase (i.e., the angular representation of its
complex part) of a given Love number can be measured with
reasonable precision (e.g., Dumoulin et al. 2017; Cascioli et al.
2021).

3.1. Solving the Viscoelastic-gravitational Problem

Several methods have been developed to find the solutions
for yi within a planet, such as the propagator matrix
method (e.g., Jara-Orué & Vermeersen 2011; Sabadini &
Vermeersen 2004) and the shooting method (e.g., Bolmont
et al. 2020; Tobie et al. 2005). We choose to use the latter
approach as it readily allows for the effects due to
compressibility (determined by a finite bulk modulus) to be
explored in a computationally stable way (e.g., Beuthe 2015;
Martens 2016; Bolmont et al. 2020). We have found
compressibility to be an important consideration for a planet
like Venus, especially for the calculation of the loading Love
numbers. For example, Figure 3 shows the tidal versus loading
Love number ¢k2 calculated for the suite of interior models
explored in this work (described in Section 3.2) under the
compressible and incompressible assumptions. Previous studies
such as Petricca et al. (2022) did not consider the effect of
compressibility. By considering compressibility, we observed
tidal Love numbers that are larger by ∼4% on average and
loading Love numbers that are lower by ∼23%. These
differences are larger than the expected measurement uncer-
tainty we calculate in Section 4.2 (see also Table 3).

Performing the Love number calculations using the shooting
method requires first finding a set of solutions to the
viscoelastic-gravitational differential equations starting with
initial values at the planet center. These initial values are
provided, for example, by Equations (100)–(103) in Takeuchi
& Saito (1972) and depend on the local density as well as the
shear and bulk moduli of the central core. For solid layers, only
three of the solutions are regular at r= 0, requiring three
different starting solutions. For static6 liquid layers, there is
only one regular solution, and its starting values are provided
by Equation (19) of Saito (1974). Numerical integration of
these equations is performed until a phase interface is reached.
Interfaces between liquid and solid layers require the multiple
solutions to be connected through unknown constants of
integration, as well as knowledge about the physical properties
of the layers, as described in Section 3 of Takeuchi & Saito
(1972). These unknown constants are then propagated through
the superposition of solutions up to the surface where they are
determined by boundary conditions. These boundary condi-
tions vary depending on whether we are calculating the tidal or
loading Love numbers (see Table 1).
We performed these numerical integrations using the

TidalPy software package (Renaud 2022), which uses a fifth-
order Runge–Kutta ordinary differential equation integrator
with adaptive step sizing.

3.2. Interior Structure of Venus

Before these calculations can be made, we must first define
the interior structure and physical properties of Venus,
including the density and shear and the bulk moduli as a
function of radius. In the case of a viscoelastic planet, the
moduli may take the form of complex numbers. In this work,
we focus on the effects of shear dissipation and assume that the
bulk modulus is purely real valued.7 To calculate the complex
shear modulus, we use the Andrade rheology (Andrade 1910;
Castillo-Rogez et al. 2011; Renaud & Henning 2018), which
relates the complex shear modulus m̃ to the static shear μ,

Figure 3. Tidal k2 vs. loading ¢k2 calculated using both the X21 (circles)
and D17 (crosses) simulated interiors of Venus (for the definition of X21 and
D17, see section 3.2). The mantle viscosity is shown as the scatter plot colors.
Calculations were performed using the incompressible limit, K → ∞ (right
data points) as well as allowing for compressibility and a finite bulk modulus
(left data points).

Table 1
Surface Boundary Conditions Used to Calculate the Tidal and Loading Love

Numbers (Beuthe 2015)

Tidal Love Numbers Loading Love Numbers

y2(R) 0 r- +l2 1

3 bulk

y4(R) 0 0

y6(R)
+l

R

2 1 +l

R

2 1

Note. In addition to the planet’s mean radius, R, and the planet’s bulk density,
ρbulk, the Love numbers also depend on the harmonic degree, l, which in the
context of tidal dissipation and surface loading is a positive valued integer
greater than 0.

6 In the context of viscoelastic-gravitational solutions, static and dynamic
tides refer to an additional dependence on the forcing frequency in the set of
differential equations. The static assumption drops this dependence in favor of
increased numerical stability (Beuthe 2015). We assume that the static
assumption applies to Venus’ thermal tide given its relatively low forcing
frequency, but note that dynamic tides do play an important role for worlds on
short-period orbits, as discussed by Kamata et al. (2015).
7 The effects of bulk dissipation have been shown to affect tidal heating in the
context of rocky moons with a significant portion of melt (Kervazo et al. 2021).
Its effects on the loading Love numbers will be a topic of future study.
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viscosity η, forcing frequency ω, and material properties,

˜
( ) ( ) ( )

m m hw
hzw m

m
a= - + G +

a-i i1 1
1 , 5

where i is the imaginary number, and Γ is the Gamma function.
The forcing frequency in the case of surface loading is largely
driven by atmospheric changes occurring at a period of
116.752 Earth days. Additional material properties of a planet’s
bulk are parameterized in the Andrade rheology via two
dimensionless variables α and ζ (Efroimsky 2012). α in part
describes the slope of the shear response versus forcing
frequency and viscosity, while ζ is the ratio of the characteristic
timescales of anelastic and viscoelastic creep (Renaud &
Henning 2018). Much more experimental work is required to
better understand these parameters and any additional depen-
dences they may share. However, for the silicate materials of
which we expect the bulk of Venus’ interior to be comprised,
studies have found that α and ζ to range between 0.2–0.6 and
0.1–10, respectively. We use the values of α= 0.3 and ζ= 1
for our calculations, which represent reasonable midpoints in
the experimental literature (see Renaud 2019, and the
references therein for a review). In Section 5.1 we briefly
discuss the impact that the Sundberg–Cooper rheology
(Sundberg & Cooper 2010) may have on Venus’ response.
We refer to Renaud & Henning (2018) for a detailed
description of this model, but note that the key difference
between it and the Andrade model described by Equation (5) is
an additional Debye-like dissipation peak in both frequency
and viscosity space.

Either rheology requires Venus’ mantle and core viscosity
and shear modulus as inputs, but these properties are currently
unknown. Prior work has attempted to model them by
performing extrapolations from the preliminary Earth reference
model (PREM; Dziewonski & Anderson 1981; Aitta 2012) as
well as using equations of state on the anticipated interior
composition and thermal state of Venus. In this work, we use
the interior profiles produced by Xiao et al. (2021;
hereafter X21), who considered many different interior
configurations, including the presence or lack of a solid inner
core, and the data produced by Dumoulin et al. (2017; from
now on D17; the data were provided by the authors; see the
Acknowledgment) assuming a purely liquid core. X21 explored
12 main variations on Venus’ interior based on whether a solid
inner core was present, a cold versus hot mantle (the main
difference being the presence of a thick basalt layer in the
mantle for the cold case; see O’Rourke et al. 2018), and three
different parameters used to calculate the mantle viscosity.
Each model then had 100 (solid inner core) or 300 (purely
liquid core) simulations, where each simulation explored
variations in the core-mantle boundary (CMB) temperature
(3200–4600 K), the thermal boundary layer thickness (10–200
km), the mantle transition layer thickness (solid inner core
only; 10–200 km), the core sulfur (0–11.8 wt%) and silicon
content (0 to 1-χFe12S), and the CMB radius (3047–3310
km). D17 also explored a hot and cold mantle for Venus as well
as differences in internal composition (see Tables 1 and 2
in D17) and CMB radius (2941–3425 km). We use six cases
explored by D17, all of which consider a purely liquid core.
Unlike X21, D17 does not prescribe a mantle viscosity for their
simulations. For these models, we instead use a viscosity that is

constant throughout the mantle, and we rerun the Love number
calculations with a different constant viscosity chosen from the
range 1018–1022 Pa s. As with D17 and X21, we do not
consider the case that Venus’ core is entirely solid in this work.

3.3. Loading Love Numbers of Venus

Using the methods described in Section 3.1, we calculate
Venus’ tidal (see Figures 4(a)–(d)) and loading Love numbers
(see Figures 4(e)–(f)) for harmonic degrees l= 2 to l= 10. In
this section, we differentiate by models that do and do not
contain a solid inner core, as the analysis of the observed Love
numbers, along with moment of inertia measurements, may
help to constrain whether an inner core is present in modern
Venus (in analogy to what has been done for Mars; e.g.,
Rivoldini et al. 2011). To perform a comparison between these
core models, we choose to only show the simulations
conducted by X21 and do not analyze the data from D17,
who did not consider a solid inner core. This choice was also
made as the X21 simulations use a self-consistent viscosity
profile for the mantle (see Xiao et al. 2021 Equation (3)), rather
than the constant and prescribed values used for D17. This
allows us to look at the statistics of multiple simulation runs
that range over various model inputs, as described in
Section 3.2. The average and spread of the 600 X21
simulations (for a purely liquid and a solid inner core with
varying size) are shown in Table 2.
We find that the Love numbers, particularly at low harmonic

degree, show moderate variations. We define the relative
spread as the separation from the 5th to the 95th percentile of
all the model values divided by the average value. The relative
spread of k2 for the liquid core models is higher than 34% (with
a range of 0.272–0.376). This spread decreases slightly when a
solid inner core is considered with a relative spread of 22.5%
and a range of 0.256–0.319. The loading Love number ¢k2 is
found to range between −0.410 to −0.276 (average value of
−0.313 and relative spread of 43.1%) for a purely liquid core
and between −0.325 to −0.262 (average value of −0.286 and
relative variation of 22.1%) for a solid inner core. Petricca et al.
(2022) found that for a liquid core, the loading Love numbers
ranged between −0.340 to −0.210. Our lower ranges are
consistent with the compressibility correction discussed in
Section 3.1. Other differences, such as the larger spread in
values, arise from our use of the X21 data compared to the use
of D17 simulations in Petricca et al. (2022).
We confirm the findings of Petricca et al. (2022) that a lower

mantle viscosity leads to lower loading Love numbers. The
large spread in the values of the imaginary portion of the tidal
Love number (200%–390% relative spread; see Table 2)
suggests that a precise measurement of its value may go a long
way to constrain the mantle viscosity, with less degeneracy
than the real portion alone would provide. We also find that the
loading Love number has a semiasymptotic relation with
harmonic degree. It converges near −0.08 at high l with only a
slight positive slope (see Figures 4(e) and (f)). These high
degrees are thus not sensitive to and diagnostic of the interior
structure.

4. Sensitivity of Radiometric Data to Loading Love
Numbers

To quantify the sensitivity of the VERITAS radiometric
measurements to the loading Love numbers, we have run an
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extensive set of numerical simulations of the VERITAS gravity
experiment aiming to assess the sensitivity of the tracking
system and the robustness of the solution to possible
uncertainties in the mismodeling of the atmospheric pressure
field. The gravity science experiment is based on the collection
of two-way coherent X- and Ka-band radiometric measure-
ments. The radio tracking system of VERITAS has heritage
from ESA’s BepiColombo and will obtain an end-to-end
accuracy ranging between 0.015 and 0.038 mm s−1 at 10 s
integration time (Cappuccio et al. 2020; Iess et al. 2021). In this
work, we have implemented a noise model that accounts for all
the main noise sources (solar plasma, Earth troposphere,
ground station frequency stability, antenna mechanical noise,
etc.) reflecting the latest results of BepiColombo. The model
has been tuned to reflect the VERITAS requirement of an end-
to-end noise of 0.033 mm s−1 over 10 s integration times
outside of solar conjunctions (Sun–Venus–Earth angle >15°).
VERITAS will also collect radar tie points (repeated observa-
tions of the same surface feature) from the interferometric
synthetic aperture radar VISAR (Hensley et al. 2020). The
radar tie points will greatly contribute to the scientific return of
the mission by strongly tying the motion of the probe to the
rotational state of the planet, thus significantly increasing the
sensitivity of the experiment to the planet’s moment of inertia
(Cascioli et al. 2021). The expected noise level for radar tie
points is 10 HZ and 3 m for their Doppler and range
components, respectively (see Cascioli et al. 2021, Appendix
1 for additional details). The numerical simulation setup, based
on NASA-JPL MONTE (Evans et al. 2018), is identical to the
one used in our previous works. We summarize the main
features here. The orbit-determination (OD) problem is
formulated in its multi-arc form (Milani & Gronchi 2009),
meaning that the solved-for parameters are divided into two
groups: local and global. The local parameters are those that
influence a single data arc, while the global parameters have
influence over the whole mission (e.g., the Venus gravity field).
We subdivide the nominal mission time span (about four Venus
sidereal days corresponding to ∼2.7 yr) into 324 arcs lasting
three days each. We estimate the gravity field of Venus up to
degree and order 50 (as higher degrees do not affect the
estimate of long characteristic-time phenomena such as those

we are interested in here), the tidal Love number k2 (both real
and imaginary), and the planetary body-fixed spin axis
orientation and orientation-rate (precession) in addition to the
atmospheric gravity field-related parameters discussed in the
next section. We also estimate the sidereal period as a local
parameter to account for possible short-term variability
(Margot et al. 2021) and a scale factor per arc for the solar
radiation pressure, and we model (and estimate) the drag
coefficient as a stochastic parameter with an update time of 30
minutes. For a more details on the simulation and filter setup,
we refer to Cascioli et al. (2021).

4.1. Measuring the Loading Love Numbers

The core of the gravity science experiment of VERITAS
relies on the solution of an OD problem. An OD problem
consists in finding the set of parameters of the dynamical model
of the spacecraft (the state of the problem) that minimizes the
discrepancy between the actual measurements collected by the
ground station and radar (observed observables) and the
measurements predicted through the chosen dynamical model
(computed observables). In its linear least-squares formulation
(for a detailed description, see Tapley et al. 2004 or Cascioli &
Genova 2021), the minimum variance estimator of the state
correction x̂ is given by

ˆ ( )( ) ( )= + +- - - -x H R H P H R y P x , 6T T1 1 1 1

where R is the covariance matrix of the measurement noise, P
is the a priori covariance matrix of the state, x is the vector of
a priori values of the state, and y is the vector of observation
residuals (the difference between observed and computed
observables). H is the so-called mapping matrix, which collects
the partial derivatives of the observations with respect to the
state. To include the estimation of the loading Love numbers in
the OD filter, a suitable mathematical representation of the
gravitational anomalies due to the atmosphere must be
developed.
Leveraging the periodic nature of the atmospheric thermal

tides, the time series of the pressure anomaly Stokes
coefficients ( )DC tlm

atm and ( )DS tlm
atm can be expanded in Fourier

Table 2
The Average Value and Overall Spread of the Tidal kl and Loading ¢kl Love Numbers Are Based on Calculations Performed on the X21 Simulation Results for Purely

Liquid Core and Solid Inner Core Models

Tidal Loading

Re[ ]kl -Im[ ]kl Re[ ]¢kl

Purely Liquid Core l = 2 -
+0.3045 0.0324

0.0719 34.3% -
+0.0182 0.0157

0.0504 362% - -
+0.3129 0.0973

0.0373 43.1%

l = 3 -
+0.0950 0.0115

0.0268 40.3% -
+0.0076 0.0066

0.0023 395% - -
+0.2051 0.0816

0.0297 54.3%

l = 4 -
+0.0434 0.0049

0.0117 38.1% -
+0.0037 0.0031

0.0108 378% - -
+0.1420 0.0556

0.0199 53.2%

l = 5 -
+0.0258 0.0025

0.0057 31.9% -
+0.0020 0.0016

0.0051 333% - -
+0.1120 0.0368

0.0139 45.2%

Solid Inner Core l = 2 -
+0.2805 0.0246

0.0385 22.5% -
+0.0095 0.0072

0.0172 256% - -
+0.2857 0.0390

0.0240 22.1%

l = 3 -
+0.0869 0.0081

0.0133 24.6% -
+0.0036 0.0027

0.0066 259% - -
+0.1839 0.0302

0.0179 26.2%

l = 4 -
+0.0404 0.0033

0.0055 21.8% -
+0.0019 0.0014

0.0031 234% - -
+0.1294 0.0205

0.0116 24.8%

l = 5 -
+0.0246 0.0017

0.0028 18.5% -
+0.0012 0.0008

0.0017 202% - -
+0.1049 0.0144

0.0086 21.9%

Note. The ranges are estimated by using the 5th and 95th percentile of simulation results, such that 90% of the findings lie within the provided ranges. The percentages
were calculated as the difference between these percentiles divided by the average value to give a sense of the relative spread in values.
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series,

( ) ( ) ( ) ( )å p pD = +C t A ft B ftcos 2 sin 2 7alm
f

lm
C

lm
Catm

( ) ( ) ( ) ( )å p pD = +S t A ft B ftcos 2 sin 2 . 7blm
f

lm
S

lm
Satm

The summation is performed over harmonics of the forcing
period Ts, i.e., at frequencies = ¼f , , ,

T T

N

T

1 2

S S S
. The Fourier

expansion is limited by the number of samples extracted from
the time series of the pressure grids. The harmonic representa-
tion of the gravity anomalies is very convenient for forward
modeling the phenomenon, leaving the modeler the ability to
easily disentangle and select the different frequency contents of
the signal.

Since the same ¢kl holds for both ΔClm(t) and ΔSlm(t),
Equations (3a) and (3b) can be summed together,

( )
( )

( ) ( )
r

D + D =
+ ¢

+
D + DC S

k

l R g
C S

3 1

2 1
, 8lm lm

l
lm lm

0

atm atm

from which the partial derivative of the measurement y with
respect to the loading Love number of degree l is computed
applying the chain rule,
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¶D
¶ ¢

=
+

D
C
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2 1
10alm

l
lm

0

atm

Figure 4. The tidal and loading Love numbers are calculated for harmonic degrees l = 2 to l = 10 for the purely liquid core models of X21 (left panels) and those that
include a solid inner core (right panels). We separate out the real portion of the tidal response (panels a and b), the imaginary portion (panels c and d), and the real
portion of the loading (panels e and f). The mantle viscosity is shown as the scatter point color.
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The terms ¶
¶D

y

Clm
and ¶

¶D
y

Slm
can be computed by observing that

the instantaneous partial derivative of the observable with
respect to ΔClm and ΔSlm is identical to the partial derivative
with respect to static Clm and Slm. The latter are very well
known and already implemented in the majority of OD codes
(e.g., Moyer 2003).

Equation (9) has to be evaluated at the epoch of each
observation, which in general will differ from the time samples
of the pressure grids obtained from the GCM. The values of
DClm

atm andDSlm
atm on the right-hand side of Equation (10a) and

(10b) are thus computed from their Fourier series expansion.
With this procedure, we add the loading Love numbers up to

degree 5 to the OD filter as global parameters. We choose
degree 5 as a cutoff after having verified through preliminary
simulations that higher degrees are not measurable due to the
low signal-to-noise ratio (see also Figure 2). As evidenced by
Equations (3a) and (3b), the gravity anomalies induced by the
atmospheric mass redistribution do not depend on the loading
Love numbers alone and are strongly driven by the underlying
forcing atmospheric pressure field. The assumption that the
uncertainty of the estimated ¢kl matches their formal errors
extracted from the OD filter might lead to an underestimation
of the propagation of GCM uncertainties. Recent studies show
a good match between the structure of the thermal tides
predicted by GCMs and the in situ measurements collected by
Venus Express VIRTIS (Scarica et al. 2019) for altitudes >60
km. However, the amplitude of the uncertainty or error
expected in atmospheric pressure anomaly fields at the surface
has not been similarly ascertained. For this reason, in our
simulations, we perturb both the atmospheric pressure field and
the static body gravity field. This implies that we use the
nominal models to generate the synthetic observables used as
truth in the orbit determination procedure and the perturbed
models in the retrieval process. In the following, we will report
both the formal uncertainty and the estimation error (difference
between estimate and truth), which more realistically reflects
the true attainable uncertainty.

In our simulation, the static gravity field measured by
Magellan has been perturbed from its measured covariance
(Konopliv et al. 1999). For what pertains to the atmospheric
pressure field, we have run different cases to quantify the effect
of possible GCM mismodeling. We identified two main ways
of perturbing the atmospheric pressure anomaly field: perturb-
ing the pressure grid prior to its expansion into spherical
harmonics and Fourier series, and directly perturbing the
Fourier series coefficients. Comparisons between GCM
predictions and in situ observations have shown thermal
anomaly differences on the order of 5–10 K at an altitude of
∼60 km (Scarica et al. 2019). These differences map into
relative variations in the pressure anomalies on the order of 1%.
Because of the very different mechanisms regulating the
surface pressure and the cloud region (∼60 km), a direct
extrapolation of these comparison studies cannot be adopted.
Thus, we have chosen a conservative approach and adopt
perturbations of 10% on the pressure anomaly grids for our
simulations.

Because of their different nature, the two perturbation
methods lead to different magnitudes of the resulting perturbed
gravity anomalies. To obtain the same effect of perturbing the

pressure grid at the 10% level, the Fourier coefficients need to
be perturbed at the 2% level. Figure 5 shows the relative
difference in the gravity anomalies using the two perturbation
methods. It is interesting to highlight the difference between the
two methods: directly perturbing the pressure grid (Figure 5,
top panel) consists of applying a near-white noise over the
whole grid, thus locally perturbing the atmospheric value while
maintaining the underlying pressure anomaly geospatial
structure. On the other hand, perturbing the Fourier expansion
coefficients results in a modification of the spatio-temporal
structure of the pressure anomaly field, which may better mimic
mismodeling of the physical processes embedded in the GCM
models.

4.2. Results

We run the numerical simulations for the two distinct
perturbation cases discussed in the previous paragraph. From
now on, we refer to the pressure grid perturbation as Solution P
(SOL-P) and to the Fourier coefficient perturbation as Solution
F (SOL-F). We first simulate the gravity experiment using
Doppler tracking only (no radar tie points) to prove the
capability of measuring the loading Love numbers with
Doppler data alone. A discussion of the attainable results when
performing a combined Doppler and tie points analysis will
follow shortly after.
We have run a full recovery study (not a covariance analysis)

to probe the systematic errors introduced after perturbing the
atmospheric input and other parameters such as the loading
Love numbers and the static gravity field coefficients. In a
covariance simulation, only the formal estimation uncertainty
of the parameters is recovered; in a full simulation, all the
parameters are initially perturbed, and thus the estimation errors
are also obtained, which account for the effect of systematic
effects and correlations. Table 3 reports the simulation results
in terms of formal uncertainty and estimation error on the
parameters of interest. The orbit determination solution is
shown to be robust to this magnitude of atmospheric
perturbation, as testified by the generally good quality of the
fit. We find that the estimation errors are comparable with the
formal uncertainties. As expected, the radiometric observables
are mainly sensitive to the degree 2 loading Love number ¢k2,
whose expected error, which we choose as the maximum
between the formal uncertainty and estimation error for SOL-P
and SOL-F, corresponds to a spread of 9.7% compared to the
¢k2 range (5th–95th percentile) predicted by the various interior

models we tested (see Table 2). The degrees 3 and 4 are less
strongly recovered, while ¢k5 is not resolved as its uncertainty is
larger than the modeled range (>100%). These results suggest
that the measurement of ¢k2 (and more marginally, ¢k3 and ¢k4)
could help in discriminating between plausible interior
structure models.
As discussed in previous work (Cascioli et al. 2021), the

combined analysis of Doppler tracking and radar tie points can
substantially augment the sensitivity to the rotational state of
the planet, leading to a reduction in the uncertainty on the
moment of inertia factor (MOIF) of nearly an order of
magnitude. The inclusion of tie points in the analysis has the
beneficial effect of strengthening the trajectory reconstruction
of the probe through a better determination of the parameters
related to nongravitational forces in the filter, particularly by
bringing new measurements outside of the radio tracking
periods (Cascioli et al. 2022). This process has been proven to
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benefit the retrieval of the Love numbers as well, with a
reduction in the uncertainties of the tidal Love number and the
associated tidal lag of a factor of 2–3. Having demonstrated
that the OD filter can consistently recover perturbations in the
atmospheric model, we report in Table 3 the results of a
covariance simulation using the combination of Doppler and tie
points (because of the dramatic increase in computational
expense of a full perturbed inversion when using tie points, we
only performed a covariance simulation, with resulting formal
uncertainty values, but no derived biasing errors). The
inclusion of tie points enables a reduction of the uncertainty
of ¢k2 by a factor of ∼2.5, which is in line with the improvement
on the tidal Love number of degree 2 (see Table 1 in Cascioli
et al. 2021). The reduction in uncertainty is particularly
significant for ¢k4, which under these assumptions can now be
determined at the 17% level. From these results, we can
conclude that VERITAS will be able to reliably measure ¢k2 in a
Doppler-only configuration, but also ¢k3 and ¢k4 using the
combined analysis of Doppler and radar tie points.

5. Interior Structure and Rheological Constraints Arising
from VERITAS Measurements

The observational constraints described in Section 3.2 will
define a three-dimensional measurement in the phase space of
Venus Love numbers, namely the real and imaginary portions
of the degree 2 tidal Love number at the tidal forcing period of
58.3 days (frequency ωT), and the real portion of the loading

Love number. Since the diurnal thermal tides are the principal
contribution to the atmospheric loading, the loading Love
numbers are assumed to be measured at the solar forcing period
of 116.75 days (frequency ωS). In concert, these three values
(along with other measurements of, e.g., the moment of inertia
factor, ¢k3, ¢k4) can be used to determine the most likely interior
and thermal state of Venus in both a structural and rheological
context. In Figure 6 we show how measurements made by
VERITAS can narrow down the most likely mantle viscosity
for the planet. The small observational uncertainties (shown as
error bars in the figure) calculated in Section 4.2 for the real
and imaginary tidal Love numbers are small enough for future
VERITAS measurements to isolate a small number of likely
interior models from those considered by X21 and D17. These
two parameters cannot capture the entire spectrum of possible
models alone because, as shown in Figure 6, this would
correspond to projecting the whole model cloud onto the
(Re[k2], Im[k2]) plane, losing information from the third
dimension provided by the loading Love number. The
uncertainty in the loading Love number, although substantially
larger, can further constrain the likely composition and
viscosity, as well as other rheological parameters. As we
discuss in Section 5.1, it provides additional and independent
information especially in a low-viscosity scenario, where the
incompleteness of the Re[k2], Im[k2] pair in describing the full
model space becomes more evident.
In general, we find that higher -Im[k2], higher Re[k2], and

lower Re[ ]¢k2 correspond to lower mantle viscosities. We also

Figure 5. Gravity anomalies due to pressure field perturbations. The color scale represents differences between the perturbed and unperturbed fields rescaled between
−1 and 1. Panel (a) shows the gravity anomaly differences when perturbing the pressure anomaly grid, and panel (b) shows the gravity anomaly differences when
perturbing the Fourier series expansion coefficients.

10

The Planetary Science Journal, 4:65 (14pp), 2023 April Cascioli et al.



see in Figure 7 that this configuration suggests a larger core
size. The loading Love number is a particularly useful tool in
constraining core size, which is more degenerate in the tidal
Love number space, but the larger observational errors may
prove too large to accurately constrain the core size from the
loading Love number alone. Future work using a Monte Carlo
Markov chain examination of various input parameters will be
performed to determine quantitatively how the addition of the
loading Love number can narrow the phase space of possible
interior configurations and thermal states. These studies will
also help to quantitatively understand whether a measurement
of the higher-degree loading Love numbers (e.g., l= 3–5) at
the level of uncertainty reported in Table 3 can be useful in
providing additional constraints in the interior structure
inversion process.

5.1. Loading Love Numbers as a Tool for Probing the Planet
Response at Different Forcing Frequencies

There exist well-determined relations between different sets
of Love numbers. For example, Saito (1974) gives

( )¢ = -k k h , 11l l l

where h is the vertical displacement tidal Love number, relating
the tidal gravitational perturbation to the radial displacement of
the surface of the body (for a given degree l). Petricca et al.
(2022) suggested that a combined measurement of k2 and ¢k2
will provide an indirect measurement of h2. However, this
relation may have limited applicability if the viscosity of the
mantle is low, as we show in the following. When considering
the viscoelastic-gravitational problem, this relation is formally
correct only at a given forcing frequency ω,

( ) ( ) ( ) ( )w w w¢ = -k k h . 12l l l

At Venus, this means that the loading Love number (measured
at the loading frequency ωS) and the tidal Love numbers
(measured at the tidal frequency ωT) cannot be directly tied via
Equation (11), as they are driven at two different forcing

periods. We compared ¢k2 with k2− h2 from our model
computations, and the disagreement with Equation (11) is
particularly clear for low values of the mantle viscosity, as
shown in Figure 8, where the frequency-dependent dissipation
plays a major role. Inferring the value of h2(ωT) from the
estimates of k2(ωT) and ( )w¢k S2 using Equation (11), as
suggested by Petricca et al. (2022), is not formally correct,
although we recognize that in practice, Equation (11) may
appear to hold if the measurement uncertainties are large or if
the Venus mantle viscosity is high (>1021 Pa s). The deviation
of the viscoelastic interior model values from the linearity
given by Equation (11) for low viscosity values makes explicit
the importance of an accurate measurement of ¢k2 as the full
spectrum of possible interior models cannot be described with
two parameters (linear relation between real and imaginary
Love numbers).
So far, we have discussed the direct comparison between

k2(ωT) and ( )w¢k S2 , but we show here that Equation (12) can be
exploited to obtain further information on the frequency-
dependent response of the planet.
Using Equation (12), we can obtain an estimate of the

loading Love number at the tidal frequency ( )w¢k T2 from the
measurements of k2(ωT) and h2(ωT),

( ) ( ) ( ) ( )w w w¢ = -k k h . 13T T T2 2 2

Indeed, we have already discussed the fact that VERITAS will
measure the tidal Love number k2(ωT), and it is worth recalling
now that based on the combined Doppler and radar tie
points analysis, VERITAS will be sensitive to the Love
number h2(ωT) with an accuracy of 5× 10−2 (1σ, under
very conservative assumptions; Cascioli et al. 2021). To
first approximation, we can assume that ( ( ))s w¢ @k T2

( ( ))s w = ´ -h 5 10T2
2, thus resulting in an estimate of

( )w¢k T2 with an accuracy of ∼35% in the expected range.8

Table 3
Formal Uncertainties and Estimation Errors on the Main Parameters of Interest in the Two Simulated Doppler- only Cases (SOL-P and SOL-F) and Formal

Uncertainties in the Doppler + Tie Points Case.

Doppler only Doppler + Tie Points

Solution P Solution F

Parameter Formal Uncertainty Estimation Error Estimation Error Percentage of max.
Variability

Formal Uncertainty Percentage of max.
Variability

[ ]Re k2 4.0 × 10−4 5.3 × 10−4 7.1 × 10−4 L 1.2 × 10−4 L

[ ]Im k2 3.9 × 10−4 4.6 × 10−4 3.9 × 10−4 L 1.2 × 10−4 L

MOIF 4.3 × 10−3 9.0 × 10−4 8.5 × 10−4 L 5.0 × 10−4 L

¢k2 1.3 × 10−2 8.0 × 10−3 6.3 × 10−3 9.7% 5.0 × 10−3 3.7%

¢k3 5.0 × 10−2 4.2 × 10−2 4.8 × 10−2 45% 4.0 × 10−2 35%

¢k4 3.2 × 10−2 2.0 × 10−3 4.7 × 10−2 62% 1.3 × 10−2 17%

¢k5 6.8 × 10−2 8.8 × 10−2 9.6 × 10−3 170% 4.0 × 10−2 79%

Note. We also report the expected uncertainty (the maximum between the formal uncertainty and the estimation error P and F) as a percentage of the maximum
expected variability of the loading Love numbers (defined as the width of the 5th–95th percentiles, as discussed in Section 3).

8 We have verified that the expected variation range of ( )w¢k T2 spans the same
range as ( )w¢k S2 .
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It is important to underline that the measurement of ( )w¢k T2 is
completely model independent, relying only on the very
general assumptions needed to obtain Equation (12).

It is also worth highlighting that the ( ( ))s wh T2 reported here
has been obtained with very conservative assumptions, both in
terms of modeling and for the number of considered radar tie
points (<10% of the predicted total number of tie points
detectable by the onboard radar). We can plausibly foresee that
substantially lower h2 uncertainties will be attained by
VERITAS.

The power of the concurrent measurement of ( )w¢k S2 and
( )w¢k T2 is the ability to constrain two points on the amplitude-

frequency curve for the loading Love number (see Figure 9). We
argue that this may help discriminate different rheological laws
and ascertain parameters governing a given rheology. The precise
quantification of the constraining power of these measurements, in
combination with other key geophysical parameters estimates
(e.g., the MOIF), would require a full inversion of the interior
structure model of Venus (e.g., using Monte Carlo Markov chain
techniques). This task goes beyond the scope of this work and will
be part of future focused follow-on investigations.

6. Conclusion

In this work, we have investigated the capability of the
VERITAS gravity science investigation to measure the Venus
loading Love number. As demonstrated in previous studies,
VERITAS will be sensitive to the thermal tides arising in the
Venus atmosphere due to the solar radiative input. The
gravitational signal of this phenomenon depends on the interior
structure of the planet through the loading Love numbers, and
we have conducted an extensive set of numerical simulations
showing that VERITAS will be able to reliably determine the
low-degree loading Love numbers. We have compared the
predicted measurement uncertainties with the latest models of
Venus interior available in the literature and showed that a
concurrent measurement of the tidal and loading response of
the planet could indeed provide useful information to
distinguish between different classes of Venus interiors,
especially in the case of a low mantle viscosity. We have
further described how the frequency dependence of the tidal
response of the planet can be leveraged to probe the rheology
(and its defining parameters). In particular, we have shown that
the frequency dependence of ¢k k,2 2 and h2 can be leveraged to

Figure 6. The tidal and loading Love numbers are shown in a three-dimensional phase space with the mantle viscosity shown as the color bar. Error bars are fixed at
the average values found for the calculations made using the simulations from both X21 (circles) and D17 (crosses). The lengths of the error bars are taken from the
expected VERITAS observational uncertainties calculated in Section 3.2 (black: Doppler only, and red: Doppler + tie points). The upper right panel is zoomed in on
the average Re[k2] and -Im[k2] to emphasize the small observational error we expect for these measurements and how the observed values can be used to accurately
discern from the large number of possible interior states.
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constrain the response of the planet at two different forcing
periods, the loading frequency and the tidal frequency, by
making use of known relations between the Love numbers.

Figure 7. The same phase space as shown in Figure 6, repeated here. The core-mantle-boundary radius is now shown as the color bar.

Figure 8. Graphical representation of Equation (15). ¢k2 is shown vs. k2 − h2.
Calculations were performed on the interior models from X21 (circles)
and D17 (crosses). The diagonal dotted line represents the theoretical value ¢k2
obtained from k2 and h2 under the assumption of Equation (11).

Figure 9. Degree-2 loading Love number amplitudes are shown as a function
of the forcing period for three different rheological laws (Maxwell, black line;
Andrade, blue line; and Sundberg–Cooper, green line). We report the expected
accuracy of the two measurements of the loading Love numbers as the black
error bars centered on the Andrade line (the red error bar represents the results
expected from the Doppler and tie points combined analysis, while the black
error bar represents the Doppler-only case). The vertical dashed magenta and
black lines represent the loading and tidal forcing frequencies, respectively.
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Important information about the interior of Venus may be
obtained by the combination of all these parameters, which the
VERITAS mission is uniquely placed to measure in the near
future. A more quantitative assessment of the contribution of
these measurements in the inversion of the full interior structure
of Venus will require a focused follow-on study (e.g., using
Monte Carlo Markov chain estimation techniques).

The expansion of the surface pressure grids into spherical
harmonics cofficients has been performed with the pyshtools
Python library (Wieczorek & Meschede 2018). Tidal and load
number calculations were performed using the TidalPy and
CyRK (Renaud 2022, 2023) software packages. The authors
would like to thank Flavio Petricca (Sapienza University) for
useful discussions and suggestions. We would like to thank
Caroline Dumoulin for providing the data from Dumoulin et al.
(2017) that we used in this work, and the authors of Xiao et al.
(2021) for publicly releasing the full data set associated with
their manuscript (which can be found in Xiao 2019). G.C. and
J.P.R. would like to acknowledge support for this work from
NASA under award number 80GSFC21M0002. G.C. and E.M.
acknowledge support from the VERITAS mission. J.P.R. and
S.G. acknowledge support from the Planetary Geodesy Internal
Scientist Funding Model work package funded by the NASA
Planetary Science Division. D.D and L.I. would like to
acknowledge support for this work from the Italian Space
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The software used for computing the Love numbers and the
values of the computed Love numbers (tidal and loading) for each
of the analyzed interior structure models is available at Zenodo
(10.5281/zenodo.7668227) and at the NASA Goddard Planetary
Geodynamics Data Archive (PGDA) website (https://pgda.gsfc.
nasa.gov/products/89).
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