

ABSTRACT

Title of Dissertation: THE USE OF A MODIFIED SYSTEM DEVELOPMENT

LIFE CYCLE (MSDLC) IN A SOCIOLOGICAL

ENVIRONMENT TO IMPROVE SOLUTION

VALIDATION

Shanelle M. Harris, Doctor of Engineering, May 2019

Dissertation Chair: LeeRoy Bronner, Ph.D., P.E.

Industrial and Systems Engineering Department

This research is investigating the improvements to the current System Development Life

Cycle (SDLC). The SDLC has been used since the 1970s with improvements through

prototyping and iterations in the system develop phase, however the least expensive phase,

system analysis, has not been utilized for improvement. The SDLC lacks the ability to be

changing requirements, is not flexible, and lacks user involvement leading to less than

complete solutions. With the speed of technology and increase complication of problems

facing the world, there is a need to get solutions faster and more accurate. This research

will examine the advantages and disadvantages of the SDLC methodologies and provide a

validated model and analysis procedure to provide solutions with fewer inaccuracies

through an extension of the analysis phase implementing Joint Application Development

(JAD) sessions, continuous user involvement, and intermediate artifacts of analysis. The

extended analysis phase integrates object–oriented analysis (OOA), Z notation, and Alloy

modeling and execution to validate complex solutions. A cardiovascular disease public

health case study based in Baltimore City will be used to demonstration the Modified

System Development Life Cycle.

THE USE OF A MODIFIED SYSTEM DEVELOPMENT LIFE CYCLE (MSDLC) IN

A SOCIOLOGICAL ENVIRONMENT TO IMPROVE SOLUTION VALIDATION

by

Shanelle M. Harris

A Dissertation Submitted in Partial Fulfillment

of the Requirements for the Degree

Doctor of Engineering

MORGAN STATE UNIVERSITY

May 2019

ii

THE USE OF A MODIFIED SYSTEM DEVELOPMENT LIFE CYCLE (MSDLC) IN

A SOCIOLOGICAL ENVIRONMENT TO IMPROVE SOLUTION VALIDATION

by

Shanelle M. Harris

has been approved

March 2019

DISSERTATION COMMITTEE APPROVAL:

 _____________________________, Chair

 LeeRoy Bronner, Ph.D., P.E.

 Tridip Bardhan, Ph.D.

 Yvonne Bronner, ScD, RN

 Guangming Chen, Ph.D.

 Ian Lindong, MD, MPH

iii

DEDICATION

This journey is dedicated to every little girl. Not all doctors work in a hospital.

iv

ACKNOWLEDGEMENTS

 I would like to acknowledge Dr. LeeRoy Bronner, Dr. Tridip Bardhan, Dr. Yvonne

Bronner, Dr. Guangming Chen, and Dr. Ian Lindong for being members of my dissertation

committee. I would also like to acknowledge the librarians for their assistance in

interlibrary loans.

 This process has been a long journey coinciding with professional job progression.

I would like to acknowledge my supervisors, Mr. Steve Chizmar, Dr. David Mortin, Mr.

Myles Miyamasu, and Mr. Tom Tsoutis, for their encouragement and support during my

process in completing this dissertation.

Lastly, I would like to thank my family, friends, coworkers, and BSF leaders for

their continued prayers, interest in my research, and belief in me. To my mom, Tia Taylor,

who has pathed a way to set an example of womanhood and continues to pour her love into

me. She is my prayer warrior, strength, and champions all my goals. To Patrick Autry, for

being my biggest supporter, listening to my daily events, and telling me I cannot fail.

v

TABLE OF CONTENTS

List of Tables ... viii

List of Figures .. ix

Chapter 1: Introduction ... 1

1.1 Motivation and Problem Statement .. 1

1.2 Objectives ... 2

Chapter 2: Literature Review .. 4

2.1 Introduction .. 4

2.2 Evolution of System Development Life Cycle .. 5

2.2.1 Waterfall Model .. 5

2.2.2 Iterative Methods .. 7

2.2.3 Agile Approach ... 14

2.3 SDLC Limitations .. 15

2.4 21st Century Problems .. 19

2.4.1 Big Data .. 19

2.4.2 Human, Social, Cultural, and Behavioral Modeling 21

2.4.3 Public Health: Measles ... 23

2.5 Analytical Models .. 25

vi

2.5.1 Z notation .. 25

2.5.2 Alloy Language and Analyzer .. 26

Chapter 3: Methodology ... 27

3.1 System Development Life Cycle Modification Additions 27

3.1.1 Joint Application Development Session ... 27

3.1.2 User Involvement .. 29

3.1.3 System Analysis Phase 1: Object-Oriented Analysis (OOA) 30

3.1.4 System Analysis Phase 2: Z notation .. 35

3.1.5 System Analysis Phase 3: Alloy Language and Analyzer 39

3.2 Modified System Development Life Cycle .. 41

Chapter 4: Research Results - Case Study .. 43

4.1 Background .. 43

4.2 Intermediate Artifacts of a JAD Session and Constant User Involvement 44

4.3 Object Oriented Approach Train Community Health Workers 46

4.4 Z notation and Alloy Model of Train the CHW ... 55

4.4.1 Develop a Curriculum ... 56

4.4.2 Recruit Potential Community Health Workers ... 57

4.4.3 Interview Public Housing Residents ... 59

4.4.4 Conduct Community Health Worker Training ... 60

vii

4.5 Benefits of MSDLC Solution and Deliverables ... 62

4.6 Future Work ... 64

References ... 67

viii

List of Tables

Table 1: Joint Application Development Phases .. 28

ix

List of Figures

Figure 1: Waterfall Model .. 6

Figure 2: Prototyping Approach ... 9

Figure 3: Incremental Approach ... 11

Figure 4: Spiral Approach ... 12

Figure 5: Agile Approach ... 14

Figure 6: Cost of Finding Errors in System Development Life Cycle by Phase 16

Figure 7: Key Reasons for High Estimates or Cost Over-runs ... 17

Figure 8: Data Management Solutions ... 21

Figure 9: HSCB Complex Problem Space .. 22

Figure 10: Tarkan’s Kitchen Environment High Level System Diagram 29

Figure 11: Tarkan Cooking Use Case Diagram .. 31

Figure 12: Class Diagram of Tarkan’s work .. 34

Figure 13: Tarkan’s Kitchen Schema ... 38

Figure 14: Modified System Development Life System (MSDLC) 42

Figure 15: Heart Healthy Board Goals ... 45

Figure 16: Train the Community Health Worker High Level System Diagram 46

x

Figure 17: Training CHW Scenario Overview ... 47

Figure 18: Develop Curriculum Material Use Case ... 48

Figure 19: Recruit Potential Community Health Worker Use Case 49

Figure 20: Interview Public Housing Residents Use Case ... 50

Figure 21: Conduct CHW Training Use Case .. 51

Figure 22: Train the Community Health Worker Scenarios ... 52

Figure 23: Develop Curriculum Material Class Diagram ... 53

Figure 24: Recruit Potential Community Health Worker Class Diagram 54

Figure 25: Interview Public Housing Resident Class Diagram .. 54

Figure 26: Conduct Training Class Diagram .. 55

Figure 27: Develop Curriculum Material Structure in Z and Alloy 57

Figure 28: Recruit Potential Community Health Worker Analysis 58

1

Chapter 1: Introduction

1.1 Motivation and Problem Statement

Motivation

 The National Academy of Engineering (NAE) states that as the population grows

“the problem of sustaining civilization’s continuing advancement, while still improving the

quality of life, looms more immediately” also increases (National Academy of Engineering

[NAE], 2018). Twenty–first century researchers, engineers, and scientist are facing an

array of problems characterized by unstable elements, large of amounts of data, short

timelines for solutions, multiple discipline areas, etc. (National Academy of Engineering

[NAE], 2018; Numrich & Tolk, 2010). In February 2018, a group of engineers and

scientists developed a list of engineering challenges of the 21st century. Included on this

list were to secure cyberspace, restore and improve urban infrastructure, advance health

informatics, reverse engineer the brain, and prevent nuclear terror (NAE, 2018).

Problem Statement

 The traditional System Development Life Cycle (SDLC) methodology is

inadequate for many 21st century problems characterized by complexity, dynamics,

unstable objectives, and large amounts of data such as cyber security, Human, Social,

Cultural and Behavior (HSCB), and big data (Numrich & Tolk, 2010).

 Due to the increase in complex dynamic applications, new methodologies are

needed to organize and maintain the applications. Dorsey (2000) concluded that to be

successful some amount of planning is needed. The hypothesis of this dissertation is that

2

the addition of joint application development (JAD) session, constant user involvement, a

combined analytical method, and intermediate solutions will provide a validated model for

analysis of a system leading to fewer inconsistencies than using an Iterative methodology.

1.2 Objectives

 The purpose of this study is to research the current uses and weaknesses of the

SDCL. From this research, the SDLC will be expanded for use in solving a 21st century

problems. Object-oriented analysis, Z notation, and Alloy modeling and execution will be

integrated to establish and strengthen complex problem solving. The value of intermediate

solutions will be identified. Lastly, the improvements of the modified SDLC will be

explained with respect to a validated model providing fewer inconsistencies.

 Chapter 2 discusses in detail the history and evolution of the SDLC methodology.

The state of research, methodologies, and gaps in SDLC models are described. The

prominent weaknesses are explored, and the challenges faced due to the weakness.

Twenty-first century problems will be defined.

 Chapter 3 explains the modifications to the SDLC methodology including JAD

sessions, continuous user involvement, and the three-phase analysis approach with object-

oriented analysis, Z notation, and Alloy. A background is provided with examples of how

to implement the additions.

 Chapter 4 will discuss a sociological case study in detail. This case study will

provide background information from the 2000 Heart Healthy Initiative to minimize the

threat of cardiovascular disease in Baltimore City. The MSDLC construct will be used to

highlight the improvements to the SDLC in minimizing the disadvantages and providing

3

an accurate solution with use of predicate logic and set theory. Lastly, the technical

contribution of the methodology and future research will be summarized.

4

Chapter 2: Literature Review

2.1 Introduction

 The traditional System Development Life Cycle (SDLC) is used for large

engineering and software projects. However, the problems facing society are beyond the

scope of SDLC. The SDLC lacks the ability to be flexible, changing requirements, and

lacks user involvement leading to less than adequate solutions. The purpose of this

research is to develop a validated model and analysis procedure to provide solutions with

fewer inaccuracies through an extension of the analysis phase and implementing Joint

Application Development (JAD) sessions, continuous user involvement, and intermediate

artifacts of analysis. The extended analysis phase integrates object-oriented analysis

(OOA), Z notation, and Alloy modeling and execution to validate complex solutions. A

sociological case study will be used to demonstration the application of MSDLC in

planning a community-based participatory research initiative to minimize the threat of

cardiovascular disease in Baltimore City (Harris & Bronner, 2018).

 The SDLC is a term used by software and system engineers that is a conceptual

model used in project management that describes the stages involved in a system

development project, from an initial feasibility study through maintenance of the

completed application (Avison & Fitzgerald, 2003; Bender RBT Inc., 2003; Dawson,

Leonard, & Rahim, 2015; Council, 2014; Rouse, 2018). The SDLC is used for a variety

of projects such as software development, education, military, medical, and political

systems (Alexander & Maiden, 2004; Boehm & Hansen, 2001; Heller & Keoleian, 2002;

Larman & Basili, 2003). However, with 21st century problems increasing, the boundaries

5

have been reached and an improved approach is needed. The literature review will cover

the evolution in the SDLC and the gaps.

2.2 Evolution of System Development Life Cycle

 Through the evolution of the SDLC, there are three main categories: Waterfall,

Iterative and Agile. These SDLC versions will be expanded upon in the next sub-sections.

2.2.1 Waterfall Model

 The SDLC that was developed in the 1960s was designed to help with large

business systems. The systems were heavily based on data processing and mathematical

routines (Elliott, 2004). The Waterfall model was the first SDLC method employing a

linear and sequential phase method. The sequential phase method had a set of defined

outputs or deliverables that must be produced before the phase could be deemed complete;

iteration was not permitted on previous phases (Avison & Fitzgerald, 2003; Rouse, 2007).

However, there is extensive written documentation, reviews, and signoffs before the next

can begin (Council, 2014; Davis, 2014). There was an emphasis on “planning, time

schedules, target dates, budgets, and implementation of an entire system at one time”

(Davis, p96, 2014). The Waterfall model is shown in Fig. 1.

6

Figure 1: Waterfall Model (Salleh et al., 2011, p. 263)

 As illustrated in Fig. 1, the waterfall SDLC has the following defined phases:

planning, analysis, design, implementation, and maintenance. During the project planning

phase, projects are chosen due to a need or improvement. The project is then broken into

levels with an associated goal. The model moves into the analysis phase, where phase

functions are defined based on the goals created in the project planning phase and the end

user information is analyzed (Council, 2014).

 Further refinement occurs during the design phase, providing detailed features and

operations of the system. The execution of the features and operations from the design

phase are conducted during the implementation phase. The implementation phase also

ensures interoperability through testing and checking for errors. During the maintenance

phase, any corrections are taken for action during the production and distribution of the

project (Boyde, 2014; Council, 2014).

 The Waterfall model was found to have limitations in manageability due to lack of

iteration, inconsistent requirements, instability, gap between users and developers, failure

7

to meet user needs, overly conservative system designs, difficulty responding to changes,

user dissatisfaction, lack of documentation, and the user not obtaining the final product

until completion (Avison & Fitzgerald, 2003; Council, 2014; Davis, 2014; Rouse, 2007;

Saunders, 2014; Seema & Malhotra, 2012). The methodology did not provide for iterations

thus causing complications as the waterfall approach continues. For instance, if the

requirements are only discussed with the user during the requirement analysis phase, then

the requirements are only partial. The requirements are partial because of what is defined

by the user at that moment and what the analyst can interpret from the discussion. This

can result in overly conservative system designs and a gap between users and developers.

Not meeting with the developers during other phases, the user cannot confirm nor adjust

what the analyst has interpreted after the requirement analysis phase. A misinterpretation

has lasting effects on the preceding design, implementation, testing, and maintenance

phases. This becomes exacerbated by not obtaining the final product until completion.

This result in the user’s dissatisfaction.

 This approach is ideal for problems that are stable, predictable with known

interoperability, well defined requirements, or updates to existing systems (Council, 2014;

Davis, 2014; Seema & Malhotra, 2012). New large-scale projects require an iterative

methodology allowing the user to see the product before final delivery and allowing for the

return of previous stages (Wood & Silver, 1995).

2.2.2 Iterative Methods

 Winston Royce documented the Waterfall method in 1970; however, the term was

not mentioned in the article. It was meant to represent a flawed non-working model (Curtis,

8

Krasner, & Iscoe, 1988; Ragunath, Belmourougan, Davachelvan, Kayalvizhi, &

Ravimohan, 2010). This leads to the many failures, a need for a better methodology,

greater flexibility, and quicker results (Khurana & Gupta, 2012). The next phase of SDLC

development was built upon the biggest flaw, lack of iteration. From the flaw the Iterative

methods were introduced in the late 1970s. According to Lehman (1969) and Larman and

Basili (2003),

the basic approach recognizes the futility of separating design, evaluation,

and documentation processes in software-system design. The design

process is structured by an expanding model seeded by a formal definition

of the system, which provides a first, executable, functional model. It is

tested and further expanded through a sequence of models, that develop an

increasing amount of function and an increasing amount of detail as to how

that function is to be executed. Ultimately, the model becomes the system

(p3).

The Iterative method can be compared to looped waterfall processes, providing

feedback to the next phase, and allowing the development team to provide results earlier

in the process (Khurana & Gupta, 2012). Multiple methods are based on the Iterative

approach such as Prototyping, Incremental, and Spiral. The first iterative documented

project was the first U.S. Trident submarine. The project was broken into four time-boxed

iterations each lasting about six months to manage complexity and risks (Larman & Basili,

2003).

9

2.2.2.1 Prototyping Approach

 The Prototyping approach is a popular form of Iterative SDLC that produces a small

prototype or version of the system that the user can work with to provide suggestions. The

approach is not a standalone methodology but an approach to handling portions of the

larger whole (Ateeq & Shuaib, 2014; Davis, 2014). The suggestions are then incorporated

to make the system fully operational (Council, 2014). The Prototype approach is illustrated

in Fig. 2.

Figure 2: Prototyping Approach (Davis, 2014, p. 97)

The figure shows a loop through quick design, building the prototype, customer

evaluation, and refining the prototype. This loop continues until the customer is satisfied

with the prototype and refinements have been implemented. At that point, the prototype

would then become the product. The Prototyping approach attempts to reduce the risk by

having the project in smaller pieces to ease changes needed during the development phase

(Davis, 2014).

 The Prototype approach does allow for multiple iterations; however, the

disadvantage occurs with the multiple iterations. It is assumed that the prototypes will be

discarded and unsuccessful. This assumption is partially due to knowing the requirements

10

can change drastically in the next iteration (Council, 2014). For example, the user could

require a new feature after several prototypes. The new feature can change the scope of

the problem leading to scope creep. This leads to a waste of time and money. Due to the

waste of time and money, this approach is not suitable for large-scale projects (Ateeq &

Shuaib, 2014). Multiple prototypes are also a management disaster. The multiple changes

to satisfy the user not only are difficult to manage but also disrupt the development team

(Ateeq & Shauaib, 2014; Kumar, Zadgaonkar, & Shukla, 2013). Multiple prototypes in

the design phase are overwhelming, adds complexity to maintainability, and can cause

scope creep (Seema & Malhotra, 2012).

 The Prototyping approach is best used for short-lived demonstrations or systems

that have not been developed (Davis, 2014). These types of systems can begin the

foundation due to instability in a new system.

2.2.2.2 Incremental Approach

 The Incremental approach is mix of the Waterfall and Prototyping approaches. The

Incremental approach develops, implements, and tests a system incrementally until the

product is completed, like staggered waterfalls (Council, 2014; Seema & Malhotra, 2012).

The Incremental approach is shown in Fig.3 having a staggered analysis, design, coding,

and test processes of multiple increments.

11

Figure 3: Incremental Approach (ARS, 2010)

Through the series of events, each increment prioritizes the system’s requirement.

Partial implementations are constructed of a whole system and functionality is added

slowly (Seema & Malhotra, 2012). Hence, each increment builds upon functionality until

all are implemented. A time reduction occurs due to the user obtaining parts on a piece-

wise timeframe (Council, 2014).

 The Incremental approach continues to be rigid within the iterations due to the

phases not overlapping (Council, 2014; Seema & Malhotra, 2012). The same prominent

flaw found in the Waterfall model. This approach also is based upon all requirements being

defined completely and early in the process (Seema & Malhotra, 2012). If the requirements

are defined incorrectly, the continual builds will result in a product that the user does not

want or does not meet requirements.

 The Incremental approach is ideally used on projects with known requirements that

can evolve over time. Seema and Malhotra (2012) state that the Incremental approach can

be used on programs that have a short time to market if it possesses basic functionality or

with an exception for a program with a longer schedule. This exception is allowed because

the realization of all requirements will occur over time.

12

2.2.2.3 Spiral Approach

 The Spiral approach also expands on the Waterfall and Prototyping approaches by

using smaller segments during the development process maintaining a focus on risk

assessment (Ateeq & Shuaib, 2014; Council, 2014; Davis, 2014; Khurana & Gupta, 2012).

The Spiral approach is shown in Fig. 4.

Figure 4: Spiral Approach (Boehm & Hansen, 2001, p.4)

The Spiral approach has four main phases: planning, risk analysis, engineering, and

evaluation as presented in Fig. 4, phase one through four, respectfully (Ateeq & Shuaib,

2014; Easterbrook, 2001; Khurana & Gupta, 2012; Park, Ali, & Chevalier, 2011). The

phases in the Spiral approach involve (1) determine objectives, requirements, alternatives,

constraints, and begin risk assessments; (2) evaluate alternatives, identify and resolve risks,

and produce a prototype; (3) produce code, test, implement, and verify prototype; and (4)

plan the next iteration after the user evaluates the program (Davis, 2014; Easterbrook,

2001; Khurana & Gupta, 2012; Park et al., 2011). Cost is represented as the radius and

progress is shown with angular components.

13

 Building upon the Waterfall and Prototyping models, the Spiral approach can

reduce issues of iteration but requires expertise in risk identification, risk projection, risk

assessment, and risk management. The associated cost of the risk analysis makes this

approach not ideal for small systems. If used on a smaller project, the risk analysis cost

would be greater than the entire system cost (Ateeq & Shuaib, 2014; Davis, 2014; Seema

& Malhotra, 2012). This approach also requires an experienced project manager to

determine the application of the methodology to the system since there are not established

controls for moving forward in the approach (Ateeq & Shuaib, 2014; Council, 2014; Seema

& Malhotra, 2012).

 The Spiral approach is best used for larger projects with a medium to high risks,

and/or with requirements that are complex, and the user is unsure about the needs (Council,

2014; Seema & Malhotra, 2012). The extensive risk analysis will assist in reducing the

uncertainty in the user’s needs. The preliminary design phase allows all possible

alternatives to be analyzed. By analyzing the alternatives instead of prototyping the

alternatives, the project cost is reduced (Council, 2014).

 The Prototype, Incremental, and Spiral approaches are all examples of the Iterative

method. These methods are best used on project that have better defined requirements and

known interoperability, allowing the project to be broken into small pieces (Council, 2014).

The Iterative approach did expand on the waterfall approach; however, prototyping can

occur too quickly, testing can be minimized, iterative phases may not overlap, all

requirements may not be gathered upfront, and features may be added over iterations

14

(Ateeq & Shuaib, 2014; Council, 2014; Davis, 2014; Kumar et al., 2013; Seema &

Malhotra, 2012).

2.2.3 Agile Approach

 The Iterative methods allowed for recursive states during the SDLC. The iterative

phases alone and multiple instances were not enough for the types of problems facing

industry by the 1990s. Agile prioritizes user satisfaction along with building up the

Iterative and Incremental approaches. This allows for the requirements and solution to

evolve using iterations of products that include all the tasks and functionality for a release

(Cockburn, 2002; Council, 2014, Dawson et al., 2015; Sharma, Sarkar, & Gupta, 2012;

Szalvay, 2004). The Agile approach is shown in Figure 5.

Figure 5: Agile Approach (Tutorialspoint.com, n.d.)

The Agile process has iterations that go through the planning, requirements

analysis, design, build, and test phases. An iteration takes two to three weeks before

another begins. This idea is built upon the slogan of “build short build often” (Council,

2014). The Agile approach initiates with one distinct difference: user complete

requirements are not expected before the project is to begin. Communication with the user

15

is a priority and is conducted throughout the cycle (Sharma et al., 2012). Agile is dependent

on user feedback and the phases of the life cycle are revisited continuously (Leau, Loo,

Tham, & Tan, 2012; Szalvay, 2004). The iterative nature of the process allows

requirements to be implemented later or upon the availability of technologies as a solution.

Ideally, the approach will produce a product every three to four weeks because it is divided

into small increments instead of one large model allowing the system to be customizable

(Cho, 2008; Leau et al., 2012; Sharma et al., 2012).

 A lack of willing interactive users can limit Agile. The foundation of Agile is

having the user available to make decision on requirements and the approval of iterations.

Since communication is a priority, documentation usually is forfeited. Comments in code

are used for explanation but do not suffice the traditional means of providing guidelines

and clarification to the system (Leau et al., 2012; Sharma et al., 2012). An extension of

constant communication with the user is the waste of resources and time consumption in

the changing requirements. If the user changes a requirement, then the iteration is not

useful, including the “time, effort, and resources required to develop that increment”

(Sharma et al., 2012).

 Agile is best used for smaller projects. The small increments used on larger projects

typically increase time on effort and distort efforts (Balaji & Murugaiyan, 2012; Seema &

Malhotra, 2012).

2.3 SDLC Limitations

 The response to these disadvantages was the creation of new variations of the

SDLC. Since its induction, there have been multiple adjustments for specific problem

16

types. Each variation has a specific case for usage, requirements, advantages, and

disadvantages. Each improvement leaves the developer with multiple choices and the

decision to leverage limitation.

 The SDLC not only has multiple methods but has a failure rate as high as 80%

(Dorsey, 2000). Failure is greatly based on scope creep, unclear requirements, and lack of

methodology (Baltzan & Phillips, 2010; Dorsey, 2000; Jones, Software Cost Estimating

Methods for Large Projects, 2005; Saunders, 2014). Jones (1998, 2005) explains that 60%

of defects are introduced in the requirements and design phases, referred to as the 60%

rule. Unclear requirements can cause multiple problems further down the life cycle.

 Baltzan and Phillips (2010) reveal that the most common reason systems fail is due

to missing or incorrectly gathered requirements in the analysis phase. Since requirements

are the driver for the system, incorrectly or inaccurately defining the requirements is a poor

basis/foundation for a program. This also coincides with the least expensive phase to adjust

versus after the development phase.

Figure 6: Cost of Finding Errors in System Development Life Cycle by Phase

(Baltzan & Phillips, 2010, p. D16)

17

Figure 6 displays an exponential cost growth for errors found in the SDLC phases.

The further along one is in the SDLC, the cost to find errors is exponential compared to the

previous phase. Bunting (2012) also found that the largest portion of cost over-runs (32%)

was due to missing or incorrect requirements as seen in Figure 7. This finding is based on

industry metrics, collected data, and project experience.

Figure 7: Key Reasons for High Estimates or Cost Over-runs (Bunting, 2012)

Not clearly stating requirements can introduce a phenomenon called scope creep.

Baltzan and Phillips (2010) define scope as a collection of requirements. Scope creep is

the small changes in the requirements that steer the project in a different direction than

what was initially started. The resulting product does not match what the user wants. This

can become a significant problem in the Iterative and Agile approaches. Boehm and

Hansen (2001) state that due to the nature of iterating, rapidly changing requirements can

be the norm for volatile technology and a high marketplace. Boehm and Hansen (2001)

also suggest that, in the case of electronic commerce projects, some requirement decision

should be defined later in the process. Stating all the requirements upfront proves to be a

18

hindrance for the projects since the time-to-market is scarce and the requirements are likely

to change later (Boehm & Hansen, 2001).

 The issues resulting from unclear requirements have a foundation in lack of

communication and lack of user involvement. Nagpal and Chawla (2012) have found that

errors are introduced into the development due to ambiguity, assumptions, and flawed

human communication. This occurs by a change of functionality being introduced. The

test-fix-test approach is then used to find errors. However, with each addition, there is an

increasing risk that the purpose will be lost. Avison and Fitzgerald (2003) have discovered

that programmers typically developed individually without the user. This development

style leads to poor project management and failure to meet the user’s requirements. The

developer may encounter a user with the “I know it when I see it” (IKIWISI) syndrome.

Boehm and Hansen (2001) have documented that this occurs with new systems. This

syndrome enforces the need for continual user communication. Boehm and Hansen (2001)

and Saunders (2014) have found that omitting the user involvement between each phase

leads to risks not being detected and system failure. Boehm and Hansen (2001) further

explain that not having user participation in early stages of the SDLC can result in a lose-

lose situation. The developer loses because time and money has been wasted. The user

loses because the resulting product is based on unrealistic assumptions.

 Another problem with the SDLC is the abundance of time, energy, and resources

spent on maintenance. Tagoug (2012) has found that “large companies currently expend

50 to 70 percent of all programming effort on maintenance.” Bender RBT Inc. (2003) and

Dorsey (2000) have documented that the maintenance phase can take up to 80 percent of a

19

project’s effort. With the growing cost of maintenance, companies need a method to

improve the logic of their projects before the maintenance phase is reached.

 Baltzar and Phillips (2010) have found that when programs are behind schedule,

phases in the SDLC are skipped. The lack of complete and understood requirements can

have lasting effects on development and testing phases. For example, a delay in

requirements of one week can lead to a two-week delay in development. The two-week

delay in development and one-week delay in requirements can lead to a three-week cut in

testing. The amount of testing planned cannot be completed after three weeks have been

removed. As a result of not completely testing a program, it is likely not all errors will be

found and increasing risk of failure.

2.4 21st Century Problems

2.4.1 Big Data

 Ammu and Irfanuddin (2013) explain big data as an overarching term used for an

immense quantity and variety of high-frequency data. Big data can come in multiple forms,

i.e., online user-generated content, medical records, blogs, banking transactions, images,

or online searches. The goal is to provide decision makers information that can track

changes, improve social programs, implement new features, or decide the next menu item

(Ammu & Irfanuddin, 2013). The problem is how does one take this data and convert it

into relevant information.

 The International Data Corporation (IDC) determined that there were only 132

exabytes of available digital data in 2005. Due to the increase in smart devices,

connectivity to the Internet, and the number of people online, the growth is estimated to

20

increase 40% a year or almost double every two years. At this rate by 2020, available

digital data could surpass 40 zettabytes (trillion gigabytes; ICD,2014).

 With the increase in data, Adrian (2013) states, there is a feat to undertake by

“speeding up” internet connections and developing software for the load. The growth of

data is also pushing the limits of traditional information retrieval. Database system analysis

is limited due to lack of coordination. The system analysis packages not only perform SQL

querying but data mining and statistical analyses. These additional processes require a

longer time to find the specified criterion and analyze the data (Ammu & Irfanuddin, 2013).

This time does not exist. The decisions makers still require information immediately.

However, if there is a “lack of skills in sorting, big data will most certainly conclude into

faulty results and/or truncated data that cannot serve its purpose” (Adrian & Irfanuddin,

p34, 2013).

 Laney (2001) discusses an approach to manage data in terms of volume, velocity,

and variety shown in Figure 8. These factors are alternative solutions to combat big data

problems. Determining the combination of actions to provide a robust solution set is the

problem to solve.

21

Figure 8: Data Management Solutions (Laney, 2001)

 With the amount of data ever-increasing and the sources of data ever-changing, the

problem has compounded. There is a need for a continuous logical method that

intelligently compiles, computes, and explains the data. The use of a modified system

development life cycle will assist in documenting a data dictionary through using OOA,

providing a logical basis through using Z notation, and the execution of Alloy to validate

the logic needed to manage the logic for such a dynamic system.

2.4.2 Human, Social, Cultural, and Behavioral Modeling

 The Office of Naval Research (ONR) has a vision that Human, Social, Cultural,

and Behavioral (HSCB) Modeling is “mastery of social, cultural, and cognitive factors that

optimize the warfighters ability to influence human behavior in the full range of military

operations” (Appleget, 2010). Objectives are in four areas: tools, methods, training, and

development. With the change from force-on-force battle, a switch in focus has provided

a wider picture of the operating environment including the human experience. There is a

22

need to assist the Soldier in decision making in the ever-changing space. Ideally, human

science models would be used and injected into the kinetic model, but the challenges are

great (Numrich & Tolk, 2010). The requirement seems simple but is difficult.

 The need for HSCB modeling comes from the new fighting method of the

Department of Defense (DoD) — irregular warfare. No longer are wars fought force on

force with the use of a battlefield. The new fight is a mix of technology and socio-cultural

understanding (Biggerstaff, 2007; Estabrooke, 2009). The problem space for HSBC is

shown in Fig. 9. Figure 9 shows a space with desired effects and multiple models needed

to reach the effect. The political, military, economic, social, infrastructure, and information

systems (PMESII) axis describes the state of the situation; while the Diplomatic,

Information, Military, and Economic (DIME) axis describes level of power to influence

the PMESII (Hartley, 2009). Some of the models referenced in the figure are population,

information, military effect, and economic models all influencing if the desired effect will

occur. There is a need and demand for a capability to understand social and cultural terrain

and the various human behavioral dimensions (Biggerstaff, 2007).

Figure 9: HSCB Complex Problem Space (Biggerstaff, 2007)

23

 It is likely the need for HSCB modeling appeared in an Operational Needs

Statement from February 2006 from Maj. Gen. L. Freakley, Commanding General of the

10th Mountain Div., stating “must develop the ability to understand the complex human

factors and must incorporate them into all facets of operation” (Biggerstaff, 2007). There

was no existing U.S. technical HSCB core leading to a need for government, laboratories,

academics, and industry to assist in the solution (Biggerstaff, 2007). MSDLC is a useful

tool for HSCB by providing a structure for all communities to interact and explain the

problem through conducting a JAD session. OOA artifacts will provide a universal

understanding of goals, models, and procedures that the community can expand upon on

future work. The use of Z notation and Alloy execution will provide feedback concerning

the logic of the OOA structure developed for analysis.

2.4.3 Public Health: Measles

 Measles is an airborne-transmitted, highly infectious disease, eliminated from the

United States in 2000. Eliminated is defined as an “interruption of year-round endemic

measles transmission” (McLean, 2012, p.253).

 Hungerford, Cleary, Ghebrehewet, Keenan, and Vivancos (2013) examined an

outbreak of measles in Merseyside, United Kingdom in 2012 with an aim to identify

associated risk factors of transmission using retrospective matched case studies, univariate,

and multi-variate analyses. The findings emphasize the need for timely vaccinations, early

diagnosis, isolation, and control measures. Hungerford et al. (2013) also identified

independent associations between measles infections and hospital admission.

24

 Helmecke, Elmendorf, Kent, Pauze, and Pauze (2014) describe the impact of two

measles cases in the Albany Medical Center during May 2011. Helmecke et al. (2014)

successfully did not transmit the disease at the facility. The staff accounts this to facility

“rapid case recognition, isolation, health care worker immunity, and multidisciplinary

response.” The team did experience challenges between the Healthcare Infection Control

Practices Advisory Committee and public health guidelines for measles control on the

issues of: (1) lack of standard definition for exposure and immuno-suppression; (2)

inconsistent application of exposure definition; (3) post-exposure recommendations

variation; (4) inconsistent practices; and (5) verbal history instruction and practices.

 Hungerford et al. (2013), Vivancos, Keenan, and Farmer (2012), and Weston,

Dwyer, and Ratnamohan (2006) have found that the transmission of airborne diseases is

high in healthcare settings, and it is difficult to discern measles from other viral infections.

Helmeck’s et al. (2014) case study shows the benefits of early discernment. How can

healthcare facilities implement safety precautions for a disease that is eliminated? Should

protocols automatically assume a person has an airborne disease? These questions provide

a use for MSDLC. The implementation of MSDLC brings a logical verification for an

implementation plan. The use of OOA producing use case models and object diagrams can

be translated into parameters that drive the development of a Z notation model. The Z

notation model can then be verified with the use of Alloy model and execution providing

confidence in the implementation plan. The use of the MSDLC provides cost and time

savings of implementing one method followed by multiple changes. The finite changes

can be modeled before implementation.

25

2.5 Analytical Models

 To reinforce the limitations of the SDLC a various of methodologies can be used.

For the purpose of this research a mathematical model and analyzer have been researched

to assist in minimizing the cost over-runs stated by Bunting (2012) as missing or incorrect

requirements and Baltzan and Phillips (2010) mentioning missing or incorrectly gathered

requirements in the analysis phase.

2.5.1 Z notation

 The Z notation is a formal mathematical notation for modeling the behavior of

systems (Spivey, 1989). Woodcock and Davies (1996) describe two benefits of using Z

notation: documentation and cost savings.

 Woodcock and Davies (1996) found that “important information is hidden amongst

irrelevant detail, and design flaws are discovered too late, making them expensive or

impossible to correct.” It is also suggested that using formal methods can result in a

precise, structured documented product with an appropriate level of abstraction. The

resulting documentation can support the phases following system analysis. (Woodcock &

Davies, 1996).

 With respect to cost savings, the use of proofs provides “mental checks during

reviews” allowing for errors to be corrected earlier leading to a dividend in productivity

(Baltzan & Phillips, 2010; Bunting, 2012; Woodcock & Davies, 1996). Woodcock and

Davies (1996) state the “mathematical basis has a purpose: to add precision, to aid

understanding, and to reason about properties of a design”.

26

2.5.2 Alloy Language and Analyzer

 To continue to eliminate limitations in the SDLC, analyzing the models will assist

in with the validation and reducing errors. Alloy language describes in time and space

structures in a similar was as Z notation. The difference is that Alloy language is simpler

than Z notation (Dwivedi & Rath, 2012). The Alloy Analyzer translates constraints to be

solved from Alloy into Boolean constraints (Jackson, Software Abstractions, 2012). The

Analyzer works to find all instances that violate declaration while satisfying all other

constraints (Dwivedi & Rath, 2012). Jackson (Software Abstractions, 2012) believes that

with the continued use of Alloy Analyzer, not only will more errors be found but also more

succinct and elegant.

27

Chapter 3: Methodology

3.1 System Development Life Cycle Modification Additions

In chapter 2 the development, changes, and limitations of the SDLC were discussed.

Chapter 3 will focus on the added modifications to strengthen the limitations to provide a

robust and validated solution before entering the system design phase.

3.1.1 Joint Application Development Session

 Traditionally the SDLC begins with a problem statement. However, to modify the

SDLC a Joint Application Development (JAD) session will be held before a problem

statement is solidified. A JAD session is a meeting that is held over a period of days,

allowing all key parties to meet to discuss expectations for the project with the goal of

accelerating the development process, increasing productivity and quality, and building

developer-client relationships (Shelly & Rosenblatt, 2012; Thierauf, 1999).

 Typical participants in the JAD session are the project leader, managers, users,

system analysts, and recorders (scribes). The project leader will have the role of facilitator,

ensuring the flow of discussion and leading the discussion of the project. Managers

participate to show support for the project and provide authorization. The user provides

operational-level input, leading to requirements for the project. The analysts are

participating to provide technical assistance. The recorder takes notes of discussion, results

from the JAD session, and actionable items to be executed post-JAD (Shelly & Rosenblatt,

2012).

 The purpose of this meeting is to start developing ideas through phases. JAD

sessions have a five-phase process: project definition, research, preparation, the session,

28

and the final document (Wood & Silver, 1995). Table 1 displays the phases and the

resulting output of the JAD Session.

Table 1: Joint Application Development Phases (Wood & Silver, 1995, p. 10)

Number Phase Resulting Output

1 Project Definition Management Definition Guide

2 Research

Data models

Process Models

Preliminary Information

Session Agenda

3 Preparation
Working Document

Overhead, flip charts, magnetic

4 The Session Scribe notes and scribe forms

5 The Final Document
JAD Document

Signed Approval Form

From the session, participants/team members will construct an outline of the project

definition (Wood & Silver, 1995). An initial high level system diagram (HLSD), a narrative

of the initial problem definition, will result from the discussion and possible problem

solutions. The HLSD is a visual depicting the problem. The visual defines the problem and

the interactions between the users and any entity. The HLSD provides a clear and quick

understanding of the problem.

 Because of the JAD session and HLSD, participating parties have a clear initial

problem definition and a path forward. The committed group now has a system design

process with formulated scope (Thierauf, 1999; Wood & Silver, 1995)

 As an example of a software development project HLSD is shown in Fig. 10. The

diagram shows the organization of events that can occur in a kitchen while cooking. Tarkan

(2009) uses a kitchen environment to teach children how to program. From the figure, one

can start to understand steps involved in cooking a meal and the importance of a HLSD.

29

The article contains an outline of events, tools, measurements, and appliances in a created

world to teach children how to cook without the presence of an adult.

m eal

person

cook kitchen

stove counte r

events

cut/done m ix/done pu t/done knead /done bake/done clean/done

tim er

request

input_request

cook_in

possib le_events

cooked m eal

item s ingredientsrefrigerator

located_in

produced

Figure 10: Tarkan’s Kitchen Environment High Level System Diagram

 The JAD session minimizes unclear requirements and specifications by having

those interested parties in one location discussing the topic. The session is an initial step

to meeting users’ needs by having the users participate in the meeting. The scope of the

problem will begin shaping as the problem is defined, leading to a framework of the project.

As a result, the JAD session provided a commitment, group cohesion, and productivity to

the systems design process (Thierauf, 1999; Wood & Silver, 1995).

3.1.2 User Involvement

An implementation of constant interaction with the user has been added to modify

the SDLC. In the past, the users’ role was relatively passive in the system development,

leaving the IT department with the sole responsibility of systems development (Shelly &

30

Rosenblatt, 2012). The modification intentionally involves users in each step of the

MSDLC.

 User involvement in entering and exiting each step minimizes the risk for scope

creep and unclear requirements which leads to a product that is likely to meet users’ needs.

The user involvement also allows the user to have a sense of ownership of the project

(Shelly & Rosenblatt, 2012). The implementation of user involved cannot be

overemphasized.

3.1.3 System Analysis Phase 1: Object-Oriented Analysis (OOA)

Object-oriented analysis (OOA) was first introduced in the 1990s as a solution to

the structured approach for system analysis. Originally, the functional view was the focus;

however, with every change, there was a change in the analysis, model, and

implementation. With an increase in dynamics and complexity, the structured approach

became outdated (Brown, 2001; Tsang et al., 2005). As a result, the OOA became widely

popular with objects having the ability to interact with other objects by sending and

receiving messages. The once troubling update process has been simplified by allowing

the object’s data to be manipulated while messages are being sent (Brown, 2001; Tsang et

al., 2005). The approach does not only cover the analysis but goes through the development

process, making it easier to make consistent models. The object-oriented approach is more

stable than the structured approach because changes in the objects are localized, meaning

that changes occur in one place instead of descending through the approach. The structure

is flexible enough such that the top-down approach can also be used (Brown, 2001; Tsang

et al., 2005).

31

 OOA is used in Phase 1 of the MSDLC methodology. After the problem has been

defined and the HLSD has been approved by the user, the use case modeling will precede.

From the problem definition, requirements will be elicited. Requirements state what a

system is to do, not how the system should implement the tasks (Tsang, Lau, & Leung,

2005). The requirements and multiple meetings with the developers and users should

provide clarity of what the system is to do and remove uncertainty.

 Use case development identifies and defines requirements by capturing scenarios

(Tsang et al., 2005). Use cases are transactions performed that produce a measurable result,

behaviors seen from the user’s point of view; all possible functions (events) provided by

the system as a set of events, yielding a visible result (Bruegge & Dutoit, 2004; Tsang et

al., 2005). The building of use cases also provides a baseline of participants, elements,

activities, and a description of what is to be achieved.

Figure 11: Tarkan Cooking Use Case Diagram

32

 A collection of use cases will provide documentation of what the system will do

and what the user is expected to see. Use cases do not provide a method for how the system

will do the action. Figure 11 shows some use cases that have been derived from Tarkan’s

(2009) thesis. In the kitchen one can cook, prep, clean, or return items.

To continue defining the problem, a problem vocabulary is developed. The

vocabulary includes the objects, attributes, and behaviors of the model. The objects,

attributes, and behaviors are found through the use case scenario process. The objects will

be clearly defined as things needed to represent entities in the system. The attributes are

characteristics of an object such as name, address, or age. Behaviors are functions that the

object can perform such as cook, drive, or withdraw. The products of this analysis are

intermediate artifacts such as class, object, rationale, sequence, activity, and state diagrams.

The diagrams are produced using the unified modeling language (UML) (Bruegge &

Dutoit, 2004; Tsang et al., 2005). The Object Management Group (OMG) (2015) states

that

. . . the UML is a graphical language for visualizing, specifying,

constructing, and documenting the artifacts of a software-intensive system.

The UML offers a standard way to write a system's blueprints, including

conceptual things such as business processes and system functions as well

as concrete things such as programming language statements, database

schemas, and reusable software components (OMG, 2015).

The Enterprise Architect (EA) tool is used to create UML models. EA also makes

it possible to archive the problem definition and solution, which maintains a complete

33

index for searching and accessing the model components (Spark, 2015). The set of artifacts

produced by the OOA being addressed by this research are outlined below.

 Class/Object diagrams: Classes and objects are entities used to define elements in

a problem space. Classes are used as a template to define objects. Objects are individually

identified entities (Bruegge & Dutoit, 2004). Classes are determined from the use case

scenario of the use case model. Objects are developed from the classes (Tsang et al., 2005).

The resulting class/object diagrams will have the attributes and behaviors defined with

relationships between the classes/objects. The diagram visually connects the

classes/objects according to these relationships. Figure 12 shows classes such as item,

kitchen, ingredients, cook, recipe, and timer. All the classes are connected by relationships.

For instance, ingredient is in the kitchen and it can be said that the cook makes food with

the ingredients. Each class has associated attributes and behaviors. The attributes are noted

with the red lettering, while the behaviors are in blue lettering. The attributes define the

state of the class/object. The behaviors are the actions of the class/object (Tsang et al.,

2005). For example, food can be hot, cold, raw, etc. Behaviors that food can take are roll

off counter, rise in oven, etc. The cook will influence the state of the food, since the cook

can make food with the ingredients.

34

Figure 12: Class Diagram of Tarkan’s work

 Rationale diagrams: Rationale diagrams represent the reasoning that leads to the

system’s functionality and implementation. This diagram supports decision making and

captures knowledge (Bruegge & Dutoit, 2004).

 Sequence diagrams: Sequence diagrams are interaction diagrams that model the

behavior of a group of objects working together to achieve a goal (Bruegge & Dutoit, 2004;

Tsang et al., 2005). The diagram shows the passing of time on the vertical dimension and

the interaction amongst objects on the horizontal dimension. Sequence diagrams assist

with the continual definition and clarification of object’s function.

 Activity diagrams: Activity diagrams assist in modeling the state of an object and

the transitions in response to events (Tsang et al., 2005). Specifically, it models the

performance of actions in a process or procedure. Activity diagrams can expand upon the

use cases to provide detail and confirmation of organization of events.

35

3.1.4 System Analysis Phase 2: Z notation

 The Z notation is a highly expressive formal mathematical notation for specifying

and designing the behavior of systems (Spivey, 1989). It is based on set theory and a typed

first-order predicate logic model. “Typed” means that variables in Z cannot be defined

without knowing the range of values that it can hold and, once the variable is declared, its

type cannot change (Spivey, 1989).

 Shen (2002) states that set theory deals with sets, their operations, relationships,

and statements about these relations. Weiss (2008) defines set theory as the true study of

infinity. This alone assures the subject of a place prominent in human culture. Sets are the

collection of different elements (Drake & Singh, 1996).

 Gries and Schneider (1993) state that “predicate calculus is an extension of the

propositional logic that allows the use of variables of types other than Boolean. This

extension leads to logic with enhanced expressive and deductive power.” Predicate

calculus has a foundation of Boolean expressions. Boolean variables are variables that can

hold one of two values: true or false. Predicates use the Boolean functions, but the type is

different than true or false (Gries & Schneider, 1993). Predicate calculus “usually consist

of inputs, outputs, and changes to the state of the system. The relationship between input,

output, before-state, and after-state will be described by a predicate relating and

constraining these values” (Goldrei, 2005).

 Z notation is neither a natural nor a programming language; however, it shares some

of the characteristics of both languages. Z is a formal language with a defined syntax, like

all programming languages, and some people use it to communicate but on a small range

36

of topics, like natural languages. Z is a specification language based on conventional

mathematic notations. The formal specifications of Z notation use mathematical notation

to describe in a precise way the properties which an information system must have, without

unduly constraining the way in which these properties are achieved (Spivey, 1989). The

grammar is based on a mathematical language, but the semantics are of classical

mathematics. The term classical is important in the description of Z. Classical

mathematics has a foundation on two-value logic and set theory (Spivey, 1989). Z is built

upon some of classical mathematics’ central theories; however, it has a precise syntax,

(Diller, 1994). Z is predominantly used for specifying software because the required result

is an error-free computer program. Z notation is independent of program code, allowing

the specification to be completed early so that there is an understanding of what the system

does for the stakeholders (Spivey, 1989). This occurs due to Z making use of

representational abstraction, procedural abstraction, and the structure of the schema (Diller,

1994; Wood & Silver, 1995).

 Representational abstraction uses high level mathematical data types in a way

without worrying how it will be implemented. Abstraction is the ability to describe what

can be done without stating how it is done (Spivey, 1989). The true benefit is to solve a

specific problem; one does not have to be constricted to the rigid data types. In short, it

allows all possibilities to be considered without focusing on one aspect. The use of

procedural abstraction ignores the how and focuses on the what. It is simpler to think of

the specifications as declarative statements (Diller, 1994). This is useful since most

37

problems are written as declaratives. The use of object-oriented analysis and design will

produce procedures.

 The use of abstraction directly links to the schema structure since it is based on

declaratives. The schema structure is a means of organizing its notation around the

definition of the problem entities being analyzed. Schemas are used to structure knowledge

about a given entity within the problem. The pieces are linked by commentary so that the

logic can be followed mathematically. The schema structure has two sections, declarative

and criterion. The declarative section defines the variables and other schemas establishing

the state of the entity. The criterion section defines the conditions establishing the

relationships between the state variables. Schemas describe dynamic and static parts of the

system. In the dynamic part, the possible operations, the relationships of inputs and

outputs, and the changing states are explained. The occupied state and relationships create

the static part of the schema (Spivey, 1989).

 In an event-based modeling language, system operation models a discrete sequence

of events in time. Each event occurs at an instant in time and defines a change in state of

the system. Also, between consecutive events, it is assumed that there can be no change in

the state of the system (Spivey, 1989).

 Continuing with the example, in Fig. 13 Tarkan’s (2009) schema for the kitchen

describes the basis of the kitchen example. In the declarative section, Tarkan (2009) creates

a space for any arrangement of cooks, items, and ingredients. Tarkan (2009) also sets

limitations on AvailableCook, AvailableItem, DirtyItem, HeatedItem, AvailableIngredient,

and UsedIngredient that the count is greater than or equal to zero or a natural number.

38

These declarations provide a logical baseline of what can occur in a kitchen. The

permutations of cooks, items, and ingredients in a kitchen can vary. It is also true that a

HeatedItem cannot be negative. Tarkan (2009) continues in the criterion section by

explaining that AvailableCook is only a subset of the cooks defined in the declaration. The

criterion:

∀ t : � • dom (AvailableIngredient ⊳ { t }) ∩ dom (UsedIngredient ⊳ { t }) = ∅

states that an ingredient cannot be available and used at the same instant of time.

Figure 13: Tarkan’s Kitchen Schema (Tarkan, 2009, p. 3)

When converting from OOA to Z notation the classes are first examined. The

classes are modelled in the form of schemas as mentioned and shown in Figure 13. The

class will have a state schema, an initialized state, and operations that can change the

variables. For each class a mathematical condition is applied as the type of variable, i.e.,

natural number, a specific defined number, a range, etc (Kassel & Smith, 2001; Winter &

Duke, 2002). Allowing concepts of class, inheritance between classes and object

Declaration

Criterion

39

referencing to be supported. Using the classes from the object-oriented analysis, the use

of the attributes and behaviors are mapped to types or functions extended by the class name.

Using referencing the object instances are accessed, meaning the operations are not defined

operationally but in declarative form (Winter & Duke, 2002). This continues with the

thought that the system states what is to be done not how to do it. The criterion section

mentioned allows for the relationships to be defined pre- and post-states (Winter & Duke,

2002).

3.1.5 System Analysis Phase 3: Alloy Language and Analyzer

 Phase 3 is the Alloy modeling and execution part of the system analysis

methodology. Alloy is a modeling language for expressing complex structural constraints

and behavior about systems (Jackson, Software Abstractions, 2012). Also, Alloy is a

declarative specification language modeling tool employing first-order logic based on the

Z notation. Structures in Alloy are described in space and time. A unique characteristic of

Alloy is that it analyzes systems with configurations that are undetermined or for those that

have the capacity to change dynamically (Jackson, Software Abstractions, 2012). Alloy’s

ability to conduct incremental analysis allows for the exploration of different designs

starting from a small model, which is then scaled up. Alloy can analyze the model at every

step. The purpose of converting Z notation to Alloy is to use to find and correct errors in

the logic of the Z specification. The converted Z notation can model aspects of the system

but not the entire system. Alloy Analyzer makes it possible to check the criteria of the

specification to assure correct execution of the solution (Devlin, 1993).

40

 To continue the example of Tarkan’s work with the MSDLC, the Alloy code must

be developed. The basic building blocks of the declaration section are made into “atoms.”

These items are the building blocks for all the data types in any schema. Based on Tarkan’s

work cook, item, ingredients, etc. will be atoms. The next level will be “primitives.”

Primitives are built upon atoms. Tarkan uses ENAME for event names. Events defined by

Tarkan are bakeDone, cleanDone, cookDone, cutDone, kneadDone, mixDone,

preheatDone, and putDone. Each of the events would be atoms. The collection of the

events will be described as a primitive. The next step in coding will be to create the

“initializer.” Initializers are based on schema names, and the timing mechanism begins.

The last portion needed to run the Alloy code is the “predicate.” This file contains the

active functions of the schema. The functions specify updates to the variables throughout

the kitchen phases (Fletcher, Garcia, Nwachukwu, Nwaogu, & Reaves, 2014). Through

the initiation, logic problems can be resolved and reiterated to improve the OOA models

and Z notation.

 Alloy attacks the notion of software or system abstraction in problem solution from

a unique point of view. The assumption is that the current approach to problem solution

does not work well. Therefore, Alloy addresses solving complex problems with three

elements; logic, language, and analysis (Jackson, Software Abstractions, 2012). Logic

provides the building blocks for the language. All logic structures within Alloy are

represented as relations and operations. Problem states and executions are described using

constraints (i.e., formulas or Boolean expressions) (Jackson, Micromodels of Software:

Lightweight Modelling and Analysis with Alloy, 2002). Having a language adds syntax

41

and structure to the logic descriptions. This approach supports classification and

incremental refinement in the analysis. The analysis phase is not a solution through a

theorem but the use of an instant process. This analysis approach is a form of constraint

solving. A process of simulation is used to find instances of states or executions that satisfy

a given property (Jackson, Software Abstractions, 2012). To check the model, a

counterexample is found that violates a given property. The search for instances that satisfy

the problem statement is done within a scope defined by the user. Within this scope or

space, multiple instances can be run to analyze the problem (Jackson, Software

Abstractions, 2012).

When converting from Z notation to Alloy language to execute there is a tradeoff of

expressiveness and complexity in Z for the automation and graphical component of Alloy

Analyzer. Alloy and Z are similar in the mathematical foundation of first order logic but

allows the gaps between Z and OOA to be filled. Since Alloy is focused on relationships,

the sets of Z notation should be converted to relationships (Dwivedi & Rath, 2012). The

specified notation in Z based on set theory should be simplified to Alloy functions. This

step is required since Alloy Analyzer only has ASCII notation (Jackson, Micromodels of

Software: Lightweight Modelling and Analysis with Alloy, 2002).

3.2 Modified System Development Life Cycle

 Big data, public health, and cyber security are all 21st century problems larger and

more difficult to solve than in previous times (NAE, 2018). By implementing the changes

to the SDLC a Modified System Development Life Cycle (MSDLC) methodology is

created and shown in Fig. 14. The blue boxes are the modification added. The MSDLC

42

will address the problems to combat the weakness of the SDLC, specifically scope creep,

unclear requirements, lack of methodology, inability to see the solution until the system is

complete, and lack of user involvement. This proposal addresses the standard SDLC steps

with modifications to the general flow adding Joint Application Development (JAD)

Sessions, constant user involvement, use case models, and an integration of analysis

methods (i.e., Object-Oriented Analysis, Z notation, Alloy model and executor) using an

integrated process.

Figure 14: Modified System Development Life System (MSDLC)

43

Chapter 4: Research Results: Case Study

4.1 Background

 The basis of the case study for comparison is the “Healthy People 2010.” The

Federal Government created the initiative to develop a national health promotion and

disease prevention. In response to this statement, the National Heart, Lung, and Blood

Institute (NHLBI) devised a new heart health agenda that identified four performance

goals, each targeting a stage in the progress of cardiovascular disease (CVD). To achieve

the four goals, NHLBI utilized community-based partnerships to bring CVD information

to those in areas at high risk for CVD. This approach resulted in the creation of

Community-Based Enhanced Dissemination Utilization Centers (EDUCs) which have

been set up in high risk communities across the country (NIH, 2002).

 The action centers are used to determine what communication strategies work best

for an area or population. The Housing Authority of Baltimore City (HABC) joined the

partnership as an EDUC in April 2001. The primary objective of the HABC EDUC is to

improve the cardiovascular health (CVH) of the residents in public housing communities.

The initiative specifically targets low-income African American communities in the City

of Baltimore. HABC EDUC forged a partnership called Baltimore City Cardiovascular

Health Partnership (BCCHP) which was responsible for conducting the project,

appropriately titled “Healthy Hearts in Public Housing” (HHPH).

During the community-based CVH workshop in Baltimore City in September 2001,

the following statistics on coronary heart disease (CHD) and strokes were presented.

Respectively, based on 1996 to 1998 data, the age adjusted death rate for CHD and rate of

44

stroke for African Americans in Baltimore city were 43 percent and 37 percent higher than

the national rate. This results into more than 3,600 Baltimore City African Americans who

died of CHD and stroke during this period (NIH, 2002).

Case Study

 The hypothesis of the research is that by adding the modifications to the SDLC a

validated system model and analysis process is produced leading to fewer errors in solving

complex and dynamic problems in comparison to the Iterative method.

 Based on data collected from the 2000 Heart Healthy Initiative the MSDLC will be

implemented through the analysis phase. To conduct the study, a qualitative analysis will

be completed to show the benefits in using the MSDLC approach on modeling the problem,

capturing the dynamics of the problem, and minimizing the amount of errors.

4.2 Intermediate Artifacts of a JAD Session and Constant User Involvement

 To begin the MSDLC process, time would be used to determine the scope and areas

to evaluate. Using a JAD Session to map the entirety of the Heart Healthy Board and goals.

Figure 15 is an intermediate artifact to state the members of the board and the goals. This

diagram is one of many high level system diagrams allowing the group a visual of the

agreed upon goals. From this first artifact a scope is given to be used as an example for

the MSDLC method. Figure 15 also shows the scope highlighted in yellow as the Train

the Community Health Workers (CHW). As the discussion in the JAD Session would

continue another intermediate artifact would be produced with the activities and entities

that assist in the activities.

45

Urban Community

Morgan State

University

Public Health

Department

Urban Public

Health Worker

Urban

Community

College

Public Housing

Authority

Heart Healthy Board

Train CHW

Conduct

Cardiovascular

Health

Presentation

Host at least 1

Health Fair

Organize HH

clubs

Hold quarterly

specialty HH

events

Establish

relationships

with Healthcare

Provider

Conduct

outreach and

educational

activities

Train 4 teams

of youth and

adult

volunteers

Increase

Policymaker's

awareness

Secure fast

food

establishment

in Target Area

Establish

community

advocacy team

Partner with 3

local schools

Figure 15: Heart Healthy Board Goals

Figure 16 is the first description of the requirements to train a community health worker.

The figure shows some of the interactions between the Heart Healthy Board. Specifically,

the Public Housing Authority will provide a training location where the Urban Community

College will teach. There is evidence that a test is required. The Urban Community

College will administer a test that the Public Housing Resident will take. Figure 16 is

another high level system diagram that will be reiterated on to describe the activities and

requirements needed to complete training of a CHW.

46

Figure 16: Train the Community Health Worker High Level System Diagram

4.3 Object Oriented Approach Train Community Health Workers

 The JAD Session would end with a baseline of what is needed to train a CHW. The

ending of this process would move to further refine the process by using Object Oriented

Analysis (OOA). The OOA would begin with an overview of the major activities needed

to train a CHW. Those major activities are developing a curriculum, recruiting for future

CHW, interviewing Public Housing Residents, and training the future CHWs. Figure 17

is an intermediate solution that provides a clear understanding of key events that will occur

to train the CHWs.

47

Figure 17: Training CHW Scenario Overview

The overview shows that to train a CHW, the main actors are the public housing

authority, urban city health partner, public housing resident, the Morgan State University

Public Heath (MSU PH) department, and the urban community college. The use case also

shows the main events as previously mentioned. The overview diagram uses people figures

to demonstrate the actors with lines connecting them to the events. MSU PH Department

and Urban Community College have lines connected to the use case box indicating that

both entities are in all scenarios.

48

 Using Fig. 17 as a roadmap, each of the events can be broken into a separate use

case. Figures 18 to 21 show details to the events in Fig. 17.

Figure 18: Develop Curriculum Material Use Case

Expanding on the details in Fig. 17, Fig. 18 has the events needed to develop the curriculum

material. The actors are MSUPH department and the urban community college. The main

activities are: connect Maryland requirements, develop objectives, link CHW tasks to

objectives, develop visuals for curriculum, develop tests for curriculum, and develop

scoring criteria for test and practicum. The continuity of Fig. 17 and Fig. 18 can be seen

with the respective actors. Figure 18 does provide more detail in requirements and actions

needed to complete developing the curriculum.

 uc Develop Curriculum Material

Develop Curriculum Material

Connect MD req

Develop Objectives

Link tasks to Obj

Develop v isuals

Develop Tests

Dev elop Scoring

Criteria

Urban Community

College

MSU PH Dept

49

 Figure 19 is the Recruit Potential CHW use case. The use case continues to provide

more details to successfully complete the event. The actors are the public housing

authority, MSUPH department, public housing resident and urban community college. The

events are: prescreen community, recommendation, host townhall, hand out applications,

and accept applications. These events are all needed to recruit potential CHW.

Figure 19: Recruit Potential Community Health Worker Use Case

Figure 20 is the Interview Public Housing Residents use case. The key actors are MHUPH

department, urban community college, and public housing resident. The events needed to

interview are: prepare question list, ask questions, answer questions, score answered

questions, and contact participants.

 uc Recruit Potential CHW

Recruit Potential CHW

Prescreen

Community

Recommendations

Host townhall

Public Housing

Resident
Urban Community

College

Public Housing

Authority

MSU PH Dept

Hand out Apps

Accept Apps

50

Figure 20: Interview Public Housing Residents Use Case

Figure 21 is the Conduct CHW Training use case. The key actors are MSUPH department,

public housing authority, urban community college, public housing resident, and urban city

health partner. The events are present lesson, practicum, study, test, and evaluate.

 uc Interv iew

Interview

Prep question list

Ask questions

Answer questions

Score answered

questions

Contact Participants

MSU PH Dept

Public Housing

Resident

Urban Community

College

51

Figure 21: Conduct CHW Training Use Case

The combination of the use cases shown in Figs. 18 to 21 will encapsulate the training of

a CHW. The aggregate of the use case events provides a detail understanding of what

actions are needed to train a CHW. Each of these intermediate artifacts can be adjusted

and revisited in preparation for training the CHWs. The use cases are a first instance at a

deeper level to a successfully plan to train the CHWs.

 To expand on the scenarios in the use cases, Fig. 22 has a written explanation of

each. The requirements needed to satisfy each scenario are described in a step process.

 uc Training

Training

Study

Ev aluate

Present lesson

Test

Practicum

Urban Community

College

Public Housing

Resident

Public Housing

Authority

MSU PH Dept

Urban City Health

Partner

52

Figure 22: Train the Community Health Worker Scenarios

 Continuing with the OOA process, class diagrams would be created to provide data

needed for collection and to describe the actions being conducted. Figures 23 to 26 will

expand upon Figs. 18 to 21 with additional details from the scenarios described in Fig. 22.

In Fig. 23 the requirements from Fig. 18 are shown in more detail. Figure 18 showed the

key entities that were involved in the requirement. The class diagram in Fig. 23 shows the

exact interaction that both MSU PH Department and Urban Community College are

connecting requirements that will inform the objectives for training. The objectives are

developed by again MSU PH Department and Urban Community College. Urban

Community College will visualize tasks that are linked to objectives. Lastly Urban

Community College will develop the test.

53

Figure 23: Develop Curriculum Material Class Diagram

In Fig. 24 the Recruit Potential CHW class diagram is shown. The class diagram

shows the Public Housing Authority prescreening the community to make

recommendations with MSU PH Department for Public Housing Residents. Public

Housing Authority, MSU PH Department, and Urban Community College will host the

townhall. The Public Housing Resident will attend the townhall and a fill out and return

the application. The Urban Community College will handout and accept the applications.

Figure 25 is the Interview Public Housing Residents class diagram showing MSU PH

Department and Urban Community College will prepare questions and select the Public

Housing Residents to be potential CHWs. The Urban Community College will ask

questions during the interview that the Public Housing Resident will answer.

54

Figure 24: Recruit Potential Community Health Worker Class Diagram

Figure 25: Interview Public Housing Resident Class Diagram

55

Figure 26 is the Conduct CHW Training class diagram showing the Public Housing

Authority recommending the Public Housing Resident and providing a training location.

Urban Community College will teach at the training location while the Public Housing

Resident will train at the training location. MSU PH Department will develop the

curriculum with the Urban Community College instructs the curriculum. The Public

Housing Resident will study the curriculum and participate in a practicum.

Figure 26: Conduct Training Class Diagram

4.4 Z notation and Alloy Model of Train the CHW

 Based on the information that was used in the object-oriented diagrams leads to the

use of Z notation and Alloy modeling. The use of predicate logic, set theory, and model

execution will be used in this section to determine the validation of the model. For each

use case scenario examples will be used to showcase the ability of the information to flow

56

from OOA to Z to Alloy, that assumptions are made and can be evaluated, and that the

architecture is model driven.

4.4.1 Develop a Curriculum

The Develop a Curriculum scenario will be defined as one of the types of scenarios

using the Z notation

Scenarios::= Develop | Recruit | Interview | ConductTraining

Scenarios is broken into the four requirements to training a CHW: develop a curriculum,

recruit potential CHW, interview Public Housing Residents, and conduct CHW training.

To determine the requirements for any training criteria the union of requirements from

Urban Community College and MSU PH Department will be a subset of the Maryland

training requirements. The objectives for the training are also a union. The tasks are a

function of the objectives defined.

Requirements = dom(RequirementsUcc) ∪ dom(RequirementsMPD) ⊂ standard?

∈ dom(RequirementsMD)

OBJ = dom(ObjectiveUcc) ∪ dom(ObjectivesMPD)

Tasks : OBJ ↦ TASKS

In the Develop a Curriculum use case, as shown in Fig.27, has all three of the

analysis phases with OOA on the left, Z notation on the top right, and Alloy on the bottom

right. In the OOA section the attributes and behavior are shown for the Urban Community

College. These section shows that the information can be transformed from object oriented

to Z notation and to Alloy. Z and Alloy allows for the expansion of the information. In

the object-oriented analysis, the information is defined. Moving the information into Z and

Alloy, the information is kept and allowed to be passed for future changes in the scenarios.

57

 The ability to transform the data is part of model driven architecture. The future

transformations will allow for the Alloy analyzer to interpret the potential solution space.

This specific structure also allows for the assumptions and relationships for Urban

Community College to be transferred. Similar information for a resident will be used in in

later scenarios and the determine the basis for interviewees and trainees.

Figure 27: Develop Curriculum Material Structure in Z and Alloy

4.4.2 Recruit Potential Community Health Workers

 The recruit potential community health workers, shown in Fig. 28, has the expanded

scenario. OOA is on the top left, Z notation on the top right, and Alloy on the bottom.

From the OOA section, also reflected in Fig. 22, in step 3 a townhall will be held. The Z

notation on the top right provides the rules and assumptions that a person has either

attended or not attended the townhall. The Z notation also sets the states that the

application can be: filled, partially, or not filled. The residency requirement is created in

the phresident status. The Alloy model in the lower half continues with that information

58

that the recruit is an extension of a Public Housing Resident (phresident). The extension

also provides the rule that to be a possible recruit one must be a resident of Public Housing.

 The rules and assumptions in the recruit example show another instance of model

driven architecture. The assumptions and rules are assisting in developing and verifying

the solution space.

Figure 28: Recruit Potential Community Health Worker Analysis

To define the requirements for a potential recruit, the logic would define the space as the

intersection of Public Housing Resident, townhall attendees, and filled applications.

Recruit = dom (townhall = attend) ∩ dom (application = filled) ∩ dom (Phresident

= res)

The scenario has that MSU PH Department, Public Housing Authority, and Urban

Community College are to host the event. Since all three entities are also members of the

Heart Healthy Board, the hosts are a subset of the board.

HHM = PHA | MPD | UCC | UCHP

Host ⊂ HHM

59

The Public Housing Authority has the tasks of prescreening the community and

recommending Public Housing Residents. Since the potential CHW must be residents an

assumption can be made that the residents are a subset of the community.

Residents ⊂ Community

Lastly, the behaviors taken by the key entities can be captured with a notation before the

entity. Below the notation for recommendation precedes both Public Housing Authority

(PHA) and MSU PH Department (MPD).

prescreen.PHA

recommend.PHA

recommend.MPD

4.4.3 Interview Public Housing Residents

 The Interview Public Housing Residents use case scenario is shown in Fig. 32

below. OOA is on the top left, Z notation on the top right, and Alloy on the bottom. The

example highlights the validation of assumptions. For a person to be an interviewee they

must have attended the townhall and be a public housing resident. This is an assumption

in the object-oriented analysis but can be confirmed through logically stating in Z then

transformed to Alloy for execution. The execution of the Alloy model will allow for each

person to be verified that they are a resident and have attended the townhall. The

information passed in the phresident and townhall is used. The Z notation also validates

that the POTCHW (potential CHW) is the intersection of those who are residents and have

passed the INTERVIEWEE phase.

60

Figure 29: Interview Public Housing Residents Analysis

The Interview Public Housing Residents scenario states that MSU PH Department and

Urban Community College will prepare questions for the interview. The questions asked

during the interview is a subset of the combination of the questions that have been prepare

by MSU PH Department and Urban Community College. Also, the questions asked during

the interview are the same for each recruit.

QUESTIONS ⊂ dom(QuestionsUcc) ∪ dom(QuestionsMPD)

QUESTIONS ↦ � Recruit

4.4.4 Conduct Community Health Worker Training

 The conduct CHW training example is shown in Fig. 34 with OOA on the left, Z

notation on the top right, and Alloy on the bottom right. The validation of a test score is

explored. A test score of 75 has been selected for passing the test. Z and Alloy allow for

the checking of the test scores for the interviewees. All the interviewees will have the name

and test score passed along. Not every interviewee will have a test score, however the

61

score will be compared to the passing score. Passing the test is a requirement to become a

community health worker. The schema provides a percentage of a student attending class.

The following line: PassTest ∈ TEST >=75, will confirm if a test score meets the minimum

requirement for passing the test.

Figure 34: Conduct Community Health Worker Training Analysis

The Conduct CHW Training schema allows for a check in scheduling and room

availability. The logic statement to determine the class time is the intersection of the

location and trainer is below will confirm if at a specific time if the location for the class

is available

ClassTime = dom(AvailableLocation ⊳ {currTime}) ∩ dom(UCCTrainer ⊳ { currTime })

The Public Housing Authority owns many buildings. The training location will be one of

the building locations belonging to the Public Housing Authority. The logic statement for

the training location is below.

phabuildings : ℙ PHAbuildings

TrainingLocation ⊂ PHAbuildings

62

4.5 Benefits of MSDLC Solution and Deliverables

 The findings from the SDLC research resulting in the MSDLC provide multiple

insights. The MSDLC process including the JAD Session, continuous user involvement,

a three-tier analysis phase, and intermediate artifacts resulting in a validated solution before

entering the system design phase.

 The MSDLC provides a formal definition for complex systems. By modifying the

SDLC, specifically the use of a JAD Session and OOA allows for a clear definition of the

problem. The purposeful meeting of key stakeholders, users, and project managers

presents a time to discuss the problem and get a clear understanding of potential solutions.

Taking the information from the JAD Session then is further refined using OOA. OOA

provides a foundation of the requirements as a result of the potential solutions from the

JAD Session. The requirements focus on what to do rather than how to do a task provides

opportunity to iterate and clarify what the requirements are and remove uncertainty.

Developing use case scenarios from the requirements refines the transactions in a

measurable manner including the behaviors seen from the user. The result is a formal

definition for complex systems.

 The MSDLC provides an improved scientific structuring of problem. Z notation is

used to provide an improve scientific structure of the problem. With a formal definition

derived from the JAD Session and OOA, Z notation provides a space to logically process

what the requirements are and any restrictions. The use of mathematical notation allows

the properties to be explained without being prescriptive to how the property is achieved.

This concept is abstraction. The benefit of abstraction is the ability to consider all the

63

possibilities without bias toward one aspect. This continues to build upon the focusing on

what to do rather than how to do a task.

 MSDLC improved the specification and validation of criteria and assumptions.

After exiting the OOA phase, a foundational definition is provided. Each entity has

attributes and behaviors that link directly to the scenarios. Z notation provides a space to

improve and logically document the assumptions and criteria for the requirements. Alloy

Analyzer takes the logical space and determines if the conditions apply to validate the

criteria and assumptions.

 Intermediate results are made available for use in system analysis through the

MSDLC. High level system diagrams, class diagrams, and object diagrams assist in

communicating to the user. These visuals are a simplified way to see the requirements, the

process, and determine if changes are needed. The intermediate results also provide a

historical documentation of changes to the problem. The diagrams are a timeline of

changes and enhancements made to the problem. This can be substituted for lengthy

written documents.

 Lastly, MSDLC provides greater confidence in solution through Alloy Analyzer.

The Alloy Analyzer automatically analyzes requirements and design specifications for

potential errors and inconsistences. The analyzer is a validation tool checking the logic

provided through all possible constraints. Using this tool provides the instances that do not

conform to the restrictions provided. Knowing the instances that do not meet the criteria

provided gives added value to know what will not work in the application. Having this

information in the analysis phase will save costs versus realizing in a later phase.

64

The MSDLC methodology has defined an interface of OOA, Z notation, and Alloy

Analyzer. The interface previously described allows for a transformation of information

between the three analysis phases. The structured defined problem and organized

foundation of requirements created in OOA were translated into the criteria and

assumptions in Z notation. The conversion of Z notation to the Alloy Analyzer will provide

a confident and validated solution space because all possible instances are evaluated.

Throughout the conversions the foundational information is captured and moved in all

three phases. Having a method to keep the critical information means each phase has the

same information. As each phase has the same information the potential solutions are also

within the same space. The assumptions are reaffirmed because the behaviors are the same

from OOA. The solution space from Alloy Analyzer is then also purely based on the

assumptions and behaviors. This process facilitates other researchers in the field to have a

structured approach for using the MSDLC methodology.

4.6 Future Work

Continued analysis can be done on the Training of a Community Health Worker by

maximizing the persons that will complete and pass the training. Generally, the limitations

of training are the failure rate and drop-out rate. Additional training completion factors

can be formed into questions for the questionnaire or the interview. That information can

be integrated into the logic of Z notation and executed in Alloy Analyzer.

By the middle of the 20th century infectious diseases, even with a high mortality rate,

were largely conquered by innovations in medications and vaccinations. However, in 1988

the Institute of Medicine declared that public health was in a state of disarray (Institute of

65

Medicine (IOM), 1988). Since 1988 the profession has done much to improve its structure

as it moved from a focus on addressing problems associated with infectious diseases to the

current epidemic of non-communicable diseases. Since that time, public health has been

confronted with the current epidemic of non-communicable diseases such as diabetes,

hypertension, cardiovascular disease, and cancer where changed individual choices and

behaviors are necessary to improve health outcomes. With the recognition that obesity is

related to the early onset and severity of these diseases, public health has been forced to

adjust its approach to encompass the social determinants of health (SDOH). The SDOH is

defined as the conditions where people are born, grow, work, age with the pervasive

influence of money, power and politics (Solar & Irwin, 2007). This expanded public health

approach has brought with it changing levels of complexity and big data.

Since public health science relies heavily on epidemiology and biostatistics for

analytical tasks, the current levels of complexity and big data have presented many

challenges that the MSDLC methodology can inform. In recent years, system science and

network modeling have been used to move public health forward in managing this complex

environment with massive amounts data. The MSDLC will allow even more advancement

because it will make it possible for system models to not only be archived for future use

but to standardize conceptual thinking using object-oriented models translated into Z

notation and the findings validated through the Alloy Analyzer. Innovations to assist in

methodologically standardizing and validating information will help public health become

more consistent in moving from conceptual modeling to testing and refining outcomes with

the hope of being able to bend the curve on these very costly non-communicable diseases.

66

In the future this approach can be used in various other applications such as financial

and system acquisition. The Department of Defense Planning Programming Budgeting

and Execution (PPBE) process used to fund the departments initiatives. The process begins

almost two years before execution. Tracking the requirements that set a basis for fund that

is to be executed is a complex task. The MSDLC can be used to logically flow funding

from the requirements to actualization in overseeing the process from start to finish

(Shevin-Coetzee, 2016). The MSDLC will assist in providing a logical connection

between the requirements of planning to the execution of the funding. The MSDLC will

assist in confirming the amount planned and programmed can be linked to an executed

amount used to meet the mission.

67

References

Adrian, A. (2013). Big Data Challenges. Database Systems Journal, IV(3), 31–40. DOI:

 10.4172/2324-9307.1000133.

Alexander, I. F., & Maiden, N. (2004). Scenarios, Stories, Use Cases: Through the Systems

Development Life-Cycle. West Sussex: John Wiley & Sons Ltd.

Ammu, N., & Irfanuddin, M. (2013). Big Data Challenges. International Journal of

Advanced Trends in Computer Science and Engineering, 2(1), 613–615. DOI:

10.13140/RG.2.2.16548.88961.

Appleget, J. (2010, July 14). NPS Initiatives in Human Social Culture Behavior (HSCB)

Modeling FY 2010–2011. California, USA.

ARS. (2010, May 24). S.D.L.C. Software Development Life Cycle & its different models.

Retrieved from ARSORACLE: http://arsoracle.blogspot.com/2010/05/sdlc-

software-development-life-cycle.html.

Ateeq, S., & Shuaib, M. (2014). COMPARISON OF VARIOUS SDLC MODELS. Global

Journal of Multidisciplinary Studies, 3(11), 176–181.

Avison, D. E., & Fitzgerald, G. (2003). Where Now for Development Methodologies?

Communications of the ACM, 46(1), 79–82.

Balaji, S., & Murugaiyan, M. S. (2012). WATEERFALLVs V-MODEL Vs AGILE: A

COMPARATIVE STUDY ON SDLC. International Journal of Information

Technology and Business Management, 2(1), 26–30.

Baltzan, P., & Phillips, A. (2010). Appendix D. The Systems Development Life Cycle

Basics. In M: Information Systems (pp. D1–D18). McGraw-Hill.

68

Bender RBT Inc. (2003). System Development Life Cycle: Objectives and Requirements.

Retrieved from Bender RBT: http:www.benderrbt.com/Bender-SDLC.pdf.

Biggerstaff, S. C. (2007). Human Social Culture Behavior Modeling (HSCB) Program.

Retrieved from National Defense Industrial Association:

https://ndiastorage.blob.core.usgovcloudapi.net/ndia/2007/disrupt/Biggerstaff.pdf

Boehm, B., & Hansen, W. J. (2001, April). The Spiral Model as a Tool for Evolutionary

Acquisition. Retrieved from Software Engineering Institute Carnegie Mellon

University: http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00sr008.pdf

Boyde, J. (2014). A Down-to-Earth Guide to SDLC Project Management 2nd ed. San

Bernardino: Createspace Independent Publishing.

Brown, D. W. (2001). An Introduction to Object-Oriented Analysis: Objects and UML in

Plain English. New York: John Wiley & Sons.

Bruegge, B., & Dutoit, A. H. (2004). Object-Oriented Software Engineering Using UML,

Patterns, and Java 2nd ed. New Jersey: Prentice Hall.

Bunting, J. (2012, December 11). How We Reduce Costs And Waste By Aligning Testing

With The SDLC. (Optimation) Retrieved from Optimation:

http://www.optimation.co.nz/our-work/blog/how-we-reduce-costs-and-waste-by-

aligning-testing-with-the-sdlc.

Cho, J. (2008). Issues and Challenges of Agile Software Development with SCRUM.

Issues in Information System, IX(2), 188–195.

Cockburn, A. (2002). Agile Software Development. Boston: Addison-Wesley Longman

Publishing Co.

69

Council, W. I. (2014). Chapter 2 System Development Life Cycle Methodology. Retrieved

from Western India Regional Council: https://www.wirc-icai.org/material/2-

System-Development-Life-Cycle-Methodology.pdf.

Curtis, B., Krasner, H., & Iscoe, N. (1988, November). A Field Study of the Software

Design Process for Large Systems. pp. 1278–1287.

Davis, A. (2014). A Comparative Study of Prescriptive Process Models. VISTAS, 3(1), 94–

100.

Dawson, M., Leonard, B., & Rahim, E. (2015). Chapter 16 Advances in Technology

Project Management: Review of Open Source Software Integration. In Technology,

Innovation, and Enterprise Transformation (pp. 313–324). Hershey: Business

Science Reference.

Devlin, K. (1993). Naive Set Theory. In The Joys of Sets: Fundamentals of Contemporary

Set Theory (pp. 1–28). New York: Springer-Verlag.

Diller, A. (1994). Z: An Introduction to Formal Methods. New York: John Wiley & Sons,

Inc.

Dorsey, P. (2000). Top 10 Reasons Why System Projects Fail. Retrieved from Dulcian:

www.dulcian.com/articles/dorsey_top10reasonssystemsprojectsfail.pdf.

Drake, F., & Singh, D. (1996). Intermediate Set Theory. New York: John Wiley & Sons.

Dwivedi, A. K., & Rath, S. K. (2012). Model to specify real time system using Z and Alloy

languages: A comparative approach. International Conference on Software

Engineering and Mobile Application Modelling and Development (ICSEMA 2012)

(pp. 1–6). Chennai: IEEE. DOI: 10.1049/ic.2012.0149.

70

Easterbrook, S. (2001). Software Lifecycles. University of Toronto Department of

Computer Science.

Elliott, G. (2004). Global Business Information Technology: An Integrated System

Approach. Pearson Addison Wesley.

Estabrooke, I. (2009). Directions for Human, Social, Cultural and Behavioral Sciences at

the Office of Naval Research. Retrieved from iBrarian:

http://www.ibrarian.net/navon/paper/Directions_for_Human__Social__Cultural_a

nd_Behavi.pdf?paperid=15892619.

Fletcher, J.-D., Garcia, S., Nwachukwu, K., Nwaogu, O., & Reaves, K. (2014). Z to Alloy

Kitchen Environment. Baltimore.

Goldrei, D. (2005). Propositional and Predicate Calculus. London: Springer-Verlag.

Gries, D., & Schneider, F. B. (1993). Predicate Calculus. In A Logical Approach to

Discrete Math (pp. 157–177). New York: Springer-Verlag.

Harris, S., & Bronner Ph.D, L. (2018). Extension of the System Development Life Cycle

(SDLC) for the Analysis of Complex Problems. International Journal of Science

Technology and Engineering, 102–107.

Hartley, D. (2009). Background. Retrieved from DIME/PMESII Community of Interest:

https://home.comcast.net/~dshartley3/DIMEPMESIIGroup/DPGroup.htm

Heller, M. C., & Keoleian, G. A. (2002, May). Assessing the sustainabilty of the US food

system: a life cycle perspective. Agricultural Systems, pp. 1007–1041. DOI:

10.1016/S0308-521X(02)00027-6.

71

Helmecke, M. R., Elmendorf, S. L., Kent, D. L., Pauze, D. K., & Pauze, D. R. (2014).

Measles Investigation: A Moving Target. American Journal of Infection Control,

42, 911–915. DOI: 10.1016/j.ajic.2014.04.024.

Hungerford, D., Cleary, P., Ghebrehewet, S., Keenan, A., & Vivancos, R. (2013). Risk

Factors for Transmission of Measles During an Outbreak: Matched Case - Control

Study. Journal of Hospital Infection, 86, 138–143.DOI: 10.1016/j.jhin.2013.11.008

IDC. (2014). Executive Summary Data Growth, Business Opportunities, and the IT

Imperatives. Retrieved from The Digital Universe of Opportunities: Rich Data and

the Increasing Value of the Internet of Things April 2014:

http://www.emc.com/leadership/digital-universe/2014iview/executive-

summary.htm

Institute of Medicine (IOM). (1988). The Future of Public Health. Washington, DC: The

National Academic Press. DOI: 10.17226/1091.

Jackson, D. (2002, February). Micromodels of Software: Lightweight Modelling and

Analysis with Alloy. Cambridge, MA.

Jackson, D. (2012). Software Abstractions. Cambridge: The MIT Press.

Jones, C. (1998). Estimating Software Cost. New York: McGraw Hill.

Jones, C. (2005, 04). Software Cost Estimating Methods for Large Projects. CROSSTALK

The Journal of Defense Software Engineering, 8-12. Retrieved from Jones, Capers.

"Software Cost Estimating Methods for Large Projects." CrossTalk: April, 2005.

<www.stsc.hill.af.mil/crosstalk/2005/04/0504Jones.html>

72

Kassel, G., & Smith, G. (2001). Model Checking Object-Z Classes: Some Experiments

with FDR. Proceedings Eighth Asia-Pacific Software Engineering Conference (pp.

445–452). Macao, China: IEEE. DOI: 10.1109/APSEC.2001.991453.

Khurana, G., & Gupta, S. (2012). STUDY & COMPARISON OF SOFTWARE

DEVELOPMENT LIFE CYCLE MODELS. International Journal of Research in

Engineering & Applied Sciences, 2(2), 1513–1521.

Kumar, N., Zadgaonkar, A. S., & Shukla, A. (2013, March). Evolving a New Software

Development Life Cycle Model 2013 with Client Satisfaction. International

Journal of Soft Computing and Engineering (IJSCE), 3(1), 2231–2307.

Laney, D. (2001). 3D Data Management: Controlling Volume, Velocity, and Variety .

Stamford: META Group Inc.

Larman, C., & Basili, V. R. (2003, June). Iterative and Incremental Development: A Brief

History. IEEE Computer Society, pp. 1–11. DOI: 10.1109/MC.2003.1204375.

Leau, Y. B., Loo, W. K., Tham, W. Y., & Tan, S. F. (2012). Software Development Life

Cycle AGILE vs Traditional Approaches. IPCSIT, 37, 162-167.

Lehman, M. M. (1969). The Programming Process. Yorktown Heights: IBM Research.

McLean Ph. D, H. (2012, April 20). Measles — United States, 2011. Centers for Disease

Control and Prevention Morbidity and Mortality Weekly Report, 61(15), pp. 253–

257. Retrieved from

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6115a1.htm

73

Nagpal, K., & Chawla, R. (2012). Improvement of Software Development Process: A New

SDLC Model. International Journal of Latest Research in Science and Technology,

1(3), 217–224.

National Academy of Engineering. (2018, February). 14 Grand Challenges for

Engineering in the 21st Century. Retrieved from NAE Grand Challenges for

Engineering: http://www.engineeringchallenges.org/challenges.aspx.

Newman, B. (2013, March 27). Waterfall Method of Software (web) Development.

Retrieved from Agileana: http://www.inqbation.com/waterfall-method-of-

software-web-development/.

NIH, N. I. (2002). Mobilizing African American Communities to Address Disparities in

Cardiovascular Health: The Baltimore City Cardiovascular Health Partnership

Strategy Development Workshop Summary Report. Washington, DC: National

Institutes of Health.

Numrich, S. K., & Tolk, A. (2010). Challenges for Human, Social, Cultural, and

Behavioral Modeling. SCS M&S Magazine, 1–9.

OMG, O. M. (2015). Unified Modeling Language™ (UML®) Resource Page. Retrieved

from Object Management Group: http://www.uml.org/

Park, K., Ali, M., & Chevalier, F. (2011, July). A Spiral Process Model of Technological

Innovation in a Developing Country: The Case of Samsung. African Journal of

Business Management, 5(13), 5162–5178. DOI: 10.5897/AJBM10.1370

Ragunath, P., Belmourougan, S., Davachelvan, P., Kayalvizhi, S., & Ravimohan, R.

(2010). Evolving A New Model (SDLC Model-2010) For Software Development

74

Life Cycle (SDLC). International Journal of Computer Science and Network

Security, 10(1), 112–119.

Rouse, M. (2007, February). Waterfall Model. Retrieved from Tech Target:

http://searchsoftwarequality.techtarget.com/definition/waterfall-model.

Rouse, M. (2018, 05 01). Definition software development life cycle (SDLC). Retrieved

from Search Software Quality:

http://searchsoftwarequality.techtarget.com/definition/systems-development-life-

cycle.

Salleh, M., Idzwan, M., Rosman, M., Rahimi, M., Raja, Y., & Yusoff, Z. (2011). Managing

students' electronic disciplinary records via E-merit web content management

system. IEEE Conference on Open Systems, ICOS, 261–266. DOI:

10.7763/JACN.2015.V3.175.

Saunders, C. (2014). Project Management. Retrieved from

www.ou.edu/class/mis5003/mbapm.ppt

Seema, & Malhotra, S. (2012). Analysis and tabular comparison of popular SDLC models.

International Journal of Advances in Computing and Information, 277–286.

Sharma, S., Sarkar, D., & Gupta, D. (2012). Agile Processes and Methodologies: A

Conceptual Study. International Journal on Computer Science and Engineering,

4(5), 892–898.

Shelly, G. B., & Rosenblatt, H. J. (2012). System Analysis and Design 9th ed. Boston:

Course Technology.

75

Shen, A., & Vereshchagin, N. (2002). Basic Set Theory. Providence: American

Mathematical Society.

Shevin-Coetzee, M. (2016, February 6). The Labyrinth within Reforming the Pentagon's

Budgeting Process. Retrieved from Center for a New American Security:

https://www.cnas.org/publications/reports/the-labyrinth-within-reforming-the-

pentagons-budgeting-process.

Solar, O., & Irwin, A. (2007). A Conceptual Framework for Action on the Social

Determinants of Health. WHO Commission on Social Determinants of Health.

Spark, G. (2015). Systems Enterprise Architect (EA) Software EAP File UML. Retrieved

from http://www.sirc.org.

Spivey, J. (1989). The Z Notation, A Reference Manual. New York: Prentice Hall.

Szalvay, V. (2004). An Introduction to Agile Software Development. Danube Technologies

Inc.

Tagoug, N. (2012). Maintainability Assessment in Object-oriented System Design. IEEE.

Tarkan, S. (2009). The Formal Specification of a Kitchen Environment. University of

Maryland.

Thierauf, R. J. (1999). Knowledge Management Systems for Business. Westport: Quorum

Books.

Tsang, C. H., Lau, C. S., & Leung, Y. K. (2005). Object Oriented Technology 3rd ed.

London: McGraw-Hill.

Tutorialspoint.com. (n.d.). SDLC - Agile Model. Retrieved from TutorialsPoint Simple

Easy Learning: http://www.tutorialspoint.com/sdlc/sdlc_agile_model.

76

Vivancos, R., Keenan, A., & Farmer, S. (2012, July). An Ongoing Large Outbreak of

Measles in Merseyside, England, January to June 2012. Euro Surveill, p. 20226.

DOI: 10.2807/ese.17.29.20226-en.

Weiss, W. R. (2008, October). An Introduction of Set Theory. Retrieved from

http://www.math.toronto.edu/weiss/set_theory.pdf.

Weston, K., Dwyer, D., & Ratnamohan, M. (2006). Nosocomial and Community

Transmission of Measles Virus Genotype D8 Imported by a Returning Traveller

from Nepal. Commun Dis Intell, pp. 358–365.

Winter, K., & Duke, R. (2002). Model Checking Object-Z Using ASM. In M. Butler, L.

Petre, & K. Sere, Integrated Formal Methods Lecture Notes in Computer Science,

vol 2335 (pp. 165–184). Berlin, Heidelberg: Springer.

Wood, J., & Silver, D. (1995). Joint Application Development. New York: John Wiley &

Sons, Inc.

Woodcock, J., & Davies, J. (1996). Using Z: Specification, Refinement, and Proof. Upper

Saddle River: Prentice Hall, Inc.

