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1 Introduction  
Tobler’s [1] First Law of Geography states that everything is related to everything else but nearby objects are 
more related than distant objects. Thus, geography provides a way to characterize the space where any given 
phenomena occurs. In this paper, we hypothesize that by combining traditional network attributes with geospatial 
knowledge, we can derive a much more robust reputation scoring model for IP addresses. One example where 
this is particularly useful is when there is only header based network data due to encryption of traffic.  
We propose a novel approach that combines traditional domain knowledge with additional contextual knowledge 
in the form of geospatial attributes from multiple independent sources, leading to a much more robust anomaly 
detection model for the cybersecurity domain. We argue that geo-contextual features are useful when there is 
limited session data such that a blacklisted IP address operates in a stealth mechanism. While network encryption 
is the most effective way to attain data security and privacy, attacks against encrypted protocols are increasing 
significantly. Decryption of such network information not only minimizes security and privacy, it is also 
extremely expensive and thus not a practical solution for cyberattack detection and prevention. Attacks have 
exploited this by seriously undermining the ability of traditional Network Intrusion Detection Systems (NIDS), 
which are heavily dependent on inspecting the network payload and thus are not able to inspect encrypted network 
sessions effectively. In that regard, a network analyst has to largely depend on unencrypted observables such as 
an IP address. Additionally, when the session is encrypted, there is little network information available to decide 
if the IP address is bad. On the other hand, Host Intrusion Detection Systems (HIDS) are host-centric to monitor 
and audit logs, thus making their implementation costlier as well as operating system specific. More so, the 
efficiency of HIDS is constrained in real-time, hence unable to circumvent malicious hosts on a network.  
 
With sophisticated attacks increasing the vulnerability of networks, efforts are directed to the utilization of 
blacklists, a list of IP addresses whose reputation ‘describes’ to be malicious. However, dependency on blacklists 
is a constrained approach for intrusion detection and prevention because maintaining updated lists is a challenge. 
More so, it is argued that blacklists are unreliable due to the sophisticated and relentless nature of attackers to 
disguise attack behavior by modifying features associated to known malicious IP addresses. More than often 
dealing with an IP address whose reputation is unknown, becomes challenging. Unlike signature-based IDS that 
rely on pre-existing knowledge of previous attack signatures, we propose a proactive approach to detect malicious 
IP addresses based on an anomaly-based IP reputation scoring model. This is because anomaly-based approaches 
are more effective in detecting new attacks characterized by deviations in the network behavior caused by a 
cyberattack.  
 
Therefore, we propose supplementing the little-known network information about the IP address with contextual 
data, specifically augmenting geo-contextual knowledge to traditional network knowledge to create geo-
augmented network data. We argue that this provides the meta-knowledge necessary to make an IDS more robust 
and expand a network analyst’s ability to make better decisions. Our proposed model utilizes combined similarity 
to detect Geo-Augmented Network Similarity (GeoNet) in IP behavior. Furthermore, our model applies 
Reputation Scoring for IP addresses in real time based on the derived geo-augmented network knowledge 
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(GeoNet-RS). Our scoring model will carry out the following functions: i) take an IP address, ii) extract IP-related 
features and the geo-location of the IP address, iii) augment IP-related data with geo-contextual data, iv) generate 
similarity score for an IP address based on baseline model and v) generate a reputation score for an IP address. 
Network analysts can use this reputation score as supplementary information to decide if this IP address needs to 
be blacklisted. In general, in an attack scenario when the analyst is deluged with data it is essential to provide 
them with augmented information, which can help them better evaluate active threats. 
 
Around the world, Information and Communication Technology (ICT) is the driver of various social, economic, 
demographic and governmental changes. With these developments in play, cybersecurity threats can no longer 
be viewed in isolation and solely with traditional cybersecurity features. CrowdStrike’s 2015 Global Threat 
Report surfaces that today’s global threats are being led by more geopolitical and economic events around the 
world [2]. The key driver for a global cybersecurity activity has now shifted from disparate activities carried out 
by individuals, groups and criminal gangs pursuing short-term gains to skilled attackers inspired by strategic 
global issues. In 2013, Microsoft explored the various technical and non-technical factors that contribute to 
cybersecurity [3] to show that the prevalence of malware correlates with a variety of economic, social 
development, ICT policy and technological factors of a country. The US Army Training and Doctrine Command 
(TRADOC) states that the virtual environment consists of four different types of network layers - data, device, 
network, and geographic layers [4]. Each of these four layers has nodes, which can be mapped individually to a 
geographic location. Thus, geography provides a common ground that serves as the foundation required to 
establish shared situational awareness amongst all these four layers. We are convinced that geographical context 
matters when assessing the cybersecurity landscape. A much more robust IP reputation scoring model would be 
developed from boosting traditional network knowledge with geo-contextual information.  

1.1 Motivation Example: 
Consider a motivating example illustrated in Figure 1 that explains the need for geo-augmentation in the 
cybersecurity domain. Suppose there are two distinct network sessions involving two IP addresses x and y 
originating in different parts of Country A from the Eastern European region. If the network administrator has 
to make a decision whether to blacklist these IP addresses solely on the basis of limited network information 
available, he/she will have a narrow perspective.  
 

 
 
Figure 1: Geo-Contextual Scenario 
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On the other hand, if the network administrator gets additional knowledge that many neighboring countries in 
some regions in Eastern Europe host a higher proportion of malware attacks [5] worldwide because of a 
combination of geo-contextual factors such as reasonable computing infrastructure combined with rampant 
corruption that allows these malware attackers to flourish, this additional situational awareness expands the 
network analyst’s ability to make better decisions. However, this information is not enough because not all IPs 
from Country A are malicious IPs. Now the network analyst is provided with additional information that the 
Internet Service Provider (ISP) of IP address x, who is within Country A is in fact a malicious ISP that has hosted 
a major portion of cybercrime worldwide. This additional network information along with geo-contextual 
information enables the network analyst to confidently blacklist IP address x and not necessarily blacklist IP 
address y. Therefore, the geo-augmentation of the network information allowed the network administrator to look 
at these two IP addresses with a much different perspective. 
 
This example makes a strong case of augmenting geo-contextual knowledge in the cybersecurity domain. Given 
that certain locations such as rich countries or big cities are likely to be targets of malware activity compared to 
poor countries or small cities, by observing just a single geographical feature such as country or city, we lose the 
ability to explain why certain locations pose as better targets or hosts for malware activity. Therefore, we examine 
multiple geo-contextual features and argue that overall such a holistic view can explain a key part of the cyber 
environment and should be a key ingredient of predictive cybersecurity modeling.  
 
With an aim to group similarly behaving IP addresses with respect to their network behavior and geo-contextual 
information group, this study proposes clustering to generate a baseline model that is used by the reputation 
scoring model for comparing an IP address. The assumption is that blacklisted IPs exhibit common malicious 
behavior and can therefore be grouped together into clusters. In real-world applications however, network data 
features are rarely homogeneous, often containing both continuous and categorical features. It becomes 
increasingly difficult to find meaningful and well-formed clusters when data has heterogeneous features. More 
so, the inclusion of meta-knowledge such as geo-contextual features amplify complexity of clustering using 
heterogeneous features which limits traditional clustering algorithms. We bridge this gap by utilizing an improved 
clustering algorithm called unified clustering that combines categorical and continuous features to generate well-
formed clusters [6]. Our novel reputation scoring approach takes an IP address, compares it against a clustering-
based baseline model and produces a trustworthiness score through probabilistic scoring. 

1.2 Scenarios with IP Spoofing:  
One potential challenge to our proposed reputation model is the vulnerability of an IP address to be spoofed such 
that an attacker can illicitly impersonate another host by using a forged IP address. We envision our proposed 
model to work as a supplementary model that bolsters a network analyst’s existing restricted approach due to 
network encryption. The proposed IP reputation model should not be used for network traffic with high 
probability of being spoofed, for example in UDP traffic. Even in such cases, our model has merit unlike 
signature-based methods that are dependent on known signatures. We argue that our proposed model is not 
restricted to network information but leverages the utilization of geo-contextual information as well, potentially 
enhancing detection accuracy. Therefore, our model is based on assigning a reputation score to an IP address 
based on similarly behaving IP addresses which includes spoofed IP addresses as well. 
 
Contributions: This study has implications for anomaly detection for cybersecurity applications, especially when 
there is limited information about the network session or lack of historical data for the network features. Thus, 
this study’s contributions are three-fold; 

a) First, we show that our approach of augmenting geo-contextual features to network features produces 
an improved and robust baseline model for evaluating an IP address in real time. Our approach is not 
restricted to network information, but leverages information from multiple geo-contextual viewpoints, 
thus providing a holistic view and potentially enhancing detection accuracy. 
b) Second, our baseline model utilizes unified clustering on heterogeneous features to detect similarity 
in network behavior. We show that using unified clustering outperforms traditional clustering 
techniques, particularly k-means clustering. 
c) Third, we propose a novel reputation scoring approach that compares an IP address in real time, against 
the proposed baseline model and produces a reputation score through probabilistic scoring. Our approach 
has implications in the domain of anomaly detection for encrypted sessions when little information is 
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available to a network analyst. Therefore, our scoring model serves the twin goals of data privacy 
preservation and anomaly detection.  

 
The rest of the paper is organized as follows:  in Section 2 we discuss related work, in Section 3 we discuss the 
system architecture and methodology, in Section 4, we present experimental results and key findings, in Section 
5, we provide a discussion and implications of our study, and lastly in Section 6, we present our conclusions and 
future work.  

2 Related Work 
In this section, we discuss the prior work pertaining to i) clustering heterogeneous features, ii) the utilization of 
geographical information in cybersecurity and ii) reputation scoring approaches for cyber security. 

2.1 Clustering Heterogeneous Features 
Clustering methods partition a set of objects into clusters such that objects in the same cluster are more similar to 
each other than objects in different clusters according to some defined criteria. Existing clustering methods such 
as k-means and its variants [7, 8] do not efficiently handle large heterogeneous datasets that contain mixed 
attributes. Such traditional clustering algorithms employ distance measures to determine similarity between data 
objects, which makes them more suitable for numerical (continuous) data. As a result, they do not work well for 
categorical data due to its discrete nature. Some traditional approaches propose to convert categorical data into 
numeric values [9]. However, this does not necessarily produce meaningful results in the case where categorical 
domains are not ordered. In Ralambondrainy’s [10] study, he proposes to convert multiple category attributes into 
binary attributes, that is, using 0 and 1 to represent either a category absent or present. In turn, the binary attributes 
are treated as numeric for which k-means clustering is applied. From the perspective of clustering only categorical 
attributes, Huang and Ng [11] proposed the k-modes algorithm, which extends k-means to categorical domains 
whilst preserving the efficiency of the k-means algorithm. Huang & Ng [11] argues that the biggest advantage of 
k-modes is that it is scalable to very large data sets. 
 
In an attempt to cluster mixed datasets, other studies apply a split-based approach where the mixed dataset in 
divided into two datasets; one containing continuous attributes and another containing categorical attributes. Here 
a specific clustering technique suitable to each partition is applied and the intermediate results are integrated [12, 
13, 14]. In such cases, the clustering outcomes will depend on the individual clustering techniques applied to 
different datasets. 
 
On the other hand, a number of studies have proposed efficient approaches for clustering mixed data together 
such as [15, 16, 17, 18, 19]. Specifically, Huang [15] proposed the k-prototype algorithm to address the problem 
of clustering large mixed datasets. In their study, they combine k-means and k-modes by applying it to the 
continuous and categorical attributes respectively. However, the effects of large high dimensional data on 
clustering outcomes is still an open challenge. Thus, the quality of clusters formed is still questionable.  Overall, 
while previous studies have proposed various approaches for handling mixed data clustering, few methods attempt 
to cluster heterogeneous mixed data together. Additionally, the similarity measures proposed especially for 
categorical data may not truly represent the inherent nature of the datasets involved. 

2.2 Geo-contextual Perspective on Cybersecurity  
Several studies have examined the role of geographical contexts in cyber threat assessment [5, 20, 21]. For 
example, Mezzour [5] points to the role of technical, political, economic and social factors in a country 
characterized by computing and monetary resources, cyber security expertise, wealth of residents, computer 
piracy, international relations, to mention a few. [5, 21] assert that rich countries are likely to be targets of malware 
activity compared to poor countries. On the other hand, significant computing resources coupled with corruption 
lend great support to cyber-criminal activity. While [5] points to specific reasons for international variation in 
initiating and directing attacks, [20] assesses the interdependence of cyberattacks between countries. The 
approach described in [20] takes into consideration that geographical proximity is correlated with network 
security risks. Most of these studies have largely focused on discovering the relevant social, economic and 
technological indicators of a country that influence global cybersecurity. However, none of these studies have 
leveraged this into the context of devising a predictive cybersecurity model that can potentially be useful in 
detecting and preventing cyberattacks.  
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2.3 Reputation Scoring  
The concept of reputation refers to an opinion or belief held about something. A number of studies have proposed 
approaches for reputation scoring of IPs in computer networks. In order to deduce the reputation scores, features 
are compared against those of known signatures [22, 23, 24, 25]. For example, Renjan et al. [25] propose a vector 
space approach that uses euclidean distance to compare features of an IP address to those of blacklisted IPs. 
Interestingly, Antonakakis et al. proposes a dynamic approach to reputation scoring that adjusts the reputation 
score according to the level of maliciousness [24].  
On the other hand, [26, 27], highlight limitations associated with dependence on blacklists, where attack 
signatures may change and thus render blacklists inefficient. [26] describes IP reputation as a concept of rating a 
host based on their past actions and comparing high level information such as domain names to a group of hosts 
whose reputation is known. Coskun [28] proposes a clustering approach to detect groups of hosts within a network 
based on whether traffic patterns are associated with malicious or benign activity. To the best of our knowledge, 
the existing studies have focused on network related features and neglect the role of geo-contextual features in 
assessing the reputation of a host based on its geo-related characteristics. 
 

3 Methodology 
Our overall approach is categorized in two phases as illustrated in Figure 2: 

1)  Discovery phase which describes data curation, pre-processing, and baseline model generation. 
2) IP reputation scoring phase which describes extraction of network and geo-contextual information for 
an IP address and evaluation of the reputation scoring model.  

   

 
 

Figure 2: System Architecture  

 
Specifically, 2.1 (a), data curation is applied whereby seed IP addresses are collected in 2.1(i). This is followed 
by the extraction of network and geo-contextual features matching the seed IPs in Figure 2.1(ii) and combined to 
generate a geo-augmented network dataset in 2.1(iii). A baseline model is then generated using unified clustering 
where geo-augmented network similarity is determined among seed IP addresses in 2.1 (b). This is referred to as 
the discovery phase. We anticipate that the discovery phase can be useful in offline mode for static IP analysis 
using historical data. 
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Then in Figure 2.2, an IP address is ingested for which network and geo-contextual features are extracted and 
augmented to form a geo-augmented network feature set. The combined feature set is evaluated against the 
baseline model to generate a similarity match. Finally, a reputation score is determined for the given IP address. 
This is referred to as the reputation scoring phase. We anticipate that the discovery phase can be useful in an 
online mode for real-time evaluation of incoming IP addresses. We discuss these steps in detail.  

3.1 Data Curation  
During data curation, seed IP data is collected from various open proprietary IP seed data sources. This data 
consists of labelled IP addresses which are either blacklisted or whitelisted. An IP address is said to be blacklisted 
if it has a history of exhibiting malicious activity, else it is considered whitelisted. Table 1 provides a summary 
of seed IP data sources. It should be noted that our data sources are credible specifically because they update the 
lists regularly. Therefore, the status of each IP address was valid by the time of this study. In the future, we plan 
to extend this study to detect whitelisted IPs that are linked to malicious behavior such as installing additional 
malware, among other anomalous behavior.  
 
For each seed IP address, its network features are also extracted to create what we refer to as a network data set 
consisting of categorical features. The network data for each IP is mapped and integrated across the different data 
sources giving a combined total of 59 attributes for which 41 attributes are unique across all the network datasets. 
Table 1 provides a summary of network data sources (see Appendix A.1 for full list of features). 
 
Following this, geo-contextual features are extracted from multiple city-level datasets from United Nations 
Statistics Division (UNSD) [35, 36, 37, 38, 39, 40, 41, 42] to generate a geo-contextual feature set consisting of 
predominantly continuous features. Our argument is that geo-contextual features are useful when there is limited 
session data such that a blacklisted IP address operates in a stealth mode. Therefore, we augment network data 
with geo-contextual features from multiple independent sources to increase and provide additional information to 
further characterize IP addresses. We compare the our proposed approach for geo-augmented network data to 
network data. Table 1 provides a summary of the geo-contextual data sources (see Appendix A.2 for full list of 
features). 
 

Table 1: Summary of Data Sources 
 

Data Source  Dataset Name Open/Paid Number of 
Features 

A. IP Seed Data 
Sources 

Blacklisted IPs: Cisco Talos [43, 44] Open 
NA (Seed data 

consists of the list of 
blacklisted and 
whitelisted IP 

addresses without 
IP-related features) 

Blacklisted IPs: CINS Score [45] Open 

Blacklisted IPs: MyIP [46] Open 

Blacklisted IPs: FireHol [47] Open 

Blacklisted IPs: Greensnow [48] Open 

Whitelisted IPs: OpenDNS [49] Open 

B. Network Data 
Sources 

Maxmind ASN & City Lite Databases [50] Paid 10 

Maxmind GeoIP2 Precision - Insights [51] Open 26 

Shodan [52] Open 17 

Python Lib [53] Open 5 

SpamHaus [54] Open 1 

Total Network Features - 59 (*41 Unique) 

Gender dataset [35] Open 3 
Communication Infrastructure dataset [36] Open 8 
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C.  Geo-
Contextual Data  

Sources 

Water System dataset [37] Open 5 
Fuel dataset [38] Open 13 
Housing dataset [39] Open 11 
Toilet dataset [40] Open 17 
Waste Disposal dataset [41] Open 12 
Living Quarters dataset [42] Open 7 

Total Geo-Contextual Features   76 
 

Using semantic mapping, the geo-contextual and network data are horizontally appended based on a common 
geographic feature, specifically ‘city’ that exists in both data representations. For example, given the city ‘Delhi’ 
in the geo-contextual dataset and ‘New Delhi’ in network dataset, the latter is semantically mapped to the former 
based on the city feature. The result is a network dataset augmented with geo-contextual features referred to as a 
geo-augmented network dataset. Hence, this consists of a combined feature vector of both continuous and 
categorical features. In this study, we evaluate our proposed model for network intrusion detection in the presence 
and absence of geo-contextual data.  

3.2 Data Preprocessing 
First, we identify missing values for which we apply statistical measures specifically, mean.  For cases where a 
specific feature with missing values does not provide enough data to deduce missing values, we apply the values 
of associated features, particularly for geo-contextual features. For example, in order to determine the number of 
females in New York, we utilize the number of females in USA given that New York is geographically located 
within USA. On the other hand, we ignore any data instances where the city in the network dataset cannot be 
deduced or matched with the geo-contextual feature set.   
 
We then apply feature transformation on each categorical feature (found in network feature set) using one-hot 
encoding where a categorical feature is transformed into a binary feature vector by expanding feature values. For 
example, let us consider the categorical feature - ‘country’ with possible values USA, India or China. The country 
feature is transformed into three binary features representing each country value such that an IP address will have 
a ‘yes’ or ‘no’ value for USA, India and China respectively.  
 
Additionally, data transformation using a common naming convention is applied. For example, given a city name 
‘Delhi’ versus ‘New Delhi’, we assign a common name ‘Delhi’. Then, for all continuous features, we apply min-
max normalization to generate data values within 0 to 1 range. We also apply equal frequency binning to ensure 
a class balance between blacklisted and whitelisted IPs. 
 
Furthermore, the augmentation of network and geo-contextual data, and data transformation of categorical 
features into binary vectors, increases the feature space, thus generating high dimensional data. Thus, feature 
selection is applied specifically using pearson's correlation which is a bivariate analysis that measures the strength 
of association between any selected feature and the class label (blacklisted/whitelisted). It should be noted that 
for the categorical variables that are converted to binary attributes (using one-hot encoding), an overall correlation 
for binary attributes is arrived at via a weighted average [29]. Overall, attributes are ranked based on their 
individual evaluations from which a subset of top ranked attributes are selected. In Table 4 (section 4), we provide 
a summary of the count of geo-augmented features before and after feature selection. 
 
We provide an illustration of our data pre-processing step in the following walk-through example. 
 
Walk-Through Example: 
 
First, we explain the data pre-processing journey that a typical raw network dataset undergoes before it is ready 
for analysis in Figure 3.  
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Figure 3: A Journey of Record Pre-Processing 
 
Given a network dataset in Figure 3 which consists of the following; 
● 89,946 seed IP Addresses - 20,000 whitelisted IPs and 69,946 blacklisted IPs. 
● Each IPs is matched to a set of geo-contextual features based on the city. Out of 89,946 IPs, only 16,125 IPs 

have a city match between the network dataset and geo-contextual dataset. This therefore generates a geo-
augmented network dataset with only 16,125 IPs out of 89,946 IPs that we first began with. 

● Given 16,125 IPs - 4,662 whitelisted and 11,463 blacklisted IPs, thus indicating an imbalanced number of 
blacklisted and whitelisted IPs. In order to minimize class bias, random sampling is applied on the 16,125 IPs 
to obtain a balanced number of whitelisted and blacklisted IPs.  

● The resulting sample consists of 9,469 IPs - 4,662 whitelisted and 4,807 blacklisted IPs to be utilized for 
analysis. 

 
Next, we explain feature pre-processing for a geo-augmented network dataset consisting of the final selection of 
whitelisted and blacklisted IPs in Figure 4. 
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Figure 4: A Journey of Feature Pre-Processing 

Given a geo-augmented network dataset in Figure 4 which consists of the following; 
● There are 117 raw data features – 41 network features and 76 geo-contextual features.  
● Following usability, sparsity and redundancy checks, 83 features are selected - 7 network features and 

76 geo-contextual features.  
● Given all the network features are categorical, the 7 network features are converted into binary features 

using one-hot encoding thus generating 3,924 network features.  
● Then given all the geo-contextual features are continuous, normalization is performed to generate values 

within 0 to 1 range. The resulting feature set consists of 4,000 features - 3,924 network features and 76 
geo-contextual features.  

● Feature selection is applied on the 4,000 features using pearson's correlation, and thus generating a 
feature subset of approximately 1,520 features which is based on their ranked evaluation of each feature 
to the class feature (blacklisted/whitelisted).  

 

3.3 Geo-Augmented Network Similarity (GeoNet) using Unified 
Clustering  
This study proposes unified clustering where we apply clustering to heterogeneous features (both continuous and 
categorical) in the geo-augmented network dataset using a unified distance to determine the clustering cost using 
a dissimilarity score between data objects. Our proposed approach leverages [6, 31], where they determine a 
similarity score.  
 
First, we determine the similarity catSim between categorical features using jaccard coefficient as: 

 
 catSim (i, j) =  

| i ∩ j |
|i ∪ j|

 
(1) 
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Next, we determine the numeric distance numDist between continuous features using euclidean distance as: 
 

 

numDist (i, j) = ��(𝑖𝑖𝑞𝑞

𝑝𝑝

𝑞𝑞

− 𝑗𝑗𝑞𝑞)2 

(2) 

 
We then convert the categorical similarity to a categorical distance catDist as: 
 

 CatDist (i, j) =  (1 − catSim) 
 

(3) 

 
Finally, we aggregate the categorical and continuous data distances to generate the dissimilarity score d(i, j) as: 

  d(i, j) =  numDist(i, j) + catDist (i. j) (4) 
 
Next, using the elbow method to determine Ideal k, where k is the number of clusters [32, 33]. The elbow method 
is a well-known decision approach based on the observation that increasing the number of clusters can help to 
reduce the sum of within cluster variance of each cluster [32]. In this study, we apply the clustering cost, which 
is the overall dissimilarity score for the clustering to determine k. In the future, we plan to extend this study to 
explore other methods such as silhouette coefficient, gap statistic and cross validation to determine the number 
of clusters. Algorithm 1 describes unified clustering in which the initial cluster centroids are randomly selected. 
We determine cluster assignments iteratively based on the dissimilarity score between IP addresses and the cluster 
centroids to which we assign each IP address to a cluster with the minimum dissimilarity score (see equation 4).  

ALGORITHM 1: Unified Clustering 
 
Input:  n: total number of instances. 

k: number of clusters to be formed. 
IPList: List of IPs {i1,i2,…in} containing continuous and categorical attributes.  
centroidList: initial list of cluster centroids {c1, c2...ck } 
clusterList: List of clusters {C1, C2,...Ck} 

Require: k >= 2 

For all instance ii in instancesList, do 
       For all centroid ci in centroidList, do 
 Determine dissimilarity score d between ii and ci. 
 Assign ii to the cluster such that di is minimum. 
        End for 
End for 
Repeat 
For all clusters Ci  recalculate centroid, do 
       Reassign the data instances to new clusters based on their original and new dissimilarity scores 
End for 

 

 
Overall, cluster evaluation is based on two intrinsic methods, that is; i) clustering cost, which measures the 
combined dissimilarity scores for all clusters and ii) silhouette coefficient, which measures the cohesiveness and 
separation of clusters [32]. However, in both evaluation metrics, it is important to note that the distance measure 
applied is based on the dissimilarity score (see equation 4) in order to account for both continuous and categorical 
attributes.  

 
Our proposed model utilizes geo-augmented network data to detect similarity in IP behavior, a concept we refer 
to as Geo-Augmented Network (GeoNet) Similarity using Unified Clustering. Prior studies using unified 
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clustering demonstrate promising results for datasets with heterogeneous features [6, 30, 31]. We also compare 
unified clustering to k-prototype [15], a method commonly utilized in clustering heterogeneous feature sets 
containing categorical and continuous attributes. For comparison to network data, which consists only of 
categorical attributes, we compare against k-modes [11]. 
 
Furthermore, given that the data sources used in this study consist of labelled data, and therefore provide ground 
truth, we also validate the cluster outcomes using; i) cluster homogeneity, which measures the purity of a cluster 
in a clustering, ii) cluster completeness, which requires that a clustering should assign objects belonging to same 
category (in ground truth) to the same cluster, and, iii) v-measure, which measures the harmonic mean between 
cluster homogeneity and completeness [34]. 

3.4 IP Reputation Scoring based on Geo-Augmented Network Similarity 
(GeoNet-RS) 
Based on clustering outcomes, we compare an IP address to determine the probability of it being blacklisted or 
otherwise. For this, the reputation for a given IP address is determined by generating a reputation score between 
0-1 where 1 is the highest probability of being blacklisted and 0 otherwise. In this study, we conduct a reputation 
analysis based on five reputation scoring methods, where each method employs varying parameters to determine 
the reputation score. Our proposed approach for IP reputation scoring is referred to as IP Reputation Scoring 
based on Geo-Augmented Network Similarity (GeoNet-RS). We anticipate that the discovery phase can be 
useful in an online mode for real-time evaluation of incoming IP addresses. 
 
Each reputation scoring method takes the following baseline inputs:  

• k: Number of clusters 
• IPList: IP addresses {i1 ,i2,…in} for which the reputation score needs to be calculated. 
• blackProbabilityList: List of each cluster’s black probability {b1, b2,…bk} where black probability 

identifies the composition of blacklisted IPs in a given cluster. For example, if a given cluster ci has 40% 
blacklisted IPs, and then its blackProbability bi is 0.40. 

• centroidList: List of each cluster’s centroid {c1, c2,…ck}. The scoring model calculates the distance 
between a given IP instance ii from each of the cluster centroids {c1, c2,…ck} to create a dissimilarityList. 

• dissimilarityList: List of dissimilarity scores {d1, d2,…dk} of a given IP instance i1 from each of the 
cluster centroids. 

 
Consider a scenario shown in Figure 5 that further explains the inputs.   
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Figure 5: Reputation Scoring Scenario 

 
Assume k is 3 where k is the total number of clusters generated from the clustering phase. i1 is an IP instance for 
which the reputation score is to be determined. Given that cluster c1 has 100% blacklisted IPs and thus black 
probability b1 is 1. The centroid of cluster 1 is c1. The scoring model will calculate the distance d1 of i1 from c1. 
Similarly, given c2 has 40% blacklisted IPs and thus b2 is 0.40. The centroid of cluster 2 is c2. The scoring model 
will calculate distance d2 of i1 from c2. Finally, the respective values are determined for cluster 3. For this example, 
blackProbabilityList is {b1, b2, b3}, centroidList is {c1, c2, c3} and dissimilarityList is {d1, d2, d3}. 

 
Using the baseline inputs above, we describe the proposed five reputation scoring methods along with their 
algorithmic representations. In Table 2, we provide an overview of the scoring methods as used in this study, 
followed by a description of each method. 
 

Table 2: Overview of Reputation Scoring Methods 
 

Algorithm   Method Description 

1 GeoNet-RS-C Black Probability of Closest cluster 
2 GeoNet-RS-AC Average of Black Probabilities of x Closest clusters 
3 GeoNet-RS-PC Product of Black Probabilities of x Closest clusters 
4 GeoNet-RS-WB Weighted Average based on Blacklisted Probability 
5 GeoNet-RS-WD Weighted Average based on Distance 

 
Black Probability of Closest Cluster 
Algorithm 2 illustrates that given k clusters, the reputation score of an IP instance ii is the black probability bi of 
the closest cluster, where the closest cluster is one whose centroid ci has the shortest distance di from ii.  
 

ALGORITHM 2: Black Probability of Closest Cluster (GeoNet-RS-C) 
 
Input: k: Number of clusters 

IPList: IP addresses {i1 ,i2,…in}  
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blackProbabilityList: List of each cluster’s black probability {b1, b2,…bk}  
centroidList: List of each cluster’s centroid {c1, c2,…ck}.  
dissimilarityList: List of dissimilarity scores {d1, d2,…dk} of a given IP instance i1 from each of the 
cluster centroids. 

 
Output: Reputation Score s for each IP address ii. 
 

For each ii in IPList, do 
Extract network features  
Add the geo-contextual features to the network features to form geo-augmented network feature 
vector ii 
Determine dissimilarity score di between ii and each ci in centroidList 
Find minimum dissimilarity score min(di) to ii. 
Set Reputation score s = black probability bi for ci with min(di) to ii  

End for 
Return Reputation Score s  

 
 
Average of Black Probabilities of x Closest Clusters  
Algorithm 3 illustrates that given k clusters, the reputation score of an IP instance ii is the average of the black 
probabilities {b1,b2,…bx} of x closest clusters where x closest clusters are the clusters whose centroids ci have the 
shortest distance di from ii. x is determined empirically by iterating over different values of x ranging from 1 to n 
and is thus user defined.  
 

ALGORITHM 3: Average of Black Probabilities of x Closest Clusters (GeoNet-RS-AC) 
 
Input: k: Number of clusters 

IPList: IP addresses {i1 ,i2,…in}  
blackProbabilityList: List of each cluster’s black probability {b1, b2,…bk}  
centroidList: List of each cluster’s centroid {c1, c2,…ck}.  
dissimilarityList: List of dissimilarity scores {d1, d2,…dk} of a given IP instance i1 from each of the 
cluster centroids. 

 
Output: Reputation Score s for each IP address ii. 
 

For each ii in IPList, do 
Extract network features  
Add the geo-contextual features to the network features to form geo-augmented network feature 
vector ii 
Determine dissimilarity score di between ii and each ci in centroidList 
Given x closest clusters, where x ranges from 1 to n  
For each x,  

Get average of black probabilities of x closest clusters. Iterate over different values of 
x. 

Set Reputation score s = average black probability bx for cx with min(dx) to ii 
End for  

End for 
Return Reputation Score s  
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Product of Black Probabilities of x Closest Clusters 
Algorithm 4 illustrates that given k clusters, the reputation score of an IP instance ii is the product of the black 
probabilities {b1,b2,…bx} of x closest clusters. This approach is essentially similar to that described in Algorithm 
3, but unlike the average, it takes on product of the black probabilities of the x closest clusters.  
 

ALGORITHM 4: Product of Black Probabilities of x Closest Clusters (GeoNet-RS-PC) 
 
Input: k: Number of clusters 

IPList: IP addresses {i1 ,i2,…in}  
blackProbabilityList: List of each cluster’s black probability {b1, b2,…bk}  
centroidList: List of each cluster’s centroid {c1, c2,…ck}.  
dissimilarityList: List of dissimilarity scores {d1, d2,…dk} of a given IP instance i1 from each of the 
cluster centroids. 

 
Output: Reputation Score s for each IP address ii. 
 

For each ii in IPList, do 

Extract network features  

Add the geo-contextual features to the network features to form geo-augmented network feature 

vector ii 

Determine dissimilarity score di, between ii and each ci in centroidList 

Given x closest clusters, where x ranges from 1 to n  
For each x,  

Calculate product of black probabilities of x closest clusters 

Set Reputation Score s = product of black probability bx for cx with min(dx) to ii 

End for  
End for 

Return Reputation Score s  

 
 
Weighted Average based on Blacklisted Probability   
Algorithm 5 illustrates that given k clusters, the weighted average based on blacklisted probability w(b) of an IP 
instance ii from each cluster’s centroid is determined given by: 
 

 w(b) =  
∑ (b ∗ d)k
1

∑ bk1
 (5) 

 
For example, given a dissimilarity score di of ii from ci is 0.53 and bi for the same cluster is 0.75. Thus, the 
weighted probability for ci is defined as bi * di which in this case is 0.53 * 0.75 = 0.40. We take products when 
things are mutually independent. In this case we argue that the probability of an IP being blacklisted and its 
distance from each centroid is assumed to be independent. In a more complex system dependencies would be 
mapped but that is not in the scope of this work and for simplicity we assume independence. Similarly, bi * di is 
calculated for all other clusters and the products are summed up to generate a weighted sum to determine w(b).  
 

ALGORITHM 5: Weighted Average based on Black Probability (GeoNet-RS-WB) 
 
Input: k: Number of clusters 

IPList: IP addresses {i1 ,i2,…in}  
blackProbabilityList: List of each cluster’s black probability {b1, b2,…bk}  
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centroidList: List of each cluster’s centroid {c1, c2,…ck}.  
dissimilarityList: List of dissimilarity scores {d1, d2,…dk} of a given IP instance i1 from each of the 
cluster centroids. 

 
Output: Reputation Score s for each IP address ii. 
 

For each ii in IPList, do 
Extract network features  
Add the geo-contextual features to the network features to form geo-augmented network feature 
vector ii 
Determine dissimilarity score di between ii and each ci in centroidList 
For each cluster  

Calculate Weighted Average based on Black Probability w(b)  
Set Reputation Score s = Weighted Average w(b) 

End for 
End for 
Return Reputation Score s  

 
 
Weighted Average based on Distance 
Algorithm 6 illustrates that given k clusters, the weighted average based on distance w(d) from each cluster’s 
centroid is determined as:  
 

 w(d) =  
∑ (b ∗ d)k
1

∑ dk1
 (6) 

 
This method is similar to that described in Algorithm 5, however the denominator is based on the distances from 
cluster centroids.  
 

ALGORITHM 6: Weighted Average based on Distance (GeoNet-RS-WD) 
 
Input: k: Number of clusters 

IPList: IP addresses {i1 ,i2,…in}  
blackProbabilityList: List of each cluster’s black probability {b1, b2,…bk}  
centroidList: List of each cluster’s centroid {c1, c2,…ck}.  
dissimilarityList: List of dissimilarity scores {d1, d2,…dk} of a given IP instance i1 from each of the 
cluster centroids. 

 
Output: Reputation Score s for each IP address ii. 
 

For each ii in IPList, do 
Extract network features  
Add the geo-contextual features to the network features to form geo-augmented network feature 
vector ii 
Determine dissimilarity score di between ii and each ci in centroidList 
For each cluster  

Calculate Weighted Average based on dissimilarity Score w(d)  
Set Reputation Score s = Weighted Average w(d) 

End for 
End for 
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Return Reputation Score s  
 

 
In this study, we evaluate each of the proposed reputation scoring methods based on ground truth utilizing 
accuracy, precision and recall as defined in equations 7, 8 and 9 respectively: 
 

 Accuracy =
TP + TN

TP + TN + FP + FN
 (7) 

 
 Precision =

TP
TP + FN

 (8) 

 
 Recall =

TP
TP + FP

 (9) 

 
Hence, we compare the predicted label to the actual label. Next, we present our findings.  

4 Experimental Results  
For our analysis of findings based on the proposed methods is as follows. 

4.1 Datasets 
In Table 3, we provide an overview of five network datasets generated for experimental purposes from the various 
seed IP and network data sources in Table 1. For purposes of our study, we create different sample datasets as 
shown in Table 3. It should be noted that some sample datasets are generated by combining the data sources 1, 2, 
3, & 4 as indicated in Table 3. Figure 3 provides a detailed description on the data pre-processing. Given that our 
study proposes network intrusion in a geo-contextual context, we generate 4 geo-augmented network datasets. 
We also evaluate our proposed approach on imbalanced and balanced datasets.  
 

Table 3: Summary of Network Datasets 
 

Dataset Name Source 
Original 
Number 

of IPs  

Selected  
Number 

of IPs   

% of 
Blacklisted 

IPs 

% of 
Whitelisted 

IPs 

BW-Sampled, Balanced 
 (1) Maxmind GeoIP2 

Precision - Insights (web 
service); (2) Shodan;     

(3) SpamHaus;                                                              
(4) Python 

8,136 370 51% 49% 

BW-Sampled, Imbalanced 8,136 706 94% 6% 

BW-Sampled, Large, Open 90,000 5,428 51% 49% 

BW-Sampled, Large, Paid Maxmind ASN & City 
Lite Databases 90,000 9,469 51% 49% 

 
 
Table 5 provides a summary of the count of features with geo-augmentation before and after feature selection is 
applied with respect to each dataset. The walk-through example in Figure 4 provides detailed description on the 
feature pre-processing. 
 
 

Table 5: Summary of Feature Counts for Geo-Augmented datasets 
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Total Geo-Augmented Network 
Feature Set 

Selected Features (based on 
Pearson's Correlation) 

BW-Sampled, Balanced 661 159 
BW-Sampled, Imbalanced 2150 304 
BW-Sampled, Large, Open 2644 465 
BW-Sampled, Large, Paid 4029 1503 

 
For evaluation, we compare GeoNet using unified clustering and traditional clustering techniques, specifically k-
modes and k-prototype as discussed in our methodology. Table 6 provides a summary of the clustering models 
with respect to each dataset.  
 

Table 6: Summary of Clustering Models Evaluated in the Study 
 

Dataset Name Technique Network Data Geo-Augmented 
Network Data Number of Models 

BW-Sampled, Balanced 
K-Modes x   

3 K-Prototype   x 

GeoNet    x 

BW-Sampled, Imbalanced 
K-Modes x   

3 K-Prototype   x 

GeoNet    x 

BW-Sampled, Large, Open  
K-Modes x   

3 K-Prototype   x 

GeoNet    x 

BW-Sampled, Large, Paid  
K-Modes x   

3 K-Prototype   x 

GeoNet    x 

Overall Total    4 8 12 
 

 
4.2 Determining Ideal k   
Figure 6 illustrates selection of optimal number of clusters (k) obtained using the elbow method as discussed in 
the methodology section.. We ran several experiments using the elbow method and found consistent results. 
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Figure 6: Determining k using Elbow Method 
 
In Table 7, we provide a summary of k values per dataset.  
 

Table 7: Summary of Optimal k Values Per Dataset 
 

Dataset k value 
BW-Sampled, Balanced 4 
BW-Sampled, Imbalanced 4 
BW-Sampled, Large, Open 7 
BW-Sampled, Large, Paid 7 
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4.3 Comparison of Geo-Augmented Network Data versus Network Data  
For our evaluation, we compare cluster outcomes for network datasets (without geo-contextual features) which 
consist of categorical features only and geo-augmented network datasets (with geo-contextual features) which 
consist of both categorical and continuous features. For the former we apply k-modes and for the latter we apply 
the proposed GeoNet similarity using unified clustering. Our evaluation is based on clustering cost and silhouette 
coefficient. Table 8 provides a summary of our findings. 
 

Table 8 Evaluation of GeoNet (Geo-Augmented Network Data) versus K-Modes 
(Network Data) **Best Result is denoted with Bold 

 

  Clustering Cost Silhouette Coefficient 

BW-Sampled-Balanced     

K-Modes 323 0.78 

GeoNet 18.51 0.86 

BW-Sampled-Imbalanced     

K-Modes 1489 0.67 
GeoNet 43.87 0.85 

BW-Sampled Large Open     

K-Modes 11369 0.30 

GeoNet 61.56 0.95 

BW-Sampled Large Paid     

K-Modes 14574 0.21 

GeoNet 310 0.93 
 
Our findings in Table 8 shows that augmenting network data with geo-contextual features results into significantly 
better clusters as indicated by the lower clustering cost compared to cases without geo-augmentation. This is 
observed across all datasets where GeoNet outperforms k-modes. Similarly, we observe cohesive and well 
separated clusters with GeoNet as indicated by a higher silhouette coefficient. This indicates that augmenting 
additional contextual information increases the likelihood for identifying similarity among IP instances. Overall, 
our findings clearly demonstrate that examining geo-contextual perspectives improves cluster outcomes required 
for effective intrusion detection. Hence, we claim the following: 

 
Claim I. Augmenting the network datasets with geo-contextual features improves the clustering outcomes 

 

4.4 Comparison of GeoNet versus K-Prototype for Geo-Augmented 
Network Data 
We compare our findings for GeoNet with k-prototype to evaluate specifically their performance on clustering 
heterogeneous features based on clustering cost and silhouette coefficient respectively. Table 9 provides a 
summary of our findings. 
 

Table 9 Evaluation of GeoNet versus K-Prototype for Geo-Augmented Network Data 
**Best Result is denoted with Bold 
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  Clustering Cost Silhouette Coefficient 

BW-Sampled-Balanced     

K-Prototype 56.71 0.65 

GeoNet 18.51 0.86 

BW-Sampled-Imbalanced     

K-Prototype 244.05 0.57 
GeoNet 43.87 0.85 

BW-Sampled Large Open     

K-Prototype 1102.85 0.46 

GeoNet 61.56 0.95 

BW-Sampled Large Paid     

K-Prototype 2774.84 0.32 

GeoNet 310 0.93 
 
Our findings in Table 9 shows that GeoNet using unified clustering significantly outperforms k-prototype 
clustering when evaluated on geo-augmented network data across all datasets. This is portrayed by the 
significantly lower clustering costs generated thus forming more compact clusters. In the same way, we observe 
cohesive and well-separated clusters with GeoNet as indicated by a higher silhouette coefficient. This further 
indicates that GeoNet using unified clustering handles large heterogeneous data well. This is therefore useful in 
detecting and assessing cyberthreats in massive datasets. For this, we make the following claim: 
 
Claim II. For datasets with heterogeneous features, Unified Clustering is the best baseline model. 

4.5 Ground Truth Evaluation for Geo-Augmented Network based 
Similarity 
We also evaluate cluster outcomes for all models using cluster homogeneity, completeness and v-measure to 
evaluate the purity and inclusiveness of clusters [34]. Our evaluation is based on ground truth, that is the labeled 
instances of blacklisted and whitelisted IPs with respect to each dataset as it is utilized in this study. 
 
 
Table 10: Comparative Analysis of Cluster Homogeneity, Completeness and V-Measure 

for Geo-Augmented Network Data versus Network Data 
**Best Result is denoted with Bold 

 
  Homogeneity Completeness V-Measure 

BW-Sampled-Balanced       
K-Modes 0.03 0.074 0.04 

K-Prototype 0.1 0.066 0.09 
GeoNet 0.02 0.06 0.03 

BW-Sampled-Imbalanced       
K-Modes 0.6 0.4 0.5 

K-Prototype 0.03 0.03 0.03 
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GeoNet 0.1 0.05 0.1 

BW-Sampled Large Open       
K-Modes 0.9 0.4 0.5 

K-Prototype 0.23 0.10 0.13 
GeoNet 0.04 0.02 0.03 

BW-Sampled Large Paid       
K-Modes 0.6 0.2 0.4 

K-Prototype 0.06 0.07 0.063 
GeoNet 0.09 0.04 0.058 

 
Table 10 shows that overall k-modes which uses network data only, generates more homogeneous clusters when 
compared again the classes in the labelled datasets as indicated by higher homogeneity scores in the range of 0.6 
to 0.9. In contrast, the clusters generated from augmenting geo-contextual data are less homogeneous clusters as 
indicated by lower homogeneity scores of <= 0.2 observed in both GeoNet and k-prototype. It is evident that the 
clusters formed by analyzing only network data are limited to traditional intrusion detection techniques, which 
are useful when one trusts the network session data. On the otherhand, the clusters formed by analyzing geo-
augmented network data reveal concealed information about an IP address and thus pose potential in detecting 
underground attacks that operate in stealth mode such as advanced persistent threats (APTs).  
 
These observations present interesting findings and thus demonstrate the applicability of our proposed approach 
in intrusion detection to serve as a supplement when there is not enough network session data to detect similarity 
in attack behavior. It can therefore be argued that our approach accounts for the context presented by geo-
contextual features to detect cyber threats.  
 
Further, other measures like completeness and v-measure are not an ideal evaluation criterion for our approach 
and others alike, particularly when one seeks to identify unusual behavior in the network that is captured in certain 
cohesive groups of IPs based on similarity in their behavior. This also results into well-separated clusters, which 
do not necessarily match up to the class labels. It is therefore a clear indicator that some instances may not fit well 
into a given class and thus portray anomalous behavior [55]. 
 

4.6 Ground Truth Evaluation for IP Reputation Scoring  
In this section, we extend our analysis to evaluate the IP reputation scoring for clustered IPs particularly based on 
GeoNet. We evaluate all the 5 scoring methods proposed in our methodology section (see algorithms 2 to 6). We 
compare the prediction outcomes determined by the reputation scores to ground truth (using the class labels with 
respect to blacklisted IPs). For this, we measure the accuracy. Assume one of the test IP instances in the seed data 
is 153.134.130.54. This IP address is a blacklisted IP address. Therefore, the reputation score for this IP address 
will be considered accurate if it is able to predict that 153.134.130.54 is a blacklisted IP. To minimize redundancy, 
we present findings for only a single dataset, that is, the BW-Sampled, Large, Paid (where k = 7). Also, for the 
reputation scoring methods based on x closest clusters (see Algorithm 3 and 4 respectively), x is defined as 3 in 
this case. This is because with k = 7, x was tested incrementally from 1 to 7 and the 3 closest clusters provided 
the best prediction outcomes in terms of number of correct predictions as determined by the accuracy. Figure 7 
illustrates our findings. 
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Figure 7: Evaluation of Reputation Scoring Methods (using BW-Sampled, Large, Paid) 
 
Our findings in Figure 7 indicate that when examining IP instances, considering the weighted average based on 
the distance (GeoNet-RS-WD) produces the IP reputation score with the highest prediction outcome in terms of 
accuracy as described in our methodology. Our findings also indicate that weighted average based on the black 
probability (GeoNet-RS-WB) as well as examining of the closest cluster (GeoNet-RS-C) are also suitable in 
determining a relatively accurate IP reputation.  
On the other hand, taking only a selected number of clusters deemed as closest results into a lower IP reputation 
score. This can be characterized by biased behavior of other IPs, which may not necessarily be similar.  
 
We further analyze GeoNet-RS-WD to compare prediction outcomes for geo-augmented network data and 
network data. For this, we measure accuracy, recall and precision as illustrated in Figure 8. 
 

 
Figure 8: Evaluating Reputation Scoring on Geo-Augmented Network Data versus Network Data (using 
BW-Sampled, Large, Paid) 
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Our findings in Figure 8 clearly indicate that by augmenting network data with geo-contextual features the 
prediction of blacklisted and whitelisted IP addresses outperforms that with relies on only network features. This 
is specifically evident in the accuracy and recall. This is also further confirms our findings in Table 8, which 
illustrates that the clusters formed are more cohesive and well-separated.  

5 Discussion  
In this section, we present an overview of our results  
 
First, the augmentation of network data with geo-contextual features detects higher similarity in the behavior of 
IP Addresses. This is clearly demonstrated by the formation of better clusters characterized by lower clustering 
cost and high silhouette coefficient compared to modelling IP behavior by utilizing network features only as 
summarized in Table 11. Therefore, the inclusion of geo-contextual features increases the perspective on 
characterizing threats and potentially arms decision makers with the potential to be proactive in detecting or 
predicting cyber-attacks.  
 

Table 11: Summary of Comparison Contexts based on Cluster Performance 
 

 
 

Second, our proposed approach of GeoNet similarity using unified clustering outperforms clustering techniques 
like k-prototype, commonly utilized in heterogeneous datasets. This is clearly observed in the high intra-cluster 
similarity and low inter-cluster similarity. Therefore, GeoNet is well-suited to handle large heterogeneous files 
compared to k-prototype. 
 
Third, the augmentation of network data with geo-contextual features identifies unusual groupings of IP addresses 
as depicted by lower homogeneity, completeness and v-measure scores in comparison to clusters formed in 
network data as summarized in Table 12. The proposed approach is particularly useful when network encryption 
is utilized, in order to detect atypical activity in cases where there is limited network session data. Unlike 
signature-based techniques, our approach poses merit in the detection of APTs and subversion attacks where 
compromised IPs fly under the radar for an extended period.  
 

Table 12: Summary of Comparison Contexts based on Ground Truth 
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Finally, in order to determine a reputation score for IP addresses in terms of both network and geo-contextual 
knowledge, our proposed approach essentially allows for scoring IP addresses by evaluating IP similarity based 
on weighted average based on the distance (GeoNet-RS-WD), weighted average based on the black probability 
(GeoNet-RS-WB) as well as examining of the closest cluster (GeoNet-RS-C). By evaluating against ground truth, 
our best scoring algorithm (GeoNet-RS-WD) gives a prediction outcome in terms of accuracy of 73.3% and 
precision of 86.6%. Table 12 summarizes our findings. It should be considered that our proposed approach is 
applied to a massive feature set. Based on this, there is also a tradeoff to ensure accommodating a richer 
information set when network data is encrypted, where no additional information is available beyond the data 
header. In such scenarios, it becomes imperative to have some insights, which may not be otherwise available. 
Our approach fills that gap. 
 

Table 13: Summary of Comparison Contexts based on Reputation Scoring 
 

 
 

6 Conclusion and Future Work 
In this study, we propose a novel approach to assess the reputation of an IP address using geo-contextual features. 
Geo-contextual data can be linked to location-specific non-spatial data, which encompasses a region's economic, 
social, demographic, and technological domains. This study’s approach utilizes unified clustering, a technique 
that overcomes the problems of using heterogeneous features, that is, both continuous and categorical features in 
clustering. We present extensive experimental results that highlight the importance of geo-contextual knowledge 
in explaining network anomalies and compare several traditional clustering methodologies with unified clustering 
approach. Thus, this study’s contributions are three-fold. First, we show that the approach of combining traditional 
network features with geo-contextual features presents a more robust and unique representation of hosts on a 
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network; Second, this study provides an empirical validation of applying unified clustering with geo-augmented 
network data in the cybersecurity domain to characterize IP behavior. Third, we have devised a novel reputation 
scoring model for an IP address based on geo-augmented network similarity. Findings from this study have 
implications in anomaly detection for cybersecurity applications, especially when there is limited information 
about the network session or there is a lack of historical data for the network features. 
 
In the future, we would like to expand the network feature set to include domain related features along with IP 
related features to make the network dataset more robust. We would also continue to improve the accuracy of the 
clustering model which in turn would improve the accuracy of the scoring algorithms by using iterative clustering, 
a technique that extends unified clustering to further breakdown any malformed clusters.  
Additionally, for this study, we utilized a static geo-contextual dataset. However, for future studies, a more 
dynamic geo-contextual dataset is recommended that accounts for socio-economic changes across the global cities 
over time. It would be interesting to observe the changes in cyber threats with the changing socio-political 
environment. 
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29 
 

 
A.2 Summary of Geo-contextual Features 
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