

ABSTRACT

Title of dissertation: A Framework for Detecting Anomalous
Behaviors in Smart Cyber-Physical Systems

Sandeep Nair Narayanan,
Doctor of Philosophy, 2019

Dissertation directed by: Professor Anupam Joshi,
Computer Science & Electrical Engineering

This dissertation makes significant contributions to automatic, scalable, and

data-driven approaches for securing smart cyber-physical systems (CPS). Smart

CPS are increasingly embedded in our everyday life. Security incidents involving

them are often high-profile because of their ability to control critical infrastructure.

Stuxnet and the Ukrainian power-grid attack are some notorious attacks reported

against CPS which impacted governmental programs to ordinary users. In addition

to the deliberate attacks, device malfunction and human error can also result in

incidents with grave consequences. Hence the detection and mitigation of abnormal

behaviors resulting from security incidents is imperative for the trustworthiness and

broader acceptance of smart cyber-physical systems. In this dissertation, we study

the behavior of smart cyber-physical systems and develop techniques to abstract the

typical behaviors in such systems using the data generated from their components

and detect various abnormalities. Our initial research developed a knowledge-graph

based approach which uses semantic technologies to infer complex contexts for de-

tecting a wide range of anomalies. We also propose an automatic behavioral ab-

straction technique, ABATe, which automatically learns their typical behavior by

finding the latent “context” space using available operational data. The learned

latent space is then used to discern anomalies. We evaluate our technique using

two real-world datasets to demonstrate the multi-domain adaptability and efficacy

of our approach. As a part of this dissertation, we also generated an automotive

dataset to support future research in the related fields.

A FRAMEWORK FOR DETECTING ANOMALOUS
BEHAVIORS IN SMART CYBER-PHYSICAL SYSTEMS

by

Sandeep Nair Narayanan

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2019

Advisory Committee:
Professor Anupam Joshi, Chair/Advisor
Professor Tim Finin
Dr. Nilanjan Banerjee
Professor Yelena Yesha
Dr. Filip Perich
Dr. Wenjia Li

c© Copyright by
Sandeep Nair Narayanan

2019

Dedicated to my Parents,
Brother, Sister-in-law, Teachers,

&
my Wife

who encouraged me unconditionally.

ii

Acknowledgments

I thank each and everyone who helped me for the successful completion of this

dissertation work. First and foremost, I would like to express my sincere gratitude to

my advisor Prof. Anupam Joshi for his valuable advice on research, professional, and

personal matters during my Ph.D. I am indebted to him for helping me to develop

as a better researcher and a better professional during my time at the University of

Maryland Baltimore County.

I would also like to thank my dissertation committee members Prof. Tim

Finin, Dr. Nilanjan Banerjee, Prof. Yelena Yesha, Dr. Filip Perich, and Dr. Wenjia

Li for sparing their valuable time to help me in my research. I owe the Ebiquity lab

at UMBC for the successful completion of my Ph.D. research and thank Ebiquity

labs affiliated faculty, Dr. Karuna Joshi and Dr. Francis Ferraro for their help in

various matters during my time here. I thankfully remember all the Ebiquity lab

members including senior Ph.D. students (Abhay, Prajit, Jennifer, Claire, Lisa, and

Mahbubur), my cohorts, alumni, graduate students, and undergraduate students

with whom I had the pleasure to work with. All of them made me feel home with

their support.

I am thankful to my Ph.D. cohort Sudip Mittal, Ankur Padia, and Nisha Pillai

with whom I enjoyed my student life at UMBC. I also thank my previous roommates

Anin Puthukkudy and Deepak Krishnankutty for helping me, understanding me,

and involving me in various curricular and extra-curricular activities which made

my life in the United States enjoyable and cheerful. During my Ph.D., I also had

iii

the pleasure to work with several student organizations at UMBC like the ACM

student chapter, Graduate Research Conference committee, and Graduate School

Association where I helped organizing several events. I thankfully remember all the

staff at the Department of Computer Science and Electrical Engineering at UMBC

and International Education Services for making my UMBC experience enjoyable.

I also take this opportunity to acknowledge the value of several sources (re-

search grants, gifts from the industry partners like Fujitsu Labs of America, IBM,

etc., funds from the Oros Family Professorship, GSA, and many others) my advisor,

Prof. Anupam Joshi used to support my research at UMBC. I can never forget

the efforts from my family (especially my dad, mom, brother, sister-in-law, and in-

laws) who encouraged me all through these years. I am indebted to my beautiful

and lovely wife, Arya (Neenu), for her sincere love and understanding during my

Ph.D. effort. I sincerely apologize to anyone I had missed out unknowingly in this

acknowledgment. Finally, I thank God Almighty for giving me the opportunity and

courage to finish my doctorate.

iv

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1
1.1 Intuition & Problem Statement . 6
1.2 Thesis Statement . 7
1.3 Anomaly Detection in Smart Cyber-Physical Systems 8
1.4 Dissertation Organization . 10

2 Background 12
2.1 Cyber-Physical Systems . 14

2.1.1 Applications . 14
2.2 Car as a Cyber-Physical System . 15

2.2.1 Modern Car Architecture . 17
2.2.1.1 Common Bus . 18
2.2.1.2 Smart Sub-Systems 19

2.2.2 Attack Surfaces in a Modern Car 22
2.2.2.1 Internal Hardware Attack Surface 22
2.2.2.2 On-Vehicle Device Attack Surface 23
2.2.2.3 External Hardware Attack Surface 23
2.2.2.4 Wireless Attack Surface 24

2.2.3 Cyber-Attacks on Cars . 24
2.2.3.1 Direct Physical Access Attacks 25
2.2.3.2 Indirect Physical Access Attacks 26
2.2.3.3 External Attacks . 27

3 Literature Review 29
3.1 Security in Cars . 30

3.1.1 Attack Prevention Techniques 30
3.1.2 Attack Detection and Mitigation 32

3.2 Anomaly Detection in Cyber-Physical Systems 37

v

4 Automotive Data Collection 40
4.1 Data Collection Techniques . 40
4.2 OpenXC Platform . 42

5 Knowledge-Graph Based Approach to Detect Anomalous Behaviors in Cars 45
5.1 Approach . 46

5.1.1 Local Context Detection . 47
5.1.2 Cross Component Context Inference Engine 49

5.1.2.1 IoT Ontology . 49
5.1.2.2 Domain Instances & Domain Specific SWRL rules . . 50
5.1.2.3 Reasoner . 51

5.1.3 Historic Data Aggregation & Rule mining 51
5.2 Usecase Scenarios . 52
5.3 Discussion & Lessons Learned . 54

6 Learning Constrained Behaviors in Cars 56
6.1 System Architecture . 57

6.1.1 Data Collection . 58
6.1.2 Model Generation . 60
6.1.3 Anomaly Detection . 62

6.2 Evaluation & Results . 64
6.2.1 Single Observation Evaluation 64
6.2.2 Multiple Observations Evaluation 66

6.3 Discussion . 67

7 Automatic Behavioral Abstraction Technique for Smart Cyber-Physcial Sys-
tems 69
7.1 Methodology . 70

7.1.1 Off-line Learning Phase . 72
7.1.1.1 State Vector Generation 72
7.1.1.2 Context Vector Generation 73

7.1.2 On-line Monitoring Phase . 76
7.2 ABATe Implementation . 81

8 Evaluation 84
8.1 SWaT dataset Evaluation . 84

8.1.1 Test Setup . 86
8.1.2 Results . 87

8.2 Automotive dataset Evaluation . 91
8.2.1 Test Setup . 92
8.2.2 Context Abstraction Evaluation 93
8.2.3 Simulated Attack Detection 95

8.3 Synthetic Dataset Evaluation . 98
8.3.0.1 Synthetic Dataset Generation 98

8.3.1 Context Window Evaluation 101

vi

8.4 Time Complexity . 104

9 Conclusion & Future Directions 105
9.1 Future Directions . 107

Bibliography 110

vii

List of Tables

4.1 Components in the Automotive Dataset 40
4.2 Automotive Dataset Characterization 44

6.1 Single Observation Evaluation. ⇑ - Gradual Increase, ⇑⇑ - Sudden
Increase, ⇓ - Gradual Decrease ⇓⇓ - Sudden Decrease 66

6.2 Multiple Observation Evaluation. ⇑⇑ - Sudden Increase, ⇓⇓ - Sudden
Decrease, ⇐⇒ - Normal (from Test data) 68

8.1 Comparing si ∈ Shigh speed and sj ∈ Shigh speed with large ABATescore . 95
8.2 Synthetic Dataset State transition path for State s0 103

viii

List of Figures

2.1 Modern Car Sub-Systems. 16
2.2 General Vehicle Architecture . 20

4.1 Data Collection Devices from Cars CAN Bus 41
4.2 Raw CAN Messages from STN1100 based tools 42
4.3 Ford Reference VI . 43
4.4 Automotive data from OpenXC VI 44

5.1 Overall System Architecture. 48
5.2 Simplified view of the Ontology used. 50

6.1 CAN Message . 58
6.2 Sample Car Event Time-line . 61
6.3 Sliding Window For Anomaly Detection 63
6.4 Test Data for RPM as a single observation 65
6.5 Test Data for Speed as a single observation 65
6.6 Test Data for RPM and Speed together 65

7.1 ABATe Implementation Pipeline . 71

8.1 ABATe SWaT data AUC Plots . 88
8.2 ABATe SWaT data ROC Plots: Window Comparison using Gaussian

Mean Window . 89
8.3 ABATe SWaT data ROC Plots: State Transition Threshold Compar-

ison at Window size = 3 . 90
8.4 ABATe SWaT data ROC Plots: Promising Technique ROC Curve

Comparison . 92
8.5 ABATe Injection Detection Performance 96
8.6 ABATe Car data ROC curve . 97
8.7 Synthetic Data Generation: State Diagram 99
8.8 State 0 Anomaly Scores with Context 1 101
8.9 State 0 Anomaly Scores with Context 4 102

ix

Chapter 1: Introduction

As of 2018, the number of IoT (Internet of Things) devices exceed 23 billion1

and is expected to increase at a compound annual gross rate of 21% in the coming

years2. B2C (Business to Consumer) use cases of IoT’s like Google Home and

Amazon Alexa are well-known. Recently, B2B (Business to Business) applications

that improve operational efficiency, real-time control, and visibility in production are

also gaining popularity. According to IBM3, most of the IoT devices are also Cyber-

Physical Systems (CPS), a network of connected devices which directly interact with

the physical world and physical processes.

According to the National Science Foundation (NSF), “Cyber-physical sys-

tems integrate sensing, computation, control and networking into physical objects

and infrastructure, connecting them to the Internet and to each other.”4 Sensors,

actuators, and control systems that are connected over a network constitute the

major logical entities in a typical cyber-physical system. Sensors measure the phys-

ical environment in which they are deployed and push the measurements to specific

control systems. The control systems might differ in their capabilities such that

1https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
2https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
3https://www.ibm.com/blogs/research/2018/01/designing-cyber-physical-systems/
4https://www.nsf.gov/news/special_reports/cyber-physical/’’

1

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.ericsson.com/en/mobility-report/internet-of-things-forecast
https://www.ibm.com/blogs/research/2018/01/designing-cyber-physical-systems/
https://www.nsf.gov/news/special_reports/cyber-physical/''

some just store the sensed measurements while others analyze it, alert other compo-

nents (or human in the loop), or use the information to adapt physical parameters

using various actuators. For example, in autonomous automobile systems, a radar

senses the presence of obstruction ahead of the automobile and a control system

integrates this information with other related sensors to come up with a decision

on whether to change lanes or apply brakes. CPS’s find application in a wide va-

riety of domains such as agriculture [47], energy management [44], environmental

monitoring [72], medical monitoring [20], process control [71], smart manufactur-

ing [79], smart transportation systems [83], and so forth. Many cyber-physical sys-

tem instances like smart grids, autonomous automobile systems, robotic systems,

automatic pilot avionics, medical monitoring, and process control systems play a

significant role in the vision of smart cities as well.

The wide range of cyber-physical system applications and their ability to affect

the masses make them a particularly lucrative target for hackers. Several reported

attacks against CPS’s affected entities ranging from governmental organizations

and large corporate companies to ordinary users. Some of the attacks even have a

direct impact on the economy of a nation. Consider the attack on Ukrainian smart

grids [10]. It left a whole city without heat and electricity in the cold of December

for many hours. Stuxnet which is dubbed as the world’s first digital weapon [81],

is another classic example of attacks targeted towards CPS’s. It is often touted as

an attempt to derail a nation’s nuclear development program. Stuxnet infected the

PLC’s (Programmable Logic Controllers) of a nuclear plant and rapidly altered the

speed of its isotope enrichment centrifuge which resulted in their premature physical

2

damage. Such undesirable activities were performed just once in a month to avoid

detection by simple monitors. Stuxnet malware code was so sophisticated that it

penetrated even the air-gapped network. It is believed that such an attack could

only be masterminded by state-sponsored actors.

A CPS domain which demonstrated fast advancements is the automotive do-

main. Although automobiles with technologically advanced control systems are

capable of providing efficient transportation and mitigating accidents, the poten-

tial attacks against them are alarming. The famous 2016 Jeep Hack [50] in which

the researchers manipulated an unaltered moving vehicle on the road resulted in

Chrysler calling back 1.4 million5 vehicles. Mirai botnet attacks was another noto-

rious example in which many smart home devices were added to the bot network by

exploiting known vulnerabilities. Later this army of bots (300k devices at its peak6)

was used to generate a Distributed Denial of Service (DDoS) attack on the scale of

250 Gbps7.

The security of cyber-physical systems includes more than just defending

against cyber-attacks. Device malfunctioning and human errors are among the

other important security issues which must be addressed. Securing them against

such problems is also vital for their wide-scale acceptance because, in many appli-

cation domains like medical monitoring and autonomous navigation systems, they

control critical systems and abnormalities can result in grave consequences. One

such incident caused by a combination of device malfunction and human error is the

5https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/
6https://www.computerworlduk.com/galleries/security/timeline-of-mirai-internet-of-things-botnet-3655167/
7https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html

3

https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/
https://www.computerworlduk.com/galleries/security/timeline-of-mirai-internet-of-things-botnet-3655167/
https://www.incapsula.com/blog/malware-analysis-mirai-ddos-botnet.html

Air France flight 447 crash that resulted in more than 200 fatalities. Major causes

of the accident8 were attributed to the temporary failure of pitot probes caused by

ice crystals, and the inability of pilots to comprehend the situation. Due to the ic-

ing, pitot tubes that measure airspeed during the flight malfunctioned and reported

wrong values to the pilots eventually resulting in the aircraft’s fatal crash. Another

incident which was caused by device malfunction is the recent Lion Air flight crash9

that resulted in 189 fatalities. According to preliminary investigations, an errant

sensor triggered the MCAS (Maneuvering Characteristics Augmentation System),

an autonomous safety system which avoids engine stalls (Engine stall is a situation

in which there is not enough thrust on the wings to support the airplane’s weight

at a very high altitude. Engine stalls often result in a free fall of the flight). The

general practice to recover from a stall is to point the flight’s nose down and allow

the flight to gain more airspeed. However, in the case of the Lion Air flight, the

faulty sensor made the flight’s nose down at a very low altitude causing the pilots

to correct it by pulling the nose up manually. This process was repeated more than

20 times before the crash. It is pointed out that the emergency procedure in such

a situation was to disable MCAS. As a result of another presumed similar incident

with the same aircraft (Boeing 737 Max 8), many countries and airlines grounded10

their Boeing 737 Max 8 aircraft’s. This incident reveals that the detection and mit-

igation of abnormal activities are imperative for the trustworthiness and broader

8https://web.archive.org/web/20120711071354/http://www.bea.aero/docspa/2009/

f-cp090601.en/pdf/f-cp090601.en.pdf
9https://www.insurancejournal.com/news/international/2018/11/30/510682.htm

10https://www.cnbc.com/2019/03/12/uk-has-grounded-all-boeing-737-max-aircraft.

html

4

https://web.archive.org/web/20120711071354/http://www.bea.aero/docspa/2009/f-cp090601.en/pdf/f-cp090601.en.pdf
https://web.archive.org/web/20120711071354/http://www.bea.aero/docspa/2009/f-cp090601.en/pdf/f-cp090601.en.pdf
https://www.insurancejournal.com/news/international/2018/11/30/510682.htm
https://www.cnbc.com/2019/03/12/uk-has-grounded-all-boeing-737-max-aircraft.html
https://www.cnbc.com/2019/03/12/uk-has-grounded-all-boeing-737-max-aircraft.html

acceptance of cyber-physical systems.

One approach to secure systems against cyber-attacks is to add advanced se-

curity features. Layering on a complex security system is impossible in many cases

due to a variety of constraints [61] including physical environment feedback, dis-

tributed control, real-time response, wide-scale geographic distribution, and multi-

tiered characteristics. The area, power, and cost requirements also put constraints

on the design of cyber-physical systems and make it difficult to have advanced

software and hardware security stack on them. For example, the geographic dis-

tribution and remote locations of the components in a power grid CPS may result

in reduced network connectivity. Mobile CPS’s like health and fitness monitoring

systems might be power constrained. Support for legacy systems is another con-

straint against adding advanced security features. CAN bus, a broadcast based

legacy communication channel lacks even the most basic authentication and au-

thorization techniques. This deficiency is exploited in many attacks on cars which

range from simple driver distractions to complete remote takeover of an unaltered

car [30, 49, 50]. However, moving away from CAN networks is often not permitted

due to cost and compatibility constraints. Besides, the security features alone may

not handle device malfunctioning and human errors as they cannot detect and mit-

igate anomalous behaviors. All these show the importance of anomaly detection

based solutions in this domain.

5

1.1 Intuition & Problem Statement

An identifying feature that differentiates cyber-physical systems is their direct

interaction with the physical environment. Such interactions constrain the oper-

ational behaviors of their components. An instantaneous increase of speed values

from the speed sensor of a car, for instance, is suspicious because the laws of physics

constrain such behaviors in normal conditions. Similarly, in the case of the Stuxnet

attack, a sudden speed variation of the centrifuge should not have occurred because

the domain behaviors were well understood. Operations of a cyber-physical system

might also follow certain domain etiquette’s. For instance, it is not normal to allow

filling a tank above its specified capacity or to allow a car to be driven in the night

with the headlights off. However, there are several challenges in capturing such

normal domain behaviors.

1. A cyber-physical system may be a collection of components from several do-

mains and the relationship between their components can be very complicated.

Sometimes these relationships can even be non-intuitive. Hence, the manual

extraction of relationships is a tedious task which may require experts from

several domains to work together.

2. The number of components in a cyber-physical system can be high. In the

automotive domain, the number of sensors is projected to be close to 20011

per car. This makes it hard to list out all their relationships manually.

11http://www.newelectronics.co.uk/electronics-technology/

automotive-sensors-market-is-booming/149323/

6

http://www.newelectronics.co.uk/electronics-technology/automotive-sensors-market-is-booming/149323/
http://www.newelectronics.co.uk/electronics-technology/automotive-sensors-market-is-booming/149323/

3. A cyber-physical system may behave in different ways when exposed to differ-

ent environmental conditions. Extreme climatic and geographical conditions

affecting the normal operational behaviors and sensor values of an automobile

is such a case. As a result, the set of normal operational behaviors for the

same cyber-physical system might differ which makes the task more difficult.

With the advent of communication technologies and smart cyber-physical sys-

tem infrastructure, a large amount of normal operational data is available. This data

encapsulates different complex behaviors that may exist in that specific domain. We

hypothesize that a solution which ingests this normal operational data from a cyber-

physical system and abstracts its common behaviors or contexts of events may be

able to detect unusual behaviors specific to that system. In this dissertation re-

search, we aim to develop such a detection strategy which can aid cyber-physical

systems to mitigate abnormal behaviors, both attack and device malfunctioning

scenarios.

1.2 Thesis Statement

“We can learn a latent space that abstracts a smart cyber-physical system’s

typical environment specific behaviors using the plethora of operational data gener-

ated by its different components like sensors, actuators, and control systems. The

generated latent space can be used to develop more potent, scalable and domain-

independent solutions to detect behavioral anomalies and attacks.”

7

1.3 Anomaly Detection in Smart Cyber-Physical Systems

This dissertation focuses on learning a latent space which can be used to detect

anomalous behaviors using the normal operational data from smart cyber-physical

systems. Significant contributions in the dissertation are enumerated below.

1. Developed a domain-specific approach to identify abnormal behaviors in cars

using a knowledge-graph based approach. In this research, we designed an

extension to the IoT Lite Ontology such that it accommodates cyber-physical

system specific features and updated its A-Boxes with entities from the au-

tomotive domain. We also developed a system which extracts local contexts

directly from the raw bits on the CAN (Controller Area Network) bus. Unlike

simple rule-based systems, in our system domain experts can write general

behavioral descriptions using SWRL (Semantic Web Rule Language) and a

reasoner infers complex contexts from the extracted local contexts to detect

atypical behaviors.

2. Proposed a Hidden Markov Model (HMM) based system that can detect

anomalous behaviors in a smart car environment. As a part of this research,

we extracted data from the CAN bus of a car, discretized it, and modeled it

to form a sequence of observations. We then solved the problem of detect-

ing anomalous behaviors by considering it as a sequence anomaly detection

problem. In our solution, after modeling the data, we learned the HMM pa-

rameters using the Baum-Welch algorithm. We then developed a posterior

8

probability based technique to detect anomalous activities in the sequence. A

significant outcome from this research is a vindication of our hypothesis that

normal behaviors could be learned from the operational data of cyber-physical

systems (in this research, cars).

3. Our next major contribution is developing a domain-independent and scalable

solution that can support the efficient detection of abnormal activities in any

smart cyber-physical system environment. This novel technique considers the

cyber-physical system as a black box generating data and tries to learn re-

lationships between the data coming out of it. In this solution, we combine

similar vectors from data using Euclidean distances and generate a fixed list

of states that can directly identify point anomalies. Further, we developed a

novel technique based on neural networks that generates a latent space where

contextually similar states appear together while keeping the dissimilar states

apart. By integrating these two techniques, we find context vectors in the

latent space corresponding to each observed state.

4. We developed a more efficient and potent technique that uses context vectors

in the newly generated latest space to associate a score for every event in the

cyber-physical system under consideration. This newly generated score de-

notes the efficacy of that specific event in its context. We implemented the

complete system using python and tensorflow architecture and evaluated our

system using two real-world cyber-physical systems; Secure Water Treatment

(SWaT) plant dataset and automotive dataset. We demonstrate the ability of

9

our technique to detect attacks using the SWaT dataset and context abstrac-

tion features with a new automotive dataset.

5. For evaluations, we used a real-world dataset extracted from a scaled down

water treatment plant. However, to test the multi-domain applicability of our

technique, we needed another dataset. A major time consuming and challeng-

ing engineering contribution is to develop a new automotive dataset rich with

several sensors. We believe that this dataset will help the research community

to experiment and try out newer techniques on real-world datasets than being

constrained on synthetic datasets. To create the dataset, we identified and

evaluated several techniques to collect data from automobiles like ELM 327

based chipsets, STN 1100 based chipsets, Arduino based solutions, OpenXC

Platform, etc. We subsequently developed an OpenXC based solution to ag-

gregate data from various sensors of an automobile. After data collection, we

aggregated and characterized close to 1000 miles (or 25 hrs) of standard driv-

ing data which constitutes diverse driving conditions including long and short

drives on highways, country-sides, mountainous terrains, and rainy weather.

1.4 Dissertation Organization

In chapter 2, we discuss some related domains of cyber-physical systems and

how they differ from each other. Apart from the high profile attacks on cyber-

physical systems this dissertation is motivated by growing prominence of car as a

smart cyber-physical system and the attacks which were demonstrated against them.

10

Hence, this chapter also describes the car as a smart cyber-physical system, its attack

surface and different attacks against them from the recent literature. Chapter 3 looks

at deep dive into the research literature relating to smart cyber-physical system

security, anomaly detection, and automotive security. One significant engineering

contribution in this dissertation is the creation of an automotive dataset. Details

about the data collection process and data characterization is detailed in chapter 4.

While Chapter 5 details the knowledge-graph based approach for anomaly detection,

chapters 6 and 7 details the automatic behavioral learning in cars and smart cyber-

physical systems and the conclusion and future directions ensue in chapter 9.

11

Chapter 2: Background

Businesses benefit from the introduction of connected smart systems in their

respective domains. According to an article published in Forbes [16] , Harley David-

son reduced the build to order cycle by a whopping 36 times by employing IoT in

their manufacturing plant and Rolls-Royce increased the fuel efficiency of jet en-

gines which results in a total savings of $250, 000 per plane per year. Hence several

competing technologies emerged which have similar characteristics but have their

own identifying features. Some of them are enumerated below

• Internet of Things (IoT): European Research Cluster defines the Inter-

net of Things (IERC) as “A dynamic global network infrastructure with self-

configuring capabilities based on standard and interoperable communication

protocols where physical and virtual “things” have identities, physical at-

tributes, and virtual personalities and use intelligent interfaces, and are seam-

lessly integrated into the information network”. In IoT’s each “thing” can

be a full system running a full operating system or a bluetooth beacon which

simply transmits a fixed URL at constant intervals.

• System of Systems (S0S): System of Systems is a collection of task-oriented

or dedicated systems that pool their resources and capabilities together to cre-

12

ate a new, more complex system which offers more functionality and perfor-

mance than simply the sum of the constituent systems. Currently, systems of

systems is a critical research discipline for which frames of reference, thought

processes, quantitative analysis, tools, and design methods are incomplete [65].

SoS differs from IoT’s because in SoS each component is a full system unlike

in IoT’s.

• Industrial IoT (IIoT) / Industry 4.0: IIoT is named differently in differ-

ent countries. Some of the different names include Smart Industry, Industry

4.0 (4.0 denotes fourth industrial revolution), Smart Factories, and Advanced

Manufacturing. All of these generally stands for the use of various IoT tech-

nologies in manufacturing and industrial processes and depends on innovations

in Information and Communication Technology (ICT), CPS, network commu-

nications, simulations, and so forth.

• Cyber-Physical Systems: Definition for CPS’s from NSF states “Cyber-

physical systems integrate sensing, computation, control and networking into

physical objects and infrastructure, connecting them to the Internet and to

each other.1”. The differentiating feature of CPS’s is their ability to monitor

(and sometimes control) physical processes and physical activities.

1https://www.nsf.gov/news/special_reports/cyber-physical/

13

https://www.nsf.gov/news/special_reports/cyber-physical/

2.1 Cyber-Physical Systems

In this dissertation, we focus our research on smart Cyber-Physical Systems

(CPS). As mentioned in the definition, it is an interconnected network of devices

which interact with physical entities. In a typical CPS, there are 3 main enti-

ties; Sensors that sense the physical environments, Control systems that aggregate,

process, and analyze the sensed physical measurements (may/may not generate

actionable intelligence), and Actuators that can alter the physical state of its de-

ployment according to instructions from the control system. According to CPSE2

typical CPS may control and monitor various processes(physical or organizational),

integrate solutions from multiple disciplines, handle human interactions, optimize

its own performance, evolve (and adapt) according to the changed environments,

involve a large-scale (even with a hierarchical structure), and so forth.

2.1.1 Applications

CPS domain is multi-disciplinary and finds application in several domains. A

comprehensive literature review on various applications and research in the CPS

domain is presented by [14]. Some of them are enumerated below.

• Agriculture: Several techniques are used for efficient food consumption, and

food production capabilities. Some of them include precision agriculture, in-

telligent water management, etc.

2http://www.cpse-labs.eu/cps.php

14

http://www.cpse-labs.eu/cps.php

• Energy Management: CPS are widely used to monitor, and transfer energy

efficiently adapting itself to the user demands and availability. Smart grids is

a well-known example.

• Environmental Monitoring: Monitoring environment is important for early

detection of natural calamities like fire, flooding, Tsunami’s, etc. CPS’s are

deployed to monitor and report such instances continuously.

• Intelligent Transportation: CPS’s are used to manage complex traffic flow,

safety, and situational awareness.

2.2 Car as a Cyber-Physical System

A popular cyber-physical system which acquired smart decision-making capa-

bility is cars. Automobiles as just moving parts, pulleys, and mechanical devices

solely controlled by human drivers are antiquated long back, and they developed

from being just mechanical devices into machines which can drive autonomously. A

modern car has a large number of smart sub-systems (Fig. 2.1), and they make a

lot of intelligent decisions every second. They can provide safe, efficient, and fast

transportation in smart cities. Driver-assist features like anti-lock braking system,

adaptive cruise control, and blindspot warning systems are becoming the de facto

in many newer cars. For instance, the latest version of Accord from Honda Mo-

tor Company has Honda Sensing3 (Honda’s package of smart features like Collision

Mitigation Braking System (CMBS), Road Departure Mitigation System (RDM),

3https://automobiles.honda.com/safety

15

https://automobiles.honda.com/safety

Adaptive Cruise Control (ACC), and Lane Keeping Assist System (LKAS)) feature

as a default, even for its base version. Current cutting-edge research in this domain

focuses on autonomous driving in which a car can navigate you from one location

to another without direct human intervention. Waymo4 (an Alphabet company),

Uber5, GM motors6, Tesla7, etc. are some automotive giants who are innovating

in this area. Waymo’s fleet of autonomous cars has already driven over 4 million8

combined miles on normal roads.

Figure 2.1: Modern Car Sub-Systems.

4https://waymo.com/
5https://www.uber.com/
6https://www.gm.com/
7https://www.tesla.com/
8https://waymo.com/ontheroad/

16

https://waymo.com/
https://www.uber.com/
https://www.gm.com/
https://www.tesla.com/
https://waymo.com/ontheroad/

2.2.1 Modern Car Architecture

Advancements in microprocessor technologies resulted in the emergence of new

and powerful ECU’s (Electronic Control Units) in automobiles for making fast and

smart decisions for many activities. Typically, an ECU will be connected to different

sensors (eg. Acceleration sensor, Rain sensor, Ambient light sensor, Wheel speed

sensor, RPM sensor, Vehicle Speed sensor, Oxygen sensor, temperature sensor, etc.)

and actuators (eg. Instrument clusters, spark plugs, airbag inflators, etc.) using

cables. Even though all automobiles have similar facilities, as of now, they don’t have

a standardized architecture. Different manufacturers like Honda, Toyota, BMW,

Benz, Kia, and General Motors use different types of equipment, internal wiring

architecture, and protocols. However, in general, we can see that all of them use

one or more buses inside, and most of the subsystems and sensors are connected to

them as shown in Fig. 2.2. Sub-systems need to meet specific constraints according

to the task it is assigned to. For example, ABS (Anti-lock Braking System) need

to meet strict time requirements. Otherwise, the vehicle won’t stop at the required

location. On the other hand, some sub-systems like entertainment subsystem need

not meet the time requirement, but they need high volume data transfer. Different

buses are chosen based on these requirements. Attributed to lack of standardization,

some sensors are directly connected to the ECU, while others are connected to the

common bus. Broadly each vehicle has at least a common bus and different smart

subsystems.

17

2.2.1.1 Common Bus

Earlier vehicle manufacturers used a point-to-point wiring harness to connect

all the components, and it became complicated due to an increase in the number of

components. In 1986, Robert Bosch GMBH introduced a lightweight and low-cost

serial bus protocol named Controller Area Network (CAN) for vehicular communi-

cation because none of the then existing protocols had the required characteristics.

CAN was a broadcast based protocol in which all the devices are connected to the

same bus, and all devices see all network communications. Error correction and

priority maintenance were its important characteristics along with decreased com-

plexity in the wiring harness. The newer CAN 2.0 specification was published in

1992 and became widely used by different manufacturers. The number of smart

systems increased considerably over the past few decades. According to a report9,

the average number of such systems in a car increased from 24 in 2002 to 70 in 2013.

To cope with this increase in the number of components and speed requirements of

different subsystems, newer protocols and buses were introduced. Some of the pro-

tocols over CAN bus are ISO-TP protocol, CANopen, etc. A newer version of CAN

named CAN-FD got introduced in 2011 which has flexible data rates. Other proto-

cols introduced include PWM protocol from Ford, Keyword Protocol (KWP2000),

VPW Protocol used in GM and Chrysler, LIN (Local Interconnect Network) proto-

col10, MOST (Media Oriented System Transport) protocol11, etc. Each of them has

9http://cvrr.ucsd.edu/ece156/AutomotiveSensors-Review-IEEESensors2008.pdf
10https://vector.com/vi_lin_spec_download_en.html
11https://www.mostcooperation.com/publications/specifications-organizational-procedures/

request-download/mostspecificationpdf

18

http://cvrr.ucsd.edu/ece156/AutomotiveSensors-Review-IEEESensors2008.pdf
https://vector.com/vi_lin_spec_download_en.html
https://www.mostcooperation.com/publications/specifications-organizational-procedures/request-download/mostspecificationpdf
https://www.mostcooperation.com/publications/specifications-organizational-procedures/request-download/mostspecificationpdf

specific characteristics. For example, LIN is a very cheap protocol to implement and

use only a single wire bus. But it supports only up to 20Kbps. On the other hand, a

version of MOST protocol supports up to 150 Mbps with the associated complexity

of implementation. Another high-speed bus with a communication speed of up to

10Mbps is FlexRay12. Due to the diminishing support and increasing cost, newer

vehicles are moving towards a newer protocol, automotive ethernet13. As of now, a

common practice seen among manufacturers is to use different protocols and buses

for different subsystems. Typically, MOST or FlexRay for high-end systems, CAN

for mid-range systems and LIN for low-cost devices.

2.2.1.2 Smart Sub-Systems

More and more driver assist technologies are becoming the de-facto in a modern

car. Some of the driver-assist technologies available in a car include anti-lock brak-

ing system, cruise control, lane-assist, power brake, power steering, central locking

systems, etc. Technology is now taking the next step to move towards autonomous

control in which the sub-systems will take over driving as a whole. Broadly we

classify these subsystems into three categories.

• Indicative Smart Sub-Systems: Indicative systems identify certain states

of the vehicle using their sensory inputs just to alert the driver. The smart

blind-spot detection system is an example indicative system which detects

objects in a car’s blind-spot (the region around the vehicle which is not visible

12https://svn.ipd.kit.edu/nlrp/public/FlexRay/FlexRayProtocolSpecificationVersion3.

0.1.pdf
13http://www.opensig.org/about/specifications/

19

https://svn.ipd.kit.edu/nlrp/public/FlexRay/FlexRayProtocol Specification Version 3.0.1.pdf
https://svn.ipd.kit.edu/nlrp/public/FlexRay/FlexRayProtocol Specification Version 3.0.1.pdf
http://www.opensig.org/about/specifications/

Figure 2.2: General Vehicle Architecture

to the driver using rear view mirrors) and alerts the user about it. It uses

sensory inputs like radar, ultrasonic and vehicle speed sensor to detect an

alien object presence. On detection, depending on the system, it alerts the

user using a display, sound or haptic warning in the steering wheel or seats.

Other examples of indicative systems include lane departure warning, tire

pressure monitoring, etc.

• Reactive Smart Sub-Systems: Reactive smart systems, on the other hand,

20

take necessary actions to avoid potential bad incidents. A very common ex-

ample of such a system is adaptive cruise control system which automatically

adjusts the speed of a vehicle for the live road traffic. It uses a headway radar

or lidar to detect traffic in front and utilize vehicle speed sensor, accelerator

pedal position, and brake pedal position to identify the action to be taken

for maintaining a safe distance on the road. It will then actuate throttle or

brakes to adjust the speed of the vehicle automatically when the vehicle is

in a cruise mode. Other example sub-systems include adaptive front lighting,

parking systems, auto dimming mirrors, anti-lock braking systems, airbag de-

ployment, etc.

• Predictive Smart Sub-Systems: In predictive smart systems, after iden-

tifying specific states of the vehicle, they anticipate certain actions from the

driver. Instead of directly affecting the state of the car using actuators, they

get the vehicle ready for such actions. A typical example of such a system is

collision warning with brake support from Ford. In the event of an obstacle

ahead and a potential collision, the system not only warns the user about the

condition, it pre-charges the braking systems. This action will help to apply

a full application of the brakes with a simple touch on the brake pedal and

hence avoids an imminent collision. Precrash safety feature found in some

automobiles is another example of such a system.

21

2.2.2 Attack Surfaces in a Modern Car

CAN bus is a broadcast based common bus which provides fast and efficient in-

terconnection channel between different systems in a vehicle like Anti-Lock Braking

System, Adaptive Cruise Control, Automatic Lane-Assist, and Adaptive Lighting

Control. Due to lack of strong authentication primitives attached with CAN bus,

any message on the CAN bus, in valid format, is a valid message. The attack surface

describes all of the different points where an attacker could get into the system and

where they could get data out14 . The different actors in a vehicular set-up are

driver, passenger, mechanic and external entities. We categorize the attack surface

as Internal Hardware Attack Surface, On-Vehicle Device Attack Surface, External

Hardware Attack Surface, and Wireless Attack Surface.

2.2.2.1 Internal Hardware Attack Surface

As described above, due to lack of authentication primitives any malignant

internal hardware can be a potential attack surface. Normally the mechanic or any

other external entities who can get physical access to the vehicle could exploit this

attack surface. They can do it by reprogramming the different Electronic Control

Units (ECUs) which are responsible for aggregating and controlling different asso-

ciated systems present in a vehicle. For example, a different ECU might exist for

different systems like Anti-lock Braking System, Adaptive Cruise Control, Adaptive

Lighting Controls, etc. Another potential way to exploit this attack surface is by

14https://www.owasp.org/index.php/Attack Surface Analysis Cheat Sheet

22

replacing the original ECU with a malignant one.

2.2.2.2 On-Vehicle Device Attack Surface

There are different devices which are accessible to driver and passenger actors.

The driver has different controls like steering, brakes, steering mounted controls

(audio systems, cruise controls, paddle shift gears), etc. The passengers also have

access to systems like audio system, climate controls systems, etc. Most of these

devices have only hardware controls. But nowadays they are replaced or added

with software controls like touch screen displays, mobile phone apps etc. to control

them. Some of the ways in which various actors can manipulate the vehicle are by

attaching a USB drive to the audio system, or by introducing a malicious input into

the onscreen displays or remote control units associated with different systems.

2.2.2.3 External Hardware Attack Surface

The trend of attaching external devices on to a vehicular system is becom-

ing popular. Different insurance companies in the US like Progressive or wireless

providers like Verizon have devices which could be attached to the OBD-II port of

the vehicle, which is directly connected to the CAN bus. The insurance companies

use this to analyze driver behavior so that they can give discounts, while some other

devices help users to locate the vehicle in a parking lot, remote start the vehicle or

track a vehicle in case of a theft. Most of these devices are driven by software which

need not be devoid of bugs and could be exploited by malicious hackers. There are

23

some devices available in the market which just need to be placed on top of the CAN

bus to tap the information from it. For example, CANCrocodile from WagenControl

is a contact less CAN bus reader which allows to get data from CAN bus without

interfering with the physical CAN bus.

2.2.2.4 Wireless Attack Surface

With the advent of wireless communication revolution, different communi-

cation technologies like Blue-tooth, Wi-Fi, Mobile networks, Satellite radio, GPS

network, RF sensors, etc. are also made available in the vehicle. For example,

Bluetooth is used to connect to the audio systems or OBD-II attached devices.

Multiple Android and IOS apps are available now which can communicate with

these devices. For connected vehicles, even the Internet is made available. Mobile

applications are made available by many manufacturers for various smart cars which

can be controlled using mobile devices. Another potential access point is through

the RF devices used for central locking systems. All of these systems present a new

potential attack surface the attackers can try to exploit.

2.2.3 Cyber-Attacks on Cars

An unwanted after-effect of automobiles becoming autonomous or semi-autonomous

is the potential for attackers to confuse it or hack it. Researchers and hackers enlist

various attacks possible on automobiles. We categorize these attacks under three

different labels as described below.

24

2.2.3.1 Direct Physical Access Attacks

In such attacks, the attacker will have complete access to the vehicle, and

he can modify the software and hardware in it at his will. A potential attacker

can be your mechanic or a car wash person. Hoppe et al. [30, 31] demonstrated

many such attack scenarios. In the first attack scenario, an arbitrary code added to

ECU resulted in a zero-day attack in which the car windows opened when its speed

exceeded 200 kmph (Kilometer per hour). In another attack, they demonstrated

how airbag control systems could be removed from a car and could be masked using

some injected code. Other demonstrations include attacks on gateway ECU and

warning lights.

Research from Koscher et al. [38] evaluated a car and performed extensive lab

and on-road tests to demonstrate various attacks. On-road tests were performed at

a decommissioned airport runway with a lot of safety precautions. Researchers man-

ually introduced packets into the vehicular system to perform the attacks. Among

the different attacks performed some could be manually over-ridden while others

could not be. It is not very surprising that many of the attacks can be done on a

running car also. Attacks demonstrated include frequent activation of lock relays

and windshield wipers, trunk popping, permanent horn activation, disabling win-

dow and key lock relays, temporary RPM increase, idle RPM increase, prevention of

braking, uneven engagement of car brakes, falsified speedometer readings, radio vol-

ume increase, car alarm honking, engine killing, etc. Some of the performed attacks

are innocuous but if used with malicious intent they can cause loss of reputation

25

and trust. For example, if the car engine stops suddenly the reliability aspect will

be badly affected.

2.2.3.2 Indirect Physical Access Attacks

In indirect physical access, the attacker cannot modify the hardware but can

introduce alien devices like CD’s, USB’s and OBD (On-Board Diagnostics) devices.

Devices which are connected to the OBD port of a vehicle with advanced external

connectivity is a new trend in automobiles. OBD port, being connected to the ex-

ternal CAN bus can fetch various information about the car including error codes.

Most of these tools provide intelligent information about the car and are connected

to the internet/cloud. Some of the popular devices include Automatic15, Progres-

sive Snapshot16, Ford Reference VI17, Verizon Hum18, etc. and a wide range of

corresponding mobile phone applications.

Miller and Valasek [49] demonstrated various attacks possible on cars using

this OBD port (An OBD port is mandated by federal law in all cars in the United

States from 1996. It is generally used for monitoring emissions statistics by motor

vehicle departments, checking the health of a car by mechanics, etc.) of a car. They

used ECOM cables to communicate with the CAN bus of two vehicles, Ford Escape,

and Toyota Prius, and used tools like ECOMCat to read and write to the bus. Their

research started with simple attacks like displaying false data on the dashboard, and

simple DoS (Denial of Service) attacks by overwhelming the bus. Eventually, they

15https://www.automatic.com/
16https://www.progressive.com/auto/discounts/snapshot/
17https://shop.openxcplatform.com/ford-reference-vi.html
18https://www.hum.com/productstext

26

https://www.automatic.com/
https://www.progressive.com/auto/discounts/snapshot/
https://shop.openxcplatform.com/ford-reference-vi.html
https://www.hum.com/productstext

showed more advanced attacks like disabling brakes, applying brakes, killing the

engine, etc. by introducing crafted packets to the CAN bus.

2.2.3.3 External Attacks

In such attacks, attackers will make use of the external open interfaces or soft-

ware vulnerabilities on an unaltered/factory condition vehicle. Researchers Miller

and Valasek [50] famously hacked into an unaltered Jeep vehicle and controlled it

remotely. The attack reportedly resulted in a 1.4 million vehicle recall by Chrysler.

The Jeep is an advanced connected vehicle which has mobile connectivity built in

using the Sprint network in the US. Researchers reverse engineered and found that

the D-Bus service (a software bus for interprocess communication and remote pro-

cedure calls) is running on the port 6667 and can be accessed anonymously. It will

also allow anyone to run arbitrary code on the vehicle’s head unit. Interestingly,

they discovered that vulnerable vehicles can be found by just scanning the port 6667

on IP addresses starting with 21.0.0.0/8 and 25.0.0.0/8. The initial steps in the ex-

ploit chain include target identification (the IP address of the vehicle by scanning

for port 6667) and exploitation of OMAP chip in the head unit using D-Bus service.

To control non-CAN features like Radio, only these steps are necessary. However, in

order to get control of the vehicle, the attacker modified the v850 micro-controller

firmware. Once done, the hacker is in a position to introduce arbitrary CAN mes-

sages to the vehicle and hence can remotely control the vehicle. Despite Fail-Safe

practices like shutting down the system in case of irregularity, the attackers were

27

able to perform malicious activities like killing the engine while running, locking

and unlocking the car, activate the blinkers and windshield wipers, partially con-

trol steering wheel (exploiting parking assist features, but only at low speeds), etc.

Several other reports claim about a crypto attack [75] on key-less entry feature on

cars from popular makers including Volkswagen, Skoda, Volvo, etc.

28

Chapter 3: Literature Review

Anomaly detection is successfully used in computer security [41] , biological

domain [46] , mechanical domain [8,9] , financial domain [11] , unusual activity de-

tection [39] , user behavior [5], etc. In an extensive survey, Chandola et al. [12] define

different types of anomalies which include point anomalies, contextual anomalies,

etc. and a wide variety of techniques based on classification, clustering, statistics,

information theory, etc. to detect them.

Warrender et al. [78] proposed T-STIDE (Threshold Time-Delay Embedding)

which employs a window-based approach for anomaly detection in which a database

of normal subsequences is built and are compared against the test sequences. Intru-

sion detection methods based on HMM (Hidden Markov Model) have been suggested

multiple times [22, 66]. Another anomaly detection technique based on hierarchical

HMM’s is proposed by Zhang et al. [82]. However, Warrender et al. [78] reported

significant performance overheads when HMM based techniques are compared with

other techniques in longer sequences. Keogh et al. [37] invented SAX (Symbolic

Aggregate Approximation) to determine time-series discords which could be used in

a wide variety of domains like telemetry monitoring, medicine, and surveillance.

Recently, neural networks got traction and several techniques have been em-

29

ployed. Sabokruou et al. [70] used fully convolutional neural networks to detect

abnormal regions in a video. O’shea et al. [62] applied recurrent neural network for

anomaly detection on air radio networks. Laskov et al. [43] developed a technique

to visualize anomaly detection. It enables experts to interpret predictions made by

the learning technique used. Some of the latest anomaly detection techniques in-

clude Netflix RPCA (Robust Principle Component Analysis), Yahoo EGADS [42],

EXPOSE [73], HTM [2], etc. Black box analysis techniques [15] are also used to

detect anomalies in large-scale systems, using externally available information.

3.1 Security in Cars

One of the core problems with the vehicular architecture is the presence of

comparatively primitive bus technology, lacking cutting-edge security features, with

far more sophisticated subsystems running on top. For example, CAN bus is a

broadcast based bus in which all connected devices can see all the traffic, and there

is no inbuilt concept of authentication or authorization. Any message on the wire is

authenticated by default. This enables an attacker to introduce well-formed packets

on to the wire to perform malicious activities. Research enlists two categories of

techniques to secure the environment which are described in the following sections.

3.1.1 Attack Prevention Techniques

The first approach is to prevent attacks from happening. According to Wolfe

et al. [80], a combination of hardware protection techniques, software protection

30

techniques and secure communication is required to achieve this. Newer protocols

(varying in capabilities, speed, implementation overhead, etc.) including modifica-

tion of existing protocols are proposed with this intent. LCAP [29] (Lightweight

CAN Authentication Protocol) is one such protocol with minimum overhead and

modification to the existing CAN network. The technique is based on a pre-shared

key and magic number exchanged between the sender and receiver. At the begin-

ning of a drive cycle, all devices perform an initial setup and will have a session key,

HMAC Key and a channel initial magic number which are used for subsequent mes-

sage transmissions. For data exchange, the sender will append the magic number

to the message and encrypt it using session key. The receiver will authenticate the

message using the magic number after decrypting it. However, this protocol will

have the overhead for cryptographic calculations.

CANAuth [77] is another proposed protocol which is backward compatible.

This protocol also depends on a pre-shared key stored in a tamper-proof location

with each of the entities. A session key will be generated using the pre-shared key

and it will be used for authenticating messages. In CANAuth, considering the hard

constraints on time and message length, the authentication data is transmitted out-

of-band using the CAN+ [84] protocol. Each authentication message will have a

32-bit counter value to prevent replay attacks and an 80-bit signature with this

protocol.

LiBrA-CAN [28] is another proposed protocol to prevent attacks which uses

CAN FD1 (newer CAN protocol with flexible data rates). LiBrA-CAN presents two

1https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.

31

https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf

new paradigms namely key splitting and MAC mixing for message authentication.

The protocol can be used in a master Oriented flavor (a node with higher computa-

tional capabilities is used for authentication) which includes centralized, cumulative,

and load balanced authentication schemes, or distributed flavor which includes two-

stage authentication and multi-master authentication schemes. In comparison with

other protocols, they have efficient forgery detection using MAC mixing and lesser

authentication delays.

Apart from protocol specific drawbacks like time constraints, the requirement

of pre-shared keys and higher computational power are some disadvantages of such

techniques. Another major drawback for this class of techniques is that we can only

protect future vehicles not the present ones on the road. Moreover, the automotive

domain is a huge industry and it requires a long time to change. Koscher et al. [38]

describes this stringent “operational and economic realities” in the automotive in-

dustry and explains the importance of a detection strategy for automobiles.

3.1.2 Attack Detection and Mitigation

The second strategy to make the automotive domain safe is attack detection

and mitigation. Different companies have come up with Automotive Intrusion Detec-

tion Systems. Panasonic Corporation is developing an IDPS2 (Intrusion Detection

and Prevention System) which combines Host Intrusion Detection technology (which

combines behavioral information), in-vehicle device-type intrusion detection tech-

pdf
2http://itsworldcongress2017.org/wp-content/uploads/2017/11/kishikawa_

20171025.pdf

32

https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
https://can-newsletter.org/assets/files/ttmedia/raw/e5740b7b5781b8960f55efcc2b93edf8.pdf
http://itsworldcongress2017.org/wp-content/uploads/2017/11/kishikawa_20171025.pdf
http://itsworldcongress2017.org/wp-content/uploads/2017/11/kishikawa_20171025.pdf

nology (it monitors and detects unauthorized commands in the in-vehicle network,

both CAN-based and Ethernet-based), and cloud-type vehicle intrusion detection

technology (detects intrusion by analyzing logs collected from different vehicles using

machine learning). Karamba Security3 is another company which develops tools like

Karamba Carwall (it generates policies based on factory settings and embed them

into ECU’s to continuously validate actions at runtime) and Karamba SafeCAN (it

authenticates and hardens in-car network communications helping ECU’s to ignore

commands from invalid ECU’s or physical hacks). Escrypt 4 is yet another company

which develops an IDPS for vehicles. Their products, CycurIDS and CycurGUARD,

analyze data from multiple vehicles and detect potential intrusions. We can classify

the basic research in this domain into two sub-categories based on if the technique

uses a semantic understanding of the underlying data.

Statistics Oriented Techniques: Research enlists different techniques for attack de-

tection and mitigation. One such research direction is by applying machine learning

techniques on raw CAN messages without considering the semantics of the messages.

Muter et al. [53] proposed an entropy-based approach for anomaly detection

in vehicles. In this technique, various information theoretic measures are used to

calculate entropy. Entropy, in general, measures “how much coincidence” of a given

data set or it represents the abstract representation of randomness. However, due

to the restricted vehicular network specifications, the amount of randomness (or

entropy) is lower. Hence in their approach, they consider an adaptation of the

3https://karambasecurity.com/products
4https://www.escrypt.com/en/solutions-overview

33

https://karambasecurity.com/products
https://www.escrypt.com/en/solutions-overview

existing entropy-based intrusion detection techniques. To calculate entropy, they

use 3 levels of data abstraction. Binary-level data abstraction consists of the raw

ones and zeros. At this level, either a bit-wise classifier (which consider each bit

as an event) or x-bitwise classifier (combination of x bits is considered as an event)

can be used. The next level of abstraction is signal level in which an event is

generated for every signal value of the CAN message. The assumption is that there

are only fixed messages in a vehicular network unlike a general protocol like TCP or

UDP. The final level of abstraction is Protocol level. CAN defines 12 fields for data

frames in the base format. The classifier in this level generates an event for every

field in the CAN message. The entropy (Eq. 3.1) and relative entropy (Eq. 3.2)

is calculated using standard information theoretic techniques. Their technique was

put against simulated attack scenarios like increased frequency, message flooding,

etc. and showed that most attack scenarios caused variations in the calculated

entropy and could be utilized for detecting anomalies.

H(X) =
∑
x∈CX

P (x)log
1

P (x)
(3.1)

where,

Cx : Set of classes for dataset X ,

P (x) : Probability of x in X.

34

RelEnt(p/q) =
∑
x∈CX

p(x)log
p(x)

q(x)
(3.2)

where,

Cx : Set of classes for dataset X ,

p(x), q(x) : Probability distributions over x ∈ Cx.

Taylor et al. [76] use LSTM’s (Long Short Term Memory) to detect anomalies.

LSTM’s are used to learn long-term dependencies in sequences of data. In their re-

search, they considered each bit on the CAN message as a feature for the LSTM and

trained the network. Logically, once trained, the network will be able to predict the

next CAN message given a previous sequence of CAN messages. In this technique,

they trained a separate LSTM network for each CAN message. For detecting an

anomaly, a scalar anomaly score is required. To generate this score, they use the

binary loss function which is defined as

L(b̂k, bk) = −(bklog(b̂k + ε) + (1− bk)log(1− b̂k + ε)) (3.3)

where,

bk : kth bit in the Message at step i,

b̂k : kth bit’s predicted value by the network,

ε : a fixed value that caps the maximum loss.

35

The loss function will have a low value for incorrect and middling predictions

and very high value for confident and incorrect predictions. The final anomaly

score is calculated by combining the bit losses over the entire sequence using various

strategies like Maximum bit loss (maximum of all bit losses over the entire sequence)

Maximum word loss (maximum in average bit loss over all words), Window max

(maximum in average bit loss over words in a window), Log window max (log mean

of average bit loss over words in a window), Sequence mean (mean bit loss over the

complete sequence), etc. To detect anomalies, an empirically found threshold will

be used on the calculated scalar value.

In another parallel research, Kang et al. [34, 35] used deep neural networks

(DNN’s) directly on the bit stream. The motivation behind using a DNN is its ability

to model nonlinear relationships. In their training phase, features representing the

statistical behavior of the CAN packet is extracted. For feature extraction efficiency,

they use each bit in the DATA field (64 bits) of a CAN packet as features. To reduce

the dimension, they propose to split the DATA field into mode information and value

information depending on the CAN message ID and avoid using unwanted bits from

training. Now using these extracted features, they train a deep neural network

with input layer’s size as the number of extracted features and output layer with 2

neurons. In between, the network will have a fixed number of neurons. The 2 output

neurons represent an attack packet and a normal packet respectively. That is, if the

first neuron is activated, it signifies that it is an attack packet and if the other

neuron is activated, it signifies a normal packet. In comparison with a feed-forward

network, they were able to get better performance on their evaluation with data

36

generated using Open Car Test-bed and Network Experiments (OCTANE) [21].

3.2 Anomaly Detection in Cyber-Physical Systems

Detecting attacks in cyber-physical systems is a challenging task. In the CPS

domain, Gollmann et al. [26] described the potential stages of a CPS and differ-

entiates cyber-attacks from cyber-physical attacks. A survey of various anomaly

detection techniques used in cyber-physical systems from Mitchell et al. [51] de-

scribes the challenges and various techniques proposed. Jones et al. [33] proposed a

formal method for anomaly detection using Standard Temporal Logic (STL). If the

attacks against the system are well understood, their technique can be used to infer

human readable formula. Krotofil et al. [40] used statistical techniques to detect

attacks on cyber-physical systems. They used information theoretic measures like

sensor specific entropy and plant-wide entropy to detect attacks.

A data-driven approach is proposed by Liu et al. [45]. They use spatio-

temporal features and learn the system-wide patterns using a Restricted Boltzmann

Machine (RBM). Goh et al. [24] used recurrent neural networks to detect anomalies

in cyber-physical systems. They used an LSTM to model complex temporal se-

quences and predicted the next expected output. The deviation of the actual sensor

data and the predicted data using CUSUM is then used to detect attacks. However,

they were only able to apply their technique on phase 1 of the SWaT dataset [23]

we use for the evaluation of ABATe.

Several works in the power systems CPS use state estimation [17,63] to detect

37

attacks. DAD from Adepu et al. [1] is another distributed attack detection technique

for a water treatment plant using invariants. Invariants are simply mathematical

relationships between different properties in the system. DAD uses the internal

working knowledge of the system to generate invariants, and such invariants are used

to detect attacks. A general limitation of this technique is the manual generation

of invariants which is difficult. Mitchell et al. [52] introduced another technique to

transform behavior rules to state machines for safety-critical systems like medical

cyber-physical systems. A key insight from their work is that the accuracy of their

technique is dependent on the completeness of the behavior rule set.

Many of these existing techniques use the statistical properties of the sensor

values to detect anomalies. However, they fail to capture domain behaviors specific

to the current domain and current deployment environment. In the case of cyber-

physical systems, the same CPS deployed in different environment settings may

behave differently. Hence, it is important to devise techniques specific to the current

domain. However, the performance of techniques entirely based on the abstraction of

manually crafted behaviors is directly dependent on the completeness of the domain

behaviors [52]. For large industrial cyber-physical systems, creating such a complete

set is an arduous task and error-prone.

Our technique ABATe can automatically learn general constrained behavior

of CPS environments. It is capable of abstracting the domain’s normal behavior

in the form of vectors using its operational data and makes ABATe suitable for

several CPS domains and deployment environments. Unlike many techniques in

the literature which are evaluated against synthetic dataset’s, we use two real-world

38

datasets to evaluate ABATe. As noted by Goh et al. [24], many of the existing

techniques are signature based. Hence, a direct comparison of our technique with

others is difficult. Moreover, a comparison to some recent unsupervised techniques

using the same dataset is also not viable because some of them [24] are restricted to

specific phases of the SWaT dataset, or they use domain specific characteristics [1]

in their techniques. Hence, in section 8, we evaluate our technique using a standard

publicly available dataset SWaT and discuss the semantics on how our technique

detects these anomalies using another automotive dataset.

39

Chapter 4: Automotive Data Collection

As mentioned in chapter 2.2, car is a CPS which people use in their day to day

life and research enlists several attacks 2.2.3 on cars. Detecting them is quite a big

challenge. However, a sensor-rich dataset to support such research was not available.

Some of the existing datasets were either 1, limited in the number of sensors or were

meant for image processing based approaches2. Hence, in this dissertation research,

we collected a rich dataset with data from 13 sensors, as described in table 4.1 from

cars.

1. accelerator pedal position 8. brake pedal status
2. door status 9. engine speed
3. headlamp status 10. high beam status
4. ignition status 11. parking brake status
5. steering wheel angle 12. torque at transmission
6. transmission gear position 13. vehicle speed
7. windshield wiper status

Table 4.1: Components in the Automotive Dataset

4.1 Data Collection Techniques

Several techniques are available to collect data from cars. Some of the de-

vices which are economical include using chipsets like ELM 327, STN1100, Arduino

1http://openxcplatform.com/resources/traces.html
2https://github.com/udacity/self-driving-car/tree/master/datasets

40

http://openxcplatform.com/resources/traces.html
https://github.com/udacity/self-driving-car/tree/master/datasets

with CAN-BUS shield, etc. (Figure 4.1)which captures raw CAN bus messages [57].

ELM 327 is a micro-controller which decodes the OBD(On-Board Diagnostics) in-

terface of cars via UART. Many off-the shelf implementations are available which

can communicate using USB, RS-232, Bluetooth or Wi-Fi. STN11003 is another

chipset which is a similar multiprotocol UART interpreter for OBD-II protocols

with better, stability, and performance. Yet another tool which can interface data

from cars is using Arduino (an open-source electronic prototyping platform) based

CAN bus shield from SparkFun using a microchip MCP25515 and MCP2551 CAN

transceiver. Several mobile applications like Torque, OBD Car Doctor Pro, Engine

Link, etc. help observe some data on a mobile device like a tablet or cell phone.

Figure 4.1: Data Collection Devices from Cars CAN Bus

There are several tools like OpenXC from Ford, Octane CAN bus sniffer [7],

Komodo CAN bus sniffer4, Vehicle Spy5, SavvyCAN6, O2OO Data logger7, etc.

that can be used for the collection and analysis of data from car and each tool has

their own advantages. For example, Vehicle Spy helps us to view all the messages in

3https://www.scantool.net/stn1110/
4https://www.totalphase.com/products/komodo-canduo/
5http://store.intrepidcs.com/Vehicle-Spy-p/vspy-3-ent.htm
6http://www.savvycan.com/
7https://www.vanheusden.com/O2OO/

41

https://www.scantool.net/stn1110/
https://www.totalphase.com/products/komodo-canduo/
http://store.intrepidcs.com/Vehicle-Spy-p/vspy-3-ent.htm
http://www.savvycan.com/
https://www.vanheusden.com/O2OO/

different CAN buses simultaneously. It also allows capturing and replaying different

captured sessions on to the CAN bus. However, most of them show raw CAN mes-

sages(Figure 4.2) with raw CAN bus ID’s which doesn’t give any clear intuition on

the semantics of different messages because the there is no standard CAN ID’s avail-

able for cars except for the codes for testing vehicular emissions. In this research,

we use OpenXC platform developed by Ford motor company.

Figure 4.2: Raw CAN Messages from STN1100 based tools

4.2 OpenXC Platform

We used the OpenXC platform8 for data collection from cars. It is a combina-

tion of open-source hardware and software that allows developers to unlock the rich

vehicular data and help them to extend vehicles with custom applications. The soft-

ware/hardware combination supports several hardware devices like Ford Reference

VI, CrossChasm C5 devices, Cross Chasm C5 BT, OpenChasm C5 cellular, Cross-

Chasm C5 BLE, DIY chipKIT-based VI, etc. The software API’s from OpenXC is

available in python and Android which helps developers a standard interface to an-

alyze and visualize data from cars. The software also supports data to be exported

8http://openxcplatform.com/

42

http://openxcplatform.com/

to standard formats like JSON.

Figure 4.3: Ford Reference VI

In our data collection setup, we used the Ford Reference VI (Figure 4.3) as

hardware and Android API as software for OpenXC. Several firmware’s are available

for the device and depends on the vehicle used and the dataset which need to be

collected. Its also supports a configuration which helps decoding unknown/custom

CAN ID’s also. During data collection, we flashed VI using the expected firmware

and used a nexus 7 tablet that uses the Android API’s to dump data from the

vehicular CAN bus in JSON format. The collected data is a stream of discrete

JSON messages with each JSON will carrying information from a specific sensor

available at that time. Figure 4.4 shows the structure of the actual data from the

Nexus 7 device. After necessary cleaning, we generated raw vectors that represent

the individual states of all sensors at that time instant.

Our first task is to convert the stream of JSON into a time sequence of data

from all the sensors. For this preprocessing, we aggregated all the JSON messages

during a very small time frame say one second and generated a vector which contains

data from all the sensors. We can categorize two types of devices sending data on

43

Figure 4.4: Automotive data from OpenXC VI

to the car’s common bus. The first type sends data continuously at every time

instant (Speed, RPM, etc.) and the second type sends only event data when its

status change (eg. Door Sensor, Head Lamp status, etc.). While generating time

vectors, if data is not available from a particular sensor at that time slot, the status

of that sensor is copied from the previous slot because it is assumed that the status

of that sensor didn’t change in that time slot. In total, we collected about 25 hours

of real driving data with a total of close to 1000 miles of driving. We made sure

that the dataset contains data from different driving conditions which include city

drives, highway drives, short drives, hill road drives, and short shopping drives as

described in table 4.2.

Drive Condition Miles Driven Time Duration(hrs)

Hill Drive 268.51 5.51
Hiway Drive 609.06 14.24

Short/City Drive 109.11 5.67

Total 986.68 25.42

Table 4.2: Automotive Dataset Characterization

44

Chapter 5: Knowledge-Graph Based Approach to Detect Anomalous

Behaviors in Cars

Chapter 2 describes the car as a smart cyber-physical system and describes

various attacks possible against them. In this chapter, we develop a semantic based

approach to detect anomalous activities in a car using the data collected from them.

The core idea is to aggregate local contexts available from the underlying data and

uses them to detect a global context using semantic technologies. In research, con-

text had been defined by multiple researchers. Among them, a popular definition

is “Context is any information that can be used to characterize the situation of an

entity. An entity is a person, place or object that is considered relevant to the inter-

action between a user and an application, including the user and applications.” [19]

In the vehicular domain the entities include hardware devices like sensors, control

units, actuators, wireless devices, etc. and the different information which can char-

acterize the situation include the sensor measurements, actuator states, etc. Some

of the sensory measurements include speed, acceleration, location of the vehicle, and

distance proximity of the vehicle from another object, and the states of actuators

can include state of headlights is “on”, state of wipers is “off”, etc.

Semantic contextual inference can offer more precision and maintainability

45

over other methods in such situations because they abstracts human intelligence. In

our approach, we use various semantic web technologies like Ontologies and RDF

represent each of its components separately and use a reasoner to identify any in-

consistencies. The same context could be determined from different sets of sensors.

Such redundancies could also be utilized to verify the context of the vehicle or oth-

erwise to detect anomalies. For example, we can detect that the vehicle is moving

from the speed sensors or by the combination of different other sensors like engine

rpm and gear position of the vehicle. If both of them leads to the inference that the

vehicle is moving, then it is a normal scenario. But if one infers the vehicle is mov-

ing, and the other set contradicts, it represents a potential anomaly. In our system,

we collect streaming data from a vehicle’s CAN bus and use this data against a set

of SWRL rules1. These rules are developed from historical system data can be used

to extract vehicular context. We discuss a few use-cases where we derive vehicular

context using these SWRL rules and use them to detect anomalous states.

5.1 Approach

A typical vehicle has various sensors and actuators communicating over a com-

mon communication channel. Due to the primary focus on efficiency and simplicity,

when the protocols were developed, it lacked required authentication features. As a

result, any message available on the CAN bus is considered to be a valid instruction,

and the receiving control units and actuators have no way to distinguish it from a

malicious instruction. We try to aggregate and extract context from these different

1https://www.w3.org/Submission/SWRL/

46

https://www.w3.org/Submission/SWRL/

data exchanges to distinguish normal data flow from a malicious data flow.

In a vehicle, the communication happens over the common CAN bus. We can

tap the data flowing on the bus using the OBD-II (On-Board Diagnostic) port which

is mandatory on all the vehicles in the US from late 1990’s. The data flowing on

the bus can use multiple protocols like ISO 15765-4 (CAN), ISO 11898 (raw CAN),

SAE J1939, etc. Apart from this heterogeneity, the amount of data available on

the common communication medium also prompted us to propose a multi-tiered

mechanism to extract context. The different layers are depicted in Figure 5.1. The

Local Context Detection (LCD) layer will convert the crude and heterogeneous data

into a higher plane for further context aggregation. The Cross Component Context

Inferencing Engine (C3IE) aggregates the different local contexts from LCD to infer

overall state of the system. We also propose the use of a Rule Mining Engine to

extract knowledge from historical data to support the inferencing process. Each of

the components are described in detail below.

5.1.1 Local Context Detection

The data from the OBD-II port is a stream of bits which is first converted

into valid CAN messages. The Local Context Detection (LCD) layer’s first job

is to extract such valid messages from the stream of bytes. The CAN messages

can contain raw sensor measurements like temperature, speed, acceleration, throttle

pedal position, etc. In order to make the inference process faster and meaningful,

the LCD layer again processes these sensor messages into a higher context plane. For

47

example, the speed sensor emits the raw speed measurements at regular intervals.

Instead of introducing the raw values as it is into the knowledge base, the LCD

layer will process them and extracts more useful context like “high speed”, “sudden

acceleration”, “normal speed”, etc. and associates them with their respective entities

in the Ontology.

Another important reason for having the LCD layer is to ensure portability

of our system to different vehicles. Since the communication channels are not com-

pletely standardized and different manufacturers still use proprietary protocols, the

LCD layer allows for the reuse of same rules and inference procedures. The main

functions of this layer include conversion of raw bits into CAN messages and aggre-

gation of similar CAN messages to generate more meaningful local context. Once

the local context is inferred, the LCD layer pushes it into the C3IE’s knowledge

base.

Figure 5.1: Overall System Architecture.

48

5.1.2 Cross Component Context Inference Engine

The LCD layer extracts the local contexts from different sensors and actuators

from the common communication bus and delivers them to the Cross Component

Context Inference Engine (C3IE). The four different components in C3IE are IoT

Ontology which captures the logical semantics between different components, Do-

main Instances which are the specific instantiations of entities in the Ontology,

Domain specific SWRL rules which captures the relationships between different

components and a Reasoner which infers the current state of the whole system. The

different components are explained in detail in the following subsections.

5.1.2.1 IoT Ontology

One of the benefits of developing an Ontology is knowledge reuse. Hence

instead of developing a new ontology, we re-use the IoT-Lite 2 meta-Ontology, which

is a light weight version of SSN 3 (Semantic Sensor Network) ontology. In order

to match our specific use-case, we extend it by adding some properties. IoT-lite

ontology is developed so as to allow cheaper processing time while querying it. It

classifies the IoT devices as Sensing devices, Tag devices, and Actuator devices. Each

of the devices is associated with an attribute which is a measurable quantity, and

one or more devices are associated with it. We extend this ontology by associating

object properties like “senseAttribute” and “affectsAttribute” to the devices such

that we can keep track of the devices which are related to different attributes of

2https://www.w3.org/Submission/2015/SUBM-iot-lite-20151126/
3https://www.w3.org/2005/Incubator/ssn/ssnx/ssn

49

the system. Also, we add a “hasStateValue” data property to the attributes of the

system. A simplified view of the Ontology is presented in figure 5.2.

Figure 5.2: Simplified view of the Ontology used.

5.1.2.2 Domain Instances & Domain Specific SWRL rules

This is the part which customizes the ontology with domain specific knowl-

edge. In the domain of vehicles, the different sensors may include “vehiclespeed-

sensor”, “environmentlightsensor”, “distacesensor” (which may be acoustic based,

radar based or image based) and actuators like brake, accelerator, headlights, and

step-up motors. Now we need to add domain specific rules for the reasoner to fuse lo-

cal context information from different sensors, actuators, etc. and generate a global

context. We use Semantic Web Rule Language (SWRL) to represent such rules in

the Ontology. Some of the sample SWRL rules are specified in section 5.2.

50

5.1.2.3 Reasoner

In our Ontology, we define a special attribute called “currentsystemstate”,

which can have two values “normal” and “anomalous”. It should be noted that our

proposed technique is not only supposed to detect activities of malicious attackers,

it also detects any inconsistent, dangerous or unexpected behavior of the system.

For example, a sudden large change in the steering wheel angle, while the vehicle is

moving at fast speed ranges is a dangerous behavior, caused by a malicious attacker

or not. Sometimes it can be caused by a faulty component, but that doesn’t stop the

vehicle to be in a dangerous situation. Hence our proposed technique detects not

only an attack state, but all dangerous or unsafe states. In the vehicular domain,

we cannot use a static reasoner since the facts keep on changing. Hence we need

to use reasoners like C-SPARQL [3, 4], IMaRS [27](Incremental Materialization for

RDF Streams), TrOWL [64], C-SPARQL on S4 [6] or Streaming SPQRQL [6] which

can work on the stream of data rather than on static set of facts.

5.1.3 Historic Data Aggregation & Rule mining

The presence of domain knowledge stored as SWRL rules is an important

component of our system. The better information which could be captured with

them, the better performance the overall system will have. Hence, we introduce

the rule mining component, which uses statistical and machine learning techniques

which generate these rules automatically. Once generated, the rules are ran against

the already present rules and are tested for consistency before being added into the

51

SWRL rules.

5.2 Usecase Scenarios

Context-aware computing has been successfully deployed for multiple applica-

tion domains. Here we try to apply it on the vehicular sensors in order to detect

anomalous activities. As a part of analysis, we have collected live data from cars us-

ing CAN Bus shield and analyzed the possibility of converting them in to context in

a higher plane. To create a meaningful test scenario, we consider a subset of sensors

and actuators deployed in a real vehicle. Then we show the different instantiations

in our Ontology, and some of the SWRL rules developed. The different sensors in

the subset include “vehiclespeedsensor” which reports speed of the vehicle at regular

intervals, “environmentlightsensor” which report intensity of ambient light around

the vehicle, “distancesensor” which report the distance of the vehicle from an obsta-

cle and “steeringanglesensor” which report current angle of the steering wheel from

straight position. The actuators include “brake”, “accelerometer” and “headlight”.

In the Ontology each sensor is associated with an attribute of the system, in this

case a car. For example, the distancesensor will senseAttribute distance.

LCD layer will pick up raw CAN messages and interpret them to corresponding

sensor values. Now the vehiclespeedsensor will be sending current speed of the

vehicle in quick successions. But LCD layer will generate a higher level context for

speed like, speed is “low”, “high”, “average” etc. Another example which depicts the

functionality of the LCD layer is that different vehicles have different sensors for the

52

distance sensor. Some may have radar sensors while some others may have acoustic

sensors. But LCD layer will convert these different values to a common distance

value. LCD layer will continuously monitor the data flowing on the common bus

and generate higher level contexts. When it detects a change in value of any of

the local contexts for sensors, it will remove the corresponding local context of the

sensor from the knowledge base and inserts new local context information. To insert

new context, it will check the Ontology to infer that the corresponding sensor will

affect a specific attribute of the system and it will update it accordingly. This will

allow the reasoner to work on the attributes of the system directly. We will now

describe SWRL rules which can be used to detect some abnormal behaviors.

hasComponent (vehicle, distancesensor)^ hasComponent (vehicle,

vehiclespeedsensor) ^ hasStateValue (distanceProximity, "low") ^

hasStateValue (vehiclespeed, "high") ==> hasStateValue

(currentvehiclestate, "Anomalous Collision")}

In the above SWRL rule, it will first check if the vehicle has sensor components

distance sensor and vehiclespeed sensor. This is added so that the rules will be

generic for different vehicles. Some of them may or may not have a specific sensor.

If they are available, the attributes associated with them will be properly updated.

Hence in that case if the distance proximity has value “low” and vehiclespeed has

value “high”, it implies an anomalous situation.

hasComponent (vehicle, environmentlightsensor) ^ hasComponent (vehicle,

vehiclespeedsensor) ^ hasComponent (vehicle, headlight) ^

53

hasStateValue (environmentlightsensor, "low") ^ hasStateValue

(headlight, "off") ^ hasStateValue (vehiclespeed, "high") ==>

hasStateValue (currentvehiclestate, "Anomalous No Light")}

In this example, in the presence of environmentlightsensor, vehiclespeedsensor and

headlight actuator, if the ambient light is low and vehicle speed is high and headlight

actuator state is off, then it represents an anomalous situation.

hasComponent (vehicle, steeringwheelpositionsensor) ^ hasComponent

(vehicle, vehiclespeedsensor) ^ hasStateValue

(vehiclemovementdirection, "high") ^ hasStateValue (vehiclespeed,

"high") ==> hasStateValue (currentvehiclestate, "Anomalous Sudden

Direction Change")

This is another example in which a sudden change in the angular position of the

steering when speed is high in the presence of steeringwheelpositionsensor and ve-

hiclespeedsensor inferring anomaly.

5.3 Discussion & Lessons Learned

In this chapter, we proposed a knowlege-graph based approach to detect

anomalies in a smart cyber-physical system environment taking automotive domain

as an example. From the usecase scenarios, it is evident that such an approach will

be better than a simple rule based system in which every rule need to be mentioned.

In our technique, experts provide abstract rules and our technique infers more com-

54

plex rules and situations from them using reasoning. Other important benefits of

using this technique are lesser number of false positives and the explainability of de-

cisions made because our system’s decisions can be tracked to the knowledge-graph.

In many learning based systems short term dependencies can be easily determined

but the longer term influences like an event happening every one month are harder to

be learned. They are better to be taught. Our system being taught such long-term

as well as short-term dependencies can be incorporated.

Even though the cost of knowledge-graph reasoning is very high with a larger

set of components, with powerful machines, fast communication channels, and cloud

enabled technologies even larger systems could be managed in theory. Economical

factors might affect the practical feasibility of such an approach. Moreover, the

reliability and completeness of such a system is completely dependent on the closure

of knowledge in the knowledge graph. This is a major weakness of this approach.

With larger number and variety of components in a system, several complicated

correlations exists. Even additional insights exists in the system which may not be

intuitive. This makes other learning based techniques to be used in conjunction

with such a system. Such techniques are discussed in the later chapters.

55

Chapter 6: Learning Constrained Behaviors in Cars

Chapter 2 describes the peculiarities of a typical cyber-physcial system. It

interacts with the physical environment and may alter their current or future states.

As a result, the operations of a CPS would be constrained by the various laws of

physics and domain norms. For example, a car cannot alter its state from speed 60

mph to 0 mph in a second because of various laws of physics governing it. Similarly,

in a normal situation nobody will drive a car with its door open (if the car has a

door). In this section, we describe a Hidden Markov Model (HMM) based approach

to capture such domain behaviors. We captured data from some components of a

car and modeled it to fit an HMM model in this approach.

We try to convert the problem of detecting abnormal states in a vehicle into

a data analytic problem. In this work, we first collected data from different vehicles

and formulated the problem into a data analytic problem. Then we used HMM to

create a model. Once the model is generated, we use it to predict any unsafe or

anomalous states from the data flowing on the CAN bus. We evaluated our system

by generating multiple anomalous scenarios by logically modifying the collected real

data. We envision our system to be implemented on a portable programmable chip

and connected to the CAN bus as an additional device. The device will monitor the

56

data on it, detect anomalous behaviors and generate alerts as required.

6.1 System Architecture

Newer protocols require significant modifications to ECU and sensor archi-

tecture. For future cars, to accommodate these changes would cause significant

increase in manufacturing cost. But for existing cars, modifying the existing com-

ponents would be hard and economically impractical. Since it is possible add third

party gadgets, even to older cars, we believe that it is extremely important to make

the in-vehicular network safe by detecting and possibly mitigating potential attacks.

Hence we envision a technique which is applicable to older and newer vehicles at

the same time with minimum modification to the existing architecture. We consider

the stream of messages exchanged between different components of a car: Engine

Control Module, Electronic Brake control module, Transmission Control Module,

Body Control Module, Telematics, Radio, etc., forms a sequence of events and we

formulate these sequence of events as a Machine Learning problem where we predict

if the state of the vehicle is normal or abnormal. To accomplish it, we follow the

following steps.

• Data Collection Phase: This is the first step in which the stream of CAN bus

data is collected from real vehicles for analysis. We can employ the OBD-II

port present in most vehicles for this purpose. Detailed discussion on data

collection can be found in Section 6.1.1.

• Model Generation Phase: In this phase, we analyze the collected data and

57

generate a model. Since Hidden Markov Models (HMM) can abstract the

time series data, we use them to model this scenario. Fitting the current

scenario to HMM model is described in detail in Section 6.1.2.

• Anomaly Detection Phase: This is the final phase in which we detect anoma-

lous behaviors in the vehicle using the generated model using posterior prob-

abilities. It is described in Section 6.1.3.

6.1.1 Data Collection

The first step is to collect data from the CAN bus. CAN bus is a broadcast

bus on which multiple devices are connected. When a device wants to communicate

with other components connected to the bus, it will broadcast a message on to the

bus with a specific message ID. As shown in Figure 6.1, each CAN message will

have a specific Message ID(part before semi-column) and message data (part inside

square bracket). While sending the message, each device will be identified by the

Message ID alone.

Figure 6.1: CAN Message

It should be noted that the OBD port, which is mandatory in many countries is

also connected to the CAN bus in order to collect diagnostic information. Hence we

58

can essentially attach a device on to the OBD-II port and extract data for analysis.

There are multiple tools like OBDLink Mx, Blue driver, CAN-BUS Shield with

Arduino board and ELM 327 clone devices which can be attached to OBD port to

extract raw messages broad-casted over it.

For data collection for this work, we used STN1100 based OBDLink MX.

STN1100 is a multi protocol OBD to UART interpreter integrated circuit. It has

a 16 bit processor with inbuilt flash memory and a RAM. It supports the complete

AT command set (Command set for ELM 327 based chip-set) along with a new

set of ST commands. It supports different protocols like ISO 15765-4 (CAN), ISO

11898 (raw CAN) and SAE J1939 (heavy vehicles). Other selected features include

voltage input for battery monitoring and automatic protocol detection. We used

OBDWiz, a tool which connects with OBDLink MX, to interface with the vehicles

OBD port. During data collection, we set the “STMA” command, which will extract

all the data flowing over the CAN bus. We collected data from vehicle from different

manufacturers which include “Honda”, “Toyota” and “Chevrolet”.

We faced some practical limitations for collecting the data. Many of these

vehicle manufacturers have different mechanisms which hinder the direct collection

of data from the CAN bus. Some of the techniques include using multiple CAN buses

which are guarded by different gateways. These gateways can be unlocked only by

specific tools. But these simple techniques won’t stop a malicious attacker to crack

into it. We were able to collect the information from sensors like Vehicle speed, load,

engine coolant temperature, Engine RPM, Intake air temperature, Absolute throttle

position and O2 voltage using the tools mentioned. Because of the limitations and

59

difficulty in the data collection process, we moved to OpenXC platform for further

data collection as described in Chapter 4

6.1.2 Model Generation

The second step in our approach is to analyze the collected data to develop a

model which can identify anomalous states. In this project, we try to use Hidden

Markov Models (HMM) to create a model. The intuition behind using this model is

described below. We consider the movement of a vehicle is nothing but a sequence

of states which are dependent on the previous state, like the Markov’s processes. For

example, consider the sequence of activities from T1 to T12 as shown in Figure 6.2. At

T1 speed is zero and the Door is open. At T2 the door is closed and it starts moving.

The car gathers speed gradually till T6. But at T7 there is a sudden jump of 85

miles per hour making the speed to 100 mph. At T8 the speed of car is 200 miles per

hour and the door is open. We can clearly see that the probability of a state change

from T6 to T7 and T7 to T8 are very low. Hence from these sequences, we can detect

anomalous behaviors. We used HMM’s to create a model since they provide powerful

abstractions to predict time series data. To create a HMM model, we generate two

set of probabilities, Transition probabilities and Emission probabilities. Transition

probability controls how a new state, lets say “S(t)”, is chosen from a current state

“S(t-1)”. The emission probability is probability that a specific set of observations

will be generated given current hidden state “S(t)”. During model generation we

try to estimate these probabilities using the given data set.

60

Figure 6.2: Sample Car Event Time-line

The first challenge for model generation is how to convert the collected data

into a series of observations. The data collected in the first phase contain data

from multiple ECU’s. Instead of training the model with absolute values, we chose

to use gradients for each observation, since the change in observations alters the

state of the vehicle. For example in case of speed, instead of using actual speed,

we find the speed gradients and train our system for it. The next challenge is on

how to accommodate multiple observations as a single vector. We have different

type of sensors in a vehicular system. Some of them will push data on to CAN bus

at regular intervals like speed and RPM. On the other hand, there are some other

observations which are pushed on to the system only when they are required like

door sensors in some vehicles.

In our model, we create a vector containing different inputs from different

61

systems. Each vector will then represent a single observation, and our system will

be trained for each of those observations. We generate observation vectors Ot for

each set of values from different components available. We define the sequence

of observations, O = O1, O2, ...On where Ot is a vector. Each observation vector

Ot = {vk,1, vk,2, ...vk,n} where vk,i is the value of the ith component at time k. For

example Speed is 20 mph, RPM is 3000, State of door is closed etc. are modeled

as a single vector. During implementation, we interpret the different values from

particular slots in the CAN message and convert into decimal values from Hex

values before using them to train our model. To generate the HMM model we used

HMM toolkit in Matlab. The generated sequence of observations is used to train the

model using the “hmmtrain” function. We chose to use the Baum-Welch algorithm

for training which will generate Transition and Emission Probabilities corresponding

to test sequences.

6.1.3 Anomaly Detection

In this phase, we use the generated model to detect anomalies. By anomaly

we mean a sudden deviation in the behavior of vehicle interpreted from data on

CAN bus. As we described earlier, we are not only detecting attack states, but

also any unsafe or anomalous states. For example, even though it is not caused

by an attacker, opening of door at 200 mph is unsafe and hence we flag it. To

detect unsafe states, we first convert the values from different components into

sequence of observation vector in the same way as mentioned above. We then use a

62

Figure 6.3: Sliding Window For Anomaly Detection

sliding window of “m” previous observations, Owindow = {O1, O2, ...Om} as shown in

Figure 6.3 to detect the presence of any anomalies. The sliding window moves every

time a new observation is available. One of the operations which we can do with

HMM is to detect the posterior probability of a given sequence. In this case, once the

sliding window is determined, we use all observations in that window and determine

the posterior probability of that sequence. In our case, each of the observation

would be a vector of different sensor values. It will generate a set of probabilities

corresponding to each observation. If the probability of any such sequence is below

a threshold, based on the generated model, it implies that getting that observation

in that sequence is very low and hence we identify it as an anomalous state based

on our generated model.

We implemented anomaly detection using the matlab tool box. The anomaly

detection module has the model as its first input. In our implementation, the input

stream from the CAN bus is fed to this module. It will convert it into a sequence of

observation using the same procedure we had used during model generation phase.

Now when new observations are available, the module will pick up “m” previous

63

observations from the sliding window and use “hmmdecode” from matlab to find

the posterior probability for the sequence in the window. The module will now

generate an alert, if the probability of any observation in the sequence is going

below a set threshold value.

6.2 Evaluation & Results

For our evaluation, we need to verify that no alerts are generated during

normal conditions and alerts are generated during unsafe conditions. To test the

normal conditions, we split the collected data into two parts. The first part is used

for training the model and the second part is used to verify if the model generates

any false positives. For evaluating the system to detect unsafe states, we hand

crafted different scenarios by injecting unsafe data into the actual data. We had

done a progressive evaluation scheme to test the performance of our model. Our

first evaluation used only data from a single component. Further evaluations use

more than one values at the same time. We describe our evaluation method and

corresponding results below.

6.2.1 Single Observation Evaluation

We first trained our system only based on a single observed value. We used the

data from speed sensor and RPM sensor separately for this. Figure 6.5 represents

a part of test data for speed shown graphically. Each of the spikes in it represents

the anomalous sudden change in speed caused as a result of the introduction of

64

Figure 6.4: Test Data for RPM as a single observation

Figure 6.5: Test Data for Speed as a single observation

Figure 6.6: Test Data for RPM and Speed together

65

anomalous data to the real data collected from vehicle. Ideally such a sudden spike

is an unsafe state according to our hypothesis. Our generated model was able to

detect each of those spikes. In order to make sure that this will work not only for

that particular observation, we tried it with RPM sensor data shown in Figure 6.4.

In a similar way the spike represents a very sudden change in RPM. We should note

that the rate of change in RPM and Speed are different. RPM can increase more

rapidly than speed. But since our model is based on real data collected from vehicles,

it can detect all those variation which will normally happen in them. The results

are concluded in table 6.1. We can see that all different anomalous changes, which

cannot correspond to the normal context of a car were detected by our generated

model. Moreover at those places which do not have spikes the model did not generate

any alert.

No Type Speed Result RPM Result
of Change Alert Status Alert Status

1 ⇑ False X False X

2 ⇓ False X False X

3 ⇑⇑ True X True X

4 ⇓⇓ True X True X

Table 6.1: Single Observation Evaluation. ⇑ - Gradual Increase, ⇑⇑ - Sudden
Increase, ⇓ - Gradual Decrease ⇓⇓ - Sudden Decrease

6.2.2 Multiple Observations Evaluation

Since our model work well with single observations, we evaluated how it will

work while considering multiple observations together in a vector. For this evalu-

66

ation we chose the speed and RPM observations together as a single vector. Both

speed and RPM values are generated at regular intervals and hence we could map

every speed value with an RPM value. A part of the anomalous values we generated

and tested using our model is represented in figure 6.6. The different spikes repre-

sent different anomalous situations which should not happen normally in a vehicle.

We tested eight different anomalous situations in it. Each one represents either one

of the quantity or both of them being modified which represent a potential malicious

state. For example at time 118, the speed suddenly increases while the RPM value

decrease, which is an anomalous scenario in a normal running vehicle. Similarly

at time around 92 the RPM and speed increase abnormally. After generating the

model, we tested these different cases and the evaluation results are described in

table 6.2. We can see that each of such situations could be detected by our model

and hence the results are promising. But we acknowledge the fact that we need to

test our method with more anomalous states of varying degrees.

6.3 Discussion

In this chapter, we propose a Hidden Markov Model based technique to detect

anomalous events in a car. As described in the results section, we were able to

detect some anomalous states in the sequence of events using such a learned model.

However, there is well-documented research which points to scalability issues with

Hidden-Markov Models. When the number of states and observations increase,

the state transition and emission transition matrices will get bigger and harder to

67

No Speed RPM Alert Status Result

1 ⇑⇑ ⇑⇑ True X

2 ⇑⇑ ⇓⇓ True X

3 ⇓⇓ ⇑⇑ True X

4 ⇓⇓ ⇓⇓ True X

5 ⇑⇑ ⇐⇒ True X

6 ⇓⇓ ⇐⇒ True X

7 ⇐⇒ ⇑⇑ True X

8 ⇐⇒ ⇓⇓ True X

Table 6.2: Multiple Observation Evaluation. ⇑⇑ - Sudden Increase, ⇓⇓ - Sudden
Decrease, ⇐⇒ - Normal (from Test data)

manage. Also, the learning will also be badly affected. In this dissertation, however,

this research has important implications. Albeit with lesser number of sensors, we

showed that the normal sequences can be discerned from the anomalous sequences

using a model that is learned from normal operational data of different sensors.

This motivate the requirement of an efficient technique which can ingest the normal

operational data from a car (and in general cyber-physcial systems), learn their

intricate relationships automatically, and use the learned relationships to identify

anomalous behaviors. In the later chapters, we work towards such a goal.

68

Chapter 7: Automatic Behavioral Abstraction Technique for Smart

Cyber-Physcial Systems

In this chapter, we develop a novel, scalable, and domain-independent tech-

nique, ABATe (Automatic Behavioral Abstraction to learn operational behaviors

specific to a cyber-physical system and use them to identify anomalous behaviors.

Attacks on CPS’s, often defined as “intentional actions trying to cause undesired

effects in the physical world” [25], are also perceived deviations from the normal

behaviors. Hence, we developed a new techniqueABATe looks for such deviations

in the working data and identifies different attacks on the cyber-physical system.

Our technique works in two stages; a domain independent “offline learning phase”

to abstract the norms of the domain and an “online monitoring” phase to detect

attacks by measuring their deviation from normal. An important characteristic of

ABATe is its multi-domain adaptability (using the same technique on data from

different CPS domains). We also don’t need examples of attack/anomalous states –

putting a CPS in “bad” states is often impossible due to safety constraints, or can

cause physical damage to the system.

In this chapter, we demonstrate ABATe’s capabilities using real-world datasets

from two different CPS domains. The first dataset(SWaT) [23] is from a scaled down

69

sewage water treatment plant where data is collected over a period of 11 days. We

use ABATe to detect the 36 well annotated attack scenarios in this dataset. To

prove ABATe’s multi-domain adaptability, we collected and processed more than 25

hours of real driving data from a modern car. We also use the automotive dataset to

study the capability of ABATe to abstract context from real-world cyber-physical

systems which enables it to detect attacks. Our evaluations show that ABATe can

detect a large variety of attack scenarios with a low false positives rate.

7.1 Methodology

The operations of a cyber-physical system are constrained by the laws of

physics and implicit domain behaviors. The dependencies arising from such con-

straints are well represented in their normal working behavior. In a rule-based sys-

tem, an expert will list out all these dependencies for detecting various anomalous

behaviors. It is tedious and error-prone in complex systems with tens or hundreds

of different components. In this paper, we develop ABATe which learns these de-

pendencies from the normal operational data and use them to detect anomalous

behaviors. Our technique works in two phases; an off-line “Learning phase” and

an on-line “Monitoring phase” as shown in Figure 7.1. The off-line Learning phase

abstracts a perceived normal domain-model into context vectors from the existing

data. In the on-line Monitoring phase, the live data from all the components is

processed and is checked for anomalies using the generated model.

70

Figure 7.1: ABATe Implementation Pipeline

71

7.1.1 Off-line Learning Phase

The off-line phase in ABATe ingests the data from a cyber-physical system

and abstracts its normal operational behavior into context vectors. This phase

constitutes 2 major tasks; state vector generation and context vector generation.

7.1.1.1 State Vector Generation

Let X (Eq:7.1) be the set of n components in a CPS and each xi ∈ X takes

value vi,t at time t. vi,t can either be continuous or discrete. The raw state of a

cyber-physical system at time t, ~rvt (Eq:7.2), is defined as a vector of the aggregation

of values from all its individual components at that time instant. Let RVseq (Eq: 7.3)

be the input sequence of raw vectors. Each ~rvt is a point in an n-dimensional vector

space with each vi,t as a specific dimension. The potential continuous nature of the

sensor values causes the state space to have an infinite number of states.

X = {x1, x2, ..., xi, ..., xn} (7.1)

~rvt = 〈v1,t, v2,t, ..., vi,t, ..., vn,t〉 (7.2)

RVseq = ~rv1, ~rv2, ..., ~rvi, ..., ~rvt

where,

~rvt : raw vector at time t

(7.3)

We perform two optimizations on the normal operational data to generate a

state vector set S, a subset of this vector space. First, we assume that “given a long

72

enough duration of time, we can capture most normal behaviors in a cyber-physical

system”. It flows from the insight that CPS’s have constrained behavior. Hence,

we add only those ~rvt’s which we have observed during the normal operation of the

CPS. Second, we aggregate those states which are very close to each other in the

state vector space and add only their centroids to S because such states often exhibit

similar behaviors. In ABATe, we find the Euclidean distance between two ~rvt’s and

fold them as the same state, if the distance falls below an empirically found state

transition threshold, τsim. Each state in S now corresponds to a legal state in the

respective CPS.

We label each state ~si ∈ S randomly and generate hot vectors for each of

them. The generated hot vector set HS has a ~hvi corresponding to each ~si ∈ S. We

generate the hot vectors to make sure that each ~hvi is independent of each other

and assume no relationship between each other based on the raw sensor values.

ABATe will now automatically learn the complex interdependencies from the normal

operational data and generate context vectors in the Context Vector Generation

task.

7.1.1.2 Context Vector Generation

In this task, ABATe learns context vectors that abstract the perceived normal

behavior of the CPS for each state ~hvi ∈ HS. To learn context vectors, ABATe

finds an embedding for each state ~hvt by capturing their distributional behavior

in the normal operational data. In mathematics, an embedding is defined as “a

73

representation of a topological object, manifold, graph, field, etc. in a certain space

in such a way that its connectivity or algebraic properties are preserved”1. Neural

networks are successfully used to generate such embeddings in domains like Natural

Language Processing(NLP) [48] that learns the distributional behavior of words in

natural language text. In a similar way, ABATe learns the embeddings for each state

vector, ~hvi ∈ HS using neural networks and CPS’s normal data. These embeddings

encapsulate the distributional behavior and encode the contextual information with

them. For example, let ~ci, ~cj be the learned embeddings corresponding to ~hvi, ~hvj.

Then, the vector similarity between ~ci & ~cj will be high if ~hvi & ~hvj has the same

context (occur together frequently in the normal operational data). Conversely,

the vector similarity will be minimum, if they never occur together. In the on-line

monitoring phase, we utilize this property to detect context anomalies.

The neural network which learns the embedding in ABATe determines a func-

tion which converts ~hvi into ~ci as presented in Eq: 7.4 and Eq: 7.5. The network

has an input layer with size equal to the number of states in HS (HSsize =| HS |).

They are connected to a fully-connected neural layer with input size as HSsize and

output size as the context vector length, Csize (a hyper-parameter). There will be

no activation function for this layer and its output is directly used as context vec-

tors. The final layer is a soft-max layer with input size as the context vector length

(Csize) and output size as HSsize. Once training is done, the first layer will act as

a lookup function and convert the state vector ~si to context vector ~ci. The ~ci is a

condensed representation of ~hvi with encoded context or their distribution in the

1http://mathworld.wolfram.com/Embedding.html

74

normal data. In addition, it also learns implicit relationships between states based

on their contexts.

Input Layer:

~ci = f(~hvi)

f(x) = Wx+B

where,

~hvi: Hot Vector corresponding to ~si

W : Matrix with size HSsize × Csize

B: vector with size Csize

~ci: Context Vector corresponding to ~si

(7.4)

Soft-max Layer:

Output = SoftMax(~ci)

where,

~ci: Context Vector corresponding to ~si

(7.5)

To train the network, we introduce a new variable ~chvi corresponding to each ~hvi.

Each ~chvi is a hot vector and assumes no relationship between any existing ~hvi and

is used only for training the neural network. We also introduce a context window of

size cw size while training. It defines the influence of a state to its preceding states.

For example, if cw size = 2, it implies that the current state has some dependency

on the previous 2 states. We show that tuning this variable adds robustness to

ABATe.

75

The training set for the neural network, TrainSet, is a set of tuples in the

format 〈input, output〉. We generate these tuples from the sequence of normal oper-

ational data of a cyber-physical system. Let ~hv1, ~hv2, ..., ~hvi, ~hvi+1, ... be a sequence

which appears in the normal operation of the CPS. Now for each ~hvi, we generate tu-

ples 〈 ~hvi−k, ~chvi〉∀k=cw size
k=0 . For example, we generate tuples 〈 ~hvi−2, ~chvi〉, 〈 ~hvi−1, ~chvi〉

and 〈 ~hvi, ~chvi〉 to TrainSet if cw size = 2. On training, the network will maximize

the log probability of ~chvi, given ~hvi−k∀k=cw size
k=0 . The intuition is that the neural net-

work will bring all the context vectors ~hvi which appear inside the context window

closer, while it pushes apart those vectors which do not appear in the context win-

dow. Such behavior helps encode the normal working behavior of the cyber-physical

system under consideration into context vectors. After training, a context vector ci

will be generated for each hvi ∈ HS. These off-line stage operations are presented

in algorithm 1.

7.1.2 On-line Monitoring Phase

In the off-line phase, we created context vectors ~ci corresponding to all state

hot vectors ~hvi ∈ HS and encapsulated the normal behavior of the cyber-physical

system. The on-line monitoring phase aggregates the live inputs from different

components in the system and generates an ABATescore that help detect abnormal

or anomalous states in the system. Two kinds of anomalies are detected in this

phase; point anomalies based on the hot-vector set HS and context anomalies based

on context vector set CS.

76

Algorithm 1 Off-line Learning Phase
Input:

RVseq = ~rv1, ~rv2, ..., ~rvi, ...
Output:

StateMdl: Raw vector to State vector mapping
CtxMdl: State vector to Context vector mapping

1: procedure Learning Phase(RS)
State Vector Generation

2: S ← FoldSimilarV ectorsToOne(RVseq, τsim)
3: HS ← GenerateHotV ector(S)

Context Vector Generation
4: TrainSet← []
5: for each window ~rvi−cw size → ~rvi in RVseq do

6: Append 〈 ~hvi−k, ~thvi〉∀k=cw size
k=0 to TrainSet

7: end for
8: CtxMdl ← TrainContextV ectors(HS, TrainSet)
9: ~ci ← GetContextV ector(CtxMdl, ~si)

10: end procedure

The first step in this phase is the aggregation and generation of raw vectors,

InputRVseq = ~rv′1, ~rv
′
2, ~rv

′
3, ..., ~rv

′
t, ... using inputs from different components in the

CPS, where ~rv′t is the input vector at time t. As described in section 7.1.1.1, each ~rv′t

will be a point the same n-dimensional space. We choose a state ~s′i ∈ S correspond-

ing to each ~rv′t such that the Euclidean distance between ~si and ~rv′t is minimum.

Now a sequence of states InputStateseq = ~s′1, ~s
′
2, ...~s

′
t, ... will be generated where ~s′t

is the chosen state corresponding to each ~rv′t. Let EUt be the Euclidean distance

between a raw vector ~rv′t and ~rvi corresponding to ~s′i. In all normal cases, EUt

should be a very small value because we assume that in a constrained system like

a CPS, we have already observed most of the normal states. A small value for EUt

indicates an already observed state and higher values indicate unobserved states.

Hence this value is an indicator for detecting point anomalies.

77

However, many anomalies that are contextual anomalies cannot be detected

using this score. Contextual anomalies are those in which two already observed, but

out of context states come together. As described in section 7.1.1.2, the context

vectors encapsulate the context of each vector and hence they are used to detect

such anomalies. Let InputCVseq = ~c′1,~c
′
2, ...~c

′
t, ... be the context vector sequence

corresponding to InputStateseq, where ~c′t is the context vector corresponding to

state ~s′t. In ABATe, we use the cosine distance (Eqn: 7.6) of the current context

vector ~c′t and the previous context vector ~c′t−1 to detect context anomalies and is

denoted by ContextSimt. The ContextSimt determines the appropriateness of a

vector to its context or nearby vectors. A lower score implies that the current vector

is very appropriate in the existing context as observed from the perceived normal

data used for generating the context vectors and vice versa.

It can be observed that EUt and ContextSimt are related. When the value of

EUt is high, the confidence in that state very low and the corresponding ContextSimt

score also should be considered with lower confidence. Hence to generate a com-

bined score to detect point anomalies and context anomalies, we use a combined

score as described in Eqn: 7.7. The first component in the ABATescore corresponds

to the dissimilarity of current raw vector ~rv′t to the known states. Since we use

the normalized values in the raw vectors, the maximum distance possible between

any two vectors in the vector space is
√
n, where n is the number of components

in the CPS. We take the exponential because we need to magnify the fact that a

higher value of EUt increases the likelihood of point and contextual anomalies. The

second component indicates the contextual appropriateness of the new state. A

78

low value for ABATescore indicates that the current state is very similar to a state

we have already observed and that state is contextually appropriate. On the other

hand, a low value can indicate 2 situations; an observed state with low contextual

appropriateness or an unobserved state, both of which indicates a deviation from

the perceived normal. Hence we use this ABATescore for discerning anomalies by

choosing an empirically estimated detection threshold τanomaly. The operations of

this stage are described in algorithm 2.

ContextSimt = 1−
~c′t · ~c′t−1
‖~c′t‖‖~c′t−1‖

where,

~c′t,~c
′
t−1: Context Vectors corresponding to ~s′t and ~s′t−1

(7.6)

ABATescore = e(EUt) ∗ ContextSimt

where,

ContextSim : Contextual similarity from Eqn: 7.6

EUt : Euclidean distance of ~rv′t to ~s′t

(7.7)

79

Algorithm 2 On-line Monitoring Phase
Input:
InputRVseq ← ~rv′1,

~rv′2, ...,
~rv′i, ...

StateMdl: Raw vector to State vector mapping
CtxMdl: State vector to Context vector mapping

Output:
ABATeScore

1: procedure MonitoringPhase(InputRV)
2: for each rv′i ∈ InputRVseq do
3: ~s′t, EUt ← getSim(StateMdl, ~rs′t)
4: ContextSimt ←Eqn 7.6(CtxMdl, ~s′t, ~s

′
t−1)

5: ABATescore ←Eqn 7.7(n,EUt, ContextSimt)
6: if ABATEScore > τanomaly then
7: report Anomaly
8: else
9: report Normal

10: end if
11: end for
12: end procedure

80

7.2 ABATe Implementation

Our implementation of ABATe consists of a pipeline for ingesting input data,

generating corresponding context vectors, and detecting on-line anomalies as shown

in Figure 7.1. It has five stages in total which include the off-line and on-line phases

as enumerated below.

1. Preprocessing Stage: The input from sensors come in different formats (in

cars, we collected in JSON format, while the SWaT dataset is in csv format).

They are converted to a common vector format after scaling the sensor values

into a 0− 1 scale in this stage.

2. State Model Generation Stage: The second stage corresponds to the gen-

eration of a state model by aggregating states which have similar properties.

In ABATe, we consider each raw vector as a point in an n-dimensional space

and use Euclidean distances between these two vectors for state aggregation.

Two raw vectors are aggregated if the Euclidean distance between them falls

below a certain similarity threshold, τsim (a hyper-parameter). Once similar

states are aggregated, they are labeled randomly.

3. Context Model Generation Stage: The context vectors are generated

using the neural network as described in section 7.1.1.2. We implemented the

neural network using Tensorflow as the backend and trained the network using

cross-entropy loss function with Adams optimizer. The hyperparameters used

in this step are the learning rate and context vector length.

81

4. On-line Context Vector Generation Stage: This stage takes context

model, state model, and live inputs from sensors as input. After preprocessing,

the live sensor inputs are used to generate a test vector ~rv′t. Then a state label

~s′t ∈ S is determined from the event model by choosing the state having the

closest Euclidean distance from ~rv′t. The vector ~c′t corresponding to ~s′t is also

retrieved from the context model. The process is repeated for all the live

inputs to create a stream of state vectors and context vectors. This stream of

state vectors, context vectors, and Euclidean distances (EUt) are input to the

Anomaly Detection stage.

5. Anomaly Detection Stage: Both point anomalies and context anomalies

are detected in this phase. We generate an ABATescore for this purpose. The

ContextSimt is generated from context vectors using Eqn: 7.6 and it is then

used in Eqn: 7.7 to generate the stream of ABATescore’s. A high value for

ABATescore denotes a potential deviation from the perceived normal while a

lower score denotes normal operations.

Several single state based or window-based techniques can be used to de-

termine anomalies. We explored different techniques like window-average,

window-median, window-quartile-25, percent change, and so forth on the se-

quence of ABATescore’s. Their evaluation can be found in section 8. The sim-

ple strategy is to use a hyper-parameter τanomaly. If the calculated ABATescore

is above this threshold, an anomaly is detected while any value below the score

will be deemed as normal. The value of τanomaly needs to be empirically es-

82

timated considering how critical the CPS setup is. If the CPS is critical, a

conservative low value of τanomaly should be chosen while non-critical systems

can afford higher thresholds. We found that the average based techniques

yielded best performance.

83

Chapter 8: Evaluation

ABATe abstracts the normal behavior of any cyber-physical system in the

form of context vectors and use it for detecting deviations from normal that include

attacks. In this chapter, we evaluate various capabilities of ABATe. Detecting

attacks on real-world datasets, and its ability to abstract domain behaviors are two

critical features of ABATe. We evaluate the performance of ABATe using 2 real-

world datasets; SWaT [23] (Sewage Water Treatment) dataset and an automotive

dataset. Detecting well-annotated attacks from the SWaT dataset demonstrates

the ability of ABATe to detect attacks in real-world systems. ABATe’s multi-

domain adaptability and ability to abstract context are demonstrated using a new

automotive dataset which features almost 25 hours (or 1000 miles) of real driving

data from a modern car. Finally, we demonstrate the usefulness of ABATe’s context

window using a synthetic dataset. Our evaluations show that ABATe copes well with

real-world cyber-physical systems to detect anomalies.

8.1 SWaT dataset Evaluation

The Sewage Water Treatment (SWaT) dataset from Goh et al. [23] is collected

from a fully operational scaled down sewage water treatment plant. The six stages

84

of the plant include

1. “RAW water Supply and storage” stage

2. “Pretreatment” stage

3. “Ultrafiltration and backwash” stage

4. “DeChlorination” stage

5. “Reverse Osmosis (RO)” stage

6. “RO Permeate Transfer, UF Backwash and Cleaning” stage.

The complete dataset contains readings from 51 different components some of which

are discrete while some others are continuous in nature. The different components;

sensors, actuators, and PLC’s (Programmable Logic Control), communicate via

wired or wireless interfaces and data is collected from all the 51 components every

second.

The dataset has data from the plant for 11 days in total with seven days

of CPS’s normal working behavior. The plant was put into various single-stage

and multi-stage attacks for the remaining 4 days. A total of 36 different attacks

were performed during this time. In many of the attacks, attackers manipulate the

data received to other components which force the receiving component to behave

erroneously.

The dataset contains 4 kinds of attacks. The first kind is Single Stage Single

Point (SSSP) where the attack focuses on a single point in the same stage. For

example, an attack is to make the PLC controlling a valve to believe that the

85

water level in a tank is low. As a result, it will not automatically open and cause

overflowing. The second type is Single Stage Multi Point where multiple components

are involved in the attack. A sample attack example from the dataset is when two

pumps which pump out water from a storage in the same stage are attacked together,

eventually resulting in water overflow. Multi-Stage Single Point and Multi-Stage

Multi-Point are the similar counterparts in which multiple stages are involved. The

normal working data and the attacks in the attack datasets are properly annotated.

Apart from data from its components, the dataset also contains network data while

the plant is running. In this work, however, we only use the measurements from its

components.

8.1.1 Test Setup

The main objective of evaluations with the SWaT dataset is to determine

the ability of ABATe to detect attacks in real-world cyber-physical systems. We

also use this dataset to analyze the sensitivity of similarity threshold parameter on

attack detection. As mentioned in section 7.2, we can use several techniques to

detect anomalies using the sequence of generated ABATescore’s. We analyze the

performance of these metrics also using the SWaT dataset.

The first step in ABATe is to generate a perceived normal behavioral model.

We used normal data from the first 7 days to train this model (off-line Learning

phase). The values from different sensors had different ranges. For example, some of

them are binary (eg. valve status; Open/Closed) while some others had continuous

86

values (eg. Water tank level). On preprocessing, we normalized the values from

all the components to a range of 0.0 to 1.0. To study the effect of state similarity

threshold hyper-parameter, we generated models using 3 different values for this

parameter; 10%, 1%, and 0.7%. This threshold determines when should two states

to be folded into a single state. I.e. if the state similarity threshold is 0.7%, two

states are folded to a single state when the Euclidean distance between the two

points is less than 0.7% of the maximum value. An event model and a context

model are generated using each of these values. The learning rate hyper-parameter

in the context generation phase as 0.0001 and context vector length is fixed at 100.

After the offline-learning phase, we generated 3 sets of event models and con-

text models. The well-annotated attack dataset (which is not used during the offline

phase) comprising 36 different attacks performed over 4 days is then used to evaluate

ABATe. In the online phase, the sequences of ABATe states and ABATescores were

generated as described in section 7.2. Different techniques applied to the generated

sequence of ABATescores to detect the presence of different attacks include gaussian-

average, window-median, window 25 quantile, window 75 quantile, and percentage

change.

8.1.2 Results

The most common metric used to measure the performance of an anomaly

detection system is the ROC (Receiver Operating Characteristic) curve that plots

the sensitivity (True positive rate) on the y-axis against specificity (False positive

87

Figure 8.1: ABATe SWaT data AUC Plots

rate) on the x-axis. Each point in the graph will be the FPR against TPR for a

specific threshold. A similar measure is the AUC (Area Under the Curve) of the

ROC curve. The value of AUROC will always be below 1.0 and a higher value means

better TPR’s at lower FPR’s.

First, we study the effects of moving-window based approaches on the stream

of ABATescore’s generated to identify anomalies. We experimented with different

moving window measures of mean, median, 25 quantile, 75 quantile, and gaussian

mean along with raw ABATescore’s. One other measurement, we experimented is

using the percent change of ABATescore for anomaly detection (Zero values for the

score results in infinity values for percentage change. Hence percent change on the

additive inverse of ABATescore values is used for detecting anomalies). Figure 8.1

depicts the clustered bar graph of AUROC values for these different metrics. On the

88

Figure 8.2: ABATe SWaT data ROC Plots: Window Comparison using Gaussian
Mean Window

x-axis of this graph, each cluster corresponds to a specific state similarity threshold

and each bar in the cluster corresponds to the technique applied to the stream of

ABATescore values. The window size used for the window-based techniques were

fixed at 10. From the graphs, we can see that moving window based measurements

using mean metrics performed significantly better than quantile based moving win-

dow approaches. However, it can also be seen that non-window approaches like per-

cent change based method and raw ABATescore based techniques performed close

to window based mean metric approaches. Figure 8.4 plots the ROC curves for the

most promising techniques, gaussian mean, raw ABATescore, and percent change.

From this plot, we see that the gaussian mean technique performs slightly better

than others where 88.8% true positive rate is observed at 1.3% false positive rates.

89

Figure 8.3: ABATe SWaT data ROC Plots: State Transition Threshold
Comparison at Window size = 3

We detect an attack when there is enough change in the ABATescore during the

annotated attack regions in the SWaT dataset while a single anomalous variation

during a non-attack period is considered as a false positive. As a result, the number

of false positives and true negatives are very high considering the true positives and

false negatives.The confusion matrix in the former case will have 32 true positives

and 6 false negatives. However, a 1.3% false positive corresponds to more than 6k

out of the total 500k true negatives. Just using raw ABATescore can achieve only

83% true positive rate at 1.5% false positive rates.

Next, we study the effect of state transition threshold on the attack detection

performance of ABATe using this dataset. In general, the AUC clustered plot in

Figure 8.3 shows that maximum performance is achieved at 1% state transition

90

threshold. Figure 8.3 plots the ROC curves on the SWaT attack dataset, using

gaussian mean technique with different state transition thresholds (1.0%, 10.0%,

and 0.7%). Lower state transition thresholds imply more number of unique states

in the system but it is not translating to better results. For example, 88.8% true

positive rate is observed at 1.3% false positive rate for a state threshold of 1.0 while at

0.7%, the true positive rate reduces to 82.9% for a similar false positive rate. There

are two major reasons for this behavior. Firstly, when state transition thresholds

come down, many actually similar states will get split into separate states. Secondly,

some of the newly created states will occur very scarcely in the dataset. As a result,

ABATe learns only very minimum information about them from the dataset. A

very high value for state transition threshold is expected to perform poorly because

it compresses many semantically different states as a single state. This evaluation

shows that choosing a proper state transition threshold hyper-parameter can indeed

result in better performance of ABATe. Finally, Figure 8.2 plots the performance

of ABATe with context windows 1, 2, and 3. In this case, we can see that top

performance is delivered by the context window 3 although all the three showed

comparable performance.

8.2 Automotive dataset Evaluation

Evaluations with SWaT dataset demonstrated the effectiveness of ABATe in

detecting real attacks on cyber-physical systems. The ability of ABATe to detect

attacks is because of its capability to abstract the CPS’s context from various com-

91

Figure 8.4: ABATe SWaT data ROC Plots: Promising Technique ROC Curve
Comparison

ponent measurements. We demonstrate this capability using a new automotive

dataset featuring 25 hours of real driving data. Besides it also demonstrates the

multi-domain adaptability of ABATe.

8.2.1 Test Setup

The main objective of using this automotive dataset with ABATe is to study

our technique’s capability to abstract context from real-world cyber-physical system

components. Also, the study demonstrates its ability to adapt to varied cyber-

physical system settings. To evaluate ABATe, we preprocessed the real driving data

and converted the collected JSON to raw vectors, ~rvt. We used the state similarity

threshold as 5% and we were able to generate 365 unique states. We used the ABATe

92

implementation pipeline with the learning rate as 0.0001, context vector length as

100, and used Adams optimizer for training the neural network to generate the

context model.

8.2.2 Context Abstraction Evaluation

The ability of ABATe to detect real-world attacks is demonstrated using the

SWaT dataset. In order to understand how the generated ABATescore can identify

deviations from perceived normal using observed states, it is critical to understand

what information is captured in the context vectors and their semantics. In our

evaluations with the automotive dataset, we study, specifically, the capability of

ABATe to abstract contextual information into context vectors. We first generated

the event model and context model using the hyper-parameters described in the test

setup. On putting the generated model against the existing training dataset, the

false positive was below 2%.

To test ABATe’s ability to abstract context, we mapped the semantics of event

sequences to context vectors in our experiments with the automotive dataset. In

our first experiment, we chose 2 sets of logically dissimilar states. The first set,

Slow speed consisted of all those states which have speed in the range of 0 to 10 miles

per hour and the second set, Shigh speed comprises the set of all states with speeds

above 60 miles per hour. Various laws of physics constraints the speed behavior and

will make sure any two states (si ∈ Slow speed and sj ∈ Shigh speed), cannot occur in

the same context. We evaluate if ABATe can indeed capture this knowledge in the

93

context vectors using the training data. Since we manually handpicked these states,

we expect the similarity of the context vectors, ContextSim to be very low.

On running this experiment using the current setup, we found 78 instances in

the set Slow speed and 134 instances in set Shigh speed. Out of the 10452 combinations

in the set Slow speed × Shigh speed, 98.9% of combinations had a ContextSim score of

larger than 0.8 where 2.0 is the maximum possible score and none of the combina-

tions had a ContextSim score of less than 0.6. This shows that ABATe learned

that the states from Slow speed and Shigh speed are indeed contextually dissimilar.

Next experiment is to find the compliment of this test, that is picking up 2

states from the same set (Shigh speed x Shigh speed) and finding their anomaly score.

However, only 1.6% had a ContextSim score less than 0.1. This implies that only

1.6% of the instances are highly similar. The state pair (si, sj) with maximum

dissimilar states (pair with maximum ContextSim score) is described in table 8.1.

It indeed shows that ABATe can discern the context because even with a high

similarity in the vehicle speed, the two states were deemed dissimilar because the

steering wheel angle of these two states are pointing to different directions (neg-

ative value implies steering turned towards left and positive value implies steering

turned towards right) and the transmission gear position is also different.

We performed one more experiment to testify the above capability. In this

experiment, we aggregated two sets Sgear=1 which is the set of all states where

transmission gear position is 1 and Sgear=6 which is the set of all states with

transmission gear position is 6. Even though a change from gear 1 to gear 6

technically possible, while driving a car it is against the domain etiquette. In this

94

Component si sj

door status 0.0 0.0
accelerator pedal position 35.200001 0.0
ignition status 2.0 2.0
torque at transmission 251.0 75.0
parking brake status 0.0 0.0
high beam status 0.0 0.0
brake pedal status 0.0 1.0
headlamp status 1.0 1.0
windshield wiper status 1.0 0.0
engine speed 2738.0 1386.0

Table 8.1: Comparing si ∈ Shigh speed and sj ∈ Shigh speed with large ABATescore

experiment, Sgear=1 had 129 states and Sgear=6 had 25 states. Among the unique

3225 state pairs, 99% have a ContextSim greater than 0.8 and none of the state

pairs scored less than 0.7.

It should be noted that we use hot vectors before training the context model

which assume no relationships between any 2 states. Thus, these experiments prove

that ABATe captures even complex contextual information involving multiple sen-

sors into context vectors using perceived normal data.

8.2.3 Simulated Attack Detection

Considering the legality and danger of exposing a real car to different attack

scenarios, we simulated different attack scenarios by injecting false data into the

real data collected from cars. In total, we simulated about 11 different attacks.

Broadly, we simulated two classes of attacks. In the first type, data from only one

sensor is manipulated creating sudden spikes in speed, RPM, etc. It created states

which can never occur during the normal operation of a car (single point anomalies).

95

Figure 8.5: ABATe Injection Detection Performance

96

Figure 8.6: ABATe Car data ROC curve

The next type of attacks is more complex in which existing states, but contextually

dissimilar existing states are randomly injected into the real data stream. In this

class of attacks, the injected states are valid states but are out of context. Figure 8.6

represents the corresponding ROC curve and yielded very good results by detecting

most of the attacks with lesser false positive rates.

Another broad category of attacks common in cyber-physical systems is FDIA

(False Data Injection Attacks) in which false data is injected into the system ran-

domly. Some of the FDIAs include the use of automated tools to inject packets

into the system rather than handcrafting them. To simulate this scenario, we first

extracted a normal sequence from the real-world car data. Then, we used normal

distribution to choose 2 states from the subsequence randomly and swapped them.

The swapping is done k times to generate a single attack sequence. We gener-

97

ated 1000 such attack sequences and tested it against the perceived normal ABATe

model. The number of attack sequences detected is plotted against the number of

swaps in Figure 8.5 when the τanomaly is varied. Each line represents a specific value

for τanomaly. It is observed that when the number of swaps increase, almost all the

attacks are detected which demonstrate ABATe’s ability to detect such attacks.

8.3 Synthetic Dataset Evaluation

Sections 8.1 and 8.2 evaluated the performance of ABATe against two real-

world datasets. In this section, we use a synthetically generated sequence of states

with well-defined probabilities to study the intricate effects of context window used

in the offline-learning phase of ABATe.

8.3.0.1 Synthetic Dataset Generation

HMM’s (Hidden Markov Models) have been used to generate state sequences

with fixed probabilities [13]. For the generation of a known sequence, we developed

an HMM with 36 states and 36 different observations corresponding to each of these

states. Each state in our state diagram will emit a fixed observation, its state

number, with maximum probability. The state diagram for the HMM model we

created is described in figure 8.7. There are 6 hexagons named A to F and each

corner corresponds to 36 different states from 0 through 35. Each edge in the state

diagram corresponds to a non-zero bi-directional state transition probability. We use

three different probabilities for this network. ∆ss representing the probability of each

98

Figure 8.7: Synthetic Data Generation: State Diagram

99

state to itself, ∆sa representing transition probability of moving to another state in

the same hexagon and ∆ia representing transition probabilities for moving from one

hexagon to another if there is an edge connecting the corner to another hexagon’s

corner. For example, S0 → S1, S6 → S7, S30 → S31 etc. have the same probability

∆sa, and S1 → S11, S14 → S22 etc. have the transition probability ∆ia. By tweaking

these three variables we generate different sequences. If there is no edge connecting

two vertices, they have zero probabilities. For instance S1 → S3, S4 → S29, etc.

have zero chance in the sequence. We used Matlab’s HMM tool kit to generate

the sequence from the state transition probability matrix and emission probability

matrix.

For evaluations, we generated 3 sets of sequences; sequence with transition

probabilities ∆ia = ∆sa = ∆ss, sequence with ∆ia greater than ∆sa and ∆ss, and

sequence with ∆sa greater than ∆sa and ∆ss. We trained each of these sequences of

states using ABATe with window sizes 1 & 4, and generated 6 different models. To

generate anomalous sequence, we added more edges to the existing state transition

diagram and regenerated the sequence. For example, adding an edge from s0→ s6

and regenerating the sequence will produce a sequence with s0 → s6 in addition

to the previous state transitions. We trained ABATe using the synthetic sequence

and used the anomalous sequences to evaluate its performance. We were able to

detect anomalous state transitions injected with 100% accuracy (since the number

of states is small and their transitions are constrained).

100

Figure 8.8: State 0 Anomaly Scores with Context 1

8.3.1 Context Window Evaluation

In this section, we study the behavior of context windows in ABATe. As we

are using only existing states, the point anomaly scores are irrelevant in Eqn: 7.7 and

only ContextSim value need to be considered. To understand the semantics learned

by abate when the context window is modified, we first calculated the ContextSim

score of each state si against all the states in S for models generated with context

window as 1 and 4. When the context window is 1 only the states immediately

connected using the edges should have ContextSim score below a specific threshold.

However, when we increase the windows size more states should come into context.

101

Figure 8.9: State 0 Anomaly Scores with Context 4

Figures 8.8 and 8.9 present the ContextSim scores for the state s0 with context

windows sizes 0 and 4. From the state diagram in Figure 8.7, we can see that s0

is only directly connected to s1 and s5. As a result, we can see the ContextSim

scores for s0, s5, and s0 are below the threshold values. However, when the context

window size is 4, many other states became non-anomalous. This is because many

other states which are 2, 3, and 4 edges from the current state are also added into

the context as a result of increasing the context window size. For example, the

states which came into context clearly are s1, s4, s5, s6, and s10. The states s11, s7,

s12 , and s17 also just made the list. The list of edges which put these states into the

102

context of s0 is presented in table 8.2. However, some other states like s9 did not

come into context even though it is 4 edges away. We believe that this should be

because of the fact that the intermediate edges s2 and s10 in the path from s0 → s9

have more branching options and hence when the normal sequence was generated

the number of instances which had that sequence is much lower compared to others.

From these experiments, we can understand how the semantics of ABATe’s training

is altered with change in context window size.

End State Path

s1 s0 → s1
s4 s0 → s5 → s4
s5 s0 → s5
s6 s0 → s1 → s11 → S6

s10 s0 → s1 → s2 → s10
s11 s0 → s1 → s11

Table 8.2: Synthetic Dataset State transition path for State s0

This will be an important feature to add robustness to our technique in the

real world. There would be many cyber-physical systems where some states would

be missing from the streaming input data. Such occurrences can happen because

of inherent noise or difference in sampling intervals during training and monitoring.

It is also shown in Figure 8.2 from SWaT dataset evaluation that the false positive

rates are comparable when the window sizes are modified. Hence, slightly adjusting

the window size combat such missing states also without much increasing the FPR’s.

103

8.4 Time Complexity

In this section, we discuss the time complexity of using ABATe in real-world

systems. Since the offline learning phase needs to be run only less often, we focus

on the online monitoring phase here. As discussed in section 7.1, the first task is the

generation of raw vector, ~rv′i which is a straight forward function with complexity

of O(1) . The next task is to choose a ~hv
′
i corresponding to it. Time complexity for

calculating EUi and choosing one state from it is O(|S|), (|S| is the number of states

used in the model) since the number of states is a constant during online monitoring.

Hence the overall complexity of one decision making is O(|S|) and makes ABATe

practical for real-world applications.

104

Chapter 9: Conclusion & Future Directions

Rapid advancements in control systems, sensing, networking, and artificial

intelligence resulted in the large-scale deployment of smart Cyber-Physical Systems

in a variety of fields including medicine, manufacturing, automatic pilot avionics,

and so forth. They control many critical infrastructure in their respective domains

and provide better visibility, control, efficiency, reliability, and safety. However,

these advanced capabilities made them a lucrative target for hackers. The affected

users ranged from normal residents of a city when the hackers took down a power

grid in Ukraine to national governments when Stuxnet malware infected a nuclear

power plant’s programmable logic circuits (PLC) for physically damaging them.

Apart from such intentional attacks against cyber-physical systems, recent incidents

involving aircraft disasters caused by device malfunctioning and human errors also

put their safety and reliability into question. In this dissertation, we develop novel

techniques to detect abnormal behaviors in smart cyber-physical system using the

data emanating from them.

First, we hypothesized that the intricate relationships between different com-

ponents of a smart cyber-physical system are well-represented in the data emanating

from them. We developed a knowledge-graph based solution that infers complex

105

contexts using simpler ones defined using semantic technologies. Such a system can

detect several abnormal scenarios. Unlike simple rule-based systems, it could infer

complex contexts from simpler contexts defined by the domain experts. However,

learning newer and unintuitive rules is difficult and the accuracy in attack detection

is directly dependent on the closure of all the rules. Further, from our experimen-

tation with the Hidden-Markov models on the automotive domain, we showed that

complex relationships between the components of a cyber-physical system could be

used to detect abnormal behaviors.

In another significant contribution in this dissertation, we developed a scalable

and domain independent solution to learn typical behaviors in smart cyber-physical

systems. For achieving this goal, we developed a neural network based solution that

generates a latent space to abstract typical domain behaviors using the plethora

of data available from these smart systems. Our evaluations using an automotive

dataset demonstrated the context abstraction capabilities of our technique. Further,

we developed a technique which used the generated latent space to detect abnor-

mal scenarios in those cyber-physical systems. We demonstrated our technique’s

capability to detect attacks using two real-world datasets; SWaT dataset and an

automotive dataset. The SWaT dataset consists of operational data from a scaled

down water treatment plant with 51 sensors from 7 different phases. Using our tech-

nique, we were able to detect 88% of attack scenarios with a low false positive rate of

around 1%. In the automotive dataset, we detected some specifically hand-crafted

attack scenarios and false data injection based attack scenarios.

Evaluations using real-world datasets are important in cyber-physical systems.

106

However, we have limited datasets available in the public domain. A key engi-

neering contribution in this dissertation is the development of a new automotive

dataset. In the process, we evaluated several data collection techniques from cars

like ELM 327 chipset based techniques, STN1100 chipset based techniques, Arduino

with CAN-Bus shield, OpenXC, and so forth. Eventually, we used OpenXC based

data collection because of the rich API support from its parent company Ford. Our

new automotive dataset comprised close to 1000 miles or 25 hours of real-driving

data from 11 different sensors in a modern car. We ensured that the collected data

included diverse driving conditions from long and short drives on highways, country-

sides, mountainous terrains, and rainy conditions. We believe that this dataset can

promote meaningful research in this domain in a similar way it helped our research.

9.1 Future Directions

In this dissertation, we showed that a generic solution can be employed to

learn the typical behaviors of a smart cyber-physical system and such behaviors can

be used to detect anomalous behaviors. Some future extensions to our work are

discussed in this section.

The first logical step after anomaly detection is the invocation of mitigation

strategies or preventive measures. A possible extension of our work is to develop

techniques which differentiate contexts abstracted by ABATe using the context vec-

tors. Such abstracted contexts can be linked to a policy framework to invoke mitiga-

tion strategies. A simple example from the automotive domain is when the current

107

context corresponds to driving in a high-way policies like “alerting the user” would

be the best choice while when the context corresponds to a stationary vehicle, a

policy can suggest “turn off the ignition”. The second research direction can be the

identification of anomaly cause. Unlike some data-oriented techniques for anomaly

detection, our learned model abstracts the context of events happening in the smart

cyber-physical system. The ABATescore, and the events used for calculating it, in-

dicates which events might have caused the anomaly. Instead of learning the events

and their relationships learning states per component in the smart cyber-physical

system and learning their combined relationship behavior is worth investigation.

However, we might encounter big-data related issues while learning such a model.

For example, with SWaT dataset, if we create a dataset for learning such a combined

model, the combined training set may contain 1 billion to 6 billion training instances

depending on the window size we choose. We should explore big-data solutions to

learn in such scenarios.

Another research direction is the reduction in false positive rates. It is some-

times critical because of the huge cost associated with restarting large scale systems.

In our research, we considered that little information is available about the behaviors

of the smart cyber-physical system and learn automatically from the data. How-

ever, we can employ a properly designed knowledge-graph in conjunction with our

approach to improve its efficiency. For example, in the state generation phase, we

give equal weightage to all the components of the cyber-physical system when in

many real scenarios, some entities are not at all related. Manual design of such in-

formation will reduce the usability of our technique in different scenarios. However,

108

a well-populated knowledge graph shipped with the technique can carry such infor-

mation and can help improve our system. Exploring such fusion of knowledge-graph

based techniques to our system might provide interesting results.

109

Bibliography

[1] Sridhar Adepu and Aditya Mathur. Distributed attack detection in a water
treatment plant: Method and case study. IEEE Transactions on Dependable
and Secure Computing, 2018.

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised
real-time anomaly detection for streaming data. Neurocomputing, 2017.

[3] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, EMANUELE DELLA
VALLE, and Michael Grossniklaus. C-sparql: a continuous query language for
rdf data streams. International Journal of Semantic Computing, 4(01):3–25,
2010.

[4] Davide Francesco Barbieri, Daniele Braga, Stefano Ceri, Emanuele Della Valle,
and Michael Grossniklaus. Querying rdf streams with c-sparql. ACM SIGMOD
Record, 39(1):20–26, 2010.

[5] Victor Berger. Anomaly detection in user behavior of websites using hierarchical
temporal memories: Using machine learning to detect unusual behavior from
users of a web service to quickly detect possible security hazards., 2017.

[6] Andre Bolles, Marco Grawunder, and Jonas Jacobi. Streaming sparql-extending
sparql to process data streams. In European Semantic Web Conference, pages
448–462. Springer, 2008.

[7] P Borazjani, C Everett, and Damon McCoy. Octane: An extensible open
source car security testbed. In Proceedings of the Embedded Security in Cars
Conference, 2014.

[8] Suratna Budalakoti, Ashok N Srivastava, Ram Akella, and Eugene Turkov.
Anomaly detection in large sets of high-dimensional symbol sequences. Nasa
Technical Report Server, 2006.

110

[9] Suratna Budalakoti, Ashok N Srivastava, and Matthew E Otey. Anomaly detec-
tion and diagnosis algorithms for discrete symbol sequences with applications
to airline safety. IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 39(1):101–113, 2009.

[10] Defense Use Case. Analysis of the cyber attack on the ukrainian power grid.
Electricity Information Sharing and Analysis Center (E-ISAC), 2016.

[11] Soumen Chakrabarti, Sunita Sarawagi, and Byron Dom. Mining surprising
patterns using temporal description length. In VLDB, volume 98, pages 606–
617, 1998.

[12] Varun Chandola. Anomaly detection for symbolic sequences and time series
data. PhD thesis, University of Minnesota, 2009.

[13] Varun Chandola, Varun Mithal, and Vipin Kumar. Comparative evaluation
of anomaly detection techniques for sequence data. In Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on, pages 743–748. IEEE,
2008.

[14] Hong Chen. Applications of cyber-physical system: a literature review. Journal
of Industrial Integration and Management, 2(03):1750012, 2017.

[15] Javier Alvarez Cid-Fuentes, Claudia Szabo, and Katrina Falkner. Adaptive
performance anomaly detection in distributed systems using online svms. IEEE
Transactions on Dependable and Secure Computing, 2018.

[16] Louis Columbus. Where iot can deliver the most value in 2018, 2018.

[17] Gyorgy Dan and Henrik Sandberg. Stealth attacks and protection schemes for
state estimators in power systems. In Smart Grid Communications (SmartGrid-
Comm), 2010 First IEEE International Conference on, pages 214–219. IEEE,
2010.

[18] Prajit Kumar Das, Sandeep Narayanan, Nitin Kumar Sharma, Anupam Joshi,
Karuna Joshi, and Tim Finin. Context-sensitive policy based security in inter-
net of things. In Smart Computing (SMARTCOMP), 2016 IEEE International
Conference on, pages 1–6. IEEE, 2016.

[19] Anind K Dey. Understanding and using context. Personal and ubiquitous
computing, 5(1):4–7, 2001.

[20] Delia Ioana Dogaru and Ioan Dumitrache. Cyber-physical systems in healthcare
networks. In 2015 E-Health and Bioengineering Conference (EHB), pages 1–4.
IEEE, 2015.

[21] Christopher E Everett and Damon McCoy. Octane (open car testbed and
network experiments): Bringing cyber-physical security research to researchers
and students. In CSET, 2013.

111

[22] German Florez-Larrahondo, Susan M Bridges, and Rayford Vaughn. Efficient
modeling of discrete events for anomaly detection using hidden markov models.
In International Conference on Information Security, pages 506–514. Springer,
2005.

[23] Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. A
dataset to support research in the design of secure water treatment systems.
In International Conference on Critical Information Infrastructures Security,
pages 88–99. Springer, 2016.

[24] Jonathan Goh, Sridhar Adepu, Marcus Tan, and Zi Shan Lee. Anomaly de-
tection in cyber physical systems using recurrent neural networks. In High
Assurance Systems Engineering (HASE), 2017 IEEE 18th International Sym-
posium on, pages 140–145. IEEE, 2017.

[25] Dieter Gollmann. Security for cyber-physical systems. In International Doctoral
Workshop on Mathematical and Engineering Methods in Computer Science,
pages 12–14. Springer, 2012.

[26] Dieter Gollmann, Pavel Gurikov, Alexander Isakov, Marina Krotofil, Jason
Larsen, and Alexander Winnicki. Cyber-physical systems security: Experimen-
tal analysis of a vinyl acetate monomer plant. In Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security, pages 1–12. ACM, 2015.

[27] Bernardo Cuenca Grau, Christian Halaschek-Wiener, and Yevgeny Kazakov.
History matters: Incremental ontology reasoning using modules. In The Se-
mantic Web, pages 183–196. Springer, 2007.

[28] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Ver-
bauwhede. Libra-can: Lightweight broadcast authentication for controller
area networks. ACM Transactions on Embedded Computing Systems (TECS),
16(3):90, 2017.

[29] Ahmed Hazem and Hossam AH Fahmy. Lcap-a lightweight can authentication
protocol for securing in-vehicle networks. In 10th escar Embedded Security in
Cars Conference, Berlin, Germany, volume 6, 2012.

[30] Tobias Hoppe and Jana Dittman. Sniffing/replay attacks on can buses: A
simulated attack on the electric window lift classified using an adapted cert
taxonomy. In Proceedings of the 2nd workshop on embedded systems security
(WESS), pages 1–6, 2007.

[31] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats to automotive
can networks–practical examples and selected short-term countermeasures. In
Computer Safety, Reliability, and Security, pages 235–248. Springer, 2008.

[32] Zhichuan Huang, David Corrigan, Sandeep Narayanan, Ting Zhu, Elizabeth
Bentley, and Michael Medley. Distributed and dynamic spectrum management

112

in airborne networks. In Military Communications Conference, MILCOM 2015-
2015 IEEE, pages 786–791. IEEE, 2015.

[33] Austin Jones, Zhaodan Kong, and Calin Belta. Anomaly detection in cyber-
physical systems: A formal methods approach. In Decision and Control (CDC),
2014 IEEE 53rd Annual Conference on, pages 848–853. IEEE, 2014.

[34] Min-Joo Kang and Je-Won Kang. Intrusion detection system using deep neural
network for in-vehicle network security. PloS one, 11(6):e0155781, 2016.

[35] Min-Ju Kang and Je-Won Kang. A novel intrusion detection method using
deep neural network for in-vehicle network security. In Vehicular Technology
Conference (VTC Spring), 2016 IEEE 83rd, pages 1–5. IEEE, 2016.

[36] Vishal Maruti Karande, Sandeep Nair Narayanan, Alwyn Roshan Pais, and
N Balakrishnan. Testing resilience of router against denial of service attacks.
In Trends in Network and Communications, pages 107–116. Springer, 2011.

[37] Eamonn Keogh, Jessica Lin, and Ada Fu. Hot sax: Efficiently finding the most
unusual time series subsequence. In Data mining, fifth IEEE international
conference on, pages 8–pp. Ieee, 2005.

[38] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, et al. Experimental security analysis of a modern automobile.
In Security and Privacy (SP), 2010 IEEE Symposium on, pages 447–462. IEEE,
2010.

[39] Louis Kratz and Ko Nishino. Anomaly detection in extremely crowded scenes
using spatio-temporal motion pattern models. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 1446–1453. IEEE,
2009.

[40] Marina Krotofil, Jason Larsen, and Dieter Gollmann. The process matters:
Ensuring data veracity in cyber-physical systems. In Proceedings of the 10th
ACM Symposium on Information, Computer and Communications Security,
pages 133–144. ACM, 2015.

[41] Terran Lane, Carla E Brodley, et al. Sequence matching and learning in
anomaly detection for computer security. In AAAI Workshop: AI Approaches
to Fraud Detection and Risk Management, pages 43–49, 1997.

[42] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and scalable frame-
work for automated time-series anomaly detection. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1939–1947. ACM, 2015.

113

[43] Pavel Laskov, Konrad Rieck, Christin Schäfer, and Klaus-Robert Müller. Vi-
sualization of anomaly detection using prediction sensitivity. In Sicherheit,
volume 2, pages 197–208, 2005.

[44] Yining Li, Jing Wu, and Shaoyuan Li. State estimation for distributed cyber-
physical power systems under data attacks. International Journal of Modelling,
Identification and Control, 26(4):317–323, 2016.

[45] Chao Liu, Sambuddha Ghosal, Zhanhong Jiang, and Soumik Sarkar. An un-
supervised spatiotemporal graphical modeling approach to anomaly detection
in distributed cps. In Cyber-Physical Systems (ICCPS), 2016 ACM/IEEE 7th
International Conference on, pages 1–10. IEEE, 2016.

[46] Guoying Liu, Timothy K McDaniel, Stanley Falkow, and Samuel Karlin. Se-
quence anomalies in the cag7 gene of the helicobacter pylori pathogenicity is-
land. Proceedings of the National Academy of Sciences, 96(12):7011–7016, 1999.

[47] Farhad Mehdipour. Smart field monitoring: An application of cyber-physical
systems in agriculture (work in progress). In 2014 IIAI 3rd International Con-
ference on Advanced Applied Informatics, pages 181–184. IEEE, 2014.

[48] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems, pages 3111–3119, 2013.

[49] Charlie Miller and Chris Valasek. Adventures in automotive networks and
control units. DEF CON, 21:260–264, 2013.

[50] Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passen-
ger vehicle. Black Hat USA, 2015:91, 2015.

[51] Robert Mitchell and Ing-Ray Chen. A survey of intrusion detection techniques
for cyber-physical systems. ACM Computing Surveys (CSUR), 46(4):55, 2014.

[52] Robert Mitchell and Ray Chen. Behavior rule specification-based intrusion
detection for safety critical medical cyber physical systems. IEEE Transactions
on Dependable and Secure Computing, 12(1):16–30, 2015.

[53] Michael Müter and Naim Asaj. Entropy-based anomaly detection for in-vehicle
networks. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 1110–
1115. IEEE, 2011.

[54] Narayanan Sandeep Nair, Joshi Anupam, and Bose Ranjan. Abate: A deep net-
work based approach to detect attacks in cyber-physical systems. In Submitted
(Under review), 2018.

[55] Narayanan Sandeep Nair, Ashwin Ganeshan, Karuna Joshi, Tim Oates, Anu-
pam Joshi, and Finin Tim. Early detection of cybersecurity threats using col-
laborative cognition. In 4th IEEE International Conference on Collaboration
and Internet Computing, 2018.

114

[56] Sandeep Nair, Sudip Mittal, and Anupam Joshi. Using semantic technologies to
mine vehicular context for security. In 37th IEEE Sarnoff Symposium (2016),
2016.

[57] S. N. Narayanan, S. Mittal, and A. Joshi. Obdsecurealert: An anomaly de-
tection system for vehicles. In 2016 IEEE International Conference on Smart
Computing (SMARTCOMP), pages 1–6, May 2016.

[58] Sandeep Nair Narayanan, Kush Khanna, Bijaya Ketan Panigrahi, and Anupam
Joshi. Security in smart cyber-physical systems: A case study on smart grids
and smart cars. In Smart Cities Cybersecurity and Privacy, pages 147–163.
Elsevier, 2019.

[59] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. Obd securealert:
An anomaly detection system for vehicles. In Smart Computing (SMART-
COMP), 2016 IEEE International Conference on, pages 1–6. IEEE, 2016.

[60] Sandeep Nair Narayanan, Alwyn Roshan Pais, and Radhesh Mohandas. De-
tection and prevention of sql injection attacks using semantic equivalence. In
Computer Networks and Intelligent Computing, pages 103–112. Springer, 2011.

[61] Clifford Neuman. Challenges in security for cyber-physical systems. In DHS
workshop on future directions in cyber-physical systems security, pages 22–24.
Citeseer, 2009.

[62] Timothy J O’Shea, T Charles Clancy, and Robert W McGwier. Recurrent
neural radio anomaly detection. arXiv preprint arXiv:1611.00301, 2016.

[63] Miroslav Pajic, James Weimer, Nicola Bezzo, Paulo Tabuada, Oleg Sokolsky,
Insup Lee, and George J Pappas. Robustness of attack-resilient state estimators.
In ICCPS’14: ACM/IEEE 5th International Conference on Cyber-Physical Sys-
tems (with CPS Week 2014), pages 163–174. IEEE Computer Society, 2014.

[64] Jeff Z Pan, Edward Thomas, Yuan Ren, and Stuart Taylor. Exploiting tractable
fuzzy and crisp reasoning in ontology applications. IEEE Computational Intel-
ligence Magazine, 7(2):45–53, 2012.

[65] Steven W Popper, Steven C Bankes, Robert Callaway, and Daniel DeLaurentis.
System of systems symposium: Report on a summer conversation. Potomac
Institute for Policy Studies, Arlington, VA, 320, 2004.

[66] Yan Qiao, XW Xin, Yang Bin, and S Ge. Anomaly intrusion detection method
based on hmm. Electronics letters, 38(13):663–664, 2002.

[67] Vishal Rathod, Sandeep Narayanan, Sudip Mittal, and Anupam Joshi. Se-
mantically rich, context aware access control for openstack. In 2018 IEEE
4th International Conference on Collaboration and Internet Computing (CIC),
pages 460–465. IEEE, 2018.

115

[68] Arya Renjan, Karuna Joshi, Sandeep Nair Narayanan, and Anupam Joshi.
Dabr: Dynamic attribute-based reputation scoring for malicious ip address
detection. In IEEE Intelligence and Security Informatics (ISI), 2018.

[69] Narayanan Sandeep Nair Renjan, Arya and Joshi Karuna. A policy based
framework for privacy-respecting deep packet inspection of high velocity net-
work traffic. In 2019 IEEE 5th IEEE International Conference on Big Data
Security on Cloud (BigDataSecurity 2019). IEEE, 2019.

[70] Mohammad Sabokrou, Mohsen Fayyaz, Mahmood Fathy, et al. Fully convo-
lutional neural network for fast anomaly detection in crowded scenes. arXiv
preprint arXiv:1609.00866, 2016.

[71] Borja Bordel Sánchez, Ramón Alcarria, Diego Sánchez de Rivera, and Alvaro
Sánchez-Picot. Enhancing process control in industry 4.0 scenarios using cyber-
physical systems. JoWUA, 7(4):41–64, 2016.

[72] Teodora Sanislav, George Mois, Silviu Folea, Liviu Miclea, Giulio Gambardella,
and Paolo Prinetto. A cloud-based cyber-physical system for environmental
monitoring. In 2014 3rd Mediterranean Conference on Embedded Computing
(MECO), pages 6–9. IEEE, 2014.

[73] Markus Schneider, Wolfgang Ertel, and Fabio Ramos. Expected similarity
estimation for large-scale batch and streaming anomaly detection. Machine
Learning, 105(3):305–333, 2016.

[74] Sandeep Nair Mittal Sudip Joshi Anupam Sowmya Ramapatruni, Narayanan
and Joshi Karuna. Learning behaviors in a smart home using hmm. In 2019
IEEE 5th IEEE International Conference on Big Data Security on Cloud (Big-
DataSecurity 2019). IEEE, 2019.

[75] Darlene Storm. Hack to steal cars with keyless ignition: Volkswagen spent 2
years hiding flaw.

[76] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly detection
in automobile control network data with long short-term memory networks.
In Data Science and Advanced Analytics (DSAA), 2016 IEEE International
Conference on, pages 130–139. IEEE, 2016.

[77] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. Canauth-a
simple, backward compatible broadcast authentication protocol for can bus. In
ECRYPT Workshop on Lightweight Cryptography 2011, 2011.

[78] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting
intrusions using system calls: Alternative data models. In Security and Privacy,
1999. Proceedings of the 1999 IEEE Symposium on, pages 133–145. IEEE, 1999.

116

[79] Stefan Wiesner, Eugenia Marilungo, and Klaus-Dieter Thoben. Cyber-physical
product-service systems–challenges for requirements engineering. International
journal of automation technology, 11(1):17–28, 2017.

[80] Marko Wolf, André Weimerskirch, and Thomas Wollinger. State of the art:
Embedding security in vehicles. EURASIP Journal on Embedded Systems,
2007(1):074706, 2007.

[81] Kim Zetter. Countdown to Zero Day: Stuxnet and the launch of the world’s
first digital weapon. Broadway books, 2014.

[82] Xiaoqiang Zhang, Pingzhi Fan, and Zhongliang Zhu. A new anomaly detection
method based on hierarchical hmm. In Parallel and Distributed Computing,
Applications and Technologies, 2003. PDCAT’2003. Proceedings of the Fourth
International Conference on, pages 249–252. IEEE, 2003.

[83] Yian Zhou, Zhen Mo, Qingjun Xiao, Shigang Chen, and Yafeng Yin. Privacy-
preserving transportation traffic measurement in intelligent cyber-physical road
systems. IEEE Transactions on Vehicular Technology, 65(5):3749–3759, 2016.

[84] Tobias Ziermann, Stefan Wildermann, and Jürgen Teich. Can+: A new
backward-compatible controller area network (can) protocol with up to 16x
higher data rates. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 1088–1093. European Design and Automation Asso-
ciation, 2009.

117

	List of Tables
	List of Figures
	Introduction
	Intuition & Problem Statement
	Thesis Statement
	Anomaly Detection in Smart Cyber-Physical Systems
	Dissertation Organization

	Background
	Cyber-Physical Systems
	Applications

	Car as a Cyber-Physical System
	Modern Car Architecture
	Attack Surfaces in a Modern Car
	Cyber-Attacks on Cars

	Literature Review
	Security in Cars
	Attack Prevention Techniques
	Attack Detection and Mitigation

	Anomaly Detection in Cyber-Physical Systems

	Automotive Data Collection
	Data Collection Techniques
	OpenXC Platform

	Knowledge-Graph Based Approach to Detect Anomalous Behaviors in Cars
	Approach
	Local Context Detection
	Cross Component Context Inference Engine
	Historic Data Aggregation & Rule mining

	Usecase Scenarios
	Discussion & Lessons Learned

	Learning Constrained Behaviors in Cars
	System Architecture
	Data Collection
	Model Generation
	Anomaly Detection

	Evaluation & Results
	Single Observation Evaluation
	Multiple Observations Evaluation

	Discussion

	Automatic Behavioral Abstraction Technique for Smart Cyber-Physcial Systems
	Methodology
	Off-line Learning Phase
	On-line Monitoring Phase

	ABATe Implementation

	Evaluation
	SWaT dataset Evaluation
	Test Setup
	Results

	Automotive dataset Evaluation
	Test Setup
	Context Abstraction Evaluation
	Simulated Attack Detection

	Synthetic Dataset Evaluation
	Context Window Evaluation

	Time Complexity

	Conclusion & Future Directions
	Future Directions

	Bibliography

