Accelerating a climate physics model with OpenCL

Fahad Zafar, Dibyajyoti Ghosh, Lawrence Sebald, Shujia Zhou
{fahad3, dg9, Isebaldl, szhou} @ umbc.edu

University of Maryland Baltimore County

Abstract—Open Computing Language (OpenCL) is fast
becoming the standard for heterogeneous parallel com-
puting. It is designed to run on CPUs, GPUs, and
other accelerator architectures. By implementing a real-
world application, a solar radiation model component
widely used in climate and weather models, we show
that OpenCL multi-threaded programming and execution
model can dramatically increase performance even on CPU
architectures. Our preliminary investigation indicates that
low-level vector instructions and code representations in
OpenCL contribute to dramatic performance improvement
over the serial version when compared with the execution
of the serial code compiled across various compilers on
multiple platforms with auto vectorization flags. However,
the portability of OpenCL implementations needs to im-
prove, even for CPU architectures.

Index Terms—Multi-threaded programming; Parallel
computing; Heterogeneous architectures; Climate Model;
IBM Cell B.E.; OpenCL; Vectorization; Compilers; GCC;
ICC; IBM XLC

I. INTRODUCTION

The demand to increase forecast predictability has
been pushing climate and weather models to increase
model grid resolution and include more physical pro-
cesses. Accelerating climate simulations with the help
of emerging multicore computing paradigms provide us
with tools to address these demands. Current trends in
the computing industry have moved from optimizing
performance gains on single-core processors to increas-
ing the overall performance through parallel computing
with many-core processors. This trend has been all too
common in GPUs in the past. Now it is being widely
adopted by CPU architectures as well.

OpenCL provides a standard heterogeneous parallel
programming environment for applications to execute
on CPUs, GPUs, and other accelerators such as DSPs
and mobile processors [1], [2]. To support such a wide
array of processor architectures, OpenCL puts forward a
thread-extensive model for programming. OpenCL code
typically comprises of multiple kernels that are executed
over a multi-threaded grid. There is tremendous interest
to develop an OpenCL application and run it on CPUs
as well as GPUs since OpenCL claims to be a standard

cross-platform programming framework. Many authors
have discussed architectural independence as benefits of
OpenCL [3], [1], [4]. Though there are many examples
and code fragments available, cross-platform OpenCL
implementation examples are hard to find for real-world
applications. In addition, to our knowledge there is no
report available on the portability of OpenCL in terms of
code and performance with CPU as the compute device
across platforms.

The OpenCL execution model is based on kernel
execution where the kernel is a function declared in a
program and is executed on a compute device. In this
paper, we use the term OpenCL compute device and
OpenCL device interchangeably. On submission of a ker-
nel instance called a work-item the host device allocates
a global ID for the work item. Each work item executes
the same code but on different datasets and can take a
different path of execution. Work items are organized
into work-groups. Work-groups are given unique work-
group IDs with the same dimensionality as that of the
index space used to define the work-items. Following this
logical assignment of data and tasks, work-items execute
concurrently on the processing elements of a compute
device. The host maintains a queuing data structure
called a command-queue to coordinate in-order or out-
of-order execution of kernels on the device.

In this paper we investigate how OpenCL will perform
in CPUs and its portability among CPUs through par-
allelization of a real-world climate physics application,
the Goddard solar radiation model component [S] with
the OpenCL implementations on IBM PowerPC and
POWERG blades as well as on the Intel x86 architecture
with Mac OS X. The solar radiation model compo-
nent was originally written in Fortran. Over the years
the structure of this Fortran code has been stable. It
represents a typical climate physics model component
whose calculations are carried out along the vertical
(altitudinal) direction (so-called column physics). This
particular code was ported to the IBM Cell Broad-
band Engine by Zhou et al [6] where detailed code
structure analysis and performance gains were reported.
We implemented the serial version of the C code in
OpenCL version 1.0, manually optimized all sections

of the code to run in a multi-threaded fashion using
OpenCL kernels and benchmarked the code on IBM
JS21 and JS22 blades, on a POWERG6 AIX system and
on Mac OS X versions 10.6.4 and 10.6.7. We used
the approach of extracting compute-intensive kernels
without changing the overall code structure. This allowed
us to have multiple manual optimizations for specific
architectures while maintaining the code structure. We
found a 3X~4X performance improvement per core over
the original serial code compiled with GCC. We believe
these dramatic performance gains on the CPU show that
OpenCL provides interface to implement light-weight
multi-threading code on the CPU [7]. POSIX Threads
is known to be heavy-weight threads when used in
multi-threaded programming, which increases program
memory requirements and adds to context switching
costs. OpenCL provides access to a multi-threaded pro-
gramming and execution model as well as a low level
API for memory and thread management. Its relaxed
memory consistency model is similar to that of CUDA
[8] developed for NVIDIA GPUs. We report our prelim-
inary investigation results on OpenCL performance on
CPUs and on serial code performance across platforms
when compiled with GCC, Intel C++ and IBM XLC
compilers. We also touch upon vectorization results from
these three compilers with respect to two reference code
sections in the serial code.

Our findings show that the GCC auto vectorization[9],
[10] implementation fails in certain cases where the
OpenCL compiler succeeds in generating fast executable
code. This is particularly true for certain nested loop
constructs, though the GCC vectorization unit performs
as expected in many other cases in this model. Similar
results were obtained from Intel ICC compiler and IBM
XLC compiler for these nested loop constructs. We
compiled the serial version of the solar radiation model
component code with the GCC for the SSE{2,3,4}[11]
and the Altivec[12] target instruction sets respectively.
IBM XLC serial code compilation used Altivec[13] as
target architecture. OpenCL kernels for sections of code
comprising of these loop constructs have been compared
with the GCC, ICC and XLC vectorization report for
these code sections. The details of these findings will
be elaborated in the Performance Analysis subsection
under Section III. The increased performance of our
OpenCL implementation can be attributed to implicit
instruction and data parallelism by the OpenCL compiler
on Intel[14], [15] and IBM platforms as well as to
the efficient execution pipelining and better memory
management.

Based on our experience, current implementations
of OpenCL from IBM and Apple are not portable in

terms of code. The same OpenCL code runnable in
IBM JS21 and JS22 blades did not compile or run
seamlessly in Mac OS X as one would expect. Some
code modifications were required to get correct results.
Thread scheduling differences on the platforms caused
the program to output correct answer in one case (IBM
blades) while the incorrect answer in the other case (Mac
OS X). After successfully porting the first two sections
of the code with OpenCL, the speedups on Mac OS X
with Intel CPU are similar to those on the IBM platform,
which indicates the OpenCL performance is portable
across platforms to some extent.

The rest of the paper is organized as follows. In Sec-
tion II, we discuss the solar radiation code structure and
its OpenCL implementation. In Section III we present
the results on IBM blades, POWER6 AIX and Mac
OS X and we discuss potential reasons behind dramatic
performance gain on CPUs with OpenCL. In Section
IV we discuss related works and further analysis of
performance gain and conclude in Section V.

II. CODE STRUCTURE AND OPENCL
IMPLEMENTATION

A production-quality climate or weather model code
can span up to a few hundred thousand lines. Most
of these codes are written in Fortran. We used single-
precision, C version of a representative, compute-
intensive physics model component code with about
1500 lines as a serial baseline. This baseline is used to
confirm the correctness of the results obtained with the
multi-threaded parallel version as well as to calculate the
performance speedup achieved against it. The selected
code is the solar radiation model component, SOLAR,
which has been widely used in climate and weather
models. This particular version of the code is from
the production version of the NASA GEOS-5 climate
physics model. This model component along with the
IRRAD (the infrared radiation component) typically
takes 20 percent of the execution time[6]. The exact
fraction of SOLAR execution time compared to the
total model varies among the models. For example, in
NASA GEOSS atmospheric model, the solar radiation
can take 5%~10%. However that fraction could increase
significantly if the aerosol effect is included. Reducing
the execution time of SOLAR can benefit the climate
and weather simulations in two ways: allowing a reduced
overall simulation time and an increase in the complexity
of models within the same simulation time. The climate
physics model component executes calculations only
along the vertical (altitudinal) direction. In a climate or
weather physics model, most of the physical processes in
a whole or partial globe are modeled with such columns

at each point of a horizontal grid such as the latitudinal-
longitudinal grid. In the parallel version, SOLAR is

Solar Radiation Initial ()

(Setting up data and arrays)

Solar UV ()

® GetAerolndex
. Cldscale

. Deledd

. Cldflxv

. Cldflx
Solar IR ()

. GetAerolndex

. Cldscale

. Deledd
. Cldflxv
. Cldflx

Solar Radiation Final ()

(Finalizing data and output)

Fig. 1. The code structure of the solar radiation model component.
The same routine structure was mapped to OpenCL kernels in the
parallel version. One routine was mapped to multiple kernels in some
cases.

multi-threaded and runnable in multiple processor cores
within a shared-memory system. The parallel code is
composed of over about 70 kernels. These kernels exe-
cute on an OpenCL compute device, which can be the
host CPU cores or GPU streaming multiprocessors de-
pending on user defined initialization parameters. Thus,
the OpenCL code can be tested for various simulation
system sizes (i.e., numbers of physics columns), which
is bounded only by the memory limitations. All perfor-
mance results presented in this paper use 128 columns
that are independent of each other. The kernels are multi-
dimensional, depending on the data arrays used. The
kernels do not have a one-to-one mapping with the serial
solar radiation code functions. We have written multiple
kernels for each subroutine in some particular cases. In
this way we ensure maximal utilization of the hardware
computing resources. Most functions with conditional
flow of codes were split into separate kernels working

in synchronization to break the linear program flow and
executed concurrently.

All data arrays are stored in OpenCL global mem-
ory. There is no data transfer between the host and
the OpenCL device (CPU) other than the initialization
variables and the final results. All the computations have
been done inside a blade or desktop computer. Next, we
spread the kernel execution over an n by m thread grid.
n and m are valued with respect to the arrays present in
the specific kernels so that each thread deals with one
element of the array in the typical OpenCL threading
fashion. The code contains about 70 arrays ranging from
1 to 3 dimensions. Kernel executions are synchronized
with barriers to ensure the data integrity. Two code
segments which we analyze later has been labeled as
section 1 (Appendix A) and section 2 (Appendix C) in
the paper. The first code segment belongs to the Solar
Radiation Initial() and the second code segment belongs
to SolarIR() section of the climate physics model.

III. RESULTS
A. Performance Measurement

We tested the complete parallel implementation of
the serial code in OpenCL on the IBM PowerPC and
POWER processor architectures. The parallel code out-
put results within a difference of less than 1 percent
(maximum difference of 0.0001) compared to the (origi-
nal) serial version. The solar radiation code is divided
into four sections (Figure 1). Each section contains
anywhere between 5—25 kernels. The code uses integer
and floating point data types. Dramatic performance
improvement was noticed for parallel execution on CPU.
Our analysis shows that the speedup can be attributed to
implicit vectorization support by the OpenCL compiler
infrastructure along with the kernel execution model
and its threading architecture[16]. Further, splitting the
functional routines into small and distributed kernels
has allowed maximum parallelization of the code and
resulted in a faster completion of the task. These fine
tunings for such a complex implementation were possi-
ble due to the simpler programming interface provided
by OpenCL as compared to manual SIMD vectoriza-
tion. Explicit vector programming is time consuming,
error prone and also machine dependent. Moreover,
vectorization is not trivial. It has been observed that
difficulties in optimizing code for SIMD architecture
stems from hardware constraints too [17]. Certain kernels
were executed out of order to maximize throughput while
all of them were executed according to the size and
dimensions of the arrays being manipulated. Thus, no
work cycles were wasted due to inconsistent size and
dimensions for memory objects.

W BM JS21 (4 cores)
E1BM JS22 (8 cores)

v
L y

»
[

w

Speedup (per core)
. ~
- w N w w w =

=3
n

o

IBM JS21 (4 cores)

IBM JS22 (8 cores)

Fig. 2. Total speedup achieved per processor core using the OpenCL
parallel implementation compared to the serial C version on CPU
architectures.

Figure 2 presents the performance results on the
IBM JS21 and JS22 blades. The JS21 blade con-
tains 2 dual-core PowerPC970MP 2.3GHz processors
while the JS22 blade has 2 quad-core POWER6 4.0
GHz processors. All the tests were run with number
of parallel compute cores on the OpenCL device set
to CL_DEVICE_MAX_ COMPUTE_UNITS. GCC has
been used only for serial performance measurement on
a single core. Figure 3 shows comparative performance
gains per section of the code. The highest speedup is
observed in the compute-intensive part (SolarlR()). The
results produced by parallel and serial versions of the
code were first run in the test mode where the serial
version and parallel versions were run side by side. After
each subroutine execution, all the arrays were cross-
checked element by element to verify results. At the end
of execution, when all sections of the code had passed
the checks, the parallel code was run in benchmark mode
where the timing data were collected. In both figure 3
and figure 4 we have plotted logarithmic value of the
timing data attained on various platforms for the four
code sections.

1) Porting to Mac OS X: OpenCL is designed to
support broad processor architectures with the goal of
writing once and running everywhere. A user simply
compiles an application written in OpenCL with com-
pile flags to locally optimize the code and the code
is supposed to be portable to all supported platforms.
Our experience with porting OpenCL did not go this
smoothly. We ran the OpenCL implementations for
IBM PowerPC and POWER processor on Mac OS X
with limited success. The initial OpenCL code did not
compile due to some library dependency issues and
the first results obtained were incorrect, as the Apple
OpenCL drivers did not execute the code with expected

M |BM JS21 (Parallel)
M BM JS21 (Serial)
W1BM JS22 (Parallel)
M |BM JS22 (Serial)

log,,(time) in microseconds

5 -

4 -

3 -

2 i

1

0 - T T T 1

SolarUV () Solar Radiation

final()

Solar Radiation
Initial()

SolarlR()

Fig. 3. Performance gain comparison per section of the code for
IBM JS21 and IBM JS22

results. It appears that this is caused by premature
OpenCL implementations from different vendors. We
modified parts of the code to compile it correctly and
reordered function calls to get correct results. Only then
we were able to test the first two parts of the SOLAR
code (Figure 4). One of the modifications deals with
loading arrays of dimension higher than two on Mac
OS X OpenCL compute device. The c/CreateBuffer[18]
OpenCL API requires host pointer as one of the input
parameters. The IBM blade compatible code handles
this data reference without any error while on Mac
OpenCL we had to modify array representation from
higher dimensionality to one dimension to pass it as host
pointer reference to the OpenCL compute device. Addi-
tionally, the clCreateContextFromType[19] APl worked
on the Mac OS X OpenCL implementation while we
used a custom procedure on IBM systems to get the
same result as clCreateContextFromType didnt work on
the IBM OpenCL implementation. OpenCL version 1.1
might solve some of the porting issues we encountered.

At the time of writing this paper, we have results
for the first two sections of the code and they look
very promising on an alternate platform compared to the
complete IBM OpenCL implementation. The speedup
registered in the parallel version of SolarUV() section for
Mac OS X (Intel 2.66 GHz Core 2 Duo) is about 2.67
(Figure 4) compared to 4.4 and 6.9 (Figure 3) for IBM
JS21 and JS22 in the same section. One conclusion to be
drawn at this point is that OpenCL vectorization speeds
up applications across multiple CPU platforms. We are
still in process of optimizing the complete SOLAR code
for Mac OS X but the speedup achieved is consistent
with the results obtained on IBM platform.

M Mac (Serial)
B Mac (Parallel)

log,,(time) in microseconds

Solar Radiation Initial()

SolarUV ()

Fig. 4. Performance gain comparison achieved for the first two
sections of the code on the Mac OS X. CPU Processor : Intel 2.66
GHz Core 2 Duo

2) Subroutine multi-kernel implementation: Porting C
code to OpenCL provides a design decision challenge
based on the nested dependency structure of the code.
Dividing one subroutine with multiple levels of iteration
loops and a mix of decision statements can be tricky at
times. We noticed that splitting some subroutines into
multiple kernels at times sped up the processing, while
in some cases it reduced performance. Figure 5 presents
the results obtained by splitting the cldflx() function
into 4 kernels based on the 4 major iteration loops
inside the cldflx() code structure. cldflx() computes the
transmittances and reflectance for a composite of layers.
Layers are added one at a time, going down from the top.
There are 4 major iteration loops within the function that
execute with nested code elements contained within each
loop.

It is evident that dividing serial code to the smallest
parallelizable element is not the best decision every
time when converting from serial to parallel OpenCL
code. The slowdown occurs due to the additional cost
of loading and setting up the kernels, which cannot be
overridden by the speedup (if any) offered by using
additional kernel executions in this case. Contrary to
this example, not splitting the SolarIR() function, which
contains a huge part of the physics implementation into
multiple kernels, results in a loss of performance. The
reason behind this is that many parts of the code that can
benefit from a parallel execution are serial and can only
benefit from the limited compiler specific vectorization.
Thus it is important to know when to split the code and
whether splitting the code will produce a performance
benefit with the additional cost of executing a separate
kernel.

3000

7000

6000

5000

4000

3000

Time (microseconds)

2000

1000

1-Kernel

4-Kernel

Fig. 5. Timing results for 30 executions of cldflx() subroutine with
a single kernel and 4-kernel split implementation on the IBM JS22.

B. Performance Analysis

In this subsection we explore the reasons behind the
performance gains achieved in our work. We selected
two code segments from the serial version of climate
model to analyze vectorization behavior of complex
nested loop structures across compilers. For comparing
results we used disassembled output from GCC version
4.2.1 for the serial code against the Intel OpenCL Offline
Compiler[14] generated OpenCL kernel assembly output
along with the vectorization reports from GCC versions
4.1.2 and 4.2.1, Intel C++ Compiler (ICC) version 12.0.4
and IBM XLC compiler version 10.1 on multiple plat-
forms. The solar radiation code was compiled on the Mac
OS X version 10.6.7 platform using GCC version 4.2.1
(Apple Inc. build 5664), Intel C++ Compiler version
12.0.4 and on IBM blades using GCC version 4.1.2
20080704 (Red Hat 4.1.2-48) and on POWER6 AIX
using IBM XLC version 10.1 and GCC version 4.1.2. We
refer to the first segment as section I (check Appendix
A for a complete listing of the code segment) and the
second segment as section 2 (check Appendix C for
Section 2 nested loop structure listing) in this paper. We
have used the first segment to represent sections of the
serial code where GCC, Intel C++ compiler and IBM
XLC compiler all fail to vectorize instructions leading
to overall performance degradation of the solar radiation
code. GCC'’s tree-ssa based loop vectorization module
complains under a number of circumstances[20], two of
which we noticed occurring frequently in solar radiation
model component compilation phase:

1) Vectorization failure due to un-handled data refer-
ences.

2) Vectorization failure due to too many basic blocks
in the loop.

ICC and XLC vectorization modules reported similar
results. The compiler behaves in a conservative manner
when it comes to vectorization - it will vectorize only
if it absolutely safe to do it[21]. Compiler looks at
the data dependence graphs of the innermost loops for
vectorization. If there are no cycles in the graph, then
the loop can be vectorized although sometimes statement
reordering becomes necessary[22].

A basic block refers to a sequence of instructions
having a single entry point and a single exit point[23]
meaning no jump instruction can be a part of a basic
block and no basic block can be a target of a jump
instruction. During compilation GCC decomposes a pro-
gram into multiple basic blocks each of which forms a
vertex of the control flow graph (CFG) used by the tree-
ssa based vectorization unit of GCC.

In section I code segment our zone of interest is the
nested for-loop construct shown in Listing 1 (line number
2-4 in Appendix A). GCC, ICC and IBM XLC all
report vectorization failure for the nested for-loop with
unhandled data reference errors. Similarly, for section
2 all of these compilers reported vectorization failure.
In our OpenCL kernel implementation we changed the
two-dimensional array representation (line number 6-
10,13,15,21 in Appendix A) to a one-dimensional array
(line number 27-30,32,34,38,39 in Appendix B) and only
the innermost for-loop was retained (line number 37-
40 in Appendix B). We noticed that changing code
representations in the serial code from multidimensional
arrays to a single dimension row major representation to
mimic OpenCL kernel code structure didnt facilitate vec-
torization of section 1 and section 2. We conjecture that
elimination of complex loop constructs in the OpenCL
kernel contributes to effective vectorization by OpenCL
compiler through bypassing unhandled data references
and the too many basic blocks issue we encountered.

for (k=0; k<LM; k++) {
for (i=0; 1i<M_BLOCK; i++) {
dplk][1] = pllk+1][i]l-pl[k][1i];
palk]l[1i] = 0.5x(pl[k][1i]+pl[k
+1]1[11);
scal[k+1l][1i] = dplk]l[i]~*pow (palk
1011/300.,.8);
whl[k][1] = 1.02xwalk][1]*scallk
+1]1[1i]* (1.40.00135*(talk][1
1-240.)) + 1.e-9;
Listing 1. A part of serial code for section 1

The corresponding GCC disassembler output is given
below in Listing 2.

for (k=0; k<LM; k++) {

for (i=0; i1<M_BLOCK; i++)
add ebx, 0x1
mowv edx, DWORD PTR [ebp-0x6d09c]
cmp ebx, 0x80
Jjne 5ael <sorad+0x280>
Listing 2. A part of GCC assembly dump for section 1

A part of the vectorized assembly code generated by
Intel OpenCL Offline Compiler for section 1 is given
below.

pshufd XMMO, XMMO, O

paddd XMMO, XMMWORD PTR [LCPI4_0]

movaps XMMWORD PTR [ESP + 321, XMMO
16-byte Spill

mov EAX, EBX # Reload Reuse

imul EAX, DWORD PTR [ESP + 28]
4-byte Folded Reload

movd XMMO, EAX

pshufd XMMO, XMMO, O

paddd XMMO, XMMWORD PTR
l6-byte Folded Reload
movd EBX, XMMO

[ESP + 32] #

mov EAX, DWORD PTR [EBP + 12]

movups XMMO, XMMWORD PTR [EAX + 4x
EBX]

Listing 3. A part of OpenCL assembly dump of section 1 kernel

pshufd, paddd, movaps, movups are special SIMD
instructions belonging to Intel Advanced Vector Exten-
sions.

We noticed a speedup of about ~40x for section 1
code segment on the Mac OS X. The second code seg-
ment we selected from solar radiation code (refer to the
Appendix C for complete listing of the second segment)
contains five levels of nested loop construct (refer to line
number 30-60 in Appendix C). Intel OpenCL Offline
Compiler successfully vectorized this code segment as
well.

Figure 6 shows the execution time data for section 1
and section 2 on IBM JS21, JS22 blades, IBM POWER6
AIX and Mac OS X 10.6.7. The running time for these
code sections and for the overall serial code is much
better when compiled on ICC and IBM XLC compared
to GCC. This should come as no surprise as IBM XLC
and ICCs overall optimization modules are known to
perform better when compared with GCC[24], [25].
Though GCC compiled code execution was much faster
on Mac OS X version 10.6.7 as compared to other
platforms.

The OpenCL compiler on IBM architectures uses the
Altivec instruction set, while the OpenCL compiler on
Intel architectures uses Streaming SIMD Extensions 4.1

4500 1

3987
4000
3559

3500

3000

2773

2500
2127

2000 A
W Section 1

1500 - H Section 2

Time(in microseconds)

1000

500

Fig. 6. Timing results for serial code compiled on JS21-GCC, JS22-
GCC, Mac OS X-GCC,ICC and POWER6 AIX-GCC,IBM XLC

[26]. We implemented a minor subset of the SOLAR
code with the Altivec instruction set and found that the
execution time was cut in half compared to the serial
version. There is an extensively nested program flow in
the SOLAR code along with multi-dimensional arrays
and different operations depending on conditional state-
ments. The code becomes very complex, and it becomes
very time consuming to implement a subroutines like
SolarIR() with the Altivec instruction set. The complex
code structure is also the reason why a typical C compiler
such as GCC cannot utilize the vector instruction sets
since the compiler cannot find the appropriate known
patterns for this code. This is the problem that OpenCL
seems to solve, bringing about orders of magnitude in
speedup for applications targeted to run on CPUs, com-
pared to GPUs that are already built on the foundations
of multi-core paradigms.

IV. DISCUSSION

These kinds of performance gains through vectoriza-
tion on the CPU are not new. VAST ([27]) uses the native
SIMD vector instructions and increases performance
dramatically. [28] reports a relative speedup of 20.5X
to 27.3X depending on the vector compiler (vcc and
vlc) they used for certain implementations on VMX
hardware. A simple dot product example gains up to
4.9X speedup with automatic vectorization. They also
show that some hand tuning techniques can further
improve the performance. Thus, if a programmer is
provided with an easy interface to the vector libraries
for complex programming tasks, better performance is
often achievable.

OpenCL is itself implemented as a library with a built-
in compiler to compile kernels at runtime. The current
IBM implementation is based around a modified version
of their XLC compiler. XLC is designed specifically
for the POWER architecture. The use of XLC by IBM
in their implementation of OpenCL should come as
no surprise and it explains why XLC is capable of
sophisticated Altivec code generation. The OpenCL im-
plementation in Mac OS X is based on Low Level Virtual
Machine (LLVM) with the Clang front-end. LLVM was
designed as an infrastructure for building compilers,
with a large focus on optimized code generation. LLVM
supports the Intel architecture quite well, explaining why
it creates such well-optimized code from the OpenCL
kernel functions that we have implemented on Mac OS
X thus far.

It should be noted that the OpenCL compiler might
make certain assumptions that GCC cannot afford to
make for naive C code. For example, it can assume
that the kernel functions are not trying to do non-
computational tasks such as file I/O. The OpenCL com-
piler can assume that the given computation is meant
to be run as a many-threaded piece of code. OpenCL
kernel functions are generally small, self-contained. They
are usually compute-intensive and are executed over
an abstract index space called N-Dimensional compu-
tation domain. For instance, 16 parallel units of work
could be associated with an index space from 0 to 15.
Alternatively, using 2-tuples, those 16 units of work
could be associated with (0,0) to (3,3). OpenCL ker-
nels can be grouped to form workgroups. Several of
these workgroups are concurrently executed on available
OpenCL compute devices[15]. The OpenCL compiler
can potentially take these assumptions into account in
its code generation. For both section I and section 2
GCC, ICC and IBM XLC reported vectorization failure.
It will be interesting to further study how these compilers
handle vectorization if the climate model’s complex
nested for-loop constructs are broken down to simpler
loop constructs as was done with the OpenCL kernel
functions, but it would require a lot more effort and time.

We plan to modify the OpenCL code appropriately
to run on GPU. We are interested in finding out how
different OpenCL implementation techniques that per-
form well on CPUs will behave on GPUs and whether
the performance can be portable, in addition to the code
portability. But the potential problem of GPU memory
constraints will limit the use of large global memory
datasets. At the time of writing this paper we are still
working on porting the IBM specific parallel code in its
entirety to the Mac OS X implementation of OpenCL as
well as to Nvidia’s Fermi architecture.

V. CONCLUSION

We have successfully demonstrated that the multi-
threaded programming and execution models of OpenCL
can significantly increase the performance of a real-
world climate and weather application, solar radiation
model component, in IBM POWER and PowerPC and
POWERG6 CPU architectures. Similar performance im-
provement has also been obtained in Intel CPUs. The
immature implementation of OpenCL from various ven-
dors prevents us from running the same OpenCL code on
Intel CPU architectures, which is runnable on IBM CPU
architectures. Our preliminary investigations with Altivec
instructions as well as OpenCL generated assembly code
reveals that the dramatic performance improvement in
CPUs arises from a much better implicit vectorization
support provided by the OpenCL compiler infrastructure
as compared to auto-vectorization support provided by
popular compilers like GCC, ICC and IBM XLC.

ACKNOWLEDGMENT

We would like to thank the insightful comments and
suggestions from the reviewers. This work is partially
supported by IBM through the Center for Hybrid Mul-
ticore Productivity Research, UMBC.

REFERENCES

[1] J. Y. Xu, “OpenCL the open standard for parallel programming
of heterogeneous systems,” 2008, institute of Information and
Mathematical Sciences Massey University at Albany, Auckland,
New Zealand.

A. C. a. T. T. C. Desh Singh, “Higher level programming
abstractions for fpgas using opencl,” www.eecg.toronto.edu/
~jayar/fpgal1/Singh_Altera_OpenCL_FPGA11.pdf, 2011.

A. Munshi, “OpenCL, parallel computing on the GPU and
CPU,” SIGGRAPH, 2008.

J. Breitbart and C. Fohry, “OpenCL - an effective programming
model for data parallel computations at the cell broadband
engine,” Parallel and Distributed Processing, Workshops and
Phd Forum (IPDPSW), IEEE International Symposium, 2010.

M. D. Chou and M. J. Suarez, “A solar radiation parameteriza-
tion (clir-ad-sw) for atmospheric studies,” 1999.

S. Zhou, D. Duffy, T. Clune, M. Suarez, S. Williams, and
M. Halem, “The impact of IBM Cell technology on the pro-
gramming paradigm in the context of computer systems for
climate and weather models,” pp. 2176-2186, 2009.

L. Howes, “OpenCL parallel computing for CPUs and
GPUs,” Advanced Micro Devices (AMD) presentation,
http://developer.amd.com/gpu_assets/OpenCL

(2]

(3]
(4]

(5]
(6]

(7]

_Parallel_Computing_for_CPUs_and_GPUs_201003
.pdf.

[8] NVIDIA, “NVIDIA CUDA com-
pute unified device architecture,” 2007,

http://developer.download.nvidia.com/
compute/cuda/1_0/NVIDIA_CUDA_Programming_
Guide_1.0.pdf .

i. GCC Team, Ira Rosen, “Auto-vectorization in gcc,” http://gcc.
gnu.org/projects/tree-ssa/vectorization.html#using, Apr. 2011.

(9]

(10]
[11]
[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

D. Naishlos, “Autovectorization in gcc,” 2004, pp. 105-117.
INTEL.COM, “Product page,” http://www.intel.com/support/
processors/sb/CS-030123.htm, Apr. 2011.

. Inc., “Tuning options to consider with gcc,”
http://www.ibm.com/developerworks/wikis/display/hpccentral/
Tuning+options+to+consider+with+gcc, Apr. 2009.

B. V. Atyam and I I Calvin Sze, “Application-
performance tuning and optimization on power6,’
http://www2.fz-juelich.de/jsc/datapool/jump/
JUMP-AIX-POWERG6- AppsPerformanceTuning-wp032008.
pdf, Feb. 2008.

INTEL.COM, “Intel opencl sdk,” http://software.intel.com/
en-us/articles/intel-opencl-sdk/, Apr. 2011.

I. Ofer Rosenberg, “Optimizing opencltm on cpus,”
http://www.khronos.org/developers/library/2010_siggraph_
bof_opencl/OpenCL-BOF-Intel-SIGGRAPH-Jul10.pdf,
2010.

K. Group, “Opencl 1.1 specification (revision 36, september
30, 2010),” http://www.khronos.org/registry/cl/specs/opencl- 1.
1.pdf, Apr. 2011.

July

M. S. at Computational Research Laboratories
(CRL) India, “Vectorization - writing c/c++ code in
vector format,” http://software.intel.com/en-us/articles/

vectorization-writing-cc-code-in-vector-format/, Jan. 2011.

K. Group, “clcreatebuffer , opencl 1.0 manual,”
http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/
clCreateBuffer.html.

——, “clcreatedevicefromtype , opencl 1.0 manual,”
http://www.khronos.org/registry/cl/sdk/1.0/docs/man/xhtml/
clCreateContextFromType.html.

U. o. I. a. U.-C. Saeed Maleki, “Evaluation of vectorizing
compilers,” https://agora.cs.illinois.edu/download/attachments/
26546085/ Vectorization-Seminar.pdf, Apr. 2011.

M. Garzazn and U. o. I. a. U.-C. Saeed Maleki,
“Program optimization through loop vectorization,”
https://agora.cs.illinois.edu/download/attachments/38305904/
9-Vectorization.pdf, 2010.

C. Maria J. Garzaran, “Loop vectorization,”
/lagora.cs.illinois.edu/download/attachments/28937737/
10- Vectorization.pdf, Spring 2010.

R. M. Stallman and the GCC Developer Community, “Gnu com-
piler collection internals,” http://gcc.gnu.org/onlinedocs/gcc-4.
0.4/gccint.pdf, 2010-11.

I. I. Bill Buros, “Linux performance,” http:/www.ibm.
com/developerworks/wikis/download/attachments/104533332/
BillBurosSTG-LinuxonPower-PerformanceConsiderations.ppt,
Feb. 2007.

R. H. Team, “Survey of gcc performance,” http://people.redhat.
com/bkoz/benchmarks/.

INTEL.COM, “Intel opencl sdk release notes,” http://software.
intel.com/file/33857, 2010-11.

CresentBaySoftware, “VAST Advanced
optimization for high-performance systems,”
“http://www.crescentbaysoftware.com”.
B. Gibbs, R. Arenburg, D. Bonaventure, B. Elkin, R. Grima,
and A. Wang, “IBM E server bladecenter js20 powerpc 970
programming environment,” 2005, ”IBM. com/redbooks”.
J. Michalakes and M. Vachharajani, “GPU acceleration of
numerical weather prediction. proceedings of the workshop on
large scale parallel processing,” IPDPS, Miami, 2008.

https:

compiler
2005,

20

21

22

23

24

25

VI. APPENDIX A - SECTION 1 SERIAL CODE

for (k=0; k<LM; k++
{
for (i=0; i<M_BL
{

dp (k] [i] = pl[k+1][1i]-pl[k][1

I

)

OCK; i++)

20

21

22

23

24

O.5*(pl[k][i]+pl25
26

= dp[k] [i]l*pow (

00.,.8);

1.02xwalk][1]*

i]

28

* (1.40.00135%(tal[k][1]-240.)

palk] [i] =
[k+1][1]);
scall[k+1][1]
palk] [1]1/3
whlk] [i] =
scall[k+1]]
) + 1.e-9;
oh[k] [1] =
[k][i]*466

x=1.02%x10000.

for (1=0; 1<N
{
gaero[l] [k

][k [1];

1.02%x0alk]
.7+ 1.e-8;

*dp [k] [1];

A_NUM; 1++4)

29

[1]xdp

30

31

][i] = x*raeroll

14

32

33

34

VII. APPENDIX B - SECTION 1 OPENCL KERNEL

SOURCE

35

36

37

__kernel void
sectionB (__global
__global float
__global float
__global float
__global float
__global float
__global float
__global float
__global float
__global floa
__global f1
__global f1

float = dp,
pl,

pa,

scal,

wh,

wa,

ta,

swh,

* oh,

t x oa,

oat =*gaero,
oat <raero,

X % % % X o %

38

39

40

41

1

__global const int «hM_BLOCK,
__global const int =xhLM,
__global const int xhNA_NUM

int 1 = get_global_id(0);
int k = get_global_id(1l);

int M_BLOCK = hM_BLOCKI[O0];
int LM = hLM[O0];
int NA_NUM = hNA_NUMI[O0];

dplk » M_BLOCK + 1i] = pl[(k
+1) = M_BLOCK + i]-pllk =
M_BLOCK + 1i];

palk = M_BLOCK + 1] = 0.5f
* (pl[k * M_BLOCK + i]+pl/ (
k+1) * M_BLOCK + i]);

scal[(k+1) » M_BLOCK + 1] =
dpl[k *» M_BLOCK + i] * pow (
palk = M_BLOCK + i]/300.0f
, -8f);

wh[k = M_BLOCK + 1] = 1.02f
*wal[k * M_BLOCK + i]=*scal
[(k+1) = M_BLOCK + 1]

* (1.0f+0.00135f« (talkx
M_BLOCK + 1]-240.0f)) + 1.
e-9f;

oh[k * M_BLOCK + 1i] = 1.02f
xoalk = M_BLOCK + 1i]xdplk
* M_BLOCK + i]lx466.7f + 1.
e-8f;

float x=1.02f%10000.0fxdp[k =
M_BLOCK + i];

int 1 = 0;
for (1=0; 1<NA_NUM; 1++) {
gaero[l = LM » M_BLOCK +
kx M_BLOCK + 1] =
x+*raero[l = LM x M_BLOCK
+ k* M_BLOCK + i];

VIII. APPENDIX C - SECTION 2 SERIAL CODE

for

(ih=1ih1-1; ih<ih2; ih++) {

if (ih==0) {

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

}

for

else {

}

for

(mb=0
{

(mb=0
{

; mb<M_BLOCK; mb++)

chmb]=1.0-cc[0] [mb];

; mb<M_BLOCK; mb++)

ch[mb]l=cc[0] [mb];

/+*level 1 nestingx*/

for

(im=0;

im<2; im++) |

/+*level 2 nestingx*/

if(

}

im==0)
/*xleve

{
1 3 nestingx/

for (mb=0; mb<M_BLOCK; mb

++)

{

cm[mb]l=ch[mb]*(1.0-cc

(1] [mb]);

/+*level 2 nestingx*/

els

}

e {

/xleve

for (m
+4)
cm [

1 3 nestingx/

b=0; mb<M_BLOCK; mb
{

mb]=ch[mb]*cc[1l] [mb

1;

/+*level 2 nestingx*/

for

(is=1i
{
/*leve
if (is=

/*1
for

}

/*leve

else {
/*1
for

sl-1; is<is2; is++)

1 3 nestingx/
=0) {
evel 4 nestingx/
(mb=0; mb<M_BLOCK;
mb++) |
ct [mb]l=cm[mb]*(1.0-
ccl[2] [mb]);

1 3 nestingx/

evel 4 nestingx/
(mb=0; mb<M_BLOCK;
mb++) {
ct [mbl=cm[mb]*cc[2] [
mb] ;

45

46

47

48

49

50

51

52

53

54

55

57

58

59

60

/+*level 3 nesting=*/
for (1=0; 1<LM+1; 1++) {

/+*level 4 nesting=*/
for (mb=0; mb<M_BLOCK;
mb++) {
/+xlevel 5 nestingx/
1if(ih==0 && im==0 &&
is==0) {
fclr[l] [mb]=flxdn
[1+1] [mb];
}
fall[l] [mb]l=fall[1l]]
mb]+flxdn[1+1] [mb
]*ct [mb];

