
A database-based distributed computation
architecture with Accumulo and D4M: an

application of eigensolver for large sparse matrix

Yin Huang, Yelena Yesha, Shujia Zhou
Computer Science and Electrical Engineering

University of Maryland, Baltimore County

Baltimore, MD, 21250

Email: {yhuang9,yeyesha,szhou}@umbc.edu

Abstract—NoSQL distributed databases have been devised to
tackle the challenges resulting from volume, velocity and variety
of big data. Graph representation of datasets requires efficient
distributed linear algebra operations for large sparse matrix
constructed from big data. Storing the transformed matrix into
the database not only speeds up the big data analysis process but
also facilitates the computation because of indexing. The Hadoop
based approach does not natively support iterative algorithms
due to data shuffling during each iteration.

This paper presents a novel database-based distributed com-
putation architecture bridging the gap between Hadoop and HPC.
The novelty results from exploring the indexing capability of D4M
(Dynamic Distributed Dimensional Data Model) to support linear
algebra operations in a distributed computation environment.
The idea is to store input data and intermediate results in
associative array format inside Accumulo table to facilitate
the data sharing among working nodes. pMatlab is deployed
as the parallel computation engine. Our proposed architecture
is proved to be lighter, easier and faster than MapReduce
based approach. One example application is calculating top k
eigenvalues and eigenvectors for large sparse matrix. Experiments
on Graph500 benchmark datasets demonstrate 2X speedup of
our architecture as compared to HEIGEN (An eigensolver for
billion-scale matrices using MapReduce).

Keywords—Big Data Analytics; Distributed Computation Archi-
tecture; Eigendecomposition; Apache Accumulo; D4M

I. INTRODUCTION

Typical data analytics normally include the following
pipeline: collecting data, querying data, analyzing data and
report. The large volume of unstructured data has significantly
complicated this pipeline. Typical example of unstructured
data comes from social media such as Facebook, Twitter etc.
First we need a system to store and query data of interest.
Second, we transform raw data into numerical format for
analysis. Third, we can apply machine learning algorithms
to discover patterns for better decision making. Nowadays
Hadoop [1] plays a fundamental role in tackling the challenges
caused by increasing volume and velocity of unstructured
data. The success of Hadoop relies on its two components:
Hadoop Distributed File System (HDFS) for storing massive
amount of data with redundancy for failure tolerance and
MapReduce for batch processing. Hadoop, however, fails to
provide an easy-to-use interface to retrieve data of interest

for HDFS. Apache Hive [2] has been designed to facilitate
querying and managing large datasets residing in distributed
storage with SQL-like language. But the response time for
random, real-time read/write access is relatively slow because
of MapReduce. This leads to the development of distributed,
scalable, high performance data storage and retrieval system
such as Accumulo [3] and HBase [4]. Furthermore, more
advanced algorithms for big data analytics typically require
distributed linear algebra operations, which are not natively
supported in Hadoop. Examples are spectral clustering for
graph analysis [6], and large scale distributed deep networks
[28]. Therefore, it is imperative to create a database-based
distributed computation architecture which not only manages
unstructured data but also supports high performance linear
algebra operations.

High Performance Computing (HPC) community has been
tackling the second challenges for decades but fails short in
managing large unstructured data. The question is how can
we integrate traditional HPC with Hadoop. In [27], Glenn
Lockwood of the San Diego Supercomputer Center came up
with a list of reasons why Hadoop remained on the fringe
of HPC today. This paper serves to bridge the gap between
Hadoop and HPC. The proposed architecture deploys NoSQL
database, Accumulo for example, which is built on top of
Hadoop, as underlying data management system. Meanwhile,
pMatlab [16], a parallel MPI library for Matlab, is deployed
as the parallel computation engine. D4M [9] serves as the
data structure to retrieve data from Accumulo and to feed
into pMatlab for computation in a distributed manner. For
example, in many applications, it is intuitive to represent data
as a graph to discover patterns. Graph representation has a
wide range of applications from social sciences to physics
and bioinformatics [5], [6], [7]. Take community discovery in
social network [8] for instance, a sparse adjacency matrix for
all Twitter users can be built to reflect their relationships. The
adjacency matrix construction, however, requires complicated
operations; moreover, to find users of similar interests, we need
apply spectral decomposition on the matrix. Both of which
are not efficiently supported in MapReduce based computing
model because the matrix size easily exceeds million or billion.
Recent work has focused on constructing graphs from the data
stored in the D4M format and applying eigendecomposition to
the modularity matrix [10].

2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 2493

However, the authors in [10] only use D4M to construct
adjacency matrix and store data on a single database node
which will become the bottleneck as data size increases. Our
architecture differs from theirs in that we extend D4M to nu-
merical calculations for linear algebra operations. Furthermore,
we parallelize the computation across the whole cluster instead
of a single node to deal with million or billion scale matrices.

Sparse matrix has many real life applications. In general,
real life applications such as social media tend to produce
matrix with sparseness ranging from 0.01% to 1% . The
biggest difference between sparse and dense matrix is the
unbalanced distribution of entries. Such difference may cause
significant performance problems in distributed computation
where the distribution of work loads are imbalanced. pMatlab
[16] provides such a parallel library that integrates MPI
and Matlab. In pMatlab, the main process spawns working
processes evenly among working nodes, which will cause
synchronization problems between parallel operations due to
uneven work load will lead to different completion times for
all processes. Therefore, in order to implement iterative graph
algorithms involving sparse matrix operations, we need modify
pMatlab to differentiate main process from working processes
so that main process waits for the working processes instead of
doing computation. In addition, load balancing among working
nodes plays a significant role in speeding up the performance.
A scheduler is in need to achieve this goal.

Spectral decomposition is of great importance in linear
algebra and functional analysis for a wide variety of scientific
and engineering applications, such as pattern recognition,
image compression, and community discovery in social net-
work. The essence of spectral decomposition is the calcu-
lation of eigenvalues and eigenvectors of a matrix. Recent
platforms for eigensolvers based on MapReduce include Ma-
hout and HEIGEN. Mahout implements Stochastic Singular
Value Decomposition [22] (SSVD) algorithm while HEIGEN
Lanczos-Selective Orthogonalization [24] (Lanczos-SO) algo-
rithm. SSVD is reported to have a high memory footage there-
fore SSVD is not a good fit for large matrix. Lanczos-SO algo-
rithm is a variant to Lanczos-No Orthogonalization (Lanczos-
NO) which stifles the formation of duplicate eigenvectors due
to the redundant copies of the outermost eigenvectors. Lanczos
algorithms take an iterative approach to calculate eigenvalue
and eigenvectors. MapReduce, however, is not adequate for
iterative algorithms due to several respects. First, the shuffling
of intermediate results between MapReduce jobs. Second, the
unchanged input data must be reloaded and reprocessed at
each iteration, wasting I/O, network bandwidth, and processor
resources.

In this paper, we have devised a database-based distributed
computation architecture. Our contributions are as follows.

1) The proposed architecture successfully bridges the
gap between Hadoop and HPC.

2) We exploit the usage of D4M to numerical calcula-
tions for supporting linear algebra operations.

3) We tailor pMatlab source code to meet the need of
iterative nature of machine learning algorithms for
sparse matrices.

4) We build a scheduler by exploiting the statistical
information from Accumulo table to achieve load
balancing.

To evaluate the performance of our proposed architecture, we
focus on spectral decomposition. Experimental results with
Graph500 benchmark datasets demonstrate 2X speedup of
proposed architecture as compared to HEIGEN [14].

The rest of the paper is organized as follows. Section 2
describes the components of architecture, discusses the data
storage format and the graph construction procedure. Section
3 investigates Lanczos-SO algorithm in HEIGEN. Section 4
demonstrates our implementation of Lanczos-SO. Section 5 is
for experimental results. Section 6 lists related work. Section
7 is a discussion and followed by a summary in section 8.

II. SYSTEM ARCHITECTURE

Our system consists of the following 3 components: First,
the bottom layer is Hadoop cluster and Accumulo database
where the data are stored in the D4M format, which provides
an easy to use interface for accessing subsets of data. We can
thus build graphs representing various types of relationships
in matrix format. After transforming unstructured data into
matrix format, we directly store the matrix in Accumulo table
for further processing. This significantly simplifies the data
analysis pipeline because no matrix post processing is required.
Second is the service layer containing Matlab and MatlabMPI,
both of which provide the computation and communication
resource to the upper layer. Third is the user layer where
associative arrays query and store the data to be processed
while pMatlab handles the parallel computation.

Fig. 1: System architecture: bottom layer is Hadoop cluster and Accumulo, second the
service layer, third the user layer

A. Accumulo and D4M

Both Accumulo and HBase are examples of open-source
distributed databases which offer scalable storage and retrieval,
based on Google’s BigTable design. BigTable design tack-
les challenges related to the volume, velocity and variety
of data. Compared to HBase, Accumulo provides cell-level
access control and features an architecture that leads to higher
performance for parallel clients [23]. In addition, [29] shows
Accumulo demonstrates high data ingestion rate and scales
well. This is important because iterative algorithms involve
multiple read/write operations for each iteration; the ingestion
time and query response time determine the general perfor-
mance.

2494

In D4M, data are actually stored in a 2-dimensional as-
sociative array which provide a one-to-one mapping onto the
tables in a triple store that makes the complex manipulations
simple to code. Consider, for example, an associative array
Assoc(′Tweet1′,′ Status | 200′) holding information about
user’s tweet Status. Associative array is a natural mapping from
tabular key-value store to matrix coordinates by expanding the
Tweet table.

TweetID User Status
Tweet1 Joe 200
Tweet2 Adam 200
Tweet3 Jane 301

TABLE I: A simple example with information about three tweets

Tweets in table I are stored in D4M format in table II.
“1” simply means this cell exists and only non-zero cells are
stored. TedgeDeg in table III is the degree table which sums
up the total number of entries for each column. We can rely
on this table to understand the distribution of data and achieve
load balancing. Our scheduler relies on this table to obtain the
sparseness information.

TweetID User| Joe User| Adam User| Jane Status| 200 Status| 301

Tweet1 1 1

Tweet2 1 1

Tweet3 1 1

TABLE II: Tweets expanded in D4M schema

User| Joe User| Adam User| Jane Status| 200 Status| 301

Degree 1 1 1 2 1

TABLE III: TedgeDeg: a degree table containing the total number of
entries of each column

D4M is originally designed to fast index and query string
elements in a dataset. In this paper, we explore the query
function of D4M to support numerical elements retrieval from
a matrix table. To extract a subset of the data, we can index into
ranges of the associative array just as is done with matrices
in Matlab. D4M will return row, column and value vectors
as string format. We first convert them to numbers and then
rebuild the matrix by using Matlab sparse function. Fig. 2
shows an example of how D4M can be used to facilitate the
retrieval of matrix elements as compared to Hadoop. In Fig. 2,
a matrix has been stored in both Hadoop HDFS and Accumulo
table. Normally we put text file with each line being a cell
element of matrix to HDFS. In Accumulo, we store the original
matrix into a table called matrix in associative array format.
D4M provides a much easier and faster way to return data of
interest than MapReduce. For example, to get the first row of
matrix, a simple query like matrix(‘1,’,:) is sufficient in D4M.
For Hadoop, it takes a MapReduce task to scan the whole file
system to find the result. Depending on the result size, the
former takes around a few seconds while the latter takes a
few minutes. In addition, our code size is also significantly
shorter than HEIGEN. While HEIGEN has over two thousand
lines of JAVA code, we have around three hundred lines. D4M
makes the proposed architecture lighter, easier and faster than
Hadoop.

Fig. 2: D4M compare to Hadoop for matrix storage and manipulation

B. pMatlab

pMatlab is a parallel library of MPI for Matlab based
on MatlabMPI for launching programs and communicating
between processes, which thus provides process-level paral-
lelization. pMatlab provides Single Program Multiple Data
(SPMD) as parallel computation model. Dmat object in
pMatlab can help distribute a matrix across processes. Typical
usage of pMatlab requires the programmer to specify the total
number of processes in the whole cluster with a fixed number
of machines. pMatlab will assign equal number of processes
to each machine in the cluster. And each process is uniquely
identified by a PID. The main process (PID=0) serves as the
leader which spawns worker processes and will synchronize
the computation when worker processes have completed their
tasks. More details can be found in [16].

To schedule the job, It is straightforward to assign equal
number of columns of matrix to each process. This naive
approach, however, is not suitable for sparse matrix because
imbalanced workloads will lead to undesirable performance.
To overcome this problem, we have designed a scheduler
to ensure that each process will handle more or less the
same amount of workload. This scheduler is supported by
degree table, TedgeDeg table mentioned in previous section
for example, which maintains the statistical information about
the data distribution.

The fact that the main process will not start the synchro-
nization stage until the command agg is executed will cause a
problem. This problem arises when the main process has more
workloads than other processes. Because the main process
will ignore the synchronization signals from worker processes
when it is still doing computation while worker processes
have completed. Our solution is to modify MatlabMPI code to
exclude the main process (PID=0) from doing any calculation
as the main process has to wait for the completion of working
processes (PID greater than 0). By excluding the main process,
we ensure the synchronization of each parallel operation.

C. Graph Analysis

As long as we have constructed the graph, we could run
different graph analysis algorithms. Spectral clustering is an
unsupervised clustering approach which not only tolerates
noisy data but also produces better accuracy than typical
clustering algorithms such as k-means. In this paper, we focus

2495

Fig. 3: Lanczos-SO algorithm in [14]

on spectral decomposition techniques outlined in [14]. The
primary goal of spectral decomposition is to find the top K
eigenvalues and eigenvectors of our input graph. Fig. 3 is
the Lanczos-SO algorithm that we are testing in proposed
architecture. More details about Lanczos-SO can be found at
[24]. The reason why we choose Lanczos-SO is as follows:

1) Lanczos method generally calculates top k largest
eigenvalues.

2) Unlike Lanczos-NO, Lanczos-SO filters spurious
eigenvalues given the selective reorthogonalizations
(line 9-16).

3) The most costly operation is matrix-vector multipli-
cation, which is computationally cheaper than matrix-
matrix multiplication. HEIGEN is capable of dealing
with billion-scale matrices.

III. LANCZOS-SO IN HEIGEN

HEIGEN implements Lanczos-SO algorithm based on
Hadoop; every step in the algorithm is implemented as MapRe-
duce jobs. MapReduce model is well-suited to a class of
algorithms with an acyclic data flow, but it does not natively
support iterative algorithms. Such algorithms can be expressed
as multiple MapReduce jobs launched by a driver program,
but this workaround imposes a performance penalty in every
iteration because Hadoop MapReduce jobs must write their
outputs to stable disk storage on completion therefore costly
disk accesses for each iteration [15].

Consider, for example, line 3 in Fig. 3 the matrix and
vector multiplication (MV) will read vector from previous
output (line 21). Previous output, however, is actually stored
to local disk where reducers are running. This incurs a lot of
data exchange and thus slows down the whole calculation. In
addition, the input matrix has to be reloaded every iteration in
line 3 even though the data remain unchanged. It is shown in

experimental section that MV takes almost 95% time of the
whole computation.

To sum up, two major problems are as follows:

• The shuffling of intermediate results between MapRe-
duce jobs.

• The unchanged input data must be reloaded and
reprocessed at each iteration, wasting I/O, network
bandwidth, and processor resources.

Both problems are caused by the fact that Hadoop relies
on MapReduce to generate inputs for each slave node from
HDFS in distributed computation environment which becomes
inefficient when iterative reading occurs.

IV. LANCZOS-SO WITH ACCUMULO AND D4M

To address the problems listed in previous section, we
describe how Accumulo and D4M can help speed up the
computation.

Fig. 4 shows the steps for implementing Lanczos-SO using
Accumulo and D4M. Step one, we run our scheduler based on
the global data distribution table obtained in Accumulo when
we upload input matrix. The goal is to find the row ranges for
each process to achieve load balance. Step two, after we have
obtained the ranges for each process, each process will copy
corresponding row ranges of matrix to local disk. Step three,
we start computing eigenvalues and eigenvectors in parallel.
In contrast to HEIGEN, the first two steps are extra operations
for better performance but they are executed only once.

Fig. 4: Data processing steps for Lanczos-SO with Accumulo and D4M

Advantages of our proposed architecture are as follows:

1) We reduce the data shuffling to database read opera-
tions by writing intermediate results back to database.
This significantly mitigates the traffic load when data
shuffling occurs between iterations.

2) Unlike MPI based approach which requires message
exchanges for data sharing, database-based approach
eliminates the message passing among work nodes
since all work nodes have access to the database.

3) By storing input matrix in D4M format, we can
obtain the global distribution information which can
be used to design a static scheduler for load balance.
This significantly reduces the complexity for the
architecture.

4) To avoid reloading the unchanged input data, we
propose to load the data to working nodes’ local disk,

2496

since working node will operate on the same input
data for each iteration.

Our scheduler works in the following way, first by dividing
the total number of entries by the number of processes, we
obtain the average load for each process.

Avg =
Num Of Entries

Num Of Processes
(1)

Then we set marking ticks to divide the columns of
matrix equally among working processes. These ticks are later
adjusted so that average load is achieved for every working
process.

Average main memory footage can be evaluated by the
following formula.

MM = (
α ∗ S2

N
+ S)× 3B (2)

Where α is the sparseness of the matrix, S is the size of
the matrix, N means the number of machines, 3 Byte for
an associative array. For matrix with size 262,144, the main
memory requirement is around 240MB with sparseness 1%
and 8 machines. In real world applications, matrix sparseness
generally ranges from 0.01% to 1%. In our experiment, we
generate matrices with sparseness 1%.

V. EXPERIMENTAL RESULTS

In order to test our architecture, we have set up a 16-
nodes cluster connected with 10 Gbps InfiniBand switch with
the following configuration. Each node has 2 quad-core CPUs
with the model Intel(R) Xeon(R) CPU X5560 2.80GHz. Main
memory is 24GB, L1d cache 32KB, L1i cache 32KB, L2
cache 256KB. Hadoop 2.2.0. Accumulo 1.5.2. Zookeeper
3.4.6. D4M, pMatlab, and Matlab 2010bSP2. CentOS 6.5 64-
bit. We generate graph edges using the same 2× 2 Kronecker
algorithm as the Graph500 benchmark.

We test on the following various sizes of symmetric ma-
trix: 4096 × 4096,8192 × 8192, 16, 384 × 16, 384, 65, 536 ×
65, 536, 262, 144×262, 144, 524, 288×524, 288, 1, 048, 576×
1, 048, 576. Five sets of experiments have been conducted in
the same cluster: HEIGEN, proposed architecture with and
without scheduler using 15 and 57 processes respectively.
For last 4 experiments, the first process is the main one
which spawns other working processes. Moreover, 14 out of
16 machines are working nodes while one is running HDFS
namenode and the other running the main process. Such tests,
therefore, equal to 1 process per machine and 4 processes per
machine.

In Fig. 4, step one takes around 300 seconds for matrix
with size of 1 million. The time for step two is proportional
to the number of machines used in the cluster. For example,
with 8 machines, it takes around 1100s for the same matrix,
whereas it takes around 600s with 16 machines, which demon-
strates scalable performance. We focus on step three, iterative
calculation of eigenvalues and eigenvectors, which is analyzed
below.

Fig. 5 shows the average running time of Lanczos-SO algo-
rithm for one iteration on HEIGEN and proposed architecture.
Our model has obtained almost 2X speed up as HEIGEN when

Fig. 5: Average running time of Lanczos-SO algorithm for one iteration on HEIGEN
and proposed architecture. X-axis is the size of the matrix; Y-axis is the running time in
seconds

the matrix size approaches one million. Fig. 6 gives more detail
for the running time of each operation and Table IV shows the
definition of each operation in Lanczos-SO algorithm.

MV: matrix-vector multiplication Line 3

Alpha: dot product of two vectors to compute α Line 4

OrtV: orthogonalize against two previous basis vectors Line 5

Beta: normalization of a vector to compute β Both line 6 and 16

UpdateV: Update vector vi+1 Line 21

TABLE IV: Operation definition in Lanczos-SO algorithm

Fig. 6: Average running time for different Lanczos-SO operations on HEIGEN and
proposed architecture for matrix with size of one million

Matrix-vector multiplication or MV dominates the cal-
culation, proving Lanczos-SO algorithm is a data intensive
computation rather than compute-intensive, disk I/O dominates
most of the time. In Fig. 8, it is clearly shown that reading
input matrix from disk dominates the MV for million-scale
matrix, 210 seconds accounting for 70% of the whole time.
In HEIGEN, almost 550 seconds is used to generate key/value
pairs for matrix and vector; and another 550 seconds is used
to shuffle the pairs from previous vector and complete the
multiplication. Our computation model is almost 3X faster for
MV, proving our distributed computation architecture is more
efficient for data shuffling. As for other operations, HEIGEN
is faster than our approach because all of these operations

2497

only involve vector, scalar multiplication which requires small
data exchange. MapReduce framework also provides good data
locality for distribute computation. In addition, process syn-
chronization and Matlab startup cause around 100s overhead
while HEIGEN takes only a few seconds.

The performance of HEIGEN appears not to be affected
by the size of matrix. The speculation is as follows:

• The matrix is too sparse.

• Data replication in HDFS helps HEIGEN distribute
the sparse matrix equally across the data nodes.

• MapReduce framework provides good job scheduling.

RV: Reading Vector

RM: Reading Matrix

PP: Post Processing: convert string into matrix

MUL: Matrix Vector Multiplication

WB: Writing result Back

TABLE V: Operation definition for MV implementation

Fig. 7: Average running time of operations in MV by distributing columns equally into
14 machines for matrix with size of one million.

Fig. 8: Average running time of operations in MV by distributing work loads equally to
working machines for matrix with size of one million.

Fig. 9 shows the statistical information about matrix with
size of one million: x-axis shows the column number and y-
axis the total number of non-zero entries in each column. Fig.

7 and Fig. 8 show the performance of MV for one iteration
without and with scheduling for this matrix, respectively.
Operation definition for MV implementation can be found in
Table V. RM is the most costly operation and the shape in Fig.
7 is similar to the distribution in Fig. 9 because every machine
is assigned the same length of rows from the input matrix. Due
to the sparseness of the input matrix, performance of parallel
processing is highly affected by the work load distribution.
Fig. 8 shows 3X faster for RM because we have scheduled
almost the same work load across the working processes.

VI. RELATED WORK

Most parallel large-scale eigensolvers are based on MPI
with message passing. Examples are as follows: the work
by Zhao et al. [30], PLAPACK [31], HPEC [32], PLANO
[33], PREPACK [34], SCALABLTE [35]. However, they do
not scale well to very large matrix, billion-scale for example
[14]. One reason is the algorithm deployed contains matrix-
matrix multiplication. For example, the parallel block lanczos
algorithm deployed in HPEC requires matrix-matrix multipli-
cation. The other reason lies in the communication when MPI
is used with peer-to-peer networks since aggregation is costly
and the network performance will be low. In our architecture,
the communication is left to the database since all slave nodes
write the output there and all nodes have access to the database.

Apache Spark provides an in-memory computation
engine for large-scale data processing, and MLib
(http://spark.apache.org/mllib/) is the machine learning
library for Spark. Even though Spark outperforms Hadoop
on iterative algorithms like logistic regression, MLib has its
limitation in SVD for large matrix because the algorithm
requires large matrix-matrix multiplication. Moreover, the
performance of Spark degrades when RDDs size exceed the
memory. Unlike our architecture, Spark offers no indexing
capability to speed up data shuffling for iterative algorithms.
We plan to investigate the performance of Spark to compare
with our architecture. Apache Flink [36] is another example
of platform for efficient, distributed, general-purpose data
processing at its beginning stage, but currently there is no
support for SVD. SystemML [37] expresses machine learning
algorithms in a higher-level language and then compile and
execute them in a MapReduce environment. The goal of
SystemML is to make machine learning algorithms more
adaptable and scalable on MapReduce environment. And
our architecture brings together Hadoop and HPC. Cumulo
[38] is designed for matrix-based big data analysis in the
cloud. To support scalable linear algebra operation, Cumulo
first preprocesses matrix as tiles (sub-matrices), and then
runs MapReduce for computation. Our architecture offers an
alternative novel way to MapReduce to conduct distribute
linear algebra operations by indexing and querying matrix
elements.

VII. DISCUSSION

The reason that our computation model outperforms
MapReduce lies in the fact that the former utilizes D4M
to retrieve input data from NoSQL distribute database more
efficiently than the latter which relies on mapper to generate
key/value pairs from input matrix. In addition, the iterative
nature of algorithm fits more the former.

2498

Fig. 9: Statistical information obtained from Accumulo table for non-zero entries distribution for matrix with size 1048576*1048576

Disadvantage of pMatlab is the lack of a computation
framework which schedules the computation based on data
locality like MapReduce. Such scheduler, however, can be
implemented using Accumulo and D4M. The former provides
global distribution information about sparse matrix whereas
the latter offers easy-and-fast mechanism to retrieve data. In
addition, pMatlab is less robust than MapReduce. Had one
working process failed, the whole computation would have
stopped.

Moreover, presented architecture has the potential to be
extended to similar machine learning algorithms which are
iterative. Consider, deep networks, for example, or autoen-
coder more specifically, a typical feedforward neural network
which aims to learn a compressed, distributed representation
(encoding) of a dataset. The idea of distributed representation
is similar to find the top k eigenvalues and eigenvectors in
Lanczos-SO algorithm. One obvious difference is autoencoder
adapts a non-linear iterative approach to calculate a weight ma-
trix which is the ultimate learning object. Therefore, extending
our architecture to deep networks is one of our future works.

In future work, we will also consider implementing in-
memory computation similar to Spark [26] which deploys
Resilient Distributed Datasets [25] (RDDs) for in-memory
computations on large clusters. One problem arises when the
size of RDD exceeds the memory capacity. Unlike Accumulo
which provides statistical information regarding input matrix,
the size of RDDs is hard to estimate in advance because RDDs
are constructed by transforming files in HDFS using operators
such as map, filter etc and details of how input data are split
among data nodes in HDFS is hidden from programmer. By
storing input matrix in memory like RDDs, the performance
of our architecture is expected to be improved as shown in our
experiment, reading input matrix from disk is dominating the
whole computation.

VIII. SUMMARY

In this paper, we have created a database-based distributed
computation architecture which brings together Hadoop and
HPC supported by Accumulo and D4M. We deploy NoSQL
distributed database Accumulo to manage large unstructured
data. Meanwhile, pMatlab, a parallel MPI version for Matlab,
is used as the parallel computation engine. D4M serves as
the data structure to facilitate the distributed computation. To
evaluate, we investigate and analyze MapReduce implemen-
tation of iterative graph algorithms with a focus on Lanczos-
SO algorithm. Experimental results with Graph500 benchmark
datasets demonstrate 2X speedup as compared to HEIGEN. In
the future we will first consider implementing deep networks
and second focus on integrating with Spark for better perfor-
mance.

ACKNOWLEDGMENT

The authors would like to thank IBM/CAS Toronto for
supporting Yin Huang with a CAS fellowship. We would
also like to thank NIST/SSD Information Systems Group
for providing support to conduct this Big Data Analytics
computation. We are also grateful to CHMPR for providing the
IBM iDataPlex bluewave computational resources to conduct
these data intensive experiments. In particular, we wish to
acknowledge Dr. John Dorband for training one of the authors
as a system administrator to establish the Hadoop based
ecosystem. And we would also like to thank Prof Xian-He Sun
from Department of Computer Science at the Illinois Institute
of Technology for providing cluster resource.

REFERENCES

[1] Apache Hadoop https://hadoop.apache.org/

[2] Apache Hive https://hive.apache.org/

[3] Apache Accumulo https://accumulo.apache.org/

[4] Apache HBase http://hbase.apache.org/

[5] M. Newman. Fast algorithm for detecting community structure in net-
works. Physical Review E, 69, 066133 (2004)

2499

[6] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: analysis and
an algorithm. In Advances in Neural Information Processing Systems 14
2002, pp. 849-856.

[7] M. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69, 026113 (2004).

[8] Yin Huang, Han Dong, Yelena Yesha, Shujia Zhou. A Scalable System
for Community Discovery in Twitter During Hurricane Sandy. 14th
IEEE/ACM International Symposium Cluster, Cloud and Grid Comput-
ing (CCGrid), May 2014

[9] J. Kepner, Massive database analysis on the cloud with D4M, in Proc.
HPEC Workshop, 2011.

[10] B.A. Miller, N. Arcolano, M.S. Bear d, N.T. Bliss, J. Kepner, M.C.
Schmidt, and P.J. Wolfe, A Scalable Signal Processing Architecture
for Massive Graph Analysis, 37th IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, Mar
2012

[11] Apache Giraph http://giraph.apache.org/

[12] Apache Hama https://hama.apache.org/

[13] L.N. Trefethen and D. Bau III, Numberical Linear Algebra, SIAM,
1997.

[14] U Kang, Breandan Meeder, Evangelos E. Papalexakis, and Christos
Faloutsos, HEigen: Spectral Analysis for Billion-Scale graphs, IEEE
Transactions on knowledge and data engineering, VOL. 26, No.2, Feb
2014.

[15] A. Dave, W. Lu, J. Jackson, and R. Barga, ”CloudClustering: Toward
an iterative data processing pattern on the cloud,” in Proc. the 2011
IEEE International Symposium on Parallel and Distributed Processing
Workshops and PhD Forum, 2011, pp. 1132-1137.

[16] Travinin Bliss, N., Kepner, J.: pMatlab parallel Matlab library. Int. J.
High Perform. Comput. Appl. 21(3), 336359 (2007).

[17] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G.
Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas,
A. Prout, A. Reuther, A. Rosa, and C. Yee, Dynamic Distributed
Dimensional Data Model (D4M) Database and Computation System,
Proceedings of the 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2012, pp. 53495352

[18] J.Kepner, Parallel Matlab for Multicore and Multinode computers,
SIAM Press, Philadelphia, 2009

[19] N. Bliss and J. Kepner, pMatlab Parallel Matlab Library, International
Journal of High Performance Computing Applications: Special Issue on
High Level Programming Languages and Modesl, J.Kepner and H. Zima
(editors), Winter 2006 (November)

[20] J. Kepner and S. Ahalt, MatlabMPI, Journal of Parallel and Distributed
Computing, vol. 64, issue 8, August, 2004

[21] N. Bliss, R. Bond, H. Kim, A. Reuther, and J. Kepner, Interactive Grid
Computing at Lincoln Laboratory, Lincoln Laboratory Journal, vol. 16,
no. 1, 2006.

[22] Nathan P. Halko, Randomized methods for computing low-rank ap-
proximations of matrices, Ph. D., Department of Applied Mathematics,
University of Colorado. 2012.

[23] S. Patil, M. Polte, K. Ren, W. Tantisiriroj, L. Xiao, J. Lopez, G. Gibson,
A. Fuchs, and B. Rinaldi, YCSB++: benchmarking and performance
debugging advanced features in scalable table stores, in Proceedings of
the 2nd ACM Symposium on Cloud Computing. ACM, 2011, p. 9.

[24] B. N. Parlett and D. S. Scott, The Lanczos algorithm with selective
orthogonalization, Mathematics of Computation, 33:217-238, 1979.

[25] M. Zaharia et al. Resilient distributed datasets: a fault-tolerant abstrac-
tion for in-memory cluster computing. NSDI, 2012.

[26] Apache Spark https://spark.apache.org/

[27] Glenn Lockwood, “Hadoop‘s Uncomfortable Fit in HPC”
http://glennklockwood.blogspot.com/2014/05/hadoops-uncomfortable-
fit-i -hpc.html

[28] J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z.
Mao, M.A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Y. Ng, “Large
Scale Distributed Deep Networks.” In NIPS, 2012.

[29] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout et al., “Achieving
100,000,000 database inserts per second using Accumulo and D4M,
IEEE High Performance Extreme Computing, 2014.

[30] Y. Zhao, X. Chi, and Q. Cheng. An implementation of parallel eigen-
value computation using dual-level hybrid parallelism. Lecture Notes in
Computer Science, 2007.

[31] P. Alpatov, G. Baker, C. Edward, J. Gunnels, G. Morrow, J. Overfelt,
R. van de Gejin, and Y.-J. Wu. Plapack: Parallel linear algebra package
design overview. SC97, 1997.

[32] M. R. Guarracino, F. Perla, and P. Zanetti. A parallel block lanczos
algorithm and its implementation for the evaluation of some eigenvalues
of large sparse symmetric matrices on multicomputers. Int. J. Appl. Math.
Comput. Sci., 2006.

[33] K. Wu and H. Simon. A parallel lanczos method for symmetric gen-
eralized eigenvalue problems. Computing and Visualization in Science,
1999.

[34] J. L. R.B., S. D.C., and Y. C. Arpack users guide: Solution of large-scale
eigenvalue problems with implicitly restarted arnoldi methods. SIAM,
1998.

[35] L. Blackford, J. Choi, A. Cleary, E. DAzevedo, J. Demmel, and I.
Dhillon. Scalapack userss guide. SIAM, 1997.

[36] Apache Flink, https://flink.apache.org/

[37] A. Ghoting, R. Krishnamurthy, E. Pednault, et al. SystemML: Declar-
ative machine learning on MapReduce. In ICDE, pages 231242, 2011.

[38] B. Huang, S. Babu, and J. Yang. Cumulon: Optimizing Statistical Data
Analysis in the Cloud. In SIGMOD, 2013.

2500

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

