

APPROVAL SHEET

Title of Thesis: Rendering Massive Models

Name of Candidate: Mark A. Bolstad

Doctor of Philosopy,

2017

Thesis and Abstract Approved:
Dr. Marc Olano

Associate Professor

Department of

Computer Science and

Electrical Engineering

Date Approved:

ABSTRACT

Title of Thesis: Rendering Massive Models

Mark A. Bolstad, Doctor of Philosophy, 2017

Thesis directed by: Dr. Marc Olano, Professor
Department of Computer Science and
Electrical Engineering

Whether in quest of increased visual realism in cinema, or in process-

ing the latest scientific data sets, the sizes of models being rendered are

ever increasing. Trends in recent films have models that exceed hundreds

of millions of elements. Similarly, the datasets in scientific visualization are

approaching an exabyte in size. As these trends continue, new methodolo-

gies will be required to render these sizes of datasets.

In order to reduce the geometric complexity that is processed, many

renderers employ a number of tricks to ensure that the number of individual

objects fits within a 32-bit integer. The total number of elements generated

for a typical complex scene can easily exceed the capacity of a 32-bit inte-

ger, but approaches that allow for memory reuse keeps an upper bound on

the number of objects processed by the renderer.

This dissertation presents methods for rendering of models and scenes

that exceed the number of elements repesentable in an 32-bit integer and

the memory size of any single processor. These contributions include new

parallel algorithms for rendering large models, and a new stochastic data

structure to reduce node-to-node communication during rendering.

Rendering Massive Models

by

Mark A. Bolstad

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

c© Copyright Mark A. Bolstad 2017

I dedicate this dissertation to my lovely wife, who despite all the advances and set backs,

insisted I graduate “soon”, or suffer a most painful death.

ii

ACKNOWLEDGMENTS

First, I would like to thank and express my most sincere gratitude to my advisor, Dr.

Marc Olano, for his invaluable support, encouragement, patience, and guidance throughout

my PhD. Over the years, I appreciate Dr. Olano’s understanding of how life and work

would interject itself in unexpected ways. Through his guidance, the hurdles were cleared

and the research proceeded

I would also like to thank the companies and institutions that I have worked for dur-

ing the development of my research. Raytheon, the Army Research Laboratory, and the

Howard Hughes Medical Institute have all provided encouragement, moral and financial

support. And, without the gracious granting of time on the large computational systems,

some of the results of this dissertation would not have been realized.

Additionally, I’d like to thank Aspen Computer Systems, who, after having a casual

discussion at Supercomputing, sent an eight core, dual CPU server blade to my house

with no strings attached. If only they had sent sound proofing to go with it. I’d also like

to thank Side Effects Software who have provided me with a license to their animation

package, Houdini, for years. Using Houdini, I generated most of the test data used to drive

development.

Most importantly, I would like to express my most sincere appreciation to my family,

especially my wife Cheryl Bolstad and my children, Miranda and Parker for all their love,

support, and encouragement.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

Chapter 1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Problem Statement . 6

1.3 Contributions . 7

1.3.1 Parallel Micropolygon Rendering 7

1.3.2 Parallel Ray Tracing . 8

1.3.3 Deferred Communication and Geometry Eviction 8

1.3.4 Designing a Rendering Pipeline for Large Models 9

1.4 Dissertation Roadmap . 10

Chapter 2 BACKGROUND . 12

2.1 Simplification . 13

iv

2.2 Multi-Resolution Modeling . 15

2.3 Randomization and Statistical Methods 17

2.4 Reyes . 18

2.5 Ray Tracing . 20

2.6 Parallel Rendering . 20

2.6.1 Parallel Rasterization . 21

2.6.2 Parallel Ray Tracing . 23

2.7 Mesh Organization . 23

Chapter 3 PARALLEL METHODOLOGIES FOR A MICROPOLYGON

RENDERER . 25

3.1 Algorithms . 25

3.1.1 CASCADE . 26

3.1.2 ROUND_ROBIN . 29

3.1.3 NO_FORWARDING . 29

3.1.4 MODIFIED_NO_FORWARDING 32

3.2 Results . 34

Chapter 4 AN ALGORITHM FOR DISTRIBUTED RAY TRACING . . 39

4.1 Ray Tracing: A Primer . 39

4.2 Target Architecture . 43

4.3 Parallelization of the ray tracing algorithm 43

4.4 A Distributed Ray Tracing Algorithm . 44

4.4.1 Partitioning . 45

4.4.2 Parallel Loading of Scene Objects 47

4.4.3 Distribution of Scene Objects . 50

v

4.4.4 Communication Layer . 51

4.4.5 Rendering . 52

4.4.5.1 Recursive Ray Tracing 52

4.4.5.2 BDPT . 58

4.5 Results . 60

Chapter 5 DEFERRED COMMUNICATION AND GEOMETRY EVIC-

TION . 67

5.1 Probability Hit Map . 69

5.2 Initialization . 73

5.3 Dynamic Updating . 74

5.4 Results . 74

Chapter 6 DESIGNING A RENDERING SYSTEM FOR MASSIVE MOD-

ELS . 79

6.1 Choice of a programming language . 80

6.2 Smart Pointers . 82

6.3 64-bit Indexing . 83

6.4 Data Structures . 84

Chapter 7 CONCLUSION AND FUTURE WORK 88

7.1 Conclusion . 88

7.2 Future Work . 89

Appendix A SUPPORTING MATERIAL 91

A.1 Intrusive Pointer . 91

vi

REFERENCES . 93

vii

LIST OF TABLES

3.1 Timing values for the Building scene. This table show the time in seconds

for the four techniques versus the number of polygons for the street canyon

scene Figure3.5. Note, that in most of the cases, there is very little im-

provement between seven and eight threads. The eight thread case results

in oversubscription of the system as the master thread increases the thread

count to a total of nine (on an 8-core system). 37

4.1 Model statistics. 61

viii

LIST OF FIGURES

1.1 Flow chart for the Reyes algorithm . 4

1.2 A small coherent group of primary rays traced from the camera can spa-

tially traverse nearly the entire scene volume on a second or higher bounce . 6

3.1 In this Figure, geometry (represented by numbered axis-aligned bounding

boxes) is assigned to the bucket (labeled with lower-case letters) that over-

laps the upper left corner of its bounds. Both the geometry and the bucket

are colored by the controlling thread. Detailed discussion is on page 26 . . 27

3.2 In this Figure, geometry (represented by numbered stacks of bounding

boxes) is assigned to all buckets (labeled with lower-case letters) that over-

lap the object’s bounds. Both the geometry and the bucket are colored by

the controlling thread. In this algorithm the splitting and dicing of a sin-

gle piece of geometry occurs in parallel, therefore, we present the same

geometry as in Figure 3.1 with as oblique view to enable its visualization.

Arrows show buckets referencing the geometry. Detailed discussion is on

page 29 . 30

ix

3.3 This sequence of images focuses on how this algorithm operates on a single

piece of geometry. As in NO FORWARDING, geometry (represented by

numbered bounding boxes) is assigned to all buckets (labeled with lower-

case letters) that overlap its bounds. Again, both the geometry and the

bucket are colored by the controlling thread. In this algorithm geometry

is split by the first thread to access the geometry, but the split pieces are

stored hierarchically with the parent. Detailed discussion is on page 32. . . 31

3.4 Modified Reyes algorithm . 33

3.5 Aerial and street canyon views of cityscapes with 0.1, 6, and 46 million

polygons . 34

3.6 Image result for 50, 400, and 1600 transparent Stanford Bunnies 34

3.7 Timing results for the two different city views. Note that the two plots have

different maximums for the Y-axis. 38

3.8 Timing results for the two different Stanford bunny test scenes 38

4.1 Image space allocation of processors. Grid cells on the boundary of the

image plane are extended to infinity (dotted lines). Since the boundary

cells covered more physical space, their screen space allocation is reduced.

The red circle is the screen space projection of an object which will be

attached to partitions 1,2,8, and 9. 47

4.2 Grid for loading massive models. 49

x

4.3 The left image shows ZeroMQ scaling with message size between two

10GigE connected nodes. The right image shows performance thrashing

as a function of the maximum number of connected peers. We broadcast

16k message from 32 nodes round robin. 52

4.4 Geometry Request Sequencing. As each rendering thread intersects a local

BVH, a message is sent to the data server requesting the full geometry. The

request is handed to a processing thread on the data server that loads the

geometry and sends it back to the requesting server. 53

4.5 Light sources as a ray sink. The four bundles of rays highlighted in red are

shadow rays to different light sources. 56

4.6 Parallel Rendering Sequencing. This figure depicts the sequencing for a

three server system. Threads in each server trace primary rays (red), and

upon an intersection with a remote BVH, the ray is placed into the queue

for that server. Once the primary rays are exhausted, the server pulls ray

requests from a remote server queue (heavy black arrows), and begins trac-

ing secondary rays (blue). This is repeated for each remote server. The

server continues to pull rays from the remote servers round-robin until the

number of in-flight rays falls below a threshold, then primary ray tracing is

restarted. 57

4.7 Performance versus percentage of outstanding primary rays. Under heavy

load, the renderer will generate a new set of primary rays when the number

of pending primary rays falls below a threshold. In the image, 0% means

the renderer waits until all of the primary rays have returned, and 100%

means the renderer generates all of the primary rays for its domain. 58

xi

4.8 Overview of communication cost in BDPT. When the server for region

1 needs to generate light paths for BDPT, the first intersection point will

almost be guaranteed to intersect geometry owned by a different server and

therefore require communication . 60

4.9 Comparison of threaded versus distributed rendering for the same number

of cores at four samples per pixel. In the threaded cases, we do not achieve

linear speedup due to dynamic loading of geometry. While the speedup

curves for the Power Plant are nearly identical for the original versus parti-

tioned, the partitioned version was ~20% faster. 62

4.10 Scaling for San Miguel (6.5 million polygons), the UNC Power Plant (12.7

million polygons), and the Boeing 777 (420 million polygons). 63

4.11 Scaling for San Miguel and the UNC Power Plant using BDPT. 65

4.12 Scaling for 36 replicated Boeing 777 models. The total polygon count

exceeds 15 billion. 66

5.1 Rendering the Figure on the left only requires a tiny fraction of the total

geometry shown on the right to be loaded into memory. The point of view

for the left image is from the bottom center. 67

5.2 The structure of the probability hit map 69

5.3 Comparison of San Miguel rendered with and without the PHM. The left-

most figure is the original image from Chapter 3. The right image is ren-

dered using the PHM, and the bottom image plots the difference.. 75

xii

5.4 Comparison of PHM enabled San Miguel. The inconsistent algorithm is on

the left and the difference compared to Figure 5.3 is on the right. 76

5.5 Comparison of PHM performance for San Miguel versus the standard al-

gorithm from Chapter 3. 76

5.6 The single 777 scene using PHM. The image on the right shows a zoomed

in view of the original (top) and the PHM enabled version (bottom). The

bottom left image plots performance and the bottom right show the difference. 77

5.7 Scaling for 36 Boeing models with PHM. We did not include a difference

image as the results are indistinguishable from the original at the rendered

resolution. See Figure 5.6 to see the difference between the PHM and

original models. 78

6.1 Eiffel-based implementation of a stack data structure 81

6.2 Structure Alignment. This is the output from running struct_layout on the

Bilinear_Patch class. Lines 11, 28, 56, and 65 show a total of 16 bytes of

padding introduced by type misalignment. By moving the variable _offset

at line 56 to after line 64 we remove the seven bytes of padding and reduce

the final four padding bytes by one, for a savings of eight bytes for each

instance of this class. 87

A.1 Mixin class for enabling intrusive pointers. Every class that is to be refer-

enced from a boost intrusive pointer inherits from this class. 92

xiii

Chapter 1

INTRODUCTION

As audiences become more sophisticated, they demand increasingly higher fidelity

from the visual effects in movies and television to continue the illusion of reality. For

example, in the movie The Chronicles of Narnia, the character Aslan the lion had over 20

million hairs in his mane. Each individual hair was a spline curve consisting of six control

vertices. If you assume a minimum of five line segments per hair, Aslan’s mane had a

geometric complexity exceeding 100 million renderable objects. In a more recent film,

the model of the USS Yorktown in Star Trek Beyond consisted of 832 buildings instanced

across the model space. While the on-disk size of the building geometry was in the 10s to

100s of millions of polygons, when expanded by the renderer, the final geometry count was

equivalent to 1.3 trillion polygons.

Similarly, datasets generated from simulations by supercomputers are generating

petabytes of data. In scientific visualization, the largest data set openly available is the

isosurface of the development of a Richtmeyr-Meshkov instability. The complexity of this

isosurface is over 480 million polygons. These sophisticated simulations can involve mil-

lions to billions of computation cells e.g., a recent simulation of the Saudi Arabian penin-

sula oil fields exceeded a trillion computational cells. Traditionally, these simulation are

visualized on a separate GPU cluster for interactive viewing, but many recent simulations

1

either exceeded the capabilities of the GPU nodes, or the amount of time to move the data

was prohibitive. Therefore more simulations are being visualized in-situ using rendering

algorithms typically reserved for photo-realistic rendering, such as ray-tracing. Addition-

ally, there is a trend to try to generate realistic images from simulations using techniques

developed for visual effects such as shadowing and advancing lighting, as these images

tend to provide a quicker understanding of the problem to lay audiences.

Research into rendering these large models over the last couple of decades has fo-

cused on ways to reduce the complexity of the data before it is rendered. However these

techniques do not address the parallel problem of the increasing density of our displays. In

2006, the highest desktop display systems were in the 1-2 Megapixel range. Only a limited

number of movie theaters were able to project using the then newly-available 4k projec-

tions systems (3840 x 2160 pixels for a density of 8.3 megapixels). Supercomputer centers

were building display systems by tiling either LCD panels or projectors into systems that

had pixel counts approaching 100 megapixels. Currently, it is not uncommon for desktop

displays to consists of multiple 4, 5 or 8k monitors. Most movie theaters use 4k or 8k

displays, and large format display walls are approaching a billion pixels. What rendering

techniques will work as these display sizes continue to increase?

1.1 Motivation

For many years, the standard rending technique for visual effects was the Reyes algo-

rithm (sometimes written as REYES for Renders Everything You Ever Saw) [15] due to its

ability to handle large amounts of geometry and textures and its ability to describe appear-

ance through programmable shaders. Ray tracing [96], renowned for its ability to compute

advanced lighting simulations (reflection, refraction, multi-bounce illumination), was gen-

erally thought to be too slow for visual effects work. Visualization research is primarily

2

focused on gaining insight into the data through interactive rendering techniques. How-

ever, a few groups such as the National Center for Supercomputing Applications (NCSA)

[41] and the Australia National University [95], are exploring how higher fidelity rendering

can be used to provide additional insight into scientific datasets.

The advantage that the Reyes algorithm had over other rendering techniques was its

ability to limit memory growth by processing small parts of the scene at a time, only loading

the parts that needed to be rendered for a small group of pixels. Figure 1.1 provides an

overview of the Reyes algorithm. Initially, the objects in the scene are sorted into small,

overlapping groups of pixels, called buckets. The algorithm then chooses a bucket, and

for each object in that bucket, if its screen projected pixel footprint exceeds a threshold,

splits the object into smaller objects. Each of these objects’ footprints is tested against the

current bucket. Objects that overlap the bucket are retained and the procedure repeated.

Those that don’t overlap are added to the first bucket that contains the object’s upper left

corner. Objects that pass the threshold test are passed down the pipeline to be lit, shaded,

and textured before being finally output as a set of pixel values.

Research continued to make improvements to ray tracing based algorithms. In the

90’s and early 2000’s, researchers from the University of Utah [66, 67] and Saarland Uni-

versity [85, 89, 91] showed that under certain conditions and datasets, ray tracing could

approach interactive frame rates. Over the next decade, ray tracing research continued

to make improvements in performance and visual quality at a lower computational cost.

These improvements led to a revolution in visual effects such that over the last several

years, ray-tracing has supplanted Reyes as the dominant algorithm.

During the same time period, visualization researchers began applying the improved

ray-tracing algorithms to datasets from large supercomputer simulations. Prior to these

improvements, the typical workflow for visualizing data from large simulations was to run

the simulation on a dedicated supercomputer and then transfer the data to a much smaller

3

RIB

Occluded?

Too large? Split

Dice

Cull

Shaders Textures

Shade

Bust & Bound

On Screen?

Sample

Composite &

Filter

Image

Cull

Unshaded
Grids

Visible Points

Pixels

RI Calls

GPrims

Yes

No

Yes

No

No

Yes

Shaded Grids

Micropolygons

Multiple
GPrims

On Screen?

Yes
No

RIB Parse

RI API

Bound

Sort into Buckets

Select Bucket

Select Closest

GPrim

Sort into

Buckets

Bound

On Screen?

FIG. 1.1. Flow chart for the Reyes algorithm

4

Graphics Processing Cluster (GPU Cluster). If the datasets were large, then a reduction

operation might be applied before transferring to reduce the size of the dataset. With the

improvements to ray-tracing, the data could be visualized in-situ, directly on the nodes of

the supercomputer. This freed up the GPU Cluster for other visualization work, or in some

cases, allowed a center to reduce cost by removing the visualization cluster altogether.

There is, however, a problem with ray-tracing: to render all of the advanced lighting

methodologies mentioned earlier, all of the data has to be resident in memory. In ray-

tracing, rays are propagated from the camera though each pixel in the image plane and

tested against the objects in the scene to determine which objects are intersected by the ray.

If we only use this first set of rays, the algorithm is called ray-casting. This is the variant

used in the in-situ visualization on supercomputers. These rays are all coherent, so a group

of rays that access a neighborhood of pixels in the image plane will have little divergence

from each other as they trace the scene. If we add reflection or shadow rays (secondary

rays), these rays become incoherent, i.e., small changes in the initial direction can lead to

large changes in the secondary rays. As shown in Figure 1.2, a small 16x16 bundle of rays

shot from the front left corner to the upper right corner can access nearly every object in

the model upon the second bounce.

In this dissertation, we present three significant improvements to existing rendering

techniques for large models. We define a large model as either a single or composite set of

objects whose total number of renderable elements exceeds four billion individual items.

A renderable element can be a simple triangle or quadrilateral, a quadric surface such as

a sphere or a cone, or a more complex object such as a parametric or subdivision surface.

The key areas identified are:

1. A fully distributed, parallel implementation of the ray tracing algorithm

2. Deferred loading and communication of scene data through an innovative stochastic

5

FIG. 1.2. A small coherent group of primary rays traced from the camera can spatially
traverse nearly the entire scene volume on a second or higher bounce

map of hit probabilities

3. Handling large models everywhere in the rendering pipeline

We believe that research and innovation in these three areas is necessary to advance the

rendering of large models. Advancements in each one of the areas will enable the ren-

dering of larger models than current systems are capable of rendering today, simultaneous

advancement in all the areas will enable the rendering of models beyond the capabilities of

hardware and software systems predicted over the next five years.

1.2 Problem Statement

As audiences become more sophisticated, they demand more fidelity from the visual

effects in movies and television to continue the illusion of reality. Similarly, datasets gen-

erated from simulations by supercomputers are generating petabytes of data. How do we

render such large collections of data that may exceed the memory capacity of the computer

or cluster?

6

To answer that question, several advances must occur simultaneously. First, a system

must be developed that is designed specifically for rendering large models by optimiz-

ing for memory usage. Second, a method for deferring loading and unloading of objects

through proxies is needed to reduce the memory footprint of the loaded scene. And finally,

a method for fully distributing the entire rendering system, e.g., the full advanced lighting

pipeline, not just primary rays from the camera, across a large heterogeneous cluster of

nodes/systems.

1.3 Contributions

This dissertation contributes to the rendering of large models by advancing the re-

search in several key areas: Parallel Micropolygon Rendering, Parallel Rendering, De-

ferred Communication and Geometry Eviction, and Designing a Rendering Pipeline for

Large Models.

1.3.1 Parallel Micropolygon Rendering

The first main contribution of this dissertation is an examination of the methods for

the parallel rendering of geometry for a micropolygon renderer, like Reyes. Micropolygon

rendering is the process of tessellating input geometric primitives into polygons typically of

less than one pixel in size. Micropolygon rendering was first described by Cook et al. [15]

and has been used to render complex scenes for motion pictures for over 25 years. Over

that period this algorithm has been shown to be stable and robust when rendering large, ge-

ometrically complex scenes. We investigate parallel extensions of a micropolygon renderer

and show that none of the common work distribution methodologies are appropriate for all

scene compositions. While the results are strictly applied to a micropolygon renderer, they

are applicable to any rendering algorithm that processes the scene in small, limited parts,

7

such as a ray caster using a Hilbert curve for screen traversal.

1.3.2 Parallel Ray Tracing

Another contribution of this dissertation is a fully distributed, parallel version of the

ray tracing algorithm. Since each ray can be traced through the scene independently of

other rays, the algorithm is trivial to parallelize. This is under the assumption that a ray has

access to all scene objects which is not the case when those objects have to be distributed

across a group of nodes as the scene is too large to fit into the memory of a single system.

We relax that assumption by representing all objects with proxies, and only when the proxy

is intersected by a ray is the data loaded. The file I/O places a heavy burden on the system

so we parallelize the processing, partitioning, and distribution of the scene description as it

is being loaded from data store. Each server in the parallel system renders its portion of the

scene, and when rays intersect objects outside of the server’s domain the rays are queued

and distributed directly to the server responsible for the object. We show that with this fully

distributed architecture scaling increases with the number of servers.

1.3.3 Deferred Communication and Geometry Eviction

Communicating rays across the nodes of a distributed system places a heavy burden

on the networking subsystem such that it is easy to overwhelm it. We spatially distribute

the scene amongst the servers as our target scenes are larger in memory than a single server.

However, as shown in Figure 1.2, a small group of rays can quickly force communication

among all the servers. If we use an illumination algorithm that gathers light from mul-

tiple ray bounces, the amount of communication is exacerbated. We propose a unique

stochastic map that reduces the number of rays transmitted. The map stores a probability

of intersection with the actual geometry over incoming ray directions. Since all geometry

is represented by a proxy object, in this case a bounding box, we associate the probablity

8

map with the proxy. During rendering, when a ray intersects the proxy object, the ray is

tested against the map and if the value for that ray direction is above or below a bimodal

threshold we retrieve a number of parameters for the geometry, update the ray, and return it.

Otherwise the ray continues as described above with the map updated by the value returned

with the ray. As the render progresses, objects that have been loaded will be removed from

memory if they weren’t recently accessed. This contribution reduces the memory footprint

of the scene, such that the proposed systems can render models much larger than the avail-

able system memory. We show that with this modification the scalability of the system

increases at the cost of additional variance in the result.

1.3.4 Designing a Rendering Pipeline for Large Models

Designing a rendering system is a complicated undertaking. Complex rendering algo-

rithms, data representation and mathematical operations on a variety of geometric shapes,

hierarchical representations of these shapes in the scene, the “look” (i.e., glass, fabric, etc.)

of those objects, and other factors, all contribute to a significant effort of software engineer-

ing. Much of the research into rendering is focused on either performance or improving

the quality of the final image. Very little effort has been focused on ensuring that rendering

systems are engineered for extremely large models. Two examples:

1. Throughout the rendering pipeline, developers use indexing to access parts of the

scene, such as an individual element of a collection, or a vertex, color, or normal,

from a shared list. A majority of this indexing code will use an integer data type

(or smaller) for the index, a type that is chosen for convenience rather than based on

analysis.

2. For agglomerated objects like triangle and polygonal meshes, the representation of

these objects will use lists for the components that describe the object. For meshes,

9

these components include points, normals, colors, edge connections, and other ele-

ments in quantities corresponding to the number of points, faces, or, one per object.

In C++, these elements are often stored in a vector from the Standard Template Li-

brary. The size of vector is typically implemented as three 8-byte pointers + size of

the element * capacity. For efficiency, the capacity of a vector can be up to twice

the actual number of elements stored to minimize reallocations. If we have a scene

with one billion elements, then a lower bound on storage due to vector overhead is an

additional 24 gigabytes of memory for each component stored, e.g., points, normals,

and colors.

We present a rendering system that is designed to scale efficiently with the size of the

scene. We present the design decisions necessary to achieve this goal, and the analysis that

we performed to support them.

1.4 Dissertation Roadmap

The rest of the dissertation is organized as follows:

• Chapter 2: Previous Work

This chapter presents an overview of existing techniques that have been used to pro-

cess large models and render them. It also discusses the general background on

parallel rendering techniques.

• Chapter 3: Parallel Methodologies for a Micropolygon Renderer

This chapter presents four algorithms for parallelizing an implementation of the

Reyes micropolygon renderer. We show that none of the algorithms work for ev-

ery scene type, but reasonable speedups occur for the appropriate scene type.

• Chapter 3: An Algorithm for Distributed Ray Tracing

10

This chapter presents an algorithm for parallelizing two variants of ray tracing. We

show how we parallelize the loading of objects from disk and distribute them amongst

the servers and the communication framework and patterns to connect the servers

together.

• Chapter 4: Deferred Communication and Geometry Eviction

This chapter demonstrates a novel technique for reducing the communication and

data loading through maps of the probabilities of rays intersecting objects.

• Chapter 5: Designing a Rendering System for Massive Models

This chapter demonstrates some of the design decisions and analysis required to en-

gineer a system for rendering large models.

• Chapter 6: Conclusion and Future Work

This chapter concludes our work, highlights our contribution, and lists a number of

extensions and future work we plan to consider in the near future.

11

Chapter 2

BACKGROUND

Rendering is the process of taking a three-dimensional description of geometry, its

material properties, and the environment and projecting them through a camera onto a

two-dimensional plane. The material properties of the geometry can be described through

a library of materials or parameters (e.g., glass, plastic, etc.) that provide the necessary

information about the material’s color, reflectance, and absorption to a renderer. Many

physically-based renderers use this approach to provide control over the types of surfaces

rendered. The other possibility is to describe a surface’s properties algorithmically in a pro-

gram called a shader. Offering greater flexibility than the library based approach, shaders

are used for describing the appearance of the object and recently, with correctly simulating

the physics of illumination. While shading is important for the final appearance of an im-

age, a good design for a renderer separates the handling of geometry from its appearance.

Therefore, the rest of this dissertation will focus on the geometry handling portion of the

rendering pipeline and will discuss shading as appropriate in the context of management of

large amounts of data.

There are number of approaches that are commonly taken when trying to render large

models. These techniques fall into several categories: reduction in complexity, data reor-

ganization, and brute force techniques. Each of these techniques will be discussed indivi-

12

sually in the sections below.

2.1 Simplification

One of the first methods developed by researchers to deal with the increasing size of

models was simplification. As the name implies, simplification is a technique where an in-

put model, usually polygonal, is reduced in complexity through reduction in the number of

vertices, edges, and/or faces, to reach a specified complexity. Several different algorithms

have been developed for simplifying surfaces. In vertex decimation or vertex removal,

the algorithm iteratively selects a vertex for removal, removes the adjoining faces, and re-

triangulates the resulting hole [75]. Turk [79] developed a method that reduces the amount

of detail in a model while preserving its topology by distributing points on the surface of

the original model, triangulating the model using both the old and generated vertices, and

then removing the old vertices. This technique allows for the precise control in the number

of vertices in the final model, and for control over the sampling density such that regions of

high curvature are sampled more densely. Another technique is vertex clustering [72], in

which the original model is placed within a grid, vertices within each grid cell are clustered

into a single vertex, and the model faces are updated accordingly. Iterative edge contraction

updates the model by selecting an edge and removing the adjacent triangles. These early

vertex decimation techniques blindly removed vertices with out regard to the underlying

topology occasionally resulting in deformed models.

A version of the iterative edge collapse algorithm by Hoppe et al. [40], re-casts the

simplification problem into the larger framework of optimization. Using the initial surface

and a set of points generated randomly on that surface, the algorithm minimizes an energy

equation first over vertex positions, then over simplical complexes that are homeomorphic

to the original mesh. The first phase of the algorithm generates an optimal set of vertices

13

for a fixed simplical complex, and the second phase uses either an edge collapse, split, or

swap to minimize the energy equation over a set of simplical complexes. By using the

Gaussian curvature of the surface to control the initial distribution of points, the algorithm

is able to preserve regions of high curvature.

The majority of simplification algorithms are designed for manifold surfaces, surfaces

for which the neighborhood of every point is topologically equivalent to a disk. This restric-

tion allows the algorithms to preserve the topology of the surface, but leaves it unable to

simplify surfaces with disconnected regions. Garland and Heckbert [24] developed a sim-

plification method for triangle based models that allows for the generation of non-manifold

surfaces. A model is simplified by using a superset of the edge collapse operator, called

pair contraction. Pair contraction allows for the algorithm to join previously unconnected

regions of the model together. In order to select a pair for contraction during a given it-

eration, the authors derived a cost function from a quadratic equation that describes the

squared distance from any point in space to the set of planes through each vertex of a trian-

gle in the model. In the derivation of the quadric matrices, it was assumed that the matrices

were well-conditioned and invertible. Typically, this is not the case in practice, especially

in areas of a locally flat surface. Also, their technique was not explicitly designed to handle

massive models and neither considered, nor preserved surface properties or non-geometric

constraints (e.g., colors) when simplifing models.

All simplification methods use some sort of metric to determine the effectiveness of

the algorithm from one iteration to the next. Typically, that involved some type of com-

parison against the original model. Lindstrom and Turk [60], however, developed a sim-

plification technique that did not require a direct comparison against the original model.

Their metric, a form of the quadric error metric proposed by Garland and Heckbert [24],

uses constraints that minimize the change in volume (volume preservation), the change in

area (boundary), the unsigned change in volume, and the change in unsigned area, and

14

optimized the shape of the resulting triangles. Their technique, while more memory ef-

ficient than previous algorithms, does not work for massive models. It assumed that the

entire model resides in memory and requires a minimum of 160 bytes per vertex of mem-

ory to represent an n-vertex model, including the additional data structures [58] for edge

prioritization.

As models have increased in size, simplification techniques moved away from in-core

processing techniques to out-of-core methods [9, 10, 12, 47, 59]. One of the earlier out-of-

core simplification methods was from Lindstrom [58], who used the quadric error method

of Garland and Heckbert[24] to generate an out-of-core simplification of large models. His

technique was memory sensitive in the output size of the model, memory insensitive with

respect to the input model, and was as fast as most of the in-core simplification techniques

published at the time. By using a singular value decomposition of the quadric error matrix,

he was able to robustly produce the best candidate vertex for the current cluster, and addi-

tionally handle the cases when the error matrix was degenerate. That produces numerically

robust results throughout the entire model. His method processes triangles one at a time,

constructing an in-core representation of a simplified mesh centered on the current triangle.

Simplification then proceeds using the vertex clustering algorithm of Rossignac et al. [72].

Like several of the other simplification methods listed in this section, it does not provide

the ability to perform a simplification based on scalar value.

2.2 Multi-Resolution Modeling

As mesh sizes continue to increase, representing a mesh with only one level of sim-

plification is not an efficient use of resources. Building off previous simplification work,

multi-resolution modeling uses a hierarchy of simplified representations, with the applica-

tion picking the appropriate resolution of a model based on any number of criteria, e.g.,

15

viewing parameters, hardware capability, or network bandwidth.

In his seminal paper, Hoppe [39] proposed progressive meshes, a hierarchy of meshes

that encode a set of differences from the meshes that are lower in the hierarchy. By using the

principle that edge collapse transformations are invertible, the progressive mesh consists

of a simplified base mesh and a record of the vertex split operations required to recover

the original mesh. This allows for several techniques to be implemented from this one

representation:

1. Mesh Compaction: A progressive mesh has a very efficient space representation,

using only (dlog2 (n)e+5)n bits per vertex as opposed to 6dlog2 (n)en bits per vertex

for a standard mesh representation (each face requires references to its three vertices,

and there are 2n faces).

2. Mesh Simplification: At its heart, progressive meshes use a standard edge collapse

technique to reduce the mesh complexity. Given the representation, a user can request

any desired resolution between the base model and the original model.

3. Progressive Transmission: With a progressive mesh, a mesh representation can be

streamed across a network efficiently by sending the base mesh and the required

number of vertex split operations to reach a desired resolution.

Using the simplification algorithm first proposed by Hoppe et al. [40], progressive meshes

extend the energy metric used to control refinement to include terms for preserving the

accuracy of scalar attributes such as color, and discontinuity curves such as boundaries.

The sheer number of refinement operations and the requirement for the model to be resident

in memory makes progressive mesh representation unsuitable for massive models.

While much of the multi-resolution literature has focused on terrain rendering [11, 13,

19, 27], two papers [12, 28] describe techniques that allow for the interactive rendering of

16

large static data sets. In Cignoni et al. [12], the data is pre-processed offline into a hierarchy

of tetrahedra each containing a specified number of triangles. If a tetrahedron exceeds the

maximum triangle count, it is bisected, and the triangle insertion continues recursively.

When rendering, the computed hierarchy is traversed in a top-down manner combining

back-face culling and view-frustum culling. Traversal stops only when a user-specified

screen space error is achieved.

Gobetti and Marton [28] build their multi-resolution hierarchy by using a deep Binary

Space Partitioning (BSP) tree. They build the final node representation by traversing the hi-

erarchy in order of increasing Morton code of each node’s center point to optimize memory

coherency. Leaf nodes are rendered using triangle strips, while interior nodes of the hier-

archy are rendered into "impostors" using ray-casting from multiple directions. To render,

they created three shader types: two flat shaders (differing in how normals are computed),

and one smooth shader. The hierarchy is built in a parallel, offline construction, while the

rendering is single-threaded. Both of these techniques work only with static datasets, and

they do not consider scalar fields, transparency, or specular reflection in the construction

phase.

2.3 Randomization and Statistical Methods

Wand et al. [93] presented an algorithm for interactive rendering of large scenes,

the Randomized Z-Buffer, in which candidate points are randomly selected based on an

estimate projected area of a “batch” or group of triangles. In order to achieve the speed-

ups in the paper, scenes were preprocessed using an O(n lnn) time algorithm. The running

time of the algorithm is proportional to the size of the triangle’s projected area, so large

triangles in screen space are rendered using a conventional z-buffer. By using splatting,

the algorithm can achieve even greater speed-ups over exactly reconstructing each pixel.

17

Additional auxiliary data structures are used to increase performance (e.g., octree, caching

of sample points).

Boubekeur and Alexa [8] describe an algorithm for mesh simplification that uses a

stochastic estimator to select vertices from areas of high curvature, but also ensures sam-

pling in flat areas. The triangles connecting the selected vertices are computed by assigning

all vertices in the original mesh to the topologically closest selected vertex and then identi-

fying triangles that are incident upon three different selected vertices and then simplifying

them. Their method is fast, preserves topology by simplifying in topological space, but is

unable to distinguish noise from features.

Many renderers use simplification techniques for high-quality surface-based rendering

based on element detail (i.e., detail due to the complexity of individual elements). Cook

et al. [16] describe a stochastic technique for simplification based on aggregate detail (i.e.,

detail due to the large number of elements). Scenes are rendered by randomly selecting a

subset of the geometric elements and altering those elements statistically to preserve the

overall appearance of the scene.

2.4 Reyes

The original Reyes algorithm by Cook et. al. [15] processed each primitive in the

geometric database one at a time independent of all other primitives. Each primitive that

survived the culling phase is split into finer pieces and eventually diced into grids of sub-

pixel sized quadrilaterals called micropolygons. The grids are then shaded, broken apart

(“busted”) into individual micropolygons, and then sampled. Because primitives are pro-

cessed one at a time, all of the samples from the micropolygons are retained until the final

primitive is processed, otherwise, the visibility could not be properly determined. As a

result, the memory consumption of the original Reyes algorithm was linear in the number

18

of micropolygons that survived to the final stage of the process, and the number of mi-

cropolygons generated were several orders of magnitude larger than the original geometric

database. An improved Reyes algorithm [5] was designed that removed the requirement for

the retention of the visible point lists. The main change was that rather than process each

primitive separately, the entire geometric database is read, bound, and sorted into buckets.

Then, each of the buckets is processed as described in the original algorithm. When a prim-

itive is split, it falls into one of three conditions: inside, outside, or straddles the current

bucket. If the split primitive falls outside of the current bucket, the primitive is forwarded

to the first bucket that overlaps its bounds and further processing of the primitive is delayed

until its new bucket is processed. The primitives remaining in the current bucket then com-

plete the entire dice-shade-bust-hide algorithm described above. When the entire bucket is

processed, all of the memory used by the overlapping primitives, the visible point lists, and

the micropolygons can be reclaimed, and utilized by the next bucket. The trade-off made

to achieve the lower memory footprint is the assumption that the entire geometric database

can be resident in memory. Several extensions to the RenderMan Interface Bytestream

(RIB) alleviated some of that assumption by delaying the reading of a primitive until the

renderer began the processing of a bucket that overlapped its bounds.

While the Reyes algorithm has been parallelized before (NetRenderMan) [5], its pri-

mary function is to speed up rendering through the distributed processing of the individual

buckets by using a replicated database.

In recent years work has focused on enabling the Reyes algorithm for real-time appli-

cations using the GPU [22, 23, 68, 94, 99]. While exciting results are coming out of this

line of research, for the most part it is not applicable to us as we are investigating scene

sizes that far exceed the capabilities of modern GPUs except through streaming extensions.

Relevant parts of the research have been investigated and where pertinent, implemented,

e.g., DiagSplit by Fisher et. al [23].

19

2.5 Ray Tracing

Ray tracing is an image generation technique that simulates the traversal of light

through a scene and records how much of that light arrives at a camera. Whitted [96]

brought ray tracing to the attention of graphics researchers as a method for simulating

realistic lighting effects. Over the next two decades, researchers worked to improve

many aspects of the ray tracing algorithm including acceleration structures to speed up

ray-object intersection by only testing those objects likely to be intersected by the ray

[3, 18, 29, 33, 37], improving the capabilities of the algorithm through more complex

lighting effects [25, 48, 49, 52, 80, 81], and improvements in the overall image quality

by reducing the noise and variance within the generated images [14, 51, 53, 82].

While most research in ray tracing has been focused on photo-realistic rendering,

recent research has been exploring the use of ray tracing for rendering large or massive

models. Pharr et al. [69] described a system that preprocesses triangles into cache friendly

bundles and reorders rays to test against geometry that is already in memory. This allows

them to render models larger than would fit into the rendering hardware’s memory. In

the early 2000’s, Wald and Parker [66, 91] independently developed systems that showed

the viability of interactive ray tracing using either clusters of computers or large shared

memory systems. These two advances led to an explosion of research in the exploration

of real-time ray tracing for scientific visualization [17, 54, 64, 65, 87, 97] and the general

exploration of large models using ray tracing [2, 35, 55, 56, 76, 77, 83, 88, 89, 92].

2.6 Parallel Rendering

As with the multi-resolution techniques, the parallel rendering approach to the large

model problem is to reduce the number of primitives processed by the renderer. The multi-

resolution methods try to reduce the number of primitives rendered through the use of a

20

hierarchy of simplified representations that are visually indistinguishable from the full res-

olution model when viewed from a particular distance. The parallel rendering approaches

typically use a brute force approach that tries to render the full resolution of the model by

breaking the data into smaller chunks that can be processed efficiently on a large number of

processors. More recent advances have seen the combination of parallel rendering methods

with the multi-resolution techniques described in a previous section.

2.6.1 Parallel Rasterization

To begin the discussion of parallel rendering techniques, one has to understand that

all parallel rendering algorithms require that the primitives to be rendered must be sorted

somewhere in the rendering pipeline. The rendering algorithm can be classified into one

of three categories depending on where in the pipeline the sorting occurs: sort-first, sort-

middle, and sort-last [63].

Sort-first algorithms partition the screen-space into a set of non-overlapping tiles, each

of which is rendered independently. All of the tiles are then composited into a final image.

The final compositing step is simply a gluing of the various tiles together: the final pixels

are not compared for depth. Unlike a sort-middle approach, the communication necessary

to sort the primitives to the various tiles is relatively small. However, there is a high degree

of overhead required to do the initial sort. Primitives must be transformed first to determine

appropriate screen space bounds, primitive-tile overlap must be computed, and primitives

must be rendered if they overlap multiple tiles. This re-rendering causes the largest con-

straint on the scalability of sort-first algorithms. As the number of processors increases,

the amount of overlap, and thus the number of primitives that are rendered multiple times,

increases significantly.

In a sort-middle approach, graphics primitives are partitioned equally among the pro-

cessors, and after rasterization, the pixels are re-sorted into a set of screen space tiles that

21

have a fixed amount of overlap. This approach is best suited for tightly coupled systems

with fast interconnects to allow for the redistribution of the primitives and pixels. In hard-

ware, the primitives are distributed to the vertex and geometry processors, and the pixels

are redistributed to a set of fragment processors. Currently, this approach does not work

well for a software-based system due to the high bandwidth requirements necessary for

efficient transmission of the data between the stages and the efficient redistribution of the

data between frames.

Sort-last algorithms function by distributing the primitives evenly amongst the pro-

cessors. There are many possible techniques to distribute the primitives including random

allocation and round-robin. Once the primitives have been distributed the processors ren-

der their group. When complete, the images along with the depth buffer are composited

together to create a final image. The compositing can occur on the master node, but higher

performance is achieved when the images are composed pair-wise in hierarchially.

In 2000, Samanta et al. [74] proposed an algorithm that uses a combination of sort-

first to decompose the tiles into N distinct groups and sort-last to resolve the depth on

the overlap at the edges of the tiles. Their objectives were to balance the load across the

processors and minimize the screen space overlaps. The data was distributed across all

the nodes of the cluster, so the model size was limited by the machine with the smallest

memory.

In the following year, Samanta et al. [73] described a method to achieve nearly the

performance of full database replication by using partial replication. It uses the hybrid sort-

first, sort-last architecture from their previous paper with partial replication of the model

data. Even with these improvements, the model is still limited to the size of the smallest

memory in the cluster.

22

2.6.2 Parallel Ray Tracing

Pure software renderers provide a finer grain of control over how the memory of a

system is used for rendering. Green and Paddon [31] describe a set of methodologies to

increase the performance of a multi-processor ray-tracing system by mimicking a virtual

memory model. They show the effect of varying memory allocation between the resident

set and the cache, and between the voxel hierarchy (octree) and the objects, has on per-

formance. By rendering a low resolution image, they can determine a lower bound on the

objects and memory required for the resident set.

Wald et al. [86] proposed a memory management scheme that allowed them complete

control over when a page is read into, or evicted from, memory. In particular, they use

the memory management scheme to control tile fetching and eviction for an out-of-core

renderer. If a ray will access a tile that is not in memory, the ray is killed and replaced with

a proxy. Proxies are computed for the interior nodes of the BSP tree and use an average

of the material values visible from a particular direction to compute a representation. The

proxies are computed using a lightfield approach. The result is an approximate image

that can be refined by loading the actual geometry in-place of the proxies are subsequent

renders.

2.7 Mesh Organization

Another recent trend in the processing of large models is to focus on the organization

of the data provided to a renderer, thereby yielding more efficient access patterns to the

data in the form of reduced cache misses or reduced disk reads.

Isenburg and Gumhold [47] described a multi-pass method for compressing large

static meshes. They process the data by grouping primitives into clusters, then write each

cluster separately to file. The heuristic for the number of clusters is based on the number

23

of vertices and the maximum memory footprint. One weakness of their technique is the

assumption that the indices for the mesh/vertex elements can fit in a 32-bit word. They as-

sume that the indices will never get too large since the indices are on a per-cluster, per-file

basis. This is probably true for a massive model that has many parts that can be distributed,

but may not be true for singular massive meshes. In order to get the data into the modified

format, the algorithm requires six passes through the data to generate the data structures

including a graph for cluster connectivity. Along with generating the clusters and other

data structures, the algorithm compresses the data on the fly.

As the gap between CPU and memory performance grows, it becomes more impor-

tant to ensure that data is available in the fastest memory for processing, and this implies

minimization of cache misses. Yoon et al. [98] describe a device independent metric for

computing estimated cache misses. Standard algorithms that are applied to a cache obliv-

ious mesh layout show a speedup improvement over the standard data organization. Once

the metric has been pre-processed, it is used to compute a layout that minimizes the ex-

pected number of cache misses for all cache parameters. The global optimization of the

layout is NP-hard, so the authors used a heuristic based on multi-level minimization that

computes a locally optimal solution.

24

Chapter 3

PARALLEL METHODOLOGIES FOR A

MICROPOLYGON RENDERER

This chapter was originally published in the Proceedings of the 14th Eurographics

Symposium on Parallel Graphics and Visualization [6]. Micropolygon rendering is the

process of tessellating input geometric primitives into polygons typically of less than one

pixel in size. Micropolygon rendering was first described by Cook et al. [15] and has been

used to render complex scenes for motion pictures for 25 years. Over that period this algo-

rithm has been shown to be stable and robust when rendering large, geometrically complex

scenes. In this chapter, we investigate parallel extensions of a micropolygon renderer and

show that none of the common work distribution methodologies are appropriate for all

scene compositions. While the results in this chapter are strictly applied to a micropolygon

renderer, the results are applicable to any rendering algorithm that processes the scene in

small, limited parts, such as a ray caster using a Hilbert curve for screen traversal.

3.1 Algorithms

In this chapter, we describe four different methodologies for parallelizing the Reyes

algorithm. In all of these parallel variants, we are only looking at algorithms that are suit-

able for running on a shared memory architecture. This allows us to look at the efficiency

25

of the algorithms independent of any communication costs that would be associated with a

message passing approach. We started by implementing the CASCADE algorithm. During

testing and analysis, the performance was measured with several tools looking for bottle-

necks in the code. The results from the analysis led to each of the following algorithms as a

method to overcome one/several bottlenecks. The fourth algorithm was conceived by using

the best aspects of the others. In the following sections, we describe each of the algorithms

in detail.

3.1.1 CASCADE

One of the most straightforward approaches to parallelizing the Reyes algorithm is for

each bucket to be rendered by one thread. Since we will nearly always have fewer threads

than buckets, threads are reused on multiple buckets. In Molnar’s parallel taxonomy, this

approach is a modified version of the sort-first algorithm. The modifications are two-fold:

first, threads process multiple tiles, and second, there is no replication of data amongst the

tiles.

Figure 3.1 provides a visual overview of the algorithm. The split/dice loop proceeds

as described in the improved Reyes algorithm [5] with the exception that the fragments that

are output from the loop are forwarded as in the original method, albeit to a potentially

different thread. In Figure 3.1a, the screen space size of the geometry is computed, and if it

is “too large” (the polygon labeled 11), it is split, bound, and forwarded to the buckets that

overlap the upper-left corners of the split pieces (in this case, buckets (a) and (b)) (Figure

3.1b). The only geometry available to thread 2 (which is assigned to bucket (b)2), geometry

(2), passes the size test and is diced into micropolygons approximately one pixel in size.

1From here on out we will refer to these types of elements by their label, i.e., geometry (1)
2Buckets hold geometry, and threads are assigned to buckets. When we refer to a bucket, it should be

clear from the context as to whether we are referring to the storage entity, or the thread assigned to it.

26

(a) (b)

(c) (d)

(e) (f)

(g)

FIG. 3.1. In this Figure, geometry (represented by numbered axis-aligned bounding boxes)
is assigned to the bucket (labeled with lower-case letters) that overlaps the upper left corner
of its bounds. Both the geometry and the bucket are colored by the controlling thread.
Detailed discussion is on page 26

27

In Figure 3.1c, the split remnants of the original geometry (1) (labeled (4) and (5)) are still

too large, so they are split again along an alternating axis. The diced micropolygons from

geometry (2) in Figure 3.1b are forwarded to their overlapping bucket (bucket (c)) and

processed. In Figure 3.1d, the geometries (6) and (8) are split again by their controlling

threads. The thread in bucket (c) waits as it can not proceed to the next bucket as geometry

may be forwarded to it from any active bucket that is above it, or to its left. In Figures

3.1e and 3.1f, the geometries are now small enough to be diced, and bucket (c) continues

to wait for forwarded geometry. In Figure 3.1g, bucket (a) has finished and forwarded

its micropolygons both forward (to bucket (b)) and down (to buckets (f), (g), and (h)) and

moved to the first inactive bucket ((d)) and begins processing geometry (3). Buckets (b) and

(c) process the forwarded micropolygons. When finished, the controlling threads for these

buckets will move to the next inactive buckets. Note, that requiring the buckets to wait

for forwarded geometry forces a strict ordering to bucket processing, i.e., yellow always

follows red, blue follows yellow, red follows blue, and so on.

To reduce the amount of synchronization involved with the forwarding of primitives,

a per-thread queue is added to each bucket. Each thread writes to only a single queue per

bucket thereby eliminating any write conflicts between threads. When the split/dice loop

is ready to process the next primitive, the thread queues are scanned for any forwarded

primitives which are then sorted into the main queue. The primary point of synchronization

is due to the unpredictable arrival of forwarded primitives. Since these primitives can arrive

at any point during the rendering of a bucket, no bucket can complete until all buckets

previous to it have completed. Buckets are statically assigned to threads modulo the thread

count.

28

3.1.2 ROUND_ROBIN

Using a sort-last methodology, we implemented the initial distribution of primitives

through round robin allocation. Once the primitives have been allocated, each thread pro-

ceeds with a single-threaded variant of the CASCADE algorithm with the exception that

the visible point lists for a completed bucket are placed in a thread specific queue of the

master process for compositing. The master is responsible for freeing the visible point lists

once it has received the lists from all active threads and compositing has completed.

3.1.3 NO_FORWARDING

The third algorithm is also based on a sort-first methodology. Figure 3.2 shows an

overview of the algorithm. In the Reyes algorithm, as geometry is bound it is placed into

the first bucket that overlaps the upper left corner of the bounding box. NO_FORWARD

follows a traditional sort-first distribution by placing a reference to the geometry into each

bucket that overlaps the geometry’s projected bounds. See Figure 3.2a. The algorithm pro-

ceeds as in Figure 3.1, however, the split and dice operations for each bucket now operate

independently (Figure 3.2b). When geometry is split or diced, only the geometries that

overlap the current bucket are retained. Items that projects outside of the current bucket

are discarded. Otherwise, the algorithm proceeds similar to CASCADE. In Figures 3.2c,

3.2d, and 3.2e, the buckets continue to split and dice as necessary, sometimes duplicating

geometry. In Figure 3.2f, the thread in bucket (a) finishes first and moves on to the next

available bucket (d). Unlike CASCADE, there is no strict ordering to the processing, so a

thread advances to the next available bucket as soon as it finishes the current one.

29

(a) (b)

(c) (d)

(e) (f)

FIG. 3.2. In this Figure, geometry (represented by numbered stacks of bounding boxes) is
assigned to all buckets (labeled with lower-case letters) that overlap the object’s bounds.
Both the geometry and the bucket are colored by the controlling thread. In this algorithm
the splitting and dicing of a single piece of geometry occurs in parallel, therefore, we
present the same geometry as in Figure 3.1 with as oblique view to enable its visualization.
Arrows show buckets referencing the geometry. Detailed discussion is on page 29

30

(a) (b)

(c) (d)

(e) (f)

FIG. 3.3. This sequence of images focuses on how this algorithm operates on a single piece
of geometry. As in NO FORWARDING, geometry (represented by numbered bounding
boxes) is assigned to all buckets (labeled with lower-case letters) that overlap its bounds.
Again, both the geometry and the bucket are colored by the controlling thread. In this
algorithm geometry is split by the first thread to access the geometry, but the split pieces
are stored hierarchically with the parent. Detailed discussion is on page 32.

31

3.1.4 MODIFIED_NO_FORWARDING

After analyzing the previous methods, this algorithm was derived by combining CAS-

CADE and NO_FORWARDING such that we minimize the bottlenecks from either algo-

rithm (discussed late in the Results section on page 34). From NO_FORWARDING we

retain the bucket/thread allocation and the geometry distribution to the buckets. One issue

in NO_FORWARDING is that geometry can be split and diced multiple times, one for each

bucket the geometry overlaps. Since the geometry is split and diced in the first bucket it

overlaps, CASCADE does not suffer from this issue. Figure 3.3 provides an overview of

the processing of a single piece of geometry. Figure 3.4 shows the changes made to the

original Reyes algorithm. NO_FORWARDING was modified such that the geometry is

split by the first thread to access it. In Figure 3.3b, the first thread (bucket (a)) to access

geometry (1), locks it, and proceeds to split. Once split or diced, the new items are added

back as children of the original node (shown as geometries (4) and (5)). If another thread is

unable to lock the geometry, it moves that geometry to a deferred list and then it moves to

the next available geometry. In the current Figure, buckets (b) and (c) are unable to process

geometry (1), and move to geometry (2). On each iteration through the rendering loop, the

algorithm checks if geometry on the deferred list is available and closer than the geometry

on the main list. If the deferred primitive has been split, we add the children back to the

main geometry list. If the geometry was diced, we shade and bust as normal. In Figure

3.3c, all of the buckets are free to access the top-level geometry and traverse the hierarchy.

Bucket (a) (red) locks the left branch (geometry (4)) and splits. Bucket (b) (yellow) would

preferentially operate on geometry (4), but as it has been locked by bucket (a), it moves to

the right child and splits geometry (5). Bucket (c) (blue) stalls as it has no other geometry

to operate upon. In Figure 3.3d, buckets (a) and (b) traverse the left hierarchy with bucket

(b) locked from accessing the lowest level. Bucket (c) traverses the right hierarchy and

32

On Screen?

Yes
No

Select Bucket

Select Closest

GPrim

Shape Queue

Empty?

No

Yes

Deferred Queue

Empty?

Deferred Queue

Empty?

Select Closest

GPrim (shape or

deferred)

Locked?

End

Bucket

Yes

No

Add to deferred

queue

No

Yes

Yes
No

Previously

Split?
Pop Splits

Yes

To Bound

Generate Mutex

Lock

Has Mutex?

Has Lock?

Yes

Yes

No

No

No

Occluded?

Yes

Yes
No

FIG. 3.4. Modified Reyes algorithm

locks geometry (8) which it splits. This causes bucket (b) to stall as it is unable to access

any geometry. In Figure 3.3e, all of the threads/buckets are able to dice their preferential

geometry. In Figure 3.3f, bucket (c) has finished and moves to the next available bucket.

Buckets (a) and (b) process the micropolygons generated by other threads in Figure 3.3e.

33

FIG. 3.5. Aerial and street canyon views of cityscapes with 0.1, 6, and 46 million polygons

FIG. 3.6. Image result for 50, 400, and 1600 transparent Stanford Bunnies

3.2 Results

The results in this section were obtained on a single Linux system with two 2.67 GHz

Intel “Nehalem” quad-core processors and 24 GB of RAM with hyper-threading disabled.

The renderer is run with N threads for rendering and a master that handles the parsing

of the scene description, converting the visible point lists into final pixel color, and for

ROUND_ROBIN, compositing the point lists.

We used synthetic and procedurally generated scenes consisting of polygons (triangles

and quadrilaterals) to enable easy comparison of results across the different algorithms.

One of our procedural datasets is cityscapes generated using the Houdini modeling and

animation software. We vary a large number of parameters for each building including

width, depth, the number of floors, windows, and window and floor inset and thickness.

Buildings are randomly placed on a grid, one per cell, with the grid ranging in size from

10x10 cells to 160x160 cells, resulting in polygon counts between 147,000 and 50 million.

34

Two different camera views (see Figure 3.5) were used for testing the effect of minimal

and heavy occlusion culling. The synthetic scenes consist of the Stanford bunny randomly

replicated 10 to 1600 times in two sets, one opaque, the other with an alpha value of 0.02

(see Figure 3.6). In addition, the number of rendering threads used was varied between

one and eight (two to nine actual threads including the master). For all tests, parsing the

input data was a single threaded process and the timing for parsing was consistent across

primitive counts and algorithms, and so was excluded from the timing results.

Figure 3.7 shows the results for different thread counts versus problem size for

the city scene for each of the two views. In the heavily occluded street canyon view,

MODIFIED_NO_FORWARDING outperforms all the other algorithms for any combina-

tion of threads and scene size (see Table 3.1. Depending on the problem size, MODI-

FIED_NO_FORWARDING is between 16-40% faster than the other methods for 1 thread,

and between 8-90% faster for 8 threads. In the second test scene, the view is modified to

be looking at the entire city. Occlusion plays a role in this scene, but the viewpoint was

chosen to minimize its impact. As a consequence, MODIFIED_NO_FORWARDING is

the fastest algorithm in nearly all combinations of thread count and problem size, except

for the largest scene with the two highest thread counts. Two items to note in these results:

First, the algorithm that is second fastest changes depending on the scene size and thread

count, and second, the differences between these algorithms (excluding ROUND_ROBIN)

is typically small, on the order of 3-10% for the larger scenes.

In both scenes, ROUND_ROBIN consistently performs the worst except for the single

threaded cases. In the three other algorithms, the master thread’s only function post-parsing

is to write the final image pixels to file. In ROUND_ROBIN, compositing of the pixels from

the rendering threads is performed on the master thread, which gives it a slight advantage

over some of the other algorithms. However, in all of the other cases, the performance

gain due to occlusion culling is lost as the primitives are assigned to the buckets in random

35

order.

For the second set of test cases involving the Stanford bunny, the results are signif-

icantly more varied (see Figure 3.8). In most of the cases, the original Reyes algorithm,

CASCADE, is the fastest with MODIFIED_NO_FORWARDING surpassing it only in the

large scenes with low thread counts. But, like the low occlusion city scene, the differences

between the algorithms is minimal (excluding ROUND_ROBIN in most of the cases). For

the transparent cases, again the results are significantly different in that ROUND_ROBIN

is the fastest in nearly all cases. The reason is that with the very low alpha value, occlusion

never comes into play except in the largest scene. The offloading of the compositing of

the pixels to the main thread allows the worker threads to return to rendering faster than

the other algorithms. Varying the opacity value produces results in between these two ex-

tremes, depending on how quickly occlusion culling comes back into play (e.g., for an

opacity value of 0.1, it takes approximately 45 samples before we reach fully opaque).

36

Polygons # Rendering Round Robin Cascade Modified No Forwarding
Threads No Forwarding Original

147428

1 49.65 41.73 34.67 62.08
2 49.81 28.13 19.73 31.96
4 52.82 17.10 10.98 16.65
7 58.15 12.51 7.15 10.20
8 81.65 11.26 6.50 9.07

701374

1 46.951 39.10 32.053 59.71
2 53.79 29.10 17.96 30.84
4 52.91 17.99 9.93 15.86
7 60.33 12.91 6.38 9.78
8 87.69 11.76 5.80 8.70

1568796

1 48.89 41.50 34.28 61.10
2 51.00 27.14 19.81 31.20
4 53.88 16.35 11.17 16.25
7 61.28 11.92 7.57 9.99
8 89.87 10.87 7.06 8.89

2836538

1 47.83 40.77 33.23 60.79
2 53.48 30.25 18.89 31.57
4 55.85 18.62 10.72 16.44
7 62.22 13.57 7.50 10.14
8 93.48 12.38 7.02 9.05

6374458

1 54.20 48.16 39.78 69.12
2 54.54 32.81 22.99 35.77
4 58.05 20.52 13.00 18.75
7 67.27 14.58 8.63 11.61
8 101.03 13.27 8.02 10.38

17600502

1 60.60 57.42 46.78 76.43
2 61.72 38.19 27.46 40.23
4 64.59 24.46 16.26 21.87
7 73.63 17.81 11.68 14.44
8 102.52 16.71 11.00 13.21

46481006

1 80.08 82.83 66.22 99.57
2 73.78 56.25 42.43 55.87
4 73.69 35.06 27.13 32.47
7 88.50 26.84 21.22 23.13
8 103.94 25.51 20.36 22.10

Table 3.1. Timing values for the Building scene. This table show the time in seconds for
the four techniques versus the number of polygons for the street canyon scene Figure3.5.
Note, that in most of the cases, there is very little improvement between seven and eight
threads. The eight thread case results in oversubscription of the system as the master thread
increases the thread count to a total of nine (on an 8-core system).

37

FIG. 3.7. Timing results for the two different city views. Note that the two plots have
different maximums for the Y-axis.

FIG. 3.8. Timing results for the two different Stanford bunny test scenes

38

Chapter 4

AN ALGORITHM FOR DISTRIBUTED RAY TRACING

As shown in the previous chapter, Reyes is one type of algorithm for rendering. There

are a number of other algorithms used in rendering (ray tracing, rasterization, and many

others), and each has its own strengths and weaknesses. For photorealistic rendering used

in visual effects, ray tracing and Reyes are clearly superior. The Reyes algorithm has a

long history in rendering for visual effects, but it has recently been displaced by ray tracing

as the main rendering algorithm. Using the lessons learned from the previous chapter, we

have updated the rendering system to be based on the ray tracing algorithm.

4.1 Ray Tracing: A Primer

Ray tracing is an image generation technique that simulates the traversal of light

through a scene and records how much of that light arrives at a camera. This is accom-

plished by following photons as they move throughout the scene. Rays are used as a repre-

sentation of the photon’s path as they traverse the scene. A ray tree is the set of paths taken

by a photon from emission at a light source to either absorption on a surface or escaping

the bounds of the scene.

Forward ray tracing generates rays from every light source either by sampling the

hemisphere around the light or by sampling the light’s power distribution. Those rays

39

move through the scene, interacting with the geometric objects and any volumetric media

(air, water, smoke,...) until either the rays/photons are absorbed by a surface or media,

leave the scene, or, eventually, reach the camera. Many types of complex lighting effects

are handled by forward ray tracing, e.g., caustics due to a curved glass or water surface,

or color bleeding when diffuse light is bounced from one surface to another. These effects

come with an extremely high computational cost. For all of the complicated lighting effects

that forward ray tracing can do, it is exceptionally inefficient. Only a tiny fraction of the

rays/photons generated from the light sources ever reach the camera.

In order to improve efficiency, the backward ray tracing1 algorithm was created. In-

stead of tracing a ray from the light to the camera (where a photon goes), backward ray

tracing traces a ray from the camera to a light (where a photon originated). Given a scene

consisting of various geometric objects, a set of light sources, and a camera, the backward

ray tracing algorithm generates a ray with an origin at the camera and a direction through a

pixel on the camera’s image plane and propagates that ray through the scene testing inter-

actions with geometric elements. These rays coming from the camera are called primary

rays.

First and foremost, ray tracing is a visibility algorithm. For each geometric object

intersected by the ray, sorting the intersection distances provides a front-to-back ordering

of the objects in relation to the ray’s origin. If we are only concerned with which objects

are visible from the camera, then the algorithm is called ray casting. Ray casting is one of

the main algorithms in scientific visualization for volume rendering. But for photo-realistic

rendering, we are interested in simulating the complete illumination in a scene and ray

casting is not sufficient.

For each point on an object in the scene, we are able to compute the incoming photons

1from this point forward, any time ray tracing is mentioned, it is referring to the backward version of the
algorithm.

40

and determine how they were reflected such that they arrive at our eye/camera. We cannot

simulate every incoming photon, so we attempt to pick a representative sample of incoming

photons and generate secondary rays to trace paths to the origins of these photons. One

special case is when photons are coming directly from a light source. To handle these

photons, we generate rays from an intersection point on an object to each light source,

testing if the light is visible along the ray. These are called shadow rays. If the geometric

object has a mirror-like appearance, we may want to know what other geometric objects

are visible from the intersection point. New rays will be generated along a direction by

reflecting the incident ray about the normal of the object. These rays are called reflection

rays. If the object is transparent, we will want to know what is visible through the object,

so rays will be generated that are reflected through the object using the object’s index of

refraction. These are called transmission rays. Collectively, the primary and secondary

rays are part of the recursive ray tracing algorithm.

Recursive ray tracing can account for many modes of light transport, but not all. Heck-

bert [38] introduced a notation for classifying light paths through the use of regular expres-

sions. In Heckbert’s notation, L, a light, is the first vertex in a path; E, an eye or camera,

is the last vertex; and the remaining vertices are labeled D or S, which represent whether

the light was reflected through a diffuse or a specular bounce from the surface of an object.

Additionally, a ’?’ following a letter means either once or none (D? is interpreted as at

most one diffuse bounce); ’*’ means zero or more; and ’+’ means one or more. Then, in

this notation, recursive ray tracing traces the light paths

LD?S*E.

We can interpret this path in several ways:

• A direct connection from the light to the eye (LE)

• A path from the light to the eye through a single diffuse bounce (LDE)

41

• A path from the light to the eye through one or more specular bounces (LS+E)

• Or, a path from the light to the eye through a single diffuse bounce followed by one

or more specular bounces (LDS+E)

What is missing from this interpretation are the two examples that were listed for forward

ray tracing:

• Caustics, given in light path notation as LS+DS+E which we interpret as one or more

specular bounces onto a diffuse surface followed by one or more specular bounces

• Color bleeding, which is LD+E in light path notation.

Over the years, several different algorithms [26, 48, 52, 81] have been proposed to account

for these additional light paths, but for this dissertation we will use bidirectional path trac-

ing (BDPT). BDPT works by generating two light paths, one from the camera (backward

ray tracing) and one from the light (forward ray tracing), and then connecting them. The

camera subpath starts as in backward ray tracing, but on a surface hit, we sample a new ray

direction2 at the hit point, and continue tracing. Each one of these hit points forms a vertex

in the camera subpath. The process is repeated starting from a light, and generating a series

of vertices to form the light subpath. Then, for each vertex, ci, in the camera subpath, we

generate a connection to each vertex, lj in the light subpath, and compute the weighted

contribution of light along the path

c0, c1, ..., ci-1, ci, lj, lj-1, ..., l1, l0

Each of these paths represents one specific photon path from the light to the camera. The

more subpaths that are generated, the better we can approximate all of the possible paths

2The new ray direction is chosen by sampling from the Bidirectional Scattering Function (BSDF), but
how we do that is irrelevant for this dissertation.

42

for a photon to leave the light source and arrive at the camera. For the rest of this chapter,

we will examine the parallelization of the standard ray tracing algorithm and BDPT.

4.2 Target Architecture

Before the discussion of the parallelization of the ray tracing algorithm, we need to

discuss what hardware architecture our design targets. The system consists of a networked

collection of computational nodes, each with one or more central processing units (CPUs)

that consists of a small number of individual cores connected by fast shared memory. Rela-

tive to the core to core communication speed, the inter-node network connection is several

orders of magnitude slower. Typically these types of systems are found in dedicated com-

pute clusters or in a set of networked desktop workstations. While the system described

below will have its highest performance on a system with tightly networked nodes, there is

nothing in the design that prohibits it from running on a geographically distributed, loosely

connected set of nodes.

4.3 Parallelization of the ray tracing algorithm

Much of the complexity in parallel algorithms comes from the coordination between

the parallel tasks. Ray tracing falls into a category of algorithms that are labeled as “embar-

rassingly parallel” or “perfectly parallel.” Embarrassingly parallel algorithms are defined

as those where there is little to no coordination between the parallel tasks. In either ray

tracing or BDPT, the point of ray generation from the camera is where the parallel tasking

begins. On a system where all of the scene objects are directly accessible by the ray and

its child rays, this algorithm will exhibit linear or nearly linear scaling, However, it experi-

ences performance degradation when the scene is loaded into distributed memory, such as

in a cluster or a distributed set of individual computers.

43

Many researchers have worked to increase the performance of ray tracing by using

distributed systems with mixed results [36, 71, 76, 90]. In this dissertation, we approach

the distributed data problem from a different viewpoint: How do we efficiently render a

scene that must be distributed because the entire scene exceeds the memory of a single sys-

tem/node, or, if the scene exceeds the distributed memory of the entire rendering system?

4.4 A Distributed Ray Tracing Algorithm

In a distributed ray tracing system, three ways to parallel render are by transmitting

geometric or other scene data between nodes, transmitting rays, or sort-last compositing

[63]. Of these, sort-last has seen wide use in distributed volume rendering of large datasets.

For volume rendering, the dataset is typically partitioned onto a grid, with each block or

subset of blocks distributed to a processing element. One algorithm for volume rendering

uses ray casting, in which a primary ray is sent to the processing elements whose grid ele-

ment is intersected by the ray. Because we are ray casting, the strict front-to-back ordering

of the intersections with the grid elements allows the resulting color and depth values to

be sorted and composited either on the master node or hierarchically. However, when ray

tracing, the secondary rays break the strict depth ordering, and sort-last compositing is no

longer viable. In this section, we propose a system for distributed rendering based on an

efficient method for sending rays.

For the rest of this section, our rendering system consists of a single data server node

and N rendering server nodes that have been fully bootstrapped. For each server node

i, we assume there are Mi cores available for usage. How the system is bootstrapped is

unimportant for this chapter, but is described in Chapter 6. We assume the data server is

fully connected to the rendering servers, and the rendering servers are aware of the other

44

servers in the system, but are only connected to the data server initially3.

All of the information about the scene is stored in the RenderMan Interface Bytestream

(RIB) [78] file format. RIB was chosen as it is widely supported amongst commercial and

open source modeling tools, has wide spread support in the visual effects industry, has a

binary format for reduced file size, and has a number of features that work well with our

distributed renderer. The format is less used for visualization, but converting to the format

is fairly easy using various modeling tools. The first part of a RIB file is the Options section.

It contains one-time initialization information such as search paths for referenced files and

all the information necessary to create the viewing camera (transforms, image resolution,

image depth, etc) In a RIB file, the tag WorldBegin delineates the end of the Options section,

and the beginning of the scene description that contains all of the attributes and geometry.

4.4.1 Partitioning

Once the viewing system has been completely defined, we create a camera and the

image object for storing pixels. We initially create a static partition of the image plane

into rectangular groups of pixels based on the number of render servers. Since we put no

restrictions on the number of render servers, the partitioning scheme used is slightly more

involved than a system that restricts the node count to a power of two. The goal is to find

the two multiplicative factors of the number of render servers that best approximates the

aspect ratio of the output image with extra servers being assigned to a reserve pool where

they are reallocated at a later time. The partitioning scheme is as follows:

• We remove one server and assign it all the space behind the near clipping plane

• If the remaining number of render servers is odd, we take one additional server and

3We make this assumption for clarity when discussing the algorithm. For practical purposes, a forwarding
layer of nodes is created if the data server is unable to fully connect to the rendering servers due to lack of
availability of system resources, e.g., to fully connect exceeds the maximum number of sockets.

45

also assign it the space behind the clipping plane, now dividing the region in half.

• We compute all of the factors for the remaining number of servers, and sort the values

into a list. Starting from the middle of the list, two pairs of factors are chosen, the

aspect ratio is computed for each pair, and the values are compared to the image

aspect ratio until two pairs are found that straddle the value4. The pair that is closest

to the image aspect ratio is chosen.

By reducing the server count by two and iterating the final step, the system can find a pair

of factors that closely matches the image aspect ratio. Four iterations were used for the

discovery of the best pair of factors as it limits the number of servers moved to the reserve

pool to at most eight and preserves the majority of the servers for the tracing of primary

rays. We leave a more thorough evaluation of finding the optimal number of iterations for

future work.

Not all of the scene objects lie within the bounds of the viewing frustum, and the parti-

tioning must be adjusted to account for the scene objects that lie outside of this bound. The

bounds of the grid cells that lie on the image boundary are extended to infinity. To account

for the additional objects held by the boundary grid cells, we decrease the size of the edge

grid cells by one half (this automatically reduces the corners to one quarter of the original

area) and adjust the remaining grid cells to compensate as shown in Figure 4.1. Servers

from the reserve pool are statically assigned to edge cells that have the largest amount of

geometry. These regions are then spatially subdivided and their geometry reassigned.

Since the system is statically load balanced for the distribution of scene objects and not

for workload, the decision to reduce the edges by a fixed amount worked well for our test

scenes. However, dynamically adjusting the edges is an area for future work that would fall

4For an aspect ratio of 1.77778 (16:9) and 80 render servers, the factors are: 1, 2, 4, 5, 8, 10, 16, 20, 40,
and 80. The middle two pairs are 8 and 10, and 5 and 16 with aspect ratios of 1.25 and 3.2. respectively.

46

1 2 3 4 5 6 7

8 9 10 11 12 13 14

FIG. 4.1. Image space allocation of processors. Grid cells on the boundary of the image
plane are extended to infinity (dotted lines). Since the boundary cells covered more physical
space, their screen space allocation is reduced. The red circle is the screen space projection
of an object which will be attached to partitions 1,2,8, and 9.

into the larger research question of finding a balance between statically and dynamically

load balancing for both distribution and performance.

4.4.2 Parallel Loading of Scene Objects

A significant bottleneck for rendering massive models is the sheer amount of data that

must be read from disk. In order to reduce the time spent by the renderer in I/O, we need to

parallelize the loading of scene objects. Most file formats, and with RIB files in particular,

are not conducive to reading from multiple threads. Scene description files (a scene file

is one that includes both graphics state and geometry) are typically structured in a hier-

archical manner such that the position and appearance are declared prior to the geometry

declaration. Some formats (such as RIB) allow for the scene description to be split amongst

multiple files, each containing stand-along graphics state and geometry. While these files

may be read from a separate thread, the main file which contains the entire graphics state

remains single-threaded. Additionally, we want to perform some inline preprocessing such

47

as spatially partitioning large compound geometry objects or separating disconnected ge-

ometry that has been grouped into a single entity. These changes reduce the I/O load at

later stages of rendering and increase the probability that data might not be loaded due to

occlusion. In general we are assuming that we have a write once, read many model of data

I/O such that any preprocessing that is done on the first read will be of benefit to any other

read (render) in the future. Performing these steps on first read allows us to parallelize

the processing of the geometry. Since we defer loading of the actual geometry until it is

necessary to be rendered, these steps allow us to parallelize subsequent file I/O.

On a server with M cores, the data server runs a single “read” thread, and M-1 pro-

cessing threads. The scene data is parsed by the read thread and proceeds through the scene

description gathering graphics state, e.g., object to world transforms, texture coordinates,

color, opacity, etc. When the parser identifies a geometry declaration, the declaration is

buffered into memory and placed into a queue along with the current active state. The

read thread continues in this manner until the entire scene description is processed. The

next available processing thread pops the topmost geometry declaration from the queue

and parses the geometry type. Depending on the type of geometry, several different types

of processing can occur.

• If the processed geometry is of a singleton type, e.g., quadrics (spheres, cones, ...),

bilinear patch, or a single polygon, we compute the bounding box and the starting

and ending byte offsets into the file.

• For compound objects such as polygon or patch meshes, we load the vertices and

edges into a graph data structure and run a connected components algorithm [7]. We

take special care in preparing the data for the connected components algorithm to en-

sure that duplicate vertices are removed and that any attributes (colors, normals, etc.)

and their mappings (constant, face, vertex) are preserved. Then, for each connected

48

FIG. 4.2. Grid for loading massive models.

component, we export a new file of the geometry and its attributes. The bounding

box and byte offsets are then computed as above. When all of the components have

been written, we replace the geometry definition in the original file with references

to the new files containing the partitioned geometry.

• For a single massive compound mesh, i.e., a volumetric dataset, we first stochasti-

cally read approximately 5% of the vertices to estimate the bounds of the geometry.

Once we’ve estimated the bounds, the mesh is subdivided into a grid. The grid’s cell

size is calculated such that for a uniform distribution of vertices, the number in each

grid cell is below a user-defined threshold. The space exterior of the grid is divided

into 26 cells as defined by infinite planes on each of the grid’s faces as shown in Fig-

ure 4.2. The geometry is then read again, and the vertices, faces, and attributes are

streamed into separate files corresponding to the geometry’s overlapping grid cell. If

a grid cell exceeds the size threshold, this process is repeated for the offending grid

cells. In this iteration, though we have complete knowledge of the bounds and the

49

number of items in the cell, and those values can guide the second partitioning. The

original dataset is replaced with references to the new partitioned data, and we then

run the process for compound objects listed above for each of the new files.

Regardless of the method by which the geometric objects are processed, in the end we have

a Shape_Proxy object. A Shape_Proxy contains all the state information necessary to load

the object on demand.

4.4.3 Distribution of Scene Objects

After a proxy object is instantiated, its screen space footprint is computed. For each

grid cell partition of the image plane that it overlaps, the partition identifiers are added to

the proxy object (Figure 4.1). For those objects whose projection falls outside of the image

plane, their bounds are mapped to the closest edge and placed into the appropriate boundary

cell partition. The object is then serialized and broadcast to the render servers.

The render servers deserialize the objects and add the object into a Bounding Volume

Hierarchy (BVH). A BVH is an acceleration structure that reduces the cost of ray object

intersection testing by first testing the rays against an object that is cheaper to test and only

then testing the full object if the ray intersects the simpler object first. There are many

different constructors for BVHs [3, 37, 83, 84], for this project we use a modified version

of the Approximate Agglomerative Clustering (AAC) builder [33]. The AAC builder is

fast, tunable, and has ray intersection performance that is comparable to the current state of

the art. The modifications that were made to the builder were to drastically reduce the size

of the intermediary data structures used by the algorithm. As the render servers deserialize

the proxy objects, they are added into the AAC builder.

If the collective size of the proxy objects exceeds 50% of the available memory on a

render server, the server temporarily stops accepting broadcasts and runs the AAC builder

50

to generate an intermediate BVH. We then traverse the BVH looking for nodes in the hier-

archy that exist wholly on a distant5 render server or servers. At this point, we prune the

hierarchy, generating a new proxy object with the current bounds and partition identifiers.

This node is added into the AAC builder while removing all of the pruned objects. We then

re-enable receiving broadcasts and continue operating as before.

4.4.4 Communication Layer

We use the socket library ZeroMQ [4] as the basis for the communication layer. Each

render server consists of a single asynchronous receive socket (in ZeroMQ terminology,

a ROUTER socket) and an asynchronous send socket (a DEALER socket) per connected

peer. As stated earlier, at the start of rendering, every render server has only a single

connection with the data server node.

Each message has two parts, an envelope and a payload. The envelope consists of the

identifier of the sending server, a message type, and the size of the payload. We use the

size field to allocate a buffer large enough to hold the payload for deserialization. When a

render server receives a message on the ROUTER socket, it parses the envelope and creates

the DEALER peer socket if it currently does not exist. The size field is compared to the

current receive buffer and the buffer is reallocated if it is too small. The payload is then

received and handled based on the message type where the appropriate deserialization can

occur. The system has the ability to remove inactive sockets based on either a timeout or on

a fixed-size queue of peers. We use the queue if we need to set a hard limit on the maximum

number of open sockets on a rendering server, but with a small queue size, the system will

aggressively close sockets such that a significant overhead is incurred in closing and re-

opening sockets. Figure 4.3 shows the performance drop off as a function of the size of the

5As each render server has all the information to compute the partitions of every other server, we compute
the distance as the farthest servers in reference to the screen space partition.

51

FIG. 4.3. The left image shows ZeroMQ scaling with message size between two 10GigE
connected nodes. The right image shows performance thrashing as a function of the maxi-
mum number of connected peers. We broadcast 16k message from 32 nodes round robin.

queue. As shown in the figure, as the queue size gets smaller the system begins to thrash

on opening and closing sockets leading to a large drop in total message bandwidth.

4.4.5 Rendering

For a render server with M cores, we launch M-1 rendering threads, with the main

thread handling all communication to the data server and the peers. Each of the rendering

threads is given a small bucket of pixels (typically 16 x 16, but under user control) to render.

Each thread traces a primary ray6 through a pixel and into the scene.

4.4.5.1 Recursive Ray Tracing For the recursive ray tracing algorithm, all of the

primary rays begin and end within the domain of the render server. The distributed nature

of the algorithm begins when the secondary rays are generated. As the ray traverses the

BVH hierarchy, several different behaviors can occur. See Section 4.1 for an overview of

6Without loss of generality we can say “ray”, typically we are tracing multiple rays per pixel to reduce
variance.

52

FIG. 4.4. Geometry Request Sequencing. As each rendering thread intersects a local BVH,
a message is sent to the data server requesting the full geometry. The request is handed
to a processing thread on the data server that loads the geometry and sends it back to the
requesting server.

53

the algorithm. First, if the intersected node is an intermediate one, we recursively depth-

first trace into the children, starting with the child closest to the ray origin. If the node is

a leaf, the behavior depends on whether the responsibility for that BVH node is with this

render server. If the BVH node resides on this server, we transmit the information from the

proxy object back to the data server and wait for the response. If the node is a compound

object, the response will be a second-level BVH hierarchy that gets stored with the proxy

object. See Figure 4.4 for a representation of the load request sequencing. We then continue

recursively tracing into the second level hierarchy. If the data server response is a simple

primitive, we test the ray against the primitive, and if it is a hit, we compute the shading

information, update the color and opacity for the ray, and generate the shadow rays and any

other secondary rays required by the shading material.

If the leaf node resides on a different render server, than the ray is added to a queue

for that server. Unlike the Hyperion renderer [21], which bins all rays into one of six

cardinal directions and then processes them in groups, we directly transmit groups of rays

to the server where the data resides. The algorithm continues in this manner until all of

the primary rays have been generated and traced. There is one aspect of the algorithm

that has not been discussed yet, and that is the treatment of shadow rays. Light sources

have the potential to be a massive ray sink, because, for each surface intersection point we

trace shadow rays to the light source to test for visibility. See Figure 4.5 for a visualization

of shadow rays. For this reason, we treat light sources differently from other geometry

sources and distribute the lights and any associated geometry to all of the render servers.

When tracing a shadow ray, we first try directly loading any intervening geometry on the

current render server, even if the geometry is the responsibility of another server. If the

intervening geometry is too heavy to load on the current server, we defer the evaluation of

shadow rays and handle them with the other secondary rays. Depending on the number of

lights, the majority of light sources will be outside the domain of a render server.

54

Algorithm 4.1 Algorithm for distributed recursive ray tracing.

For each thread:
For each pixel in bucket:
Generate primary ray through the pixel
Trace ray into BVH
While ray intersects BVH nodes:
If BVH node is allocated to this render server:
If node is a leaf:
Send proxy information to data server
If node is a compound primitive:

Receive 2nd level BVH hierarchy
Trace into children

If node is a simple primitive
Receive primitive information
Test ray against primitive
If ray hits primitive:
Shade
Generate shadow and secondary rays
Continue tracing with generated rays

If node is intermediary node:
Test ray against each of the children

If BVH node is not allocated to this render server:
Trace ray until node is a leaf
Add to queue for distant render node

55

FIG. 4.5. Light sources as a ray sink. The four bundles of rays highlighted in red are
shadow rays to different light sources.

Once a render thread has exhausted all of the primary rays for its current bucket, it

pulls ray packets from remote servers and processes them based on the packet type. If

the ray packet contains secondary rays to trace, then those rays are extracted from the

packet and traced using the algorithm described above. If a ray terminates within a thread’s

domain, the color values for the original ray are updated with the color value for this ray,

and then placed in a queue for transmission back to the originating server. If the packet

contains rays that have terminated and are being returned to the server, then we update the

color and opacity of the originating ray. Once all the spawned secondary rays have returned

for the originating ray, if that ray began on another server, the ray is added to a queue to be

returned. If the ray originated on the current server, then once all of the secondary rays have

terminated and returned, the final color from the ray is used to update the appropriate pixels

in the image plane. See Figure 4.6 for an example of the message passing and sequencing

for the algorithm.

If the renderer were to wait for the remote requests to finish before generating the

56

FIG. 4.6. Parallel Rendering Sequencing. This figure depicts the sequencing for a three
server system. Threads in each server trace primary rays (red), and upon an intersection
with a remote BVH, the ray is placed into the queue for that server. Once the primary
rays are exhausted, the server pulls ray requests from a remote server queue (heavy black
arrows), and begins tracing secondary rays (blue). This is repeated for each remote server.
The server continues to pull rays from the remote servers round-robin until the number of
in-flight rays falls below a threshold, then primary ray tracing is restarted.

57

FIG. 4.7. Performance versus percentage of outstanding primary rays. Under heavy load,
the renderer will generate a new set of primary rays when the number of pending primary
rays falls below a threshold. In the image, 0% means the renderer waits until all of the
primary rays have returned, and 100% means the renderer generates all of the primary rays
for its domain.

next buckets worth of primary rays, the system would experience starvation. To minimize

starvation, each render server continuously polls for incoming messages, and when the

queue is empty, the renderer initiates processing of the primary rays for the next set of

buckets. As the system progresses beyond the initial set of buckets, the probability of

an empty message queue approaches zero. At that point, a second strategy is employed.

When the number of active primary rays for the renderer falls below a certain threshold,

the renderer initiates primary ray generation for the next bucket. After a series of small

experiments (see Figure 4.7), it was determined that a threshold of 30% provided the best

tradeoff between performance and memory consumption.

4.4.5.2 BDPT The distributed version of the bidirectional path tracing algorithm

is implemented similarly to 4.1 but with a few key differences. First, recall that the BDPT

58

algorithm traces individual rays from the camera and from each light through the scene,

bouncing through surface interactions until they terminate. Then the vertices from the

camera path are connected to the vertices from a light path, and the color contribution is

accumulated. There are two main differences as to how the rays are propagated through the

system. First, when a ray intersects a surface, instead of generating the shadow rays and all

of the secondary rays, the renderer generates a single secondary ray based on the scattering

properties of the surface. The second change is that the renderer does not accumulate the

color from the rays, but instead accumulates the vertices generated by the ray’s interactions

with the scene objects. The algorithm then proceeds through three different phases:

1. The renderer generates all of the initial camera subpaths for a bucket, traces them

through the server’s domain following single scattering events, and places any ray

that leaves the domain into an outgoing queue.

2. The renderer generates the initial rays for the light subpaths. Because the number of

lights is variable per scene, as is the number of samples used per light, the renderer

will generate a fixed minimum number of rays rather than a complete set for all

of the primary rays, a number which could easily overwhelm the system. For the

minimum, the renderer will generate at least as many rays as there were primary

rays. However, there will generally be several times that number. Since we have only

minimal duplication of geometry across servers, and the initial partition is optimized

for tracing of primary rays, there is a large communication cost for tracing the light

subpaths. In the San Miguel dataset, the render server responsible for the domain

labeled one (see Figure 4.8) begins tracing light rays from the light source in domain

seven, each path from the light that intersects the geometry in the alcove requires

communication. We trace those rays as in step one above.

3. As we receive back the initial camera and light subpaths, the renderer generates the

59

1 2 3 4

5 6 7 8

FIG. 4.8. Overview of communication cost in BDPT. When the server for region 1 needs
to generate light paths for BDPT, the first intersection point will almost be guaranteed to
intersect geometry owned by a different server and therefore require communication

rays that connect the vertices between the subpaths and traces those rays as above.

4. When the rays that connect the camera and light subpaths are returned, we accumu-

late the color value along the connected subpaths.

5. Steps 2-4 are repeated until all of the light subpaths have been generated for all of

the camera subpaths.

In between each of the steps 1-4 above, the renderer receives and traces the subpaths

requested from the other render servers as described in 4.4.5.1.

4.5 Results

When evaluating a rendering algorithm, there are two main characteristics that the

user wants to know about: what is its feature set, and how quickly can it render a scene?

For this dissertation, we wanted to evaluate our renderer on two additional criteria: what is

its capability, and what is its scalability? For capability, we want to know if it can handle

60

massive datasets as designed, and for scalability we want to know how our performance

scales as more render servers are added to the system.

The hardware used for testing is part of the Howard Hughes Medical Institute at

Janelia Farm’s compute cluster consisting of servers interconnected with 10Gbit Ether-

net. Each node in the system consists of dual 2.7 GHz Intel Sandy Bridge (E5-2680) with

eight cores per CPU and 32 GB of memory per node.

For testing we used three models, San Miguel, the UNC Power Plant, and a model of

the Boeing 777. By modern standards, neither San Miguel or the Power Plant are consid-

ered massive, but they allow us to rapidly test for scalability and communication costs using

both recursive ray tracing and BDPT. Due to the size of the Boeing model, we were unable

to load it into any modeling program to properly set up interior lighting for a BDPT test.

Table 4.1 shows model statistics pre and post partitioning including the memory footprint

for the loaded models.

Model Polygons Objects Memory Proxies Partitioned Proxies Memory

(M) (GB) Created/Loaded Objects Created/Loaded (GB)

San Miguel 6.5 5372 1.7 5356/5339 216765 211405/191565 1.8

UNC Power

Plant

Exterior
12.7 29 2.93 22/21 87175

102471/91871 2.87

Interior 92807/18803 1.11

Boeing 777 420 13672 28.3 13665/12250 706382 706345/119954 18.2

Table 4.1. Model statistics.

We first compare threaded and distributed scaling using the San Miguel and the Power

Plant models. Since we can fit both of these models on a single node of our target archi-

tecture, we can compare the effect communication has on scaling with the same number of

cores.

Figure 4.9 compares single node versus distributed performance. As expected, there

is a significant drop in performance as we add communication to the rendering process. As

61

FIG. 4.9. Comparison of threaded versus distributed rendering for the same number of
cores at four samples per pixel. In the threaded cases, we do not achieve linear speedup
due to dynamic loading of geometry. While the speedup curves for the Power Plant are
nearly identical for the original versus partitioned, the partitioned version was ~20% faster.

we increase the number of servers while holding the total core count constant, performance

degrades due to the additional communication. In comparing the scaling of the San Miguel

and Power Plant models, even though the Power Plant model is more complex (12 million

versus four million polygons), the heavier occlusion reduces the amount of communication

necessary to load the parts of the model from the server.

Figure 4.10 shows the scaling for our three models as we increase the number of

servers. In order to ensure the servers had work to fully measure scaling, we increased the

samples per pixel to 256. As the number of servers increase, in this particular hardware

configuration the number of cores also doubles. As shown in Figure 4.9, our single node

62

FIG. 4.10. Scaling for San Miguel (6.5 million polygons), the UNC Power Plant (12.7
million polygons), and the Boeing 777 (420 million polygons).

63

results do not exhibit linear scaling and performance decreases with the number of nodes.

The plots in Figure 4.10 show that as more servers are added, our scaling increases sub-

linearly but continuously through the maximum number of servers. Theoretically, for some

large number of servers the amount of communication between nodes will dominate the

entire rendering process and scaling will halt, but the trends amongst the data sets and

number of nodes tested do not indicate where that would occur. In the Boeing model, the

speedup is dominated by I/O. With so many individual objects that require a read from disk,

the master server that handles all the file reads becomes the bottleneck.

With both the Power Plant and Boeing models, the static partitioning of the data leads

to an imbalance of work amongst the servers. For the Boeing image, the server(s) assigned

to the upper left of the image have only a small amount of or no geometry to process and

thus remain idle for the majority of rendering. With the Power Plant image, the opposite is

true: the servers assigned the area over the main power plant building handle the majority

of the rendering. This imbalance could be remedied by allowing the servers to dynamically

update their region of influence since all servers know about the distribution of objects.

Figure 4.11 shows scaling when using BDPT. As shown in Figure 4.8, the light paths

generated for a particular server are nearly guaranteed to be communicated to a another

server that handles the geometry surrounding a particular light source. As seen in the

performance plots, the extra communication has a dramatic impact on scaling. For the San

Miguel model, the increase in scaling from two servers to 16 is approximately two. This

is due to the large number of light sources that require communication to nearly all of the

servers for the light paths. The Power Plant model fares slightly better as there are only

three light sources in this scene (above the camera, above the stairs on the left, and halfway

down the corridor.

The final dataset, Figure 4.12, shows performance scaling for a test case using 36

replicated models of the Boeing 777. The geometry files for the single Boeing model are

64

FIG. 4.11. Scaling for San Miguel and the UNC Power Plant using BDPT.

exceptionally large and require nearly 50GB of disk space. To limit the total impact on the

file system, we modified the code so that we could use references in the RIB scene file, but

the code treats each instantiation as if it were a separate set of data files. As shown in the

performance plot, we achieve a continuous speedup out through 32 nodes.

65

FIG. 4.12. Scaling for 36 replicated Boeing 777 models. The total polygon count exceeds
15 billion.

66

Chapter 5

DEFERRED COMMUNICATION AND GEOMETRY

EVICTION

When rendering models of any significant size, out-of-core techniques are necessary

for several reasons. First, the scene or model is too large to be loaded into the memory

(monolithic or distributed) of the rendering system. Second, the depth complexity of the

scene is deep. We define the depth complexity as the number of primitives hit by a single

ray if it were to traverse the bounds of the entire scene. When a scene has high depth

complexity as shown in Figure 5.1, only those objects closest to the camera would need to

FIG. 5.1. Rendering the Figure on the left only requires a tiny fraction of the total geometry
shown on the right to be loaded into memory. The point of view for the left image is from
the bottom center.

be loaded. If the windows in the buildings of Figure 5.1 were to be made transparent, or

67

even completely removed, the rendered complexity of the scene would increase, but a large

number of the buildings farther from the eye would still be occluded and therefore not need

to be loaded into memory.

In the previous chapter, we presented an algorithm for rendering massive scenes dis-

tributed across a collection of servers. The scene to be rendered uses spatial subdivision

to distribute the geometric elements among the servers. Up to the limit of a server’s mem-

ory, each server contains bounding box proxies for all groups of geometric elements in the

scene. When rendering begins, a server uses these proxies to decide whether to forward a

ray to a remote server responsible for the actual geometry based on the intersection results

with the local proxy element. As seen in Section 4.5, one issue with this approach is that

the amount of communication between the servers limits the scalability of the algorithm.

In this chapter, we present an innovative data structure designed to minimize the inter-

server communication by reusing previous intersection results from similar rays. This data

structure consists of ray intersection probabilities that we call a probability hit map (PHM).

We store the PHMs with the geometric proxies (Shape_Proxy class) in the scene. When

a ray intersects the proxy object, we look up the hit probability in the PHM based on the

intersection point and a discretization of the incoming ray direction over a hemisphere at

that point. If the hit probability is below the miss probability threshold, we reject the ray and

return a miss. If the ray is above the hit probability threshold we perform a second lookup

and return the average of the shading information computed from previous intersections. If

the probability lies in-between the two thresholds, we proceed with the algorithm described

in Section 4.4. The addition of this data structure increases the memory size of the proxy

object, but is smaller than the majority of geometric objects represented by the proxy. In

combination with evicting stale (least recently used) geometry, the PHMs reduce the total

communications load and, thus, allows for the rendering of even larger scenes.

68

FIG. 5.2. The structure of the probability hit map

5.1 Probability Hit Map

The probability hit map is similar in structure to a cube map [32]. In cube mapping, a

cube is placed around an object, and the scene is projected onto the six faces of the cube. At

render time, the object generates a ray (usually an incoming eye ray reflected about the sur-

face normal), computes the intersection point on a face, and uses those coordinates to look

up the value stored in the texture element (texel). Additionally, the PHM has similarities

to light field rendering and the Lumigraph [30, 57]. The main difference in the structure of

the PHM and the light field work is that the light field authors discretize ray directions over

the entire face of the cube while the PHM discretizes them over each texel. The probability

hit map is structured as a low-resolution cube map, but each texel stores a discretization

of incoming ray direction over a local hemisphere. Figure 5.2 shows a visualization of the

PHM.

The PHM is associated with the proxy objects that represent geometry in the scene.

When a ray traverses the scene and intersects a proxy, we determine the face that was hit

69

and discretize the ray’s direction over the hemisphere normal to the face. The hit prob-

ability is accessed and compared against a bimodal threshold distribution. If the returned

probability is lower than the miss probability threshold the ray is considered to have missed

the geometry represented by the proxy. Similarly, if the returned value is higher than the

hit probability threshold, the ray is considered to have hit the underlying geometry. If the

returned value is in-between the two values then the algorithm proceeds as before with one

difference. When the ray returns from intersection testing the underlying geometry, the

PHM is updated and the probability for that ray direction-texel pair is recomputed. Upon

a hit, the shading information for the ray direction-texel pair is updated by averaging the

results returned with the ray. In the initial implementation, the shading information was

replaced by the value from the last ray, but that resulted in significant variance, particularly

when the underlying model had large variation in color mapping and normal directions.

We use the PHM in two different modes, but before we can describe those modes we

first need to cover some background in Monte Carlo integration.

In ray tracing, we are trying to estimate the illumination at a point over the space of

all light transport paths [49]. We do this by applying Monte Carlo techniques to estimate

the following integral (following the derivation in [34]):

I =
ˆ

Φ

f (x)dx, (5.1)

where x ∈ Φ and f : Φ→ R is a scalar function. For ray tracing, I is the pixel intensity to

be computed, f (x) is the energy carried by the photons along x, and Φ is the space of light

paths. Monte Carlo integration [61] is a numerical integration method that can provide

an approximate solution to such an integral. The Monte Carlo method states that given

a random variable f (x)
p(x) with probability density function p(x) and a set of independent

samples x1,x2, . . . ,xn ∈ X, the expected value of the random variable is:

70

E [f (X)] =

ˆ

Φ

f (x) p(x)dx, (5.2)

By reformulating our original integral, we can compute its estimate as follows:

E
[

f (X)

p(X)

]
=

ˆ

Φ

f (x)
p(x)

p(x)dx =

ˆ
f (x)dx = I≈ 1

N

N

∑
i=1

f (xi)

p(xi)
(5.3)

A Monte Carlo estimator with N samples, fN (X), is consistent if the estimate con-

verges to the correct solution with an infinite number of samples. Therefore, a consistent

estimator satisfies:

lim
N→∞

Pr

ˆ
Φ

f (x)dx− fN (X) = 0

= 1, (5.4)

where Pr [F] is the probability that F is true. An inconsistent estimator is one that does not

satisfy equation 5.4.

A Monte Carlo estimator fN (X) is unbiased if the expected value of the estimate is

equal to the correct value:

E [fN (X)]− I = 0 (5.5)

A biased estimator is one that never satisfies equation 5.5. It is generally preferred to

have an unbiased estimator in Monte Carlo rendering, it is not uncommon to use a biased

estimator to improve speed or reduce variance.

With this background we can now describe two modes for the PHM, consistent and

inconsistent. Because of the nature of the PHM both of these modes are biased estimators of

the actual lighting solution. Kirk and Arvo [50] described a method for unbiased sampling

by using one set of samples to compute the value of the integral we are estimating, and

71

a second set of samples to update the estimate or compute the variance. In that vein, we

used a biased strategy for the probabilistic continuation of ray paths when the value in a

cell of the PHM has moved into the miss/hit threshold ranges. At that point, for every ray

that passes through the thresholded cell, we generate a random number and test against a

threshold. If the value exceeds the threshold, we generate a random ray through the cell,

run the intersection test, and update the PHM. In the second mode, once the value in the

cell has triggered one of the miss/hit thresholds, we use the returned PHM value for all

subsequent rays. When a majority of the cells have triggered the threshold, we evict the

geometry.

Each method has its own set of advantages. The consistent method will eventually

converge to the correct average value for a PHM cell. But more importantly, if a PHM cell

contains a thin emitter that has been missed by the initial samples, with enough samples

the consistent method will eventually discover the emitter, and force the PHM to use the

methods from the previous chapter. The inconsistent method will never discover geometry

missed in the initial sampling. However, the inconsistent method allows us to evict geom-

etry once a majority of the cells have exceeded the threshold value allowing the ability to

render larger models.

These new additions to the proxy objects increases its memory footprint dramatically.

For the smallest configuration of a PHM, nine texels per face (a three-by-three layout) and

12 hemispherical cells for directions, each proxy will require at least an additional 10,000

bytes. And while the PHM is memory intensive, it is fairly simple computationally. If

we compare the PHM with other intersection reduction techniques such as a k-DOP (k-

sided Discrete Oriented Polytope. A bounding box is a 3-DOP), the PHM has a number of

advantages:

1. A k-DOP is computationally expensive. A k-DOP first tests against the proxy bound-

ing box, and upon a hit then checks the ray against each of the k slabs. The PHM

72

simply needs to retrieve the value associated with the direction of the ray and the hit

point.

2. Since a k-DOP is simply a convex hull, an object with holes, i.e. an open cylinder or

a toroidal shape, will still have a need for a full intersection testing, while the PHM

can capture ray misses due to the holes.

3. A k-DOP has limited scalability. There is a point with a k-DOP where additional

planes provide no additional useful information, whereas a PHM can scale with an

increase in hemisphere and hit point sampling.

4. If the k-DOP is intersected, we still have to communicate the ray to the remote server

while the PHM will only probabilistically communicate the ray, with the majority of

the time returning the averaged result.

5.2 Initialization

While most of the components of our target models are still heavier in memory than

a PHM when fully instantiated, the memory footprint of the PHM places a burden when

rendering many small or simple objects. To address this problem, all proxy objects respond

to probability queries, but only proxy objects with large geometry will have a PHM. For

those proxies without a PHM, they will return the value 0.5 for all probability queries as

this forces the renderer to use the original algorithm. The renderer will not allow setting

of the miss or hit probability values above or below 0.5 respectively, guaranteeing that the

original proxy will behave as in Section 4.4. As geometry is read from disk, simple objects

such as quadric shapes or single polygons and patches are instanced without a PHM, and

aggregate objects are instantiated with a PHM.

The initial PHM for an object is seeded with a weighted probability of 0.5. Using a

73

weighted value reduces the variance in the probability of a hit/miss in the early phase of

rendering. The initial weight chosen was 100 samples as that requires a minimum of an

additional 800 samples of either pure hit or pure miss before the hit probability was above

0.9 or the miss probability below 0.1. Using a smaller number of initial samples resulted

in too much variance in the final image, and higher values only converged near the end of

a render.

5.3 Dynamic Updating

As rays are traced through the scene, the PHM for a particular proxy is updated in

several places: the true proxy that contains the geometry, and its representatives on the

other servers. As stated earlier, when a ray is forced to intersect the underlying geometry

of a proxy, the PHM is updated with the return hit or miss status. For the proxy that lies

outside a servers domain of influence, its PHM is updated from rays originating on this

server, and secondary or shadow rays that are passed to the server. As a consequence, the

representative proxies’ PHM will drift in value from the proxy that controls the geometry

(master proxy). When the master proxy finishes a bucket, it will send an updated PHM

back with any rays that intersected the proxy. By attaching the updated PHM to the return

rays, communication is limited to only those servers that are accessing the PHM.

5.4 Results

To test the validity of the probability hit map, we used two data sets, San Miguel and

the two Boeing 777 scene from the previous chapter. Since the PHM is designed to reduce

communication of rays between servers, we made the PHM tunable for ray type and invis-

ible to primary rays. In the current design, primary rays are traced only on the originating

server, therefore, using the PHM for primary rays does not reduce the communication, and

74

FIG. 5.3. Comparison of San Miguel rendered with and without the PHM. The leftmost
figure is the original image from Chapter 3. The right image is rendered using the PHM,
and the bottom image plots the difference..

simply reduces the visual quality of the rendered image. For the following results, we used

16 primary rays per pixel, one shadow ray for distant light sources, and between 10 and

100 rays for area lights.

Figure 5.3 compares the San Miguel scene rendered with and without the PHM. One

interesting side effect of the separation of disconnected objects discussed in Section 4.4.2

is that, after running the connected components algorithm, more than 90% of the geometry

falls below the large object threshold that was set for attaching a PHM to the proxy. For this

test, we reduced the threshold so that, in addition to the building being PHM enabled, the

75

FIG. 5.4. Comparison of PHM enabled San Miguel. The inconsistent algorithm is on the
left and the difference compared to Figure 5.3 is on the right.

FIG. 5.5. Comparison of PHM performance for San Miguel versus the standard algorithm
from Chapter 3.

trees, tables, and chairs are also enabled, but not the dinnerware on the tables. As shown

in the figure, the main visual impact of the PHM is in the sharpness of the shadows. Since

there is virtually no reflection in the scene, the PHM only has an effect upon the shadow

rays.

Figure 5.4 compares the results of using the two different algorithms, consistent and

inconsistent. The main difference between the images is the popping of highlights and

shadows in the inconsistent algorithm, most notably on the small shadow glitch on the

central planter and in the noisy lighting on the upper walls visible through the trees.

Finally, Figure 5.5 compares the performance for the PHM-enabled San Miguel scene

76

FIG. 5.6. The single 777 scene using PHM. The image on the right shows a zoomed in
view of the original (top) and the PHM enabled version (bottom). The bottom left image
plots performance and the bottom right show the difference.

versus the scaling results from Chapter 3. As expected, the performance gains from the

PHM-enabled scene become apparent as the number of servers increase. Additionally, the

PHM-enabled scene had an approximately 5% decrease in its memory footprint overall, and

a 7.3% reduction in the total number of rays transmitted for the largest server configuration.

The memory reduction is due to the PHM occluding geometry along the ray that would

have been traversed and loaded without the PHM. We see additional performance gains

due to a reduction in the total number of intersection tests once the PHM is active. For

the inconsistent version of the algorithm, there is only a 1.6% reduction in memory once

geometry starts to be evicted. The number is low due to the current implementation only

evicting geometry once all the cells have triggered the miss/hit thresholds.

For the two Boeing 777 scenarios, after partitioning, approximately 30% of the ob-

jects are PHM enabled. For the single model scene (see Figure 5.6) with the consistent

77

algorithm, the memory footprint decreased by 3.8%, and for the 32 server configuration

there was a 9.4% reduction in rays transmitted. With the inconsistent version, less than one

percent of the geometry is evicted with a 12.3% reduction in total ray traffic. For the 36

model scene using the consistent algorithm, the memory footprint decreased by 8.4% with

a total reduction in ray traffic of 15.5%. For the inconsistent version, approximately one

percent of the geometry was evicted with a total reduction in communication of 18.2%.

FIG. 5.7. Scaling for 36 Boeing models with PHM. We did not include a difference image
as the results are indistinguishable from the original at the rendered resolution. See Figure
5.6 to see the difference between the PHM and original models.

78

Chapter 6

DESIGNING A RENDERING SYSTEM FOR MASSIVE

MODELS

Early in development, a software engineer needs to make a decision about the pri-

mary focus of their renderer, do we design for capability (feature set), or do we design for

performance? These decisions are not mutually exclusive, no one designs for feature set

and being slow, but they do affect the decisions made throughout the development of the

renderer. The commercial rendering systems Arnold [44], mental ray [46], and RenderMan

[43] all were initially designed for capability with subsequent releases adding new features

and improving the performance of existing ones. Other rendering systems such as OptiX

[42] and Embree [92], were designed to provide the highest possible performance from a

limited feature set. Later releases slowly added new capabilities, but these releases focused

on improving performance through algorithm improvements, or exploiting improved capa-

bilities of newly released hardware, e.g. improved CPU performance, an increase in GPU

capability, or new exotic hardware such as the Xeon Phi [45].

In the rendering system proposed for this dissertation, a different approach was taken:

design the renderer for massive models while retaining an advanced feature set akin to those

found in commercial renderers. This choice affected every design decision and implemen-

tation detail throughout the system. What is chosen to store, what to re-compute, and what

79

to communicate? How do we index into data structures whose element count can exceed

the size of an integer? Would the choice of a programming language and its surrounding

ecosystem make a difference in the ability to handle large models?

Throughout the development of this rendering system, the questions above and many

others were asked, analyzed, and answered in someway to facilitate the rendering of mas-

sive models. A set of the more important decisions made and their consequences are dis-

cussed in the sections below.

6.1 Choice of a programming language

The original design and implementation of a large model rendering system was in

the programming language Eiffel [62]. Eiffel was designed around the idea of provable

program correctness. While automatic provability is not currently feasible, Eiffel took

many steps in its design to give software engineers language features that codify their

assumptions about a class, a feature, and data elements. Collectively, these concepts are

called Design By Contract. Figure 6.1 shows a brief example of the structure of an Eiffel

program. In Eiffel, require is a pre-condition for the execution of the feature/routine. It is

a contract to the caller of the routine that states that if these conditions hold, i.e., n is greater

than 0, then the feature guarantees that the post-conditions, the ensure clause, will also be

true. An invariant is a statement that must be true before a feature is called, and remains

true on exit. These features together have the effect of pushing the discovery of errors very

early into the design cycle, requiring less debugging further on.

Eiffel is also a garbage collected language like Java, thus freeing the programmer

from tracking the lifetime of objects. One of the first problems encounterd was that the

garbage collector had a large negative impact on performance as the number of threads

increased. The garbage collector uses a mark and sweep algorithm: starting from global

80

pointers in the heap, the algorithm follows all pointer references marking the objects as

valid. The second phase identifies all unmarked objects in the heap as garbage and col-

lects them for reallocation. In our algorithm, since objects could be shared across threads,

class

STACK [G]

feature -- create

make (n: INTEGER_32)

-- Allocate list with ‘n‘ items.

-- (‘n‘ may be zero for empty list.)

require

valid_number_of_items: n >= 0

ensure

correct_position: after

is_empty: is_empty

feature -- Access

has (v: like item): BOOLEAN

-- Does current include ‘v‘?

ensure

not_found_in_empty: Result implies not is_empty

item: G

-- Current item

require

not_off: not off

readable: readable

feature -- Measurement

count: INTEGER_32

-- Number of items.

ensure

count_non_negative: Result >= 0

...

invariant

-- from DISPENSER

readable_definition: readable = not is_empty

writable_definition: writable = not is_empty

-- from ACTIVE

writable_constraint: writable implies readable

empty_constraint: is_empty implies (not readable) and (

not writable)

FIG. 6.1. Eiffel-based implementation of a

stack data structure

the thread that invoked the garbage collec-

tor locked all the other threads until the col-

lector finished. And, the collector may be

invoked by each thread. We were able to

remove much of the penalty introduced by

the collector by explicitly marking the sec-

tions of code where it could run, thus de-

feating the purpose of not having to track

object lifetimes. The main decision point

on whether to continue developing in Eif-

fel came when testing the performance of

loading ten million objects from disk and

found a 20 times speedup when using a file

reader written in C++.

The code base was converted to

C++11 [1] over a period of eight weeks.

Through custom macros and helper func-

tions the system retained most of the pre-

and post-conditions from the original Eiffel

code base. The system now has the bene-

fits that come from a high-performance lan-

guage such as C++, but with a higher cost

in development time and debugging. As in

81

all C++ code, we now must explicitly track

the lifetime of objects to prevent memory leaking, but we minimize the impact using C++

smart pointers.

6.2 Smart Pointers

Smart pointers are one potential implementation of reference counting. A smart

pointer stores a counter that is incremented and decremented as the object is accessed and

released. When the last reference to the object is removed, the counter goes to zero and

the object is deleted. The C++ std::shared_ptr is one variant of a non-intrusive reference

counter, where the counter is associated with the accessor and not with the object itself. The

standard implementation of a shared pointer is 16 bytes, eight bytes for the actual pointer

and eight bytes for a pointer to a control block that stores the counter among other elements.

The other type of reference counting, an intrusive pointer, stores the counter with the class

and the intrusive pointer itself has no overhead, it is the same size as a normal pointer.

For this system, we chose to use an intrusive pointer for any class that was to be

shared. This design decision was driven by one simple issue, the memory overhead of

the non-intrusive smart pointer. The system described in this dissertation relies heavily on

smart pointers to reduce the overhead on the programmer to track object lifetimes. As a

consequence, there are significantly more smart pointers than actual objects. For example,

as described in Section 4.4.3, geometry objects are sorted into grid cells based on their

screen space footprint, and a reference to the object is stored in each grid cell it overlaps.

When a one billion element model is sorted into grid cells and if it has an overlap of two

cells per element, then we need an additional eight gigabytes1 of memory to store the

reference to the counter. In practical terms, the overlap of the grid cells is dependent on the

1Throughout this section when referring to a gigabyte we are using the IEC definition of 1 gigabyte as
109 or 1,000,000,000 bytes.

82

projected size of the geometry elements and their distribution, so the ratio of pointers to

objects may not be two, but is always greater than one. Testing over a number of different

scenes and camera positions, on average there was a 25% - 35% reduction in total allocated

memory by switching to an intrusive pointer. In Appendix A.1 is the definition of the C++

mixin class that is inherited by every class that is tracked through a smart pointer.

6.3 64-bit Indexing

One consequence of designing for large models is that eventually the number of ele-

ments that need to be addressed exceeds the capacity of a 32-bit word. This fact ripples

through the code base in that every variable that indexes into the model needs to be 64-bit.

A 32-bit integer can address approximately two billion elements, an unsigned 32-bit integer

can address four billion elements, and the model of the USS Yorktown in the recent movie,

Star Trek Beyond, exceeded 1.3 trillion polygons [20]. So, 64-bit integers are necessary

for indexing into large models. However, blindly converting all indices to 64-bit integers

can lead to memory explosion. In our renderer, we implement polygons in terms of the

Bilinear_Patch class. All of the polygons of a model defined in the input file as an archive2

will share the lists of points, colors, and normals. So, our Bilinear_Patch must use 64-bit

integers to index into the lists. Triangles, and quads with a degenerate point, are both rep-

resented by bilinear patches. When the parser encounters either a triangle or a degenerate

quad, it reorders the vertices to define the missing or degenerate vertex as the last element.

Since the offset to the starting reordered vertex is no greater than three (zero-based index-

ing of four elements), we use the smallest type available to us, uint8_t or a single byte.

For our hypothetical billion element model, if we assume the elements are polygons, this

optimization saved three gigabytes of memory.

2In RenderMan vernacular, these can either be Archives, or Procedural2 “DelayedReadArchive”

83

6.4 Data Structures

It is critical when designing a rendering system for large models that every considera-

tion is taken to optimize for memory consumption. In a typical ray tracer that is optimized

for performance, choices of computation versus memory are nearly always resolved by

storing a pre-computed value. For a large model renderer, the opposite is true; memory

is our most critical resource. A classic technique in ray tracing to reduce the number of

intersection tests is mail boxing. When an object spans multiple cells of a acceleration

structure, mail boxing is used to prevent the same ray from testing that object multiple

times. Each ray is assigned a unique identifier (typically an incrementing integer) that is

stored in an object’s mailbox. For each ray-object intersection test, the ray’s identifier is

compared against the value stored in the mailbox and the test is rejected if the two values

are the same. In a multi-threaded environment, where an object can be tested by multiple

rays simultaneously, one mailbox is required per thread. For our one billion element model

rendered with eight threads, the amount of memory used for the mailbox alone is 64 gi-

gabytes. Our system uses an acceleration structure that minimizes the need for multiple

intersections testing, but where necessary it simply retests the ray.

In C++, the first place a programmer looks for data structures is the Standard Tem-

plate Library (STL) [70]. The STL is a set of classes for C++ that provide many of the

fundamental programming elements used in modern software, i.e., lists, queues, maps, and

the algorithms that operate on them. After conversion from Eiffel, the initial updates of

the C++ code used std::vector as the base type for lists of points and other attributes, e.g.,

colors, normals, and texture coordinates. Initial testing proved that the STL data structures

were indeed robust and high performance. With large model testing, similar problems to

those with smart pointers became apparent. A typical implementation of std::vector stores

three values, a pointer to the actual data, the allocated size of the data (capacity), and the

84

number of elements (count), for a total of 24 bytes per vector. For our one billion element

model, if stored as a single archive, the rendering system allocated four vectors (points and

attributes) for the model, and pointers to those vectors for each element. If our model was

defined as one billion individual elements, for example, points in a particle system, the sys-

tem would allocate the four vectors per element along with the pointers to those elements.

The vectors were eventually replaced in the renderer with a custom vector-like class that

embeds the count and capacity in the class, and enables the use of intrusive pointers. In

the large model, single archive case, these is no savings in memory for the custom vector

versus using the standard vector, with the exception that we now have the convenience of

a smart pointer at no extra memory. In the one billion individual element case, we have a

savings of eight gigabytes since we no longer have to allocate the extra memory from the

vector overhead.

The last memory optimization applied to the data structures was to reorder elements

to improve compactness. Storage for basic C/C++ datatypes on an x86 processor have

alignment requirements: chars can start on any byte address, but everything else must

be self-aligned, two-byte types such as shorts must start on an even address, four-byte

types must start on an address divisible by four, and eight-byte types (longs, doubles, and

pointers) must start on an address divisible by eight. The reason is that this allows the

compiler to generate single instruction memory fetches for faster access. Some compilers

allow the use of a pragma, pack, to align the datatypes of a class/struct to a specified

boundary, typically one. On older processors, and under the right conditions on an x86,

unaligned datatypes generate an illegal instruction. It is illegal to pass unaligned structures

to modern vector instructions such as SSE or AVX.

When the compiler encounters elements in a class with different self-alignment re-

quirements, it will introduce padding between the elements to satisfy the alignment. By

rearranging the elements in a class, we can minimize the amount of padding between the

85

elements. Most compilers have a flag similar to clang’s -Wpadded which will issue a

warning whenever a class/struct is required to have padding, but it can be cumbersome to

identify the offending element when C++ inheritance is involved. Instead, we used two

different tools, pahole on Linux, and a python script, struct_layout, on OS X. These tools

not only identify where padding occurs in a class (including from inheritance), but can also

make suggestions on how to minimize the padding. Figure 6.2 shows the before and after

layout using struct_layout on one descendant of the Geometry class. Overall, these tools

reduced padding in the descendants of the Geometry class by 1-24 bytes, resulting in a

large memory reduction in a large model renders.

86

1 struct ::Bilinear_Patch [200 Bytes]
2 : [Geometry : 128] <base-class>
3 : [Shape : 64] <base-class>
4 : [Primitive : 40] <base-class>
5 0: [<fun_ptr>** : 8] _vptr$Primitive -- {cache-line 0}
6 : [Referenced<Primitive> : 4] <base-class>
7 : [atomic<int> : 4] _counter
8 : [base_atomic<int, int> : 4] <base-class>
9 : [aligned : 4] m_storage

10 8: [int : 4] value
11 --- 4 Bytes padding ---
12 : [intrusive_ptr<Transform> : 8] _object_to_world
13 16: [Transform* : 8] px
14 24: [long unsigned int : 8] _id
15 : [intrusive_ptr<Light> : 8] _area_light
16 32: [Light* : 8] px
17 : [Memory_Traits : 8] <base-class>
18 40: [<fun_ptr>** : 8] _vptr$Memory_Traits
19 : [Bit_Field : 1] _bool_flags
20 48: [unsigned char : 1] a
21 48: [unsigned char : 1] b
22 48: [unsigned char : 1] c
23 48: [unsigned char : 1] d
24 48: [unsigned char : 1] e
25 48: [unsigned char : 1] f
26 48: [unsigned char : 1] g
27 48: [unsigned char : 1] h
28 --- 1 Bytes padding ---
29 50: [unsigned short : 2] _bucket_id
30 52: [int : 4] _last_bucket_id
31 : [intrusive_ptr<Attribute_Wrapper> : 8] _attributes
32 56: [Attribute_Wrapper* : 8] px
33
34 ...
35
36 : [intrusive_ptr<Material> : 8] _material
37 120: [Material* : 8] px
38 128: [unsigned char : 1] _offset -- {cache-line 2}
39 --- 7 Bytes padding ---
40 : [intrusive_ptr<Real_Array> : 8] _coordinates
41 136: [Real_Array* : 8] px
42 144: [long unsigned int : 8] _index
43 152: [long unsigned int[4] : 32] _indices
44 : [Vector : 12] _p_error
45 184: [float : 4] x
46 188: [float : 4] y
47 192: [float : 4] z -- {cache-line 3}
48 --- 4 Bytes padding ---

FIG. 6.2. Structure Alignment. This is the output from running struct_layout on the Bilin-
ear_Patch class. Lines 11, 28, 56, and 65 show a total of 16 bytes of padding introduced
by type misalignment. By moving the variable _offset at line 56 to after line 64 we remove
the seven bytes of padding and reduce the final four padding bytes by one, for a savings of
eight bytes for each instance of this class.

87

Chapter 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

In this dissertation, we demonstrated two methods that advance the rendering of large

models, and the design choices made to implement them. Working under the assumption

that the models are large enough that moving across file systems is impractical, we demon-

strated an inline method of partitioning the models that reduces the in memory footprint

without increasing disk consumption. While the partitioning algorithm was designed to

improve the memory footprint of the models, it provided modest performance gains in

rendering as well.

We created a Reyes-style parallel micropolygon renderer and tested three different

algorithms for distributing the workload across threads. After analyzing the results of the

three algorithms, we created a forth algorithm that combined the best aspects of the original

three. Even though none of the algorithms worked well for all the scene types and geometry

configurations, the hybrid algorithm had the best performance under most conditions.

We presented a fully distributed, parallel implementation of a ray tracing system. One

bottleneck in this type of system is reading the scene description for a massive model.

The proposed system parallelized the processing, partitioning, and distribution of the scene

description as it is being loaded from data store. All objects in the scene are represented

88

by a proxy object, and, only when the proxy is intersected by a ray, is the data loaded.

Each server in the parallel system renders its portion of the scene, and, when rays intersect

objects outside of the server’s domain, the rays are queued and distributed directly to the

server responsible for the object. We showed that with this fully distributed architecture the

scaling increased with the number of servers, even for a 15 billion polygon model.

Next, with the high communication cost in the initial design, we needed to reduce

the total amount of data transmitted to and between the servers. We presented a unique

stochastic map that reduces the number of rays transmitted and scene objects loaded. The

map stores a probability of intersection over incoming ray directions at the location of

intersection on the proxy object. As rendering progresses, when a ray intersects the proxy

object, it is tested against the map and returns the average shading information with the ray

if the value for that ray direction is above or below a bimodal threshold. Otherwise, the ray

continues as previously described, and the map is updated by the returned value from the

ray. We showed that with this modification the scalability of the system increased at a cost

of additional variance in the result.

The final contribution is a discussion of the design decisions required to develop a

rendering system for large models. In particular, we showed how the choice of a program-

ming language can impact the overall performance of the system. Analysis of every aspect

of memory usage within such a system is crucial to handling very large models.

7.2 Future Work

While this dissertation presented a unique set of solutions to the problem of rendering

large models, there are still a number of interesting questions that we would like to address

in future work. Listed in no particular order of importance:

• What happens when the number of lights exceed the capacity of a render server?

89

We make the assumption that the lights can be replicated on every server to try to

minimize the light sink issue, but this methodology would break down with a scene

consisting of millions of lights, e.g., a particle system where every particle glows

or, if the light sources were attached to heavy geometry that consisted of millions of

polygons.

• How would tracing ray packets for primary and secondary distributed rays change

performance? Modern ray tracers [21, 92] bundle rays together to exploit coherence

between rays shot in a similar direction, called ray packeting. The issue is that sec-

ondary rays have almost no coherence. In the system proposed in this dissertation,

rays are queued for a particular server, implying that we could reorder the rays as

they arrive in the queue to be able to trace ray packets on the server containing the

geometry.

• A better method for updating PHM shading info. The current methodology for up-

dating the PHM is to average the results over the intersection information gathered

from ray that intersected a particular PHM cell. We believe that a better method is to

implement the ray interpolation methodologies from the light field papers [30, 57].

• We currently initialize the PHM with a fixed probability value. The value could

be improved by projecting the geometry onto the PHM during the initial parsing

and loading. By initializing the PHM in this manner, we may be able to reduce

communication further by deferring loading of the geometry.

90

Appendix A

SUPPORTING MATERIAL

A.1 Intrusive Pointer

Intrusive pointers are a version of a smart pointer where the reference count is included

in the object itself, rather than in the pointer (a C++ smart pointer). In our rendering system,

the class listed in A.1 is inherited by every class that should have a shared reference.

91

#ifndef _REFERENCED_H_
#define _REFERENCED_H_

#include <boost/atomic.hpp>
#include <boost/checked_delete.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/interprocess/detail/atomic.hpp>

/**
* Referenced.

**/

template< class T >
class Referenced
{
public:

// Initialization
Referenced(): _counter(0) {}

// Duplication
Referenced(Referenced const& c): _counter(0) {}
Referenced& operator=(Referenced const& c) { return *this; }

// Destruction
~Referenced() {}

// Access
boost::uint32_t ref_count() const { return _counter; }

boost::intrusive_ptr<T> self()
{ return boost::intrusive_ptr<T>((T*)this); }

boost::intrusive_ptr<const T> self() const
{ return boost::intrusive_ptr<const T>((T const*)this); }

// Inapplicable
friend void intrusive_ptr_add_ref(Referenced< T > const* s)
{

assert(s != 0);
s->_counter.fetch_add(1, boost::memory_order_relaxed);

}

friend void intrusive_ptr_release(Referenced< T > const* s)
{

assert(s != 0);
if (s->_counter.fetch_sub(1, boost::memory_order_release) == 1)
{

boost::atomic_thread_fence(boost::memory_order_acquire);
boost::checked_delete(static_cast< T const* >(s));

}
}

private:
///should be modifiable even from const intrusive_ptr objects
mutable boost::atomic< boost::uint32_t > _counter;

}; // end of class Referenced

#endif // _REFERENCED_H_

FIG. A.1. Mixin class for enabling intrusive pointers. Every class that is to be referenced
from a boost intrusive pointer inherits from this class.

92

REFERENCES

[1] I. J. S. 22. Information technology – Programming languages – C++. Technical

Report 4, ISO, Dec. 2014.

[2] A. T. Afra. Interactive Ray Tracing of Large Models Using Voxel Hierarchies. Com-

puter Graphics Forum, 31(1):75–88, 2012.

[3] T. Aila, T. Karras, and S. Laine. On Quality Metrics of Bounding Volume Hierarchies.

ACM Trans. Graph., 32(4), 2013.

[4] F. Akgul. ZeroMQ. Packt Publishing, 2013.

[5] A. A. Apodaca and L. Gritz. Advanced RenderMan: Creating CGI for Motion Picture.

Morgan Kaufmann Publishers Inc., 1999.

[6] M. A. Bolstad. Parallel methodologies for a micropolygon renderer. In Proceedings

of the 14th Eurographics Symposium on Parallel Graphics and Visualization, PGV

’14, pages 17–24, Aire-la-Ville, Switzerland, Switzerland, 2014. Eurographics Asso-

ciation.

[7] Boost. Boost C++ Libraries, 2016.

[8] T. Boubekeur and M. Alexa. Technical Section: Mesh Simplification by Stochastic

Sampling and Topological Clustering. Comput. Graph., 33(3):241–249, June 2009.

[9] Y. Chiang, R. Farias, C. Silva, and B. Wei. A unified infrastructure for parallel out-of-

core isosurface extraction and volume rendering of unstructured grids. In PVG ’01:

Proceedings of the IEEE 2001 symposium on parallel and large-data visualization

and graphic, pages 59–66. IEEE Press, 2001.

93

[10] Y. Chiang, C. Silva, and W. Schroeder. Interactive out-of-core isosurface extraction.

In VIS ’98: Proceedings of the conference on Visualization ’98, pages 167–174. IEEE

Computer Society Press, 1998.

[11] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. Planet-

Sized Batched Dynamic Adaptive Meshes (P-BDAM). In VIS ’03: Proceedings of the

14th IEEE Visualization 2003 (VIS’03), pages 1–20. IEEE Computer Society, 2003.

[12] P. Cignoni, F. Ganovelli, E. Gobbetti, F. Marton, F. Ponchio, and R. Scopigno. Adap-

tive tetrapuzzles: efficient out-of-core construction and visualization of gigantic mul-

tiresolution polygonal models. ACM Trans. Graph., 23(3):796–803, 2004.

[13] P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. External Memory Manage-

ment and Simplification of Huge Meshes. IEEE Transactions on Visualization and

Computer Graphics, 9(4):525–537, 2003.

[14] R. Cook. Stochastic sampling in computer graphics. ACM Trans. Graph., 5(1):51–72,

1986.

[15] R. Cook, L. Carpenter, and E. Catmull. The Reyes image rendering architecture. In

SIGGRAPH ’87: Proceedings of the 14th annual conference on Computer graphics

and interactive techniq, pages 95–102, New York, New York, USA, July 1987. ACM

Press.

[16] R. L. Cook, J. Halstead, M. Planck, and D. Ryu. Stochastic simplification of aggregate

detail. ACM Trans. Graph., 26(99):79–8, July 2007.

[17] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. GigaVoxels: ray-guided stream-

ing for efficient and detailed voxel rendering. In I3D ’09: Proceedings of the 2009

94

symposium on Interactive 3D graphics and games, page 15, New York, New York,

USA, Feb. 2009. ACM Request Permissions.

[18] H. Dammertz, J. Hanika, and A. Keller. Shallow bounding volume hierarchies for fast

SIMD ray tracing of incoherent rays. In EGSR ’08: Proceedings of the Nineteenth Eu-

rographics conference on Rendering, pages 1225–1233. Eurographics Association,

June 2008.

[19] M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Aldrich, and M. Mineev-

Weinstein. ROAMing terrain: real-time optimally adapting meshes. In VIS ’97:

Proceedings of the 8th conference on Visualization ’97, pages 81–88. IEEE Computer

Society Press, 1997.

[20] G. Edwards. Star Trek Beyond. Number 148. Cinefex, 2016.

[21] C. Eisenacher, G. Nichols, and A. Selle. Sorted deferred shading for production path

tracing. Computer Graphics, 2013.

[22] K. Fatahalian, E. Luong, S. Boulos, K. Akeley, W. R. Mark, and P. Hanrahan. Data-

parallel rasterization of micropolygons with defocus and motion blur. Proceedings of

the 1st ACM conference on High Performance Graphics - HPG ’09, page 59, 2009.

[23] M. Fisher, K. Fatahalian, S. Boulos, K. Akeley, W. R. Mark, and P. Hanrahan.

DiagSplit: Parallel, Crack-free, Adaptive Tesselation for Micropolygon Rendering.

ACM Transactions on Graphics, 28(5):1, Dec. 2009.

[24] M. Garland and P. Heckbert. Surface simplification using quadric error metrics. In

SIGGRAPH ’97: Proceedings of the 24th annual conference on Computer graphics

and interactive techniq, volume pp, pages 209–216, New York, New York, USA, Aug.

1997. ACM Press/Addison-Wesley Publishing Co.

95

[25] I. Georgiev, J. Krivánek, T. Davidovic, and P. Slusallek. Light transport simulation

with vertex connection and merging. ACM Trans. Graph., 31(6):1, 2012.

[26] I. Georgiev, J. Křivánek, and P. Slusallek. Bidirectional light transport with vertex

merging. SIGGRAPH Asia 2011 Sketches, page 27, 2011.

[27] E. Gobbetti and E. Bouvier. Time-critical multiresolution scene rendering. In VIS ’99:

Proceedings of the conference on Visualization ’99, pages 123–130. IEEE Computer

Society Press, 1999.

[28] E. Gobbetti and F. Marton. Far voxels: a multiresolution framework for interactive

rendering of huge complex 3D models on commodity graphics platforms. ACM Trans.

Graph., 24(3):878–885, 2005.

[29] J. Goldsmith and J. Salmon. Automatic creation of object hierarchies for ray tracing.

IEEE Computer Graphics and . . . , 1987.

[30] S. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen. The lumigraph. In SIGGRAPH

’96: Proceedings of the 23rd annual conference on Computer graphics and interac-

tive techniq, pages 43–54. ACM Press, 1996.

[31] S. Green and D. Paddon. Exploiting coherence for multiprocessor ray tracing. In

Comput. Graph. Forum, volume 22, pages 12–26, 2003.

[32] N. Greene. Environment Mapping and Other Applications of World Projections. IEEE

Comput. Graph. Appl., 6(11):21–29, Nov. 1986.

[33] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch. Efficient BVH construction via ap-

proximate agglomerative clustering. In HPG ’13: Proceedings of the 5th High-

Performance Graphics Conference, page 81, New York, New York, USA, July 2013.

ACM Request Permissions.

96

[34] T. Hachisuka. Five common misconceptions about bias in light transport simulation,

2013.

[35] J. Hanika, A. Keller, and H. P. A. Lensch. Two-level ray tracing with reordering for

highly complex scenes. In GI ’10: Proceedings of Graphics Interface 2010, pages

145–152. Canadian Information Processing Society, May 2010.

[36] C. D. Hansen, T. Ize, and C. Brownlee. Real-Time Ray Tracer for Visualizing Massive

Models on a Cluster. In Proceedings of the 2011 Eurographics Symposium on Parallel

Graphics and Visualization, 2011.

[37] V. Havran. Heuristic Ray Shooting Algorithms. phdthesis, Department of Computer

Science and Engineering, Faculty of Electrical Engineering, Czech Technical Univer-

sity in Prague, Nov. 2000.

[38] P. S. Heckbert. Adaptive radiosity textures for bidirectional ray tracing. ACM SIG-

GRAPH Computer Graphics, 24(4):145–154, Sept. 1990.

[39] H. Hoppe. Progressive meshes. In SIGGRAPH ’96: Proceedings of the 23rd annual

conference on Computer graphics and interactive techniq, pages 99–108. ACM Press,

1996.

[40] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh Optimiza-

tion. In Proceedings of the 20th annual conference on Computer graphics and inter-

active techniques, volume d, pages 19–26. ACM Press, 1993.

[41] http://avl.ncsa.illinois.edu/wp-content/uploads/2010/09/NCSA_F3_Tornado_H264_864.mov.

Visualization of an F3 Tornado, Sept. 2010.

[42] https://developer.nvidia.com/optix. Optix Ray Tracing Engine.

97

[43] https://renderman.pixar.com/. RenderMan.

[44] https://www.solidangle.com/. Arnold Renderer.

[45] http://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi

processors.html. Intel Xeon Phi.

[46] http://www.nvidia.com/object/nvidia-mental ray.html. mental ray.

[47] M. Isenburg and S. Gumhold. Out-of-core compression for gigantic polygon meshes.

ACM Trans. Graph., 22(3):935–942, 2003.

[48] H. W. Jensen. Global Illumination Using Photon Maps. In Proceedings of the Eu-

rographics Workshop on Rendering Techniques ’96, pages 21–30, London, UK, UK,

1996. Springer-Verlag.

[49] J. Kajiya. The rendering equation. In SIGGRAPH ’86: Proceedings of the 13th

annual conference on Computer graphics and interactive techniq, pages 143–150.

ACM Press, 1986.

[50] D. Kirk, J. Arvo, D. Kirk, and J. Arvo. Unbiased sampling techniques for image

synthesis, volume 25. ACM, July 1991.

[51] T. Kollig and A. Keller. Efficient Multidimensional Sampling. Computer Graphics

Forum, 21(3):557–563, Sept. 2002.

[52] E. P. Lafortune and Y. D. Willems. A Theoretical Framework for Physically Based

Rendering. Computer Graphics Forum, 13(2):97–107, May 1994.

[53] E. P. Lafortune and Y. D. Willems. The Ambient Term as a Variance Reducing Tech-

nique for Monte Carlo Ray Tracing. In Photorealistic Rendering Techniques, pages

168–176. Springer, Berlin, Heidelberg, Berlin, Heidelberg, 1995.

98

[54] M. Larsen, J. S. Meredith, P. A. N. x00E1, til, and H. Childs. Ray tracing within a

data parallel framework. In 2015 IEEE Pacific Visualization Symposium (PacificVis,

pages 279–286. IEEE, 2015.

[55] D. Laur, J. Fong, W. Wooten, and D. Batali. Ray differentials and multiresolution

geometry caching for distribution ray tracing in complex scenes. Computer Graphics

Forum, 22(3):543–552, 2003.

[56] C. Lauterbach, S.-e. Yoon, M. Tang, and D. Manocha. ReduceM: interactive and

memory efficient ray tracing of large models. In EGSR ’08: Proceedings of the Nine-

teenth Eurographics conference on Rendering, pages 1313–1321. Eurographics As-

sociation, June 2008.

[57] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH ’96: Proceedings

of the 23rd annual conference on Computer graphics and interactive techniq, pages

31–42. ACM Press, 1996.

[58] P. Lindstrom. Out-of-core simplification of large polygonal models. In SIGGRAPH

’00: Proceedings of the 27th annual conference on Computer graphics and interactive

techniq, pages 259–262, New York, New York, USA, July 2000. ACM Press/Addison-

Wesley Publishing Co.

[59] P. Lindstrom. Out-of-core construction and visualization of multiresolution surfaces.

In SI3D ’03: Proceedings of the 2003 symposium on Interactive 3D graphics, pages

93–102. ACM Press, 2003.

[60] P. Lindstrom and G. Turk. Fast and memory efficient polygonal simplification. In

VIS ’98: Proceedings of the conference on Visualization ’98, pages 279–286. IEEE

Computer Society Press, 1998.

99

[61] N. Metropolis and S. M. Ulam. The Monte Carlo Method. Journal of the American

Statistical Association, 44(247):335–341, Sept. 1949.

[62] B. Meyer. Eiffel, The Language. Prentice Hall, 1992.

[63] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A Sorting Classification of Parallel

Rendering. IEEE Comput. Graph. Appl., 14(4):23–32, 1994.

[64] P. Navratil, H. Childs, D. Fussell, and C. Lin. Exploring the Spectrum of Dynamic

Scheduling Algorithms for Scalable Distributed-Memory Ray Tracing. IEEE Trans.

Visual. Comput. Graphics, (99):1, 2013.

[65] P. A. Navratil. Memory-efficient, scalable ray tracing. PhD thesis, 2010.

[66] S. Parker, W. Martin, P. Sloan, P. Shirley, B. Smits, and C. Hansen. Interactive ray

tracing. In SI3D ’99: Proceedings of the 1999 symposium on Interactive 3D graphics,

pages 119–126. ACM Press, 1999.

[67] S. Parker, M. Parker, Y. Livnat, P. Sloan, C. Hansen, and P. Shirley. Interactive Ray

Tracing for Volume Visualization. IEEE Transactions on Visualization and Computer

Graphics, 5(4):238–250, 1999.

[68] A. Patney and J. D. Owens. Real-time Reyes-style adaptive surface subdivision. ACM

Transactions on Graphics, 27(5):1, Dec. 2008.

[69] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering complex scenes with

memory-coherent ray tracing. In SIGGRAPH ’97: Proceedings of the 24th annual

conference on Computer graphics and interactive techniques, pages 101–108, New

York, New York, USA, Aug. 1997. ACM Press/Addison-Wesley Publishing Co. Re-

quest Permissions.

100

[70] P. Plauger, M. Lee, D. Musser, and A. A. Stepanov. C++ Standard Template Library.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2000.

[71] E. Reinhard and F. W. Jansen. Rendering large scenes using parallel ray tracing.

Parallel Computing, 23(7):873–885, 1997.

[72] J. Rossignac and P. Borrel. Multi-resolution 3D approximations for rendering com-

plex scenes. In B. Falcidieno and T. Kunii, editors, Geometric Modeling in Computer

Graphics, pages 455–465. Springer Verlag, June 1993.

[73] R. Samanta, T. Funkhouser, and K. Li. Parallel rendering with k-way replication.

In PVG ’01: Proceedings of the IEEE 2001 symposium on parallel and large-data

visualization and graphic, pages 75–84. IEEE Press, 2001.

[74] R. Samanta, T. Funkhouser, K. Li, and J. Singh. Hybrid sort-first and sort-last par-

allel rendering with a cluster of PCs. In HWWS ’00: Proceedings of the ACM SIG-

GRAPH/EUROGRAPHICS workshop on Graphics hardware, pages 97–108. ACM

Press, 2000.

[75] W. Schroeder, J. Zarge, and W. Lorensen. Decimation of triangle meshes. In SIG-

GRAPH ’92: Proceedings of the 19th annual conference on Computer graphics and

interactive techniq, pages 65–70. ACM Press, 1992.

[76] R. E. Somers. FlexRender: A distributed rendering architecture for ray tracing huge

scenes on commodity hardware. 2012.

[77] A. Stephens, S. Boulos, J. Bigler, I. Wald, and S. G. Parker. An Application of Scal-

able Massive Model Interaction using Shared-Memory Systems. EGPGV, 2006.

[78] P. A. Studios. The RenderMan Interface Specification V3.2.1, 2005.

101

[79] G. Turk. Re-tiling polygonal surfaces. In SIGGRAPH ’92: Proceedings of the 19th

annual conference on Computer graphics and interactive techniq, pages 55–64. ACM

Press, 1992.

[80] E. Veach. Robust Monte Carlo methods for light transport simulation. PhD thesis,

Stanford University, 1997.

[81] E. Veach and L. Guibas. Bidirectional Estimators for Light Transport. In Photo-

realistic Rendering Techniques, pages 145–167. Springer Berlin Heidelberg, Berlin,

Heidelberg, 1995.

[82] E. Veach and L. J. Guibas. Optimally combining sampling techniques for Monte Carlo

rendering. ACM, New York, New York, USA, Sept. 1995.

[83] M. Vinkler, J. Bittner, and V. Havran. Massively Parallel Hierarchical Scene Process-

ing with Applications in Rendering. Computer Graphics, 2013.

[84] I. Wald, C. Benthin, and S. Boulos. Getting rid of packets - Efficient SIMD single-

ray traversal using multi-branching BVHs -. Interactive Ray Tracing, 2008. RT 2008.

IEEE Symposium on, pages 49–57, 2008.

[85] I. Wald, C. Benthin, and P. Slusallek. Distributed Interactive Ray Tracing of Dynamic

Scenes. In PVG ’03: Proceedings of the 2003 IEEE Symposium on Parallel and

Large-Data Visualization and Graphic, pages 1–11. IEEE Computer Society, 2003.

[86] I. Wald, A. Dietrich, and P. Slusallek. An interactive out-of-core rendering frame-

work for visualizing massively complex models. In Alexander Keller and Henrik

Wann Jensen, editor, Proceedings of the 15th Eurographics Workshop on Rendering

Techniques, 2004, pages 81–92. , 6 2004.

102

[87] I. Wald, G. P. Johnson, and J. Amstutz. OSPRay-A CPU Ray Tracing Framework

for Scientific Visualization. IEEE Trans. Visual. Comput. Graphics, 23(1):931–940,

2017.

[88] I. Wald, A. Knoll, G. P. Johnson, W. Usher, V. Pascucci, and M. E. Papka. CPU ray

tracing large particle data with balanced P-k-d trees. 2015 IEEE Scientific Visualiza-

tion Conference (SciVis), pages 57–64, 2015.

[89] I. Wald, P. Slusallek, and C. Benthin. Interactive Distributed Ray Tracing of Highly

Complex Models. In Rendering Techniques 2001, pages 277–288. Springer, Vienna,

Vienna, 2001.

[90] I. Wald, P. Slusallek, and C. Benthin. Interactive Distributed Ray Tracing of Highly

Complex Models. In Rendering Techniques 2001, pages 277–288. Springer Vienna,

Vienna, 2001.

[91] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Rendering with Coherent

Ray Tracing. Computer Graphics Forum, 20(3):153–165, Sept. 2001.

[92] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. Embree. ACM Trans.

Graph., 33(4):1–8, July 2014.

[93] M. Wand, M. Fischer, I. Peter, F. Heide, and W. Straï¿œer. The randomized z-buffer

algorithm: interactive rendering of highly complex scenes. In SIGGRAPH ’01: Pro-

ceedings of the 28th annual conference on Computer graphics and interactive techniq,

pages 361–370. ACM Press, 2001.

[94] D. Wexler, L. Gritz, E. Enderton, and J. Rice. GPU-accelerated high-quality hidden

surface removal. In HWWS ’05: Proceedings of the ACM SIGGRAPH/EUROGRAPH-

103

ICS conference on Graphics hardware, pages 7–14, New York, New York, USA, July

2005. ACM Press.

[95] D. Whitehouse. Visualization at the Australian National University. SIGGRAPH

Computer Graphics, Nov.2000.

[96] T. Whitted. An improved illumination model for shaded display, volume 13. ACM,

Aug. 1979.

[97] B. Wilson, K. Ma, and P. McCormick. A hardware-assisted hybrid rendering tech-

nique for interactive volume visualization. In VVS ’02: Proceedings of the 2002 IEEE

symposium on Volume visualization and graphics, pages 123–130. IEEE Press, 2002.

[98] S. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious mesh layouts.

ACM Trans. Graph., 24(3):886–893, 2005.

[99] K. Zhou, Q. Hou, Z. Ren, M. Gong, X. Sun, and B. Guo. RenderAnts: interactive

Reyes rendering on GPUs. ACM Transactions on Graphics, 28(5):155, 2009.

104

