

Scanned with CamScanner

ABSTRACT

Title of dissertation: Efficient Artifact Identification in
Multi-Channel EEG Data

Name of Student: Mohit Khatwani, Computer Science, 2019

Dissertation directed by: Professor Tinoosh Mohsenin
Department of Computer Science and
Electrical Engineering

Neurophysiological signals such as Electroencephalogram (EEG) can be used in a

variety of purposes including detecting fatigue, stress, brain disorders, brain-computer in-

terfaces (BCIs), or building better models of human variability and human brain. How-

ever, EEG signal is frequently contaminated with other sources not related to brain activ-

ity. These artifacts may emerge from external sources such as eye blinks, muscle head

movement. In this work, we examine the problem of identifying multiple artifacts on con-

tinuous multi-channel EEG data. We first propose a Convolution Neural Networks (CNN)

architecture for binary detection of EEG artifact, then further modify the architecture for

classifying multiple types of artifacts. The proposed models do not need expert knowledge

for feature extraction or pre-processing of EEG data and have a very efficient architecture

implementable on mobile devices. We further enhance the architecture to reduce the com-

putation and parameter size through hyperparameter optimization and the use of Depthwise

and Separable convolution layers. We propose five different CNN models and evaluate

and compare against each other in terms of accuracy, weight parameters, and computation

requirements. Our optimized network achieves 94.17% classification accuracy averaged

across 17 patients and 9 artifact classes. Compared to the original CNN based architec-

ture, the optimized architecture provides 4.2x and 2.7x less parameters and computation,

respectively and has 17.5% higher accuracy. The proposed model was also evaluated on an

EEG dataset collected in our lab using a 14-channel Emotiv EPOC headset, and achieves

93.5% accuracy in detecting eye blink artifact.

Efficient Artifact Identification in Multi-Channel EEG Data.

by

Mohit Khatwani

MS Thesis, 2019

Advisory Committee:
Dr. Tinoosh Mohsenin Chair/Advisor
Dr. Tim Oates
Dr. Hamed Pirsiavash
Dr. Nick Waytowich

c© Copyright Mohit Khatwani 2019

To my parents Sunil Khatwani and Kajal Khatwani for their constant support and
unconditional love.

ii

ACKNOWLEDGMENTS

I sincerely like to thank everyone behind the successful completion of my thesis. I
would like to express sincere gratitude to my advisor Dr. Tinoosh Mohsenin. I thank
you from the bottom of my heart for the foresight of my research, immediate response
whenever approached for help and constantly belief that i could achieve it. Without her
guidance, support and foresight my thesis would not have been possible. I would also like
to thank my committee members, Dr. Tim Oates, Dr. Hamed Pirsiavash and Dr. Nick
Waytowich for all their guidance and feedback. I thank my fellow EEHPC lab members
particularly Morteza Hosseini, Bharat Prakash, Hiren Panhelia and Mark Horton for their
contributions and help with this thesis. Finally, I like to thank my family and friends for
their constant support and encouragement. It is because of all of you I am able to achieve
this.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 INTRODUCTION . 1

1.1 Introduction . 1
1.2 Contributions . 3
1.3 Organization of Sections . 3

Chapter 2 BACKGROUND AND RELATED WORK 4

2.1 Deep Learning . 4
2.1.1 Convolutional Neural Network . 4

2.2 EEG Signal Classification . 11
2.2.1 Traditional Approaches . 12

Chapter 3 ARTIFACT DETECTION IN EEG SIGNAL USING CNN . . 15

3.1 Problem Definition . 15
3.2 High Varibaility in Data . 16
3.3 Collection of Dataset . 17
3.4 Preprocessing of EEG Data . 18
3.5 Proposed DNN Architecture . 19
3.6 Classification Analysis and Results . 20

Chapter 4 EFFICIENT CNN FOR ARTIFACT IDENTIFICATION . . . 24

4.1 Visualization of EEG signals . 24
4.1.1 EEG signal plot . 24

iv

4.1.2 Topographical Plot . 29
4.2 Implementation and Results . 31

4.2.1 Architectures . 31
4.2.2 Optimized Separable + DepthWise 35
4.2.3 Optimization of Architectures . 36
4.2.4 Classification Accuracy . 37

4.3 Experimental Study . 39

Chapter 5 CONCLUSION AND FUTURE WORK 41

5.1 Conclusion . 41
5.2 Future Work . 42

5.2.1 More Datasets . 42
5.2.2 More Model Search . 42
5.2.3 Transfer Learning . 43

Appendix A APPENDIX . 45

A.1 Code for data extraction of every patient 45
A.2 Code for plotting Topographical Maps . 47
A.3 Model Summary . 49

A.3.1 Traditional Convolutional Neural Network 49
A.3.2 DepthWise Convolution Neural Network 50
A.3.3 Separable Convolution Neural Network 51
A.3.4 Depthwise + Separable Convolution Neural Network 52

REFERENCES . 55

v

LIST OF TABLES

2.1 Parameter and Operation equations for different types of convolution lay-
ers. 11

3.1 Description on nine artifacts performed by every patient. 18
3.2 Detection accuracy and precision for different artifacts averaged for all pa-

tients using leave one subject out cross-validation technique among 9 pa-
tients. Results are compared against Auto-Regressive baseline technique
[Lawhern et al.2012]. Values in the parentheses indicate the standard devi-
ation. Asterisks (*) indicate significant accuracy improvement over the AR
technique. 21

4.1 Comparison of computation in each layer for EEGNet and its optimized
architecture. 37

4.2 Comparison of parameters, computations and average accuracy (17 patients
and 10 classes which includes 9 artifacts and 1 plain signal) of different
model configurations. All the models classify 9 different artifacts with test
data and training data for the same patient 38

vi

LIST OF FIGURES

2.1 Convolution operation over the input. 6
2.2 Traditional convolution layer with input shape of Df ×Df ×M and output

shape of Dp ×Dp ×N . 7
2.3 Depthwise convolution operation. 8
2.4 Separable convolution layer which is a combination of depthwise convolu-

tion and pointwise convolution. 10
3.1 Proposed CNN Architecture which consists of 5 layers. 2 convolutional

layers, 2 max pool layers and 1 softmax layer. 20
3.2 Flow chart of the heuristic hyperparameter search. 23
4.1 Visualization of jaw movement related artifacts performed by patients. In-

structions were given to patients every 2 secs and it was advisable to per-
form the task in the first second. Vertical line indicates the start of experi-
ment. Artifact names for given artifact codes are explained in Table 3.1. . . 25

4.2 Visualization of ocular related artifacts performed by patients. Vertical line
indicates the start of experiment. Artifact names for given artifact codes
are explained in Table 3.1. 26

4.3 Visualization of muscular movement related artifacts performed by pa-
tients. Vertical line indicates the start of experiment. Artifact names for
given artifact codes are explained in Table 3.1. 27

4.4 64 EEG signal channel locations. 28
4.5 TopoMap figures of jaw related artifacts 29
4.6 Topomap graph for ocular artifacts . 30
4.7 Topomap graph for muscular artifacts . 30
4.8 Traditional CNN Architecture for artifact identification which consists of 5

layers. 2 convolutional layers, 2 max pool layers and 1 softmax layer. Total
parameters required for this architecture is 24,842. 32

4.9 . 33
4.10 EEGNet architecture which uses combination of depthwise and separable

convolution layers. Total parameters required for this architecture is 5,002. . 35
4.11 Optimized EEGNet architecture with filter size of 64 × 16 in first convo-

lution layer which reduces the computation by 3.64x. Total parameters
required for this architecture is 9,194. 36

4.12 Class-wise and average accuracy for proposed models. Using only separa-
ble convolution layers provides least average accuracy. Using combination
of depthwise and separable convolution layers proves to be most beneficial
in artifact identification. 39

vii

4.13 Emotiv EPOC 14 channel headset capturing EEG data, Eye blink is per-
formed once every two seconds. 40

viii

List of Abbreviations

CNN Convolution Neural Network
EEG Electroencephalogram
DNN Deep Neural Network
ICA Independent Component Analysis
MLP Multi Layer Perceptron
MNIST Modified National Institute of Standards and Technology
ReLU Rectified Linear Unit
CUDA Compute Unified Device Architecture

ix

1

Chapter 1

INTRODUCTION

1.1 Introduction

Electroencephalography is a method of recording non invasive electrical signals of

brain through electrodes. EEG signals can be easily contaminated through noise originat-

ing from line electrical noise, muscle movement or ocular movements. These distortions

in the EEG signals can be referred to as artifacts. These artifacts can lead to difficul-

ties in extracting underlying neuro information. Removal of artifacts from EEG signals

can be beneficial in various applications [Delorme, Sejnowski, & Makeig2007] [Iriarte et

al.2003] [Nuwer1988]. The classification of brain signals recorded by imaging devices

using machine learning approaches is a very powerful tool in many of these areas of re-

search. For example, machine learning techniques show promise in the early detection of

Alzheimers or giving warning before an epileptic seizure. These techniques are already

being used in devices such as the P300 speller to provide a communication device for the

severely handicapped.

Artifacts can overlap the EEG signal in spectral as well as temporal domain which

2

turns out to be difficult for simple signal processing to identify artifacts [Islam, Rastegarnia,

& Yang2016]. A method involving regression which subtracts the portion of signal with

reference signal was widely used. Problem with this method was that it needs one or more

reference channels. As of now, the independent component analysis technique (ICA) is one

of the most frequently used method for EEG artifact detection [Jafari et al.2017]. The ICA

is a denoising technique that involves the whitening of data and separation of linearly mixed

sources [Winkler, Haufe, & Tangermann2011] [Jung et al.1998] [Delorme, Sejnowski, &

Makeig2007]. A major drawback of this method is that it is not fully automated and still

requires an expert person to label and tag the EEG artifacts. ICA is computionally intensive

[Jafari et al.2017] which makes it unsuitable for use in embedded hardware applications.

Convolution Neural Networks (CNNs) have been successfully used in computer vi-

sion tasks such as image classification. Advantage of using CNNs in these tasks is that it

doesn’t need hand crafted features from people, it learns them automatically using raw data.

Time series signals from all EEG channels are combined (2D image) and passed to these

convolution layers [Jafari et al.2018]. These features learnt using convolution layers are

then passed on to Multi Layer Perceptron (MLP) to perform final classification. One ma-

jor disadvantage of using CNNs is its high memory and computation requirements [Zheng

et al.2014]. Depthwise and separable convolution layers to create memory and computa-

tionally efficient CNNs which are used for multiple artifact identification from continuous

multi-channel EEG signal.

3

1.2 Contributions

Main contributions of this work are listed below:

• Propose an optimized architecture with reduced number of computations for multiple

artifact identification.

• Evaluate and compare optimized CNN with various other architectures in terms of

identification accuracy (multi-class), number of parameters, and total number of

computations.

• Compared the proposed method for accuracy, f-1 score to show improvements over

existing work.

1.3 Organization of Sections

The rest of the thesis is organized as follows: Chapter 2 will review the related works

that forms the basis for this research. Chapter 3 will define the specific problems an ap-

proaches used in this thesis. Chapter 4 will include a summary of the datasets used, the

implementation of the techniques used, and the results of the experiments. Chapter 5 will

present a summary of the findings and a discussion on future work.

4

Chapter 2

BACKGROUND AND RELATED WORK

2.1 Deep Learning

2.1.1 Convolutional Neural Network

Deep learning is a subfield of machine learning that has evolved out of the traditional

approaches to artificial neural networks. Artificial neural networks are computational sys-

tems originally inspired by the human brain. They consist of many computational units,

called neurons, which perform a basic operation and pass the information of that operation

to further neurons. The operation is generally a summation of the information received by

the neuron followed by the application of a simple, non-linear function.

The ability to train a network with multiple layers was crucial for the continued de-

velopment of neural networks. Backpropogation is a method which is used to train neu-

ral network with multiple layers. Backpropagation allows multiple layer networks to be

trained by iteratively using the gradient of a loss function with respect to the weights of

the network to assign gradients to previous neurons in the network. Due to this new forms

5

of neural network became significant. In [Hinton, Osindero, & Teh2006], authors showed

promising results in classification of the Modified National Institute of Standards and Tech-

nology handwritten dataset (MNIST).

2.1.1.1 Stochiastic Gradient Descent Gradient descent is a first-order iterative

optimization algorithm used for finding the minimum of a function. In neural networks,

it is used in conjunction with backpropagation to update the weights in the network. It is

formally defined with the update rule:

(2.1) xk = xk−1 − Of
(
xk−1

)

Here, xk is the current point and xk−1 is the previous point and Of
(
xk−1

)
is the gradient

to optimize the function. This algorithm is much more easier for training big datasets

efficiently. Other SGD derived algorithms, such as Adaptive Moment Estimation (ADAM),

calculate per parameter adaptive learning rates, enabling even more efficient training, at the

cost of memory.

2.1.1.2 Activation Function When a gradient is propogated back through the net-

work the errors are multiplied by values which are between 0 and 1. This leads to problem

where values trend towards 0 exponentially, which further makes the gradients close to 0

in early layers of multi layer perceptron.

Sigmoid function is most prominently used activation function. Sigmoid function is

6

defined as :
1

1 + e−x
. Another very famous activation function is ReLU. ReLU pushes the

input which are less than zero to zero. This makes the large value gradients vanish less

quickly which benefits in vanishing gradient problem.

2.1.1.3 Types of Layers With advancements in deep learning, new types are lay-

ers are being introduced with various advantages. In traditional neural networks, focus is

mainly on fully connected layers. In fully connected layers every neuron is connected to

every other neuron in the next layer.

With introduction of convolutional neural network, the filters are convolved over the

input. This weights sharing structure of convolution layer allowes to learn various pattern

in the input data. Figure 3.2 shows the convolution of filter, where each version of filter can

create a different processed version of the input.

FIG. 2.1. Convolution operation over the input.

7

• Traditional Convolution layer: In traditional convolution layer if the input is of size

Df ×Df ×M and filter applied to this input is of size Dk ×Dk ×M then output of

this layer without zero padding applied is of size Dp×Dp×M . In this layer the filter

convolves over the input by performing element wise multiplication and summing all

the values. A very important note is that depth of the filter is always same as depth

of the input given to this layer. Total number of multiplication operations required

for this layer is M ×D2
k ×D2

p ×N .

Df

Df
M

Convolution
Dp

Dp
N

Dk

Dk
M

Dk

Dk
M

N
Filters

FIG. 2.2. Traditional convolution layer with input shape of Df ×Df ×M and output
shape of Dp ×Dp ×N .

• DepthWise Convolution layer: For every input of size Df ×Df ×M we have M

filters of shape Dk×Dk and depth 1. D×M filters are used in depthwise convolution

where D is the depth multiplier.

As every input channel in depthwise convolution has a separate filter. This leads to

number of multiplication equal to N × D2
k × D2

p which is N× less than traditional

convolution. [Howard et al.2017] [Chollet2017].

8

FIG. 2.3. Depthwise convolution operation.

9

• Separable Convolution layer:

Separable convolution is a combination of depthwise and pointwise convolution [Kaiser,

Gomez, & Chollet2017] [Podlozhnyuk2007]. In depthwise operation, convolution is

applied to a single channel at a time unlike standard CNNs in which it is done for all

the M channels. So here the filters/kernels will be of size Dk ×Dk × 1. Given there

are M channels in the input data, then M such filters are required. Output will be of

size Dp ×Dp ×M .

A single convolution operation require Dk ×Dk multiplications. Since the filter are

slided by Dp ×Dp times across all the M channels. The total number of multiplica-

tions for one depthwise convolution operation comes to be M ×D2
p ×D2

k.

In point-wise operation, a 1× 1 convolution operation is applied on the M channels.

So the filter size for this operation will be 1 × 1 ×M . If we use N such filters, the

output size becomes Dp ×Dp ×N .

A single convolution operation in this requires 1 x M multiplications. The total num-

ber of multiplication for one pointwise convolution operation is M×D2
p×N . There-

fore, total number of multiplications required for one depthwise separable convolu-

tion operations is M ×D2
p ×D2

k + M ×D2
p ×N .

2.1.1.4 Comparison of Layers In Table 2.1, we compare the parameter equation

of different convolution layers used in our networks. Here Dk×Dk is the size of filter used,

M is number if input channels and N is number of output channels.

10

Df

Df
M

Dp

Dp
M

Dk

Dk
1

Dk

Dk
1

M
filters

DepthWise Convolution

Point wise convolution

1
1

M 1
1

M

N
filters

Dp

Dp
N

FIG. 2.4. Separable convolution layer which is a combination of depthwise convolution
and pointwise convolution.

2.1.1.5 Regularizer and Dropout Overfitting has been a constant threat in train-

ing big datasets using deep learning. Regularization techniques prevent the model from

becoming too complex and specific to the training data, thus reducing the tendency to over-

fit. L2 regularization is a standard technique used in many forms of optimization, in which

the squared sum of the weights is applied as a penalty to the optimization function. This

makes the models more generalizable.

Another technique used is Dropout layer, random set of neurons are remove from the

layer where it is applied. This allows a single model to act as as ensemble method for

training on the data. It prevents memoization as different set of neurons are active for every

training phase.

11

Table 2.1. Parameter and Operation equations for different types of convolution layers.
Convolution Layers Parameter Operation

Traditional M ×D2
k ×N M ×D2

k ×D2
p ×N

DepthWise D2
k ×M M ×D2

k ×D2
p

Separable D2
k ×M + M ×N D2

p ×D2
k ×M + M ×D2

p ×N

2.1.1.6 Powerful graphics cards and training on GPU NVIDIA debuted the

Compute Unified Device Architecture (CUDA) API to that enables direct and easy pro-

gramming for their graphical processing units (GPUs). CUDA gained popularity for use

in highly parallelizable tasks able to take advantage of the large number of cores in GPUs.

The hardware and software advances in GPU programming were critical and have made

GPU implementations tractable. Various networks in deep learning require large matrix

operations which are implemented efficiently on GPUs.

2.2 EEG Signal Classification

The classification of EEG signals presents several challenges that make it a uniquely

difficult problem in machine learning. The EEG signal is high dimensional, with both spa-

tial and temporal covariance. However, many time series approaches for feature extraction

face issues with the non-stationary nature of the EEG signal. A stationary signal is one

in which the probability distribution does not change over the course of time, features like

mean and variance will not change.

Major issue faced in the field is a lack of comparability between experiments. Unlike

12

in image classification, there are no standard datasets used as performance benchmarks.

Data collected for every experiments is with different setup and different configuration

of EEG cap. This leads to problems in making a dataset for benchmarking. Individuals

with differences in physiology, but entirely different tasks are also performed during data

collection leading to different target brain activities. Furthermore, some approaches use

models for individuals, whereas others attempt to make a universal model, training and

testing with samples from all individuals at one time.

2.2.1 Traditional Approaches

In [Islam et al.2017], authors have used feature extraction and traditional machine

learning classifiers such as K-nearest neighbors (KNN) and Support Vector Machine (SVM)

to build a fully automated EEG artifact classifier. This method outperforms the ICA based

methods by having lower computation and memory requirements. Proposed architecture is

also implemented on embedded ARM Cortex CPU. On average, it consumes 1.5 W power

at 1.2 GHz frequency.

In [Barachant et al.2010], Riemannian geometry is used to propose a framework for

classification in BCI applications. In this approach classification task is performed by cal-

culating the covariance matrices of the given input epoch without performing any pre-

processing. This algorithm relies on mean computation of covariance matrices which is

obtained by mapping the dataset into tangential space which makes it difficult for compu-

tation in small embedded systems for real time applications. [Majidov & Whangbo2019]

13

overcome this problem by using CNN for their classification task. As deep neural networks

require a lot of data they solve it by performing data augmentation.

Use of deep neural networks have grown due to their success in image classification

problems [Krizhevsky, Sutskever, & Hinton2012]. In [Schetinin & Schult2004] authors

have used feed forward neural network combined with decision tree to detect ocular ar-

tifacts in EEG signal. Another method which accomplishes desired results is that of, re-

current neural networks [Petrosian et al.2001] [Güler, Übeyli, & Güler2005]. Research

involving the former has constantly delivered precise analysis and detection of contam-

ination in handwriting and speech recognition. Convolution neural networks have been

used in [Khatwani et al.2018] for detecting ocular and muscular related artifacts. One dis-

advantage of using CNN is its high memory and computation requirements. Depthwise

and separable convolution layers can be used to reduce the weight parameters. This can

lead to increase in efficiency without decreasing performance. Use of depthwise separable

convolution was also present in the first layer of Inception V1 [Szegedy et al.2017]. Use

of Xception model on ImageNet dataset led to small change in classification performance

with large improvement in computational requirements [Chollet2017].

The Fourier transform is likely the most common feature extraction method. It pro-

vides information on the frequency spectrum of the data, at the cost of losing temporal

information. The Fourier transform is used to calculate features, such as power spectra,

which match nicely with EEG literature on brain activities that occur within different fre-

quency bands used power spectral density values in 1 Hz bins from 2 Hz to 40 Hz to classify

14

affect data from self-elicited emotions. There were 10 emotions used, with 180 trials each

for 1800 samples per subject across three subjects.

Further more attempts have been made to apply deep learning on EEG signal clas-

sification. They use a mixture of convolution and recurrent neural network on the EEG

epoch with channels projected in two dimensional space. After the projection, the Fourier

analysis was applied across several time bins to reduce the data. A hybrid neural network

containing a convolutional layer fed into a mixed long short-term memory (LSTM) and

1-D convolutional layer, which was fed into a fully connected layer for classification.

15

Chapter 3

ARTIFACT DETECTION IN EEG SIGNAL USING CNN

3.1 Problem Definition

The problem explored in this thesis is the classification of EEG data using deep learn-

ing techniques. While the classification of EEG signals can be useful in many areas, such

as the detection of disease state or brain computer interfaces, first part of this thesis focuses

on binary classification problem of artifact detection. Second part of the thesis focuses

on multi-class classification problem of actually identifying artifact. The problem of EEG

classification in these types of experiments has a number of challenges that must be con-

sidered, including:

• There is high variability between subjects and within subjects

• There is limited availability of data

• The data is composed of multiple channels of time series information

This thesis will address these challenges by exploring several variations of architecture

16

selection, model search, regularization, and training paradigms within a deep learning con-

text, with the aim of harnessing the expressive power of deep learning while avoiding over-

fitting.

To state the problem formally: Given a training set of EEG signals, E = {s1, s2, s3...}

are composed of 64 with set of labels C = {c1, c2..c10}with 10 classes. The goal is to create

a classifier K, with parameters Θ and hyperparameters which are used with evaluation

metric like accuracy, f-1 score. In other words we have to find a function f which has

parameters with highest accuracy on training dataset T .

3.2 High Varibaility in Data

The highly variable nature of EEG data leads to difficulty in classification. Samples in

the same class may be very different in nature from one another. There are various sources

of variability which are summarized briefly below:

• A constant issue in EEG data analysis is that the electrical activity created from

muscle movement has a far higher magnitude than that produced by brain activity.

This is particularly noticeable and problematic when the subject blinks.

• There is a certain amount of uncertainty inherent from the machine itself. Slow drifts

in the data are common and are caused by either slight movements of the electrode

or sweat interfering with the sensor. Movement in wires connecting the electrodes

can cause similar issues. These issues can often be mitigated through the use of band

17

pass filters.

• Some subjects will be more focused on the task than others. Some will perform

better than others on the experimental task. Differing behavior is associated with

differences in brain activity patterns.

3.3 Collection of Dataset

The EEG dataset was recorded where patients were instructed to perform a series of

different ocular and muscular tasks. EEG datset was recorded using a 64 channel BioSemi

ActiveTwo system with a sampling rate of 512Hz. Participants were required to perform

a series of noise-inducing body, facial, head or eye movements, which were gathered as

part of a larger study [Lawhern et al.2012]. The list of movements were reviewed before

starting the experiment so that every patient is familiar with it.

It was up to the participants to determine the precise choreography of each movement

and to perform movements which felt more natural to them. Each movement was per-

formed as a separate set of 20 repetitions. A screen was put in place in order to remind the

participants of the movement they should make. A male voice initially counted down from

3 at a rate of every 2 Sec followed by a tone every 2 Sec. This procedure was done for each

set. The participants would make the movements in time with the vocal commands. They

were advised to perform the tasks in the first second of the 2 Sec period and to relax in

the remaining 1 Sec. Additionally, each participant performed a baseline recording session

18

where they were instructed to keep still and look straight at a blank computer screen for

around 8 seconds at the start of every run. EEG data from this baseline session was used as

”clean” (or artifact-free) data. Artifacts considered are clenching jaw (CJ), move jaw (MJ),

blink eyes (BE), move eyes leftwards (EL), move eyes rightwards (ER), raise eyebrows

(RE), rotate head (RH), Shrugging shoulders (SS) and Rotate torso (RT). Table 3.1 gives a

brief description of nine artifacts which were performed by every patient.

Table 3.1. Description on nine artifacts performed by every patient.
Artifact Code Artifact Description

101 Clench Jaw

102 Move Jaw Vertically

103 Blink Eyes

104 Move Eyes Leftward

105 Move Eyes Rightward

106 Raise Eyebrows

107 Rotate head

108 Shrug Shoulders

109 Rotate Torso

3.4 Preprocessing of EEG Data

Our CNN operates on the raw EEG data so that it can learn to extract the relevant

features required for artifact detection. As such, minimal pre-processing of the raw EEG

19

data was performed aside from removing the DC offset such that the EEG signals are

centered around zero. EEG epochs of size 64 × 512 were extracted from the artifact and

baseline data creating a total of around 250 trials per subject for each artifact type.

3.5 Proposed DNN Architecture

The input to this CNN is a two dimensional EEG epoch (64 channels × 512 time

points). The full network architecture, shown in Figure 3.1, consists of two convolutional

layers, two max-pool layers and ends with a softmax layer for classification. The first 2-d

convolution layer consists of 128 kernels of size 64×3. this ensures that the an adequate

spatial filter is learned in the first layer. The second 2-d convolution layer learns 64 kernels

of size 1×3. Each convolution layer is followed by a max-pooling layer with a pool size

of 1×2. All layers are followed by a rectified linear unit (ReLU) activation function. The

output of the second max pooling layer is then flattened into a single vector and passed to

a softmax layer consisting of two outputs for binary classification to detecting whether or

not an artifact is present in the EEG data.

All the layers of the network have their weights initialized from a normal distribution.

The network was trained using the RMSprop optimization method and a learning rate of

0.0001. Categorical cross-entropy was used as the loss function. In total, the network has

65280 parameters, and requires 35.4 million operations (either multiplication or addition)

in order to process one input frame. Note, that this is much lower than CNNs for image

classification which usually contain millions of parameters [Simonyan & Zisserman2014].

20

512

64

64x3
Conv1

128@1x510
128@1x255

1x2
MaxPool

64@1x253

1x3
Conv2

64@1x126

1x2
MaxPool

Output
2

Flatten

Artifact

No
Artifact

FIG. 3.1. Proposed CNN Architecture which consists of 5 layers. 2 convolutional layers, 2
max pool layers and 1 softmax layer.

3.6 Classification Analysis and Results

Our architecture is evaluated for 9 patients for 7 different artifacts using a transfer

learning setting where models are trained and tested on EEG data from different subjects.

This allows us to test the ability of our CNN model to generalize across subjects when

detecting EEG artifacts, a task that is difficult for traditional methods. We trained a cross-

subject model using a leave-one-subject-out cross validation procedure where data from

one subject was held out for testing and data from the remaining subjects were used for

training. On average 3790 samples where used for training and 490 samples where used

for testing. We compare our results with previous work that uses an autoregresive model +

21

SVM classifier for artifact detection on the same dataset [Lawhern et al.2012].

Results in Table 3.2 show that our model detects all 7 artifacts by average accuracy

of 73.6% which ranges between 64.3% and 84.8%. The raise and lower eyebrows artifact

was easiest to detect with average accuracy of 84.8%, while the moving jaw had lowest

detection accuracy of 64.3%.

In Table 3.2 the autoregressive (AR) [Lawhern et al.2012] baseline technique achieved

68.42% of average accuracy using the leave-one-subject-out cross-validation technique

which ranges between 52% and 95%. Our CNN model achieves a statistically signifi-

cant improvement in detection accuracy on 5 of the 7 EEG artifacts using a one sample,

two-sided t-test with a significance threshold of p < 0.05.

Table 3.2. Detection accuracy and precision for different artifacts averaged for all pa-
tients using leave one subject out cross-validation technique among 9 patients. Results
are compared against Auto-Regressive baseline technique [Lawhern et al.2012]. Values in
the parentheses indicate the standard deviation. Asterisks (*) indicate significant accuracy
improvement over the AR technique.

Artifact Code This work: Accuracy AR: Accuracy [Lawhern et al.2012] This work: Precision

CJ 74.1(9.2) 95* 94.7(5.1)

MJ 64.3(11.8) 76 91.4(9.8)

BE 76.1(10.9)* 74 94.3(5.6)

EL 77.5(9.6)* 49 94.0(5.6)

ER 72.6(9.1)* 52 92.6(7.8)

RE 84.8(7.9)* 75 99.1(1.1)

RH 73.3(14.2)* 58 92.7(6.1)

Average 73.6(11.8)* 68.42 92.0(7.3)

If training accuracy is high, then the validation accuracy and test accuracies are con-

22

sidered. If the validation and test accuracies are also high, then the selection of hyperpa-

rameters can be accepted, or more tweaks can be made to the hyperparameters to determine

if the working definition of high accuracy is sufficient. If the test and validation accuracies

are low when the training accuracy is high, the model is most likely overfitting. There are

two main ways of handling overfitting: increasing the amount of regularization in the model

and decreasing the number of parameters in the model. Increasing the amount of regular-

ization includes changes such as adding or increasing L2 penalties on weights, adding or

increasing dropout, or adding batch normalization to layers. Reducing the number of pa-

rameters is achieved by either reducing the number of neurons in the layers or reducing the

number of layers. Generally, reducing the parameters of the model is reserved for when

increasing regularization fails to improve validation accuracy to avoid unnecessarily reduc-

ing the expressive power of the model. However, if the model performs nearly perfectly on

the training data while performing very poorly on the validation data, reducing the number

of parameters can be the most effective change to the hyperparameters.

23

FIG. 3.2. Flow chart of the heuristic hyperparameter search.

24

Chapter 4

EFFICIENT CNN FOR ARTIFACT IDENTIFICATION

As seen in Chapter 3 use of CNN can be more beneficial in classification tasks of EEG

signal. Though implementing deep learning models is proved to be more beneficial in terms

of accuracy and f-1 scores. The model developed consists of large number of parameters

which makes if difficult to train for small amount of data. In this chapter we overcome this

problem by implementing new types of convolution layers which have benefits in reducing

number of parameters and train the model efficiently.

4.1 Visualization of EEG signals

4.1.1 EEG signal plot

Figure 4.1 shows plot for first 20 of 64 electrodes placed on the scalp to capture the

EEG signals. This can be useful to inspect which electrodes are significant in capturing the

specified artifacts. This plot shows 9 artifacts for single patient. Every artifact generates

different pattern which helps in identifying the specified artifact.

25

(a) 101: Clench Jaw

(b) 102: Move Jaw

(c) 103: Blink Eyes

FIG. 4.1. Visualization of jaw movement related artifacts performed by patients. Instruc-
tions were given to patients every 2 secs and it was advisable to perform the task in the
first second. Vertical line indicates the start of experiment. Artifact names for given artifact
codes are explained in Table 3.1.

26

(a) 104: Eyes Leftward

(b) 105: Eyes Rightward

(c) 106: Raise Eyebrows

FIG. 4.2. Visualization of ocular related artifacts performed by patients. Vertical line
indicates the start of experiment. Artifact names for given artifact codes are explained in
Table 3.1.

27

(a) 107: Rotate Head

(b) 108: Shrug Shoulders

(c) 109: Rotate Torso

FIG. 4.3. Visualization of muscular movement related artifacts performed by patients.
Vertical line indicates the start of experiment. Artifact names for given artifact codes are
explained in Table 3.1.

28

Figures 4.3 shows muscular related artifacts. Muscle related artifacts are difficult to

detect as they are more prone to noise. specifically Artifact 109: Rotating Torso is difficult

as most patients are not able to perform that task correctly. This leads to lot of noise

captured while performing this task. Same goes with Artifact 103: Eye blinking. Blinking

eyes is an involuntary movement which makes it difficult to detect this artifact. While

patients are instructed to stay still for first two seconds for collecting plain: artifact free

signal, most patients tend to blink their eyes making it difficult to capture noise free and

artifact free plain (artifact free) signal.

Figure 4.4 shows position of 64 electrodes used for capturing the EEG data.

FIG. 4.4. 64 EEG signal channel locations.

29

4.1.2 Topographical Plot

For a topographic map of brain activity first you need to read your electrode locations.

Put these coordinates in a matrix. With the data recorded, for example alpha activity at

each electrode, we have three column vectors, x, y and z corresponding to coordinates and

the activity of each electrode. These set of vectors give a scatter plot in 3D. To see the

topography we will have to define an interpolate function. Dark blue color indicates the

amount of activity captured through the EEG cap.

(a) 107: Rotate Head (b) 108: Shrug Shoulders (c) 109: Rotate Torso

FIG. 4.5. TopoMap figures of jaw related artifacts

30

(a) 107: Rotate Head (b) 108: Shrug Shoulders (c) 109: Rotate Torso

FIG. 4.6. Topomap graph for ocular artifacts

(a) 107: Rotate Head (b) 108: Shrug Shoulders (c) 109: Rotate Torso

FIG. 4.7. Topomap graph for muscular artifacts

31

4.2 Implementation and Results

4.2.1 Architectures

In this section we first present the models determined by the model search and then

the final classification results of these models in each task performed. We propose using

various combinations of convolution layers discussed in Chapter 2 for EEG based artifact

identification.

The input to our models is a two dimensional EEG epoch(64 channels × 512 time

points). The final output layer is 10 neuron dense layer which is passed to a softmax layer

consisting of output of artifact identified. ReLU activation function is used after all the

convolution layers.

All the layers of the network have their weights initialized from a normal distribution.

The networks were trained using the RMSprop optimization method and a learning rate of

0.0001. Categorical crossentropy was used as the loss function. CNN operates on the raw

EEG data so that it can learn to extract the relevant features required for artifact detection.

As such, minimal pre-processing of the raw EEG data was performed aside from removing

the DC offset such that the EEG signals are centered around zero. EEG epochs of size

64 × 512 were extracted from the artifact and baseline data creating a total of around 250

trials per subject for each artifact type.

32

4.2.1.1 Traditional CNN Figure 4.8 shows the use of traditional convolution layer.

This network starts with a convolution layer with 128 filters of size 64×3. The second con-

volution performed consists of 64 filters of size 1× 3. The convolution layers are followed

by average pooling layers with pool size of 1× 2.

In total, the network has 24,842 parameters, and requires 35.4 million operations (ei-

ther multiplication or addition) in order to process one input frame. Note, that this is much

lower than CNNs for image classification which usually contain millions of parameters.

Input

512

64

64x3
Conv1

128@1x510

Output
10

128@1x2551x2
MaxPool1

1x3
Conv2

1x2
MaxPool2

64@1x25364@1x126

Flatten

Artifact
Identification

FIG. 4.8. Traditional CNN Architecture for artifact identification which consists of 5 layers.

2 convolutional layers, 2 max pool layers and 1 softmax layer. Total parameters required

for this architecture is 24,842.

33

4.2.1.2 Separable CNN In this network we have replaced the traditional convolu-

tion layer with depthwise separable convolution layer. All the filter sizes and number of

filters are kept same. The network size is reduced to 8,906 parameters. It requires 6.53

million operations for processing the input.

512

64

64x3
Separable
Conv

128@1x510
128@1x255

1x2
AveragePool

64@1x253

1x3
Separable
Conv

64@1x126

1x2
AveragePoolOutput

10

Flatten

Artifact
Identification

FIG. 4.9. .

4.2.1.3 DepthWise CNN In this network a depthwise convolution is applied at

the start. There is a slight change in input format of data for this network. 64 EEG signals

which were aligned one below each other are now aligned along the depth which makes the

shape of input of data to be 1× 512× 64. This depthwise convolution is applied with filter

size of 1× 16 and depth multiplier of 1 i.e. one filter for each depth input. This is followed

by a separable convolution layer with filter size of 1 × 16 and 16 filters. Same as all other

34

networks every convolution layer is followed by an average pooling with pool size of 1×5.

The network size here is 3,562 parameters. It requires 0.6 million operations for pro-

cessing the input.

4.2.1.4 Separable + DepthWise CNN Figure 4.10 shows the architecture which

is similar to the one used in [Lawhern et al.2018]. This networks has filter shape of 1 ×

64 in first convolution layer with zero padding added. This is followed by a depthwise

convolution layer with filter shape of 64 × 1. A separable convolution layer is used with

filter shape of 1× 16. Depthwise and separable convolution layers are followed by average

pooling layer with pool size of 1× 8 and 1× 16 respectively [Lawhern et al.2018].

Total number of parameters for this architecture is 5,002 with 30.4 million number of

operations.

35

512

64

1x64
Conv1

8@64x449

16@1x449

64x1
DepthWise
Conv2D

16@1x28

1x16
AveragePool

64@1x28

1x16
Separable
Conv2D64@1x3

1x8
Average
PoolingOutput

10

Flatten

Artifact
Identification

FIG. 4.10. EEGNet architecture which uses combination of depthwise and separable

convolution layers. Total parameters required for this architecture is 5,002.

4.2.2 Optimized Separable + DepthWise

Figure 4.11 shows the network starts with a convolution layer with 8 filters of size

64×16. Zero padding is avoided in these type of architectures to avoid large computations.

A depthwise convolution is used with filter of size 1×8 and depth multiplier of 2 which

means there will be 2 filters associated with each depth. This is followed by an average

pooling layer with pool size of 1×16. A separable convolution is further used with 1×8

filter size. Here output feature map of first layer has reduced height as compared to original

version of EEGNet. This saves computation required in first two layers. Output of feature

36

map is reduced from 8@64× 449 to 1@1× 497.

The number of parameters of this network increase from EEGNet due to the filter

shape of first convolution layer but this leads to a very significant decrease in number of

computations. Parameter size is 9,194 with 8.3 million operations for processing the input.

512

64

64x16
Conv1

8@1x497
16@1x490

1x8
DepthWise
Conv2D

16@1x30

1x16
AveragePool

16@1x30

1x8
Separable
Conv2D16@1x3

1x8
Average
Pooling

Output
10

Flatten

Artifact
Identification

FIG. 4.11. Optimized EEGNet architecture with filter size of 64 × 16 in first convolution

layer which reduces the computation by 3.64x. Total parameters required for this architec-

ture is 9,194.

4.2.3 Optimization of Architectures

EEGNet utilizes one traditional convolution layer, followed by a depthwise convo-

lution layer, followed by one average-pooling layer, after that one depthwise-separable

37

convolution layer, then one more average-pooling layer and at last fully-connected layer.

First convolution layer has 8 filter sets and each filter size is M × 5 where M is the num-

ber of input channels. In this section, we explain the reason behind of choosing EEGNet

architecture and parameters.

Table 4.1. Comparison of computation in each layer for EEGNet and its optimized
architecture.

Layers
Computation in

EEGNet
Computation in

Optimized EEGNet Improvement

Conv1 29,425,664 8,142,848 3.6x

Depthwise 919,552 125,440 7.3x

AveragePool1 16,384 15,360 1.06x

Depthwise
Separable 32,768 61,440 0.53x

Average2 2,048 3,072 0.66x

SoftMax 320 960 0.33x

Total 30,396,736 8,349,120 3.64x

Table 4.1 shows the improvement in computation in each layer between EEGNet and

optimized EEGNet. In conv1 layer, EEGNet has 29.4M computation while optimized

EEGNet has 8.1M computation which is 3.6x of EEGNet. Optimized EEGNet has total

3.6x reduced computation of EEGNet.

4.2.4 Classification Accuracy

Our architectures are evaluated for 17 patients for 9 different artifacts. Models are

trained and tested using intra patient setting were models are trained using 70% of the data,

38

10% is used for validation and remaining 20% is used for testing. All the ten classes are

balanced for classification task. Variations of convolution layer is used for different models

proposed which leads to variations in parameters as well as artifact identification accuracy.

Results in Table 4.2 show average accuracy of proposed models which are averaged

across all 17 patients and 9 artifacts. Model which uses combination of both depthwise and

separable convolution layer provides the best identification accuracy of 95.30%.

Figure 4.12 shows classwise accuracy of the four models proposed. It can be con-

cluded that muscle related artifacts such as Shrugging shoulders (108) and rotating torso

(109) are difficult to identify as compared to other artifacts. The artifact with best in-class

accuracy for all the models is raising eyebrows (106).

Table 4.2. Comparison of parameters, computations and average accuracy (17 patients and
10 classes which includes 9 artifacts and 1 plain signal) of different model configurations.
All the models classify 9 different artifacts with test data and training data for the same
patient

Models Weight Parameters
No. of Computations

(millions) Accuracy (%)

CNN 24,842 35.4 80.37

DepthWise 3,562 0.6 76.97

Separable 8,906 6.53 68.1.3

EEGNet 5,002 30.4 95.30

Optimized
EEGNet 9,194 8.3 94.17

39

FIG. 4.12. Class-wise and average accuracy for proposed models. Using only separable
convolution layers provides least average accuracy. Using combination of depthwise and
separable convolution layers proves to be most beneficial in artifact identification.

4.3 Experimental Study

This experiment was performed using Emotiv EPOC 14 channel headset. The user

was instructed to blink once every two second. First part of this 2 second windows was

extracted and labeled as artifact. Second part of this window is labeled as artifact-free data.

Data is collected with sampling rate of 128Hz. Input given to the network is of shape

14 × 128. The data was collected in 10 different sessions. Each session consisted of 10

eye blinks. Figure 4.13 shows two second window of EEG data captured. Our network

was trained on 70% of all the data captured, 10% was used for validation and remaining

20% was used for testing. In this experiment we achieved 93.5% accuracy for detecting

40

eye blink artifact.

FIG. 4.13. Emotiv EPOC 14 channel headset capturing EEG data, Eye blink is performed
once every two seconds.

41

Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we propose an energy efficient CNN-based architecture for detecting

artifacts in EEG that achieved an average accuracy of 74% across all artifacts and subjects.

On average, our CNN architecture significantly outperformed the baseline auto-regressive

method [Lawhern et al.2012] on the majority of the tested artifact types. Additionally, our

CNN method is a fully automated technique which doesn’t require manual labeling of the

EEG trials which was required in [Lawhern et al.2012]. An optimized CNN architecture

for artifact identification was also proposed with identification accuracy of 94.17% over all

the patients and artifacts. Use of depthwise and separable convolution layers which leads

to 2.7× reduction in total number of parameters and 4.26× improvement in computations

required as compared to a network which uses traditional convolution layers.

42

5.2 Future Work

There are three main avenues for the extension of this research: application to more

datasets, expanded model search, and transfer learning.

5.2.1 More Datasets

The dataset in this thesis involved classification of artifacts. There are several other

common tasks that should also be explored. Motor imagery is perhaps the most com-

mon task in EEG classification, and is used in several forms of brain computer interface.

Similarly, experiments where the subject thinks about words from a set vocabulary have

immediate potential use in communication based BCIs, and would also show a valuable

extension of this research.

The dataset explored in this thesis was collected on a 64-channel EEG. Many modern

EEGs have 128 or even 256 channels, leading to several times the number of features. The

negative impact of feature reduction on deep learning found in our results suggests that

having a higher number of recorded features may improve the classification of the signal,

despite the issues with the curse of dimensionality.

5.2.2 More Model Search

Work presented in this thesis covered many versions of CNNs explored, though there

are other architectures of deep learning that look promising.

The first category of models that may show promise are those based on a different

43

representation of the data. While strictly recurrent architectures can be implemented to

explore the accuracy. Another extension of Convolution Neural Network can be to use 3D

projection of the data in X by Y by time format, that spatial information may be largely

retained. Many architectures used in the classification of video may be valuable in these

situations. This includes 3D convolutional models, which aggregate information of a local-

ized area over time. 2D convolutional models over space fed into recurrent architectures

over time are also promising.

There are also other layer types that should be considered. For example, Gated Recur-

rent Units (GRUs) have been gaining favor over LSTM models in other time series data,

such as natural language processing.

5.2.3 Transfer Learning

Transfer learning is a family of techniques involving the use of one set of data to

create an initialization for the classification of another set of data. Transfer learning for our

dataset can be performed in two ways.

• To train the network on all but one patient and then fine tune the network on the

patient left.

• To train the network on the all but one artifact and then fine tune it on the artifact left.

The most straightforward change that could be made in the transfer learning paradigm

is simply freezing the bottom layers of the network during fine-tuning. That is to say, only

44

allow the classification layer and perhaps the last fully connected layer to update during the

fine-tuning phase. The benefit of this approach is that it may reduce overfitting during the

fine-tuning phase.

Another approach to transfer learning that is worth exploring is transferring between

datasets. There are numerous known common features in EEG data. Thus, it is reason-

able to believe that applying transfer learning over several datasets to learn universal basic

features for the early filters in the network could be beneficial. There are some barriers

that would need to be considered, however, especially if the data is collected on different

machines or has a different time span.

Appendix A

APPENDIX

A.1 Code for data extraction of every patient

data_segments = []

onehot_labels = []

for patient in patients:

data_mat = sio.loadmat(’./B_’ + str(patient) + ’_ART.mat’)[’EEG’]

data = data_mat[’data’][0][0][:64]

event = data_mat[’orig_event’][0][0][0]

latency = numpy.zeros(shape=(event.shape[0]))

for i in range(event.shape[0]):

latency[i] = event[i][1][0][0]

print(latency)

45

46

labels = numpy.zeros(shape=(event.shape[0]))

for i in range(event.shape[0]):

labels[i] = event[i][0][0][0]

print(labels)

plain_ind = numpy.where(labels == 17)

plain_ind = plain_ind[0]

for i in range(int(latency[plain_ind[0]]), int(latency[plain_ind[-1]]) - 512,32):

temp = []

for j in range(64):

d = data[j][i: i + 512]

median_d = numpy.mean(d)

d = numpy.subtract(d, median_d)

temp.append(d)

data_segments.append(temp)

onehot_labels.append(to_onehot(0, 10))

for i in range(len(plain_ind), len(labels)):

for k in range(int(latency[i] - 200), int(latency[i] + 300), 100):

temp = []

for j in range(64):

d = data[j][int(k): int(k) + 512]

47

median_d = numpy.mean(d)

d = numpy.subtract(d, median_d)

temp.append(d)

data_segments.append(temp)

if int(labels[i]) % 100 == 17:

label = 0

else:

label = int(labels[i]) % 100

onehot_labels.append(to_onehot(label, 10))

data_segments = numpy.asarray(data_segments)

onehot_labels = numpy.asarray(onehot_labels)

data_segments, onehot_labels = shuffle(data_segments, onehot_labels, random_state=42)

return data_segments, onehot_labels

A.2 Code for plotting Topographical Maps

pos = mne.find_layout(raw.info).pos

artifact_name = [’101: Clench Jaw’,’102: Move Jaw’, ’103: Blink eyes’, ’104: Eyes Rightward’, ’105: Eyes Leftward’, ’106: Raise Eyebrows’, ’107: Rotate Head’, ’108: Shrug Shoulders’, ’109: Rotate Torso’]

times_picker = [[53.6,53.9],[102.4, 102.6], [151.8, 152.1], [205.2, 205.5], [252.5, 252.8], [303.2, 303.5], [353.3, 353.6], [405.5, 405.7], [491.8, 492]]

fig, ax = plt.subplots(3,3)

48

for ii in range(9):

start, stop = raw.time_as_index(times_picker_signal[ii])

slice = raw.get_data(start = start, stop = stop)

print(slice.shape)

mean_raw = numpy.median(slice, axis = 1)

for i in range(len(mean_raw)):

slice[i][:] = slice[i][:] - mean_raw[i]

r_mean_slices = []

for s in slice:

r_mean_slices.append(numpy.sqrt(numpy.mean(numpy.square(s))))

r_mean_slices = numpy.array(r_mean_slices)

mean_slices = numpy.mean(slices_mean, axis = 1)

im,_ = plot_topomap(r_mean_slices, pos, names = [’Fp1’, ’AF7’,

’AF3’, ’F1’, ’F3’, ’F5’, ’F7’,

’FT7’, ’FC5’, ’FC3’, ’FC1’, ’C1’, ’C3’,

’C5’, ’T7’, ’TP7’, ’CP5’, ’CP3’, ’CP1’,

’P1’, ’P3’, ’P5’,],cmap = ’Blues’ ,show_names = True,

show = False, axes = ax[ii//3][ii%3])

ax[ii//3][ii%3].set_title(artifact_name[ii])

plt.show()

49

A.3 Model Summary

A.3.1 Traditional Convolutional Neural Network

Layer (type) Output Shape Param #

===

conv1 (Conv2D) (None, 1, 510, 64) 12288

average_pooling2d_1 (Average (None, 1, 102, 64) 0

conv2d_1 (Conv2D) (None, 1, 100, 32) 6144

average_pooling2d_2 (Average (None, 1, 20, 32) 0

flatten_1 (Flatten) (None, 640) 0

dense_1 (Dense) (None, 10) 6410

===

Total params: 24,842

Trainable params: 24,842

Non-trainable params: 0

50

A.3.2 DepthWise Convolution Neural Network

Layer (type) Output Shape Param #

===

input_1 (InputLayer) (None, 1, 512, 64) 0

depthwise_conv2d_1 (Depthwis (None, 1, 497, 64) 1024

activation_1 (Activation) (None, 1, 497, 64) 0

average_pooling2d_1 (Average (None, 1, 31, 64) 0

dropout_1 (Dropout) (None, 1, 31, 64) 0

separable_conv2d_1 (Separabl (None, 1, 31, 16) 2048

activation_2 (Activation) (None, 1, 31, 16) 0

average_pooling2d_2 (Average (None, 1, 3, 16) 0

51

dropout_2 (Dropout) (None, 1, 3, 16) 0

flatten (Flatten) (None, 48) 0

dense (Dense) (None, 10) 490

softmax (Activation) (None, 10) 0

===

Total params: 3,562

Trainable params: 3,562

Non-trainable params: 0

A.3.3 Separable Convolution Neural Network

Layer (type) Output Shape Param #

===

conv1 (SeparableConv2D) (None, 1, 510, 64) 256

52

average_pooling2d_1 (Average (None, 1, 102, 64) 0

separable_conv2d_1 (Separabl (None, 1, 100, 32) 2240

average_pooling2d_2 (Average (None, 1, 20, 32) 0

flatten_1 (Flatten) (None, 640) 0

dense_1 (Dense) (None, 10) 6410

===

Total params: 8,906

Trainable params: 8,906

Non-trainable params: 0

A.3.4 Depthwise + Separable Convolution Neural Network

Layer (type) Output Shape Param #

===

53

input_1 (InputLayer) (None, 64, 512, 1) 0

conv2d_1 (Conv2D) (None, 64, 512, 8) 256

activation_1 (Activation) (None, 64, 512, 8) 0

depthwise_conv2d_1 (Depthwis (None, 1, 510, 24) 4608

activation_2 (Activation) (None, 1, 510, 24) 0

average_pooling2d_1 (Average (None, 1, 63, 24) 0

dropout_1 (Dropout) (None, 1, 63, 24) 0

separable_conv2d_1 (Separabl (None, 1, 63, 24) 960

activation_3 (Activation) (None, 1, 63, 24) 0

average_pooling2d_2 (Average (None, 1, 15, 24) 0

dropout_2 (Dropout) (None, 1, 15, 24) 0

54

flatten (Flatten) (None, 360) 0

dense (Dense) (None, 10) 3610

softmax (Activation) (None, 10) 0

===

Total params: 9,434

Trainable params: 9,434

Non-trainable params: 0

REFERENCES

[Barachant et al.2010] Barachant, A.; Bonnet, S.; Congedo, M.; and Jutten, C. 2010. Rie-

mannian geometry applied to bci classification. In International Conference on Latent

Variable Analysis and Signal Separation, 629–636. Springer.

[Chollet2017] Chollet, F. 2017. Xception: Deep learning with depthwise separable convo-

lutions. In Proceedings of the IEEE conference on computer vision and pattern recog-

nition, 1251–1258.

[Delorme, Sejnowski, & Makeig2007] Delorme, A.; Sejnowski, T.; and Makeig, S. 2007.

Enhanced detection of artifacts in eeg data using higher-order statistics and independent

component analysis. Neuroimage 34(4):1443–1449.

[Güler, Übeyli, & Güler2005] Güler, N. F.; Übeyli, E. D.; and Güler, I. 2005. Recurrent

neural networks employing lyapunov exponents for eeg signals classification. Expert

systems with applications 29(3):506–514.

[Hinton, Osindero, & Teh2006] Hinton, G. E.; Osindero, S.; and Teh, Y.-W. 2006. A fast

learning algorithm for deep belief nets. Neural computation 18(7):1527–1554.

[Howard et al.2017] Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.;

Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mobilenets: Efficient convolutional

neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.

55

56

[Iriarte et al.2003] Iriarte, J.; Urrestarazu, E.; Valencia, M.; Alegre, M.; Malanda, A.; Vi-

teri, C.; and Artieda, J. 2003. Independent component analysis as a tool to eliminate

artifacts in eeg: a quantitative study. Journal of clinical neurophysiology 20(4):249–257.

[Islam et al.2017] Islam, R.; Hairston, W. D.; Oates, T.; and Mohsenin, T. 2017. An eeg

artifact detection and removal technique for embedded processors. In 2017 IEEE Signal

Processing in Medicine and Biology Symposium (SPMB), 1–3. IEEE.

[Islam, Rastegarnia, & Yang2016] Islam, M. K.; Rastegarnia, A.; and Yang, Z. 2016.

Methods for artifact detection and removal from scalp eeg: a review. Neurophysiolo-

gie Clinique/Clinical Neurophysiology 46(4):287–305.

[Jafari et al.2017] Jafari, A.; Gandhi, S.; Konuru, S. H.; Hairston, W. D.; Oates, T.; and

Mohsenin, T. 2017. An eeg artifact identification embedded system using ica and multi-

instance learning. In 2017 IEEE International Symposium on Circuits and Systems (IS-

CAS), 1–4.

[Jafari et al.2018] Jafari, A.; Ganesan, A.; Thalisetty, C. S. K.; Sivasubramanian, V.;

Oates, T.; and Mohsenin, T. 2018. Sensornet: A scalable and low-power deep con-

volutional neural network for multimodal data classification. IEEE Transactions on

Circuits and Systems I: Regular Papers 1–14.

[Jung et al.1998] Jung, T.-P.; Humphries, C.; Lee, T.-W.; Makeig, S.; McKeown, M. J.;

Iragui, V.; and Sejnowski, T. J. 1998. Extended ica removes artifacts from electroen-

57

cephalographic recordings. In Advances in neural information processing systems, 894–

900.

[Kaiser, Gomez, & Chollet2017] Kaiser, L.; Gomez, A. N.; and Chollet, F. 2017.

Depthwise separable convolutions for neural machine translation. arXiv preprint

arXiv:1706.03059.

[Khatwani et al.2018] Khatwani, M.; Hosseini, M.; Paneliya, H.; Mohsenin, T.; Hairston,

W. D.; and Waytowich, N. 2018. Energy efficient convolutional neural networks for eeg

artifact detection. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS),

1–4. IEEE.

[Krizhevsky, Sutskever, & Hinton2012] Krizhevsky, A.; Sutskever, I.; and Hinton, G. E.

2012. Imagenet classification with deep convolutional neural networks. In Advances in

neural information processing systems, 1097–1105.

[Lawhern et al.2012] Lawhern, V.; Hairston, W. D.; McDowell, K.; Westerfield, M.; and

Robbins, K. 2012. Detection and classification of subject-generated artifacts in eeg

signals using autoregressive models. Journal of neuroscience methods 208(2):181–189.

[Lawhern et al.2018] Lawhern, V. J.; Solon, A. J.; Waytowich, N. R.; Gordon, S. M.;

Hung, C. P.; and Lance, B. J. 2018. EEGNet: a compact convolutional neural

network for EEG-based brain–computer interfaces. Journal of Neural Engineering

15(5):056013.

58

[Majidov & Whangbo2019] Majidov, I., and Whangbo, T. 2019. Efficient classification

of motor imagery electroencephalography signals using deep learning methods. Sensors

19(7):1736.

[Nuwer1988] Nuwer, M. R. 1988. Quantitative eeg: I. techniques and problems of fre-

quency analysis and topographic mapping. Journal of clinical neurophysiology: official

publication of the American Electroencephalographic Society 5(1):1–43.

[Petrosian et al.2001] Petrosian, A.; Prokhorov, D.; Lajara-Nanson, W.; and Schiffer, R.

2001. Recurrent neural network-based approach for early recognition of alzheimer’s

disease in eeg. Clinical Neurophysiology 112(8):1378–1387.

[Podlozhnyuk2007] Podlozhnyuk, V. 2007. Image convolution with cuda. NVIDIA Cor-

poration white paper, June 2097(3).

[Schetinin & Schult2004] Schetinin, V., and Schult, J. 2004. The combined technique

for detection of artifacts in clinical electroencephalograms of sleeping newborns. IEEE

Transactions on Information Technology in Biomedicine 8(1):28–35.

[Simonyan & Zisserman2014] Simonyan, K., and Zisserman, A. 2014. Very deep convo-

lutional networks for large-scale image recognition. CoRR abs/1409.1556.

[Szegedy et al.2017] Szegedy, C.; Ioffe, S.; Vanhoucke, V.; and Alemi, A. A. 2017.

Inception-v4, inception-resnet and the impact of residual connections on learning. In

Thirty-First AAAI Conference on Artificial Intelligence.

59

[Winkler, Haufe, & Tangermann2011] Winkler, I.; Haufe, S.; and Tangermann, M. 2011.

Automatic classification of artifactual ica-components for artifact removal in eeg signals.

Behavioral and Brain Functions 7(1):30.

[Zheng et al.2014] Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; and Zhao, J. L. 2014. Time series

classification using multi-channels deep convolutional neural networks. In International

Conference on Web-Age Information Management, 298–310. Springer.

	Dedication
	ACKNOWLEDGMENTS
	List of Tables
	List of Figures
	Introduction
	Introduction
	Contributions
	Organization of Sections

	Background and Related Work
	Deep Learning
	Convolutional Neural Network

	EEG Signal Classification
	Traditional Approaches

	Artifact Detection in EEG signal using CNN
	Problem Definition
	High Varibaility in Data
	Collection of Dataset
	Preprocessing of EEG Data
	Proposed DNN Architecture
	Classification Analysis and Results

	Efficient CNN for Artifact Identification
	Visualization of EEG signals
	EEG signal plot
	Topographical Plot

	Implementation and Results
	Architectures
	Optimized Separable + DepthWise
	Optimization of Architectures
	Classification Accuracy

	Experimental Study

	Conclusion and Future Work
	Conclusion
	Future Work
	More Datasets
	More Model Search
	Transfer Learning

	APPENDIX
	Code for data extraction of every patient
	Code for plotting Topographical Maps
	Model Summary
	Traditional Convolutional Neural Network
	DepthWise Convolution Neural Network
	Separable Convolution Neural Network
	Depthwise + Separable Convolution Neural Network

	References

