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Abstract—Critical natural resources and processes in the 

Arctic depend heavily on sea ice. Thus, accurate and timely 
predictions of Arctic sea ice changes is important. Arctic sea 
ice forecasting involves two connected tasks: predicting sea ice 
concentration (SIC) at each pixel and predicting overall sea ice 
extent (SIE). Instead of having two separate models for these 
two forecasting tasks, in this paper we study how to use multi- 
task learning techniques and leverage the connections between 
ice concentration and ice extent to improve accuracy for both 
forecasting tasks. Because of the spatiotemporal nature of the 
data, we designed two novel multi-task learning models based on 
the CNN and ConvLSTM, respectively. Further, in conjunction 
with multi-task models, we developed custom loss functions 
which train the models to ignore land pixels and optimize for 
both concentration and extent when making predictions. Our 
experiments show that multi-task models provide better accuracy 
for a 1-month lead time than models that predict sea ice extent 
and concentration separately. Our accuracies are better than 
or comparable to results in related state-of-the-art studies. Our 
best model in SIC prediction outperformed the best existing SIC 
prediction model in the literature with 1.78% less error, and our 
best model in SIE prediction outperformed the best existing SIE 
prediction model with 0.283 million km2 less error. 

Index Terms—arctic sea ice forecasting, convolutional neural 
network (CNN), convolutional long short-term memory (ConvL- 
STM) network, multi-task deep learning, custom loss function 

 

I. INTRODUCTION 

Arctic sea ice variations drive atmospheric processes, 
oceanic circulation, and polar ecosystems. The albedo of sea 
ice is much larger than that of open ocean. Thus, sea ice 
regulates the Earth’s temperature by reflecting sunlight away 
from the surface [21], [38]. However, since 1981, Arctic sea 
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ice extent has declined at a rate of 13.1% per decade. This 
trend has accelerated in recent years. In September 2012, 
Arctic sea-ice extent (SIE) reached a record low of 3.57 
million km2 [37]. If current trends continue, the Arctic Ocean 
may be ice-free by the middle of this century based on climate 
model projections [5], [25], [31]. 

Melting of Arctic sea ice poses significant challenges for 
local and global communities. Decreased ice extent increases 
absorption of solar radiation by the ocean, which results in 
warmer sea surface temperatures. This in turn accelerates sea 
ice melting, leading to a feedback loop of warming [19]. Fur- 
thermore, reduced ice formation inhibits oceanic circulation 
and the transport of heat between continents [34]. On the local 
scale, sea ice loss threatens native species and the livelihoods 
of Indigenous people [9], [32]. In light of these consequences, 
accurate predictions of future Arctic sea ice levels are essential 
for planning mitigation and resilience measures for climate 
change. 

In this paper, we address the following two main challenges 
in arctic sea ice forecasting. First, although there is a rela- 
tionship between sea ice concentration and sea ice extent, re- 
searchers have not yet created a model that can accurately and 
simultaneously predict both spatial sea ice concentration (SIC) 
images and temporal sea ice extent (SIE) values. Additionally, 
remote sensing techniques often produce noisy values, making 
it difficult for models to discriminate between land, sea and 
ice pixels, resulting in increased prediction error. 

The main goal of this study was to apply novel deep learning 
methods to improve on the best sea ice prediction accuracies 
in the literature with the following contributions. The software 
implementations of our work are open-sourced at [1]. 

• We propose multi-task deep learning models, namely 
Multi-Task CNN and ConvLSTM, to simultaneously pre- 
dict both SIC and SIE. Each model is able to learn both 
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spatial information from SIC and temporal information 
from SIE, and thus able to improve prediction ability 
for both metrics. The results indicate that this multi- 
task method improves ice forecasts compared to deriving 
extent based on concentration or training two separate 
models for concentration and extent. 

• We propose a custom loss function in our models to 
focus on relevant pixels by applying a land mask to 
each epoch’s predicted SIC image. Models are thus able 
to optimize more efficiently on the grid cells where ice 
formation is possible. 

• We conducted extensive experiments to evaluate our 
work. Results show our approaches can attain comparable 
or lower SIC and SIE errors than baseline methods and 
related studies. The results confirm the ability of deep 
learning methods to predict Arctic sea ice trends, and 
the ability of multi-task models to provide the optimal 
accuracy. 

The rest of the paper is organized as follows. We first give an 
overview of numerical, statistical, and deep learning methods 
used in the literature to forecast Arctic sea ice in Section II. 
This is followed by a description of the dataset in Section 
III. Details about the deep learning model architectures and 
model training and testing are provided in the Methods section 
(Section IV). A discussion of our SIC and SIE prediction 
results and comparisons with results from related studies is 
in Section V. Lastly, Section VI concludes this work. 

 
II. BACKGROUND AND RELATED WORK 

A. Numerical and Statistical Methods 

Recent studies have utilized numerical, statistical, and 
machine learning methods to predict Arctic sea ice. Using 
CFSv2 (Climate Forecast System, Version 2), a physics-based 
numerical climate model, to predict September SIE for 2005 
through 2014, Collow et al. obtained an RMSE in the range 
of 0.55-0.65 million km2 [39]. Wang et al. used CFSv2 to 
conduct a detailed analysis of SIE prediction ability for 1982 
through 2007, and obtained RMSE values between 0.2 and 
0.6 million km2 [42]. These numerical studies have attained 
reasonable SIE predictions, but the computational resources 
and complex physics expertise necessary to harness dynamical 
models inhibit ready use of these methods. 

Statistical methods, while much simpler to implement and 
interpret than dynamical models, show limited potential for 
predicting Arctic sea ice. Regression techniques have provided 
adequate sea ice predictions results for up to 7 month lead 
times, using only sea ice input [23] or additional predictors 
[17]. Wang et al. used vector autoregression, a multivariate 
time series model, to predict daily summertime sea ice at 
an intraseasonal timescale of 20-60 days. The study reached 
one month-ahead SIE prediction RMSE of approximately 0.45 
million km2 and one month-ahead SIC prediction RMSE 
of 10-15%, depending on the specific region [41]. Greater 
accuracy is desired for reliable long-term ice forecasts. 

B. Deep Learning Methods 
Deep learning models have demonstrated improved accura- 

cies over statistical models for ice prediction. Chi et al. used 
two deep learning models, a multilayer perceptron and a long- 
short term memory model, to predict monthly 2015 Arctic SIC. 
Sea ice concentration for the preceding 12 months was the only 
input variable used for their models, but this study was able 
to achieve an RMSE of 8.89% at 25km x 25km resolution [7]. 
Kim et al. trained a convolutional neural network (CNN) as 
well as random forests to make one month-ahead monthly SIC 
predictions. Prior meteorological measurements and ice values 
were used as predictors. The CNN had the best performance, 
with an overall RMSE of 5.76% for predictions of Arctic sea 
ice from 2000-2017 [27]. Liu et al. compared the performance 
of CNN and ConvLSTM models in predicting Arctic SIC at 
the daily scale for 2018. The spatial domain was divided into 
20 sub-grids, and the two previous days were used to predict 
the next day’s ice concentrations. The CNN had an average 
RMSE of 8.058%, and the ConvLSTM had an improved 
6.942% RMSE for 2018 sea ice [28]. Ali et al. compared dif- 
ferent machine/deep learning based SIE forecasting techniques 
and proposed a multi-temporal ensemble model that achieved 
the best forecast accuracy with an RMSE of 4.11% [2]. Most 
recently, Andersson et al. proposed a U-Net based ensemble 
model for predicting sea-ice probabilities for a lead time of 6 
months [4]. Their model takes in images as input and forecasts 
as output sea-ice concentration (SIC) maps in the form of 
three classes (open-water region SIC < 15%, ice-edge region 
15% < SIC < 80%, and confident ice region SIC > 80%). 
These studies highlight the promise of deep learning models 
for producing accurate ice predictions at a high spatiotemporal 
resolution. Yet, to the best of our knowledge, there are still no 
studies that simultaneously forecast spatiotemporal Arctic sea 
ice in terms of both SIC and SIE. 

III. DATASETS, PROBLEM DEFINITION AND DATA 
PROCESSING 

A. Datasets 
This study uses sea ice, atmospheric, and meteorological 

data from 1979 through 2020 covering the Arctic Ocean and 
adjacent land areas. Sea ice concentration data with 25km by 
25km grid cells were accessed from the National Snow and Ice 
Data Center [6], [35]. The SIC dataset produces an uncertainty 
of about +-5% in the Arctic winter when sea ice tends to 
reach its peak in concentration levels. During summer months, 
this uncertainty increases to about +-15% as there are more 
melt ponds present which can skew data collection [6]. The 
uncertainty comes from either instruments or satellite retrieval 
algorithms. Here, for modeling purposes, the satellite-retrieved 
SIC data were considered to be the ground truth. 

Atmospheric and meteorological variables were obtained 
from European Centre for Medium-Range Weather Forecasts 
(ECMWF) ERA-5 global reanalysis product [14], [15]. In- 
formation on these atmospheric variables along with sea ice 
concentration are listed in Table I. The variables were chosen 



because they demonstrated causal links with sea ice variations 
[22]. 

The inclusion of each atmospheric and meteorological vari- 
able was based on their physical impact on sea ice trends. 
Air temperature is the main driver of changes in sea ice, 
and record low sea ice extents during recent melting seasons 
have been associated with warmer atmospheric temperatures 
[36]. The inclusion of sea surface temperature and 2 meter air 
temperature in the dataset provide the models with information 
on oceanic and atmospheric heat. Studies have also shown that 
Arctic circulation and wind patterns have seasonally varying 
relationships with sea ice [10], [18]. For example, poleward 
winds specifically play a key role in transporting heat to 
the Arctic, which contributes to ice melt [3], [26], [40]. 
Precipitation trends are also connected to sea ice patterns. 
In recent years, earlier rainfalls during spring have triggered 
earlier snowmelt and, via feedback loops, earlier Arctic ice 
melt [11], [29]. The complexity of atmospheric, oceanic, and 
sea ice interactions is illustrated in [16], [20], which highlight 
the pathway by which regional differences in atmospheric 
pressure facilitate increased Arctic humidity, which in turn 
enables higher levels of longwave radiation to reach the sea 
surface, leading to earlier melting of sea ice. Thus, each 
predictor impacts Arctic sea ice through complex physical 
interactions in the ocean and atmosphere. 

TABLE I: Input Features for CNN and ConvLSTM models 
 

Feature Source Units Range 
Sea Ice Concentration NSIDC % per pixel 0-100 

Surface Pressure ERA5 Pa 40000-110000 
10m Wind Speed ERA5 m/s 0-40 

Near-Surface Humidity ERA5 kg/kg 0-0.1 
2m Air Temperature ERA5 K 200-350 
Shortwave Radiation ERA5 W/m2 0-1500 
Longwave Radiation ERA5 W/m2 0-300 

Rain Rate ERA5 mm/day 0-800 
Snow Rate ERA5 mm/day 0-200 

Sea Surface Temperature ERA5 K 200-350 

 
All variables were averaged from a daily resolution to 

the monthly scale. Prior to model-specific pre-processing, the 
dataset had 504 images, each with 448 by 304 grid cells and 
10 channels, corresponding to the 504 months in the dataset 
and the 10 input features detailed in Table I. 

B. Problem Statement 

Given n months of historical data X comprising of the 
above 10 atmospheric and ocean variable measurements in 
Arctic region for each pixel, learn a function to forecast pixel- 
wise sea-ice concentration YC, shown in Equation (1), and 
total sea-ice extent YE, shown in Equation (2), for the next 
month. 

 
YC = fC(Xt−n, Xt−n+1, ..., Xt) (1) 

 

YE = fE(Xt−n, Xt−n+1, ..., Xt) (2) 

C. Data Prepreocessing 
1) Convolutional Neural Network Data Prepreocessing: 

CNN models were trained on the first 407 months of the data 
(January 1979 - November 2012) and tested on the last 96 
months (January 2013 - November 2020), with a one-month 
lead time. Each image in the dataset was considered to be an 
individual training example and was used to predict per-pixel 
sea ice concentrations for the next month. For example, the 
image corresponding to January 1979 was used to predict ice 
concentrations for February 1979. Thus, the training dataset 
learned per-pixel sea ice concentrations for February 1979 - 
December 2012, and the testing dataset predicted per-pixel sea 
ice concentrations for February 2013 - December 2020. 

2) Convolutional LSTM Data Pre-Processing: In order to 
fully capture the spatio-temporal nature of our data using a 
convolutional LSTM model, heavy data preprocessing was 
necessary. The model was trained on the first 407 months of 
the data and tested on the last 96 months of the data. In Keras, 
ConvLSTM2D layers require 5 dimensional inputs of shape 
(samples, timesteps, rows, columns, features). To reshape the 
data, a stateless rolling window was applied to the training and 
testing data, creating 384 samples of 12 months each. Sample 
one contained months 1-12, sample two contained months 2- 
13, and the last sample contained months 372-384. The final 
shape of the training input data was 384 samples with 12 
months of 448×304 pixel images, each containing 10 feature 
measurements at each pixel. Similarly, the final shape of the 
test input data was 84 samples with 12 months of 448×304 
pixel images each, all containing 10 feature measurements at 
each pixel. 

The data consisted of 384 images in the training set and 84 
images in the test set. Each image contained the average sea 
ice concentration for the corresponding month in each pixel. 
The first sample of input data, consisting of the first 12 months 
of images, was used to predict the sea ice concentrations in the 
13th month in the output data; the second sample was used 
to predict the SIC in the 14th month and so on. Including 
such a rolling window with 12-month timesteps allows the 
ConvLSTM to learn yearly variations and relationships in SIC. 

D. Post-Processing 
After model training, each SIC prediction image was post- 

processed to obtain a more realistic result. SIC strictly ranges 
from 0% to 100%, and can only have a non-zero value over 
ocean pixels. Thus, any non-zero SIC prediction over land 
pixels were set to 0, all SIC predictions over ocean pixels 
below 0% were set to 0%, and all SIC predictions over 100% 
were set to 100%. 

IV. METHODS 

A. Statistical Models 
Vector Autoregression (VAR) is a family of multivariate 

time series models. Each variable is used as an autoregressive 
predictor for every other variable in the input data. A VAR 
model with lag 10, selected using the Bayesian Information 
Criterion (BIC), was used as a baseline for comparison with 
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0, otherwise 
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Fig. 1: CNN model architecture. 
 
 

deep learning model results. As a temporal model, VAR was 
only trained to predict SIE with a one-month lead time, taking 
daily inputs from the 10 variables described in Table I. 

B. Deep Learning Models 
1) Convolutional Neural Network: The first deep learning 

technique this study implements is a Convolutional Neural 
Network (CNN). CNNs are a type of deep learning models 
particularly suited for images, speech, and audio signals. 
Thus, we chose to implement it to process our per-pixel data, 
which is in the form of images. The CNN input data for 
this study is a three-dimensional array with the dimensions 
height × width × channel (448, 304, 10). 

We created a CNN model in order to provide a baseline for 
comparison with other, more complex deep learning models. 
Figure 1 shows the CNN model architecture, which consists 
of three types of layers: convolutional layers, pooling layers, 
and fully connected layers [12]. The CNN we implemented 
features 9 layers. The first part of the model is an alternating 
sequence of 3 convolutional layers and 2 max-pooling layers. 
The convolutional layers contain 128, 32, and 8 filters respec- 
tively, all with kernels of size 5 × 5. The max-pooling layers 
have kernels of size 2 × 2. 

Once the data was fed through the convolutional and max- 
pooling layers, it was then flattened and propagated through 
two fully-connected layers. The first fully-connected layer con- 
tained 256 neurons, while the next layer contained 448×304 = 
136192 neurons, corresponding to the dimensions of the output 
images. The output vector is then reshaped into a matrix (IxJ ) 
of 448 by 304 grid cells, representing a monthly SIC image 
prediction. The number corresponding to each pixel in the 
output image represents the sea ice concentration percentage 
for that pixel. 

      
A[i, j],  if YC [i, j] ≥ 15% 

 

 

produce the predicted SIE. This calculation is also used by the 
National Snow and Ice Data Center [33]. 

The model is optimized with the Adamax optimizer, and 
it utilizes a custom masked loss function, detailed in section 
IV-C1. All layers in the model use ReLU activation with the 
exception of the output layer, which uses linear activation. 
Early stopping with a patience of 10 was used to reduce 
training time. 

2) Long Short-Term Memory Network: This study also 
implements a Long Short-Term Memory Network (LSTM) in 
order to obtain a baseline for comparison with convolutional 
and multi-task deep learning models. LSTM is a type of 
Recurrent Neural Network (RNN) that is used in analyzing 
time-series data with proficiency in forecasting longer lead 
times. An LSTM network comprises a special memory gate 
that gathers and processes input from previous time steps to 
influence the output value of successive time steps. Since our 
data possess spatial and temporal properties, the use of an 
LSTM was suitable to be considered for baseline experiments. 
The architecture of our baseline LSTM comprises two many- 
to-one LSTM layers, one dropout layer and three fully- 
connected layers. As a temporal model, we have implemented 
the LSTM to only forecast monthly SIE with a one-month 
lead time, taking daily inputs from the 10 variables described 
in Table I. The input dimensions for the model were N xF xT . 
Here, N is the number of samples, F is the number of 
features, that is 11, and T is the timestep, that was kept 1. The 
training and test split was same as other models to keep fair 
comparison. The model was trained on 500 epochs using early 
stopping method, the optimizer used was ’Adam’, whereas the 
batch size was kept 12. 

 
Yt+1 = f (Xt−n, Xt−n+1, ..., Xt, Yt) (4) 

 
Equation (4) represents the functionality of our baseline 

LSTM model. The outcome of the model is Yt+1, that is 
the predicted sea-ice extent for next month t + 1, given the 
atmospheric data and sea-ice extent for previous month t. 

3) Convolutional Long Short Term Memory Network: 
ConvLSTM architecture combines the spatial recognition ca- 
pabilities of convolutional neural networks and the temporal 
modeling capabilities of long short-term memory models 
(LSTM) to produce an output which takes both spatial and 
temporal patterns into account. LSTMs use matrix multiplica- 
tion on each gate in an LSTM cell; ConvLSTMs replace this 
matrix multiplication with convolutions, allowing the model to 
capture underlying spatial features in multi-dimensional data 

 
The monthly SIE value was derived from SIC using Equa- 

tion (3). A[i, j] is the area of the pixel at [i, j]. If the predicted 
SIC value of a pixel is greater than or equal to 15%, the pixel’s 
value is set equal to 1; if the predicted SIC value is less than 
15%, the value is set equal to 0. Each pixel is multiplied by 
its corresponding area, and the resultant matrix is summed to 

comparison with our Multi-Task models. Figure 2 shows the 
ConvLSTM model architecture. Our ConvLSTM model had 9 
layers. The first layer is a ConvLSTM layer with 16 filters of 
size 5× 5. Following this layer is a set of two alternating max- 
pooling and convolutional layers. Both max-pooling layers 
have a 2 × 2 kernel. The first convolutional layer features 128 

[13]. 
We created a ConvLSTM model to give us a baseline for 

YE = 



 
Fig. 2: ConvLSTM model architecture. 

 
 

filters, while the second contains 32; both layers have a kernel 
size of 5 × 5. 

After propagation through the ConvLSTM and convolu- 
tional layers, the model’s output is flattened and fed through 
three fully-connected layers. The first layer contains 256 

neurons, the second contains 512 neurons, and the output layer 
contains 448×304 = 136192 neurons, equal to the number 
of pixels in each output image. The final output vector is 
then shaped into a 448 by 304 image, corresponding to a 

monthly SIC image output. The number corresponding to each 
pixel in the output image represents the sea ice concentration 

percentage for that pixel. As with the CNN models, the 
monthly SIE value was derived from SIC using Equation (3). 

The model is optimized with the Adamax optimizer, and it 
utilizes a custom masked loss function, detailed in IV-C1. All 
layers in the model use ReLU activation with the exception 

of the output layer, which uses linear activation. As with the 
CNN, early stopping with a patience of 10 was used to reduce 
training time. 

4) Multi-Task Models: Multi-task learning is a subset of 
machine learning where multiple tasks are learned by a shared 
model [8]. Using a branched architecture, we trained multi- 
task models to produce both monthly image predictions of 
SIC for each pixel and monthly sea ice extent values. 

Multi-task learning was integrated into both the CNN 
and ConvLSTM models. Figure 3 shows the architecture for 
our Multi-Task ConvLSTM model, which is nearly identical 
to the Multi-Task CNN architecture. The models contain a 
shared root, through which the input data are passed, and 
two subsequent branches which produce the SIC image and 
sea ice extent outputs. The input root for the ConvLSTM 
comprises one ConvLSTM2D layer with 8 filters of size 5×5 
and ReLU activation, followed by two alternating max pooling 

Fig. 3: Multi-Task ConvLSTM model architecture. 
 
 

and convolution layers. The only difference for the Multi-Task 
CNN is that the first layer is a convolutional layer; everything 
else that follows replicates the architecture of the Multi-Task 
ConvLSTM. The max pooling layers contain filters of size 
4×4, while the convolutional layers contain 128 and 32 size 
5×5 filters respectively. The convolutional layers use ReLU 
activation. The data are then flattened and propagated through 
a dense layer with 256 nodes and ReLU activation. 

The image branch of the architecture receives the model’s 
root output and propagates it through a dense layer of size 
448×304 = 136,192 with linear activation. The data are then 
reshaped into an image of size 448 rows by 304 columns. Each 
pixel in the image has an associated SIC value. 

The extent branch also receives the model’s root output; it 
propagates the root output vector through 4 dense layers of 
size 128, 32, 8, and 1 respectively, returning a single sea ice 
extent result for each input sample. The first 3 dense layers 
use a ReLU activation function, while the output layer utilizes 
linear activation for regression. 

Two loss functions are used to optimize the models. The 
image branch is optimized using the custom masked loss 
function described in section IV-C1, while the sea ice extent 
branch is optimized using MSE loss. The performance of 
the models are evaluated using the RMSE metric for both 
branches. 

C. Custom Loss Functions 
1) Masked Loss Function: Neural networks use loss func- 

tions to measure the error in their predictions after each epoch. 
Once the error has been measured, the model optimizes the 
loss function using back-propagation. 

To improve the accuracy of our deep learning models, a cus- 
tom masked loss function was implemented in the architecture 
of each network, except the LSTM. A land mask was applied 
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Fig. 4: Multi-Task ConvLSTM SIC predictions and true values for March, June, September, and December 2014. 
 

to each output of the network before loss was evaluated. This 
mask included one image for each month in the dataset; land 
pixels were given a value of 0 and non-land pixels were given 
a value of 1. Each predicted output and its corresponding 
mask were multiplied elementwise. Thus, any predicted values 
over land became 0, and any predictions over ocean pixels 
were unchanged, resulting in land pixels being ignored when 
calculating the loss. 

In order to correctly apply each month’s land mask to 
the corresponding sample, the model accepted the land mask 
values and actual values as inputs. However, they were not 
propagated through the model; instead, they were exclusively 
used for the calculation purposes of the loss function. 

2) Extent Loss Function: A separate convolutional neural 
network model was trained with a loss function which adds a 
penalty for SIE loss in addition to the land masking discussed 
in section IV-C1. For each SIC image prediction, the SIE 
value was derived using Equation (3), and the SIE RMSE was 
calculated using Equation (6). This SIE RMSE was added to 
the SIC RMSE for the loss function output value. This addition 
to the custom loss function enabled the CNN model to better 
optimize both SIC and derived SIE predictions. 

V. RESULTS AND DISCUSSION 

A. Models 
Based on the methods described in section IV, we conducted 

experiments to compare results of seven total models: one 
statistical model, namely VAR in IV-A, and six deep learning 

with an extent loss function described in IV-C2, a Multi- 
Task CNN with a masked loss function, and a Multi-Task 
ConvLSTM with a masked loss function. Since the LSTM 
model outputs single values rather than images, the use of 
a masked loss function is not applicable. We also tested a 
CNN without a custom loss function and a Multi-Task CNN 
with an extent loss function, but these results are not included 
in this paper due to their poor performance. The CNN-based 
models were trained over 400 epochs, and early stopping was 
utilized to reduce training time. The base CNN had a batch 
size of 4, while the Multi-Task CNN had a batch size of 32. 
The ConvLSTM-based models were trained over 1000 epochs; 
early stopping was also used in these models. The ConvLSTM 
models had a batch size of 4. Our implementation code can 
be accessed at the Big Data REU GitHub repository [1]. 

 
B. Evaluation Metrics 

Root-mean-squared error (RMSE) was the main metric for 
evaluating model predictions. Equation (5) shows the RMSE 
calculation for evaluating SIC results. The squared error was 
calculated for each predicted pixel, where I = 448 and J = 
304. Here, YC represents real SIC and YˆC represents predicted 
SIC values. Equation (6) shows the RMSE calculation for 
evaluating SIE results. The squared error was calculated for 
each month, where M = 84. YE represents real or derived 
SIE and YˆE represents predicted SIE values. 

models. The six deep learning models evaluated were a CNN 
with a masked loss function, an LSTM without a masked loss 
function, a ConvLSTM with a masked loss function, a CNN 
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TABLE II: SIC and SIE RMSE percentage values of our models. Values without * represent SIE predicted by the model; values with * 
represent SIE derived based on Equation (3). 

 
Method SIC Train RMSE SIC Test RMSE SIC Post-Proc RMSE SIE Train RMSE SIE Test RMSE 
VAR - - - - 0.424 
LSTM - - - 0.179 0.347 
CNN 11.734 12.005 7.106 - 0.631* 
Extent Loss CNN 11.911 12.228 7.150 - 0.571* 
ConvLSTM 10.054 11.478 8.161 0.908* 0.938* 
Multi-Task CNN 13.108 13.348 7.527 0.375 0.536 
Multi-Task ConvLSTM 9.989 10.807 7.155 0.335 0.303 
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Normalized RMSE (NRMSE) was also utilized to im- 
prove the comparability of predictions from different models. 
NRMSE calculation involves dividing the RMSE value by the 
mean of the predicted values. 

C. Model Comparison on Sea Ice Concentration Forecasting 
SIC prediction results of our models are shown in columns 

2-4 of Table II. Note that all RMSE values stated in the 
following section refer to test RMSE after post-processing, 
unless otherwise specified. The base CNN model resulted in 
the lowest SIC RMSE, 7.106%, followed by the CNN with 
extent loss function, with SIC RMSE of 7.150%. The Multi- 
Task ConvLSTM resulted in slightly less accurate predictions 
than the CNN models, with an SIC RMSE of 7.155%. The 
Multi-Task CNN had worse accuracy than the single-task CNN 
models, while the Multi-Task ConvLSTM improved on the 
single-task ConvLSTM’s accuracy. 

Prior to post-processing, the Multi-Task ConvLSTM had 
a significantly lower SIC test RMSE compared to all other 
models. Additionally, each ConvLSTM model outperformed 

all CNN models on SIC test RMSE prior to post-processing. 
This indicates that the ConvLSTM models better avoided pre- 
dicting SIC values over land or values beyond the [0%, 100%] 
SIC range, possibly due to the additional temporal information. 

Figure 4 shows Multi-Task ConvLSTM prediction and real 
SIC values for March, June, September, and December 2014. 
The model was able to capture the overall spatial distribution 
of sea ice, as seen by the consistent concentration distribution 
between predicted and real maps. Upon visual inspection, 

the model performs particularly well for March and Decem- 
ber, winter months for which SIC is relatively high. June 

and September display worse model accuracy. Specifically, 
the model underestimates June SIC towards the Canadian 

Archipelago. As for September, the model underestimates the 
SIC in the north of Greenland and Canadian Archipelago, and 
overestimates SIC in the Pacific side of Arctic Ocean, partic- 

ularly in the Beaufort Sea, Chukchi Sea and East Siberian 
Sea. In addition, the sea ice-covered area in the predicted 
September map is much larger than that of the real September 
sea ice distribution. 

The visual results gathered from the spatial plots are con- 
firmed by the time-based RMSE plots in Figures 5 and 6. SIC 

 
 
 
 
 
 
 
 
 

Fig. 5: SIC monthly averaged RMSE values for each model. 
 
 

Fig. 6: SIC yearly averaged RMSE values for each model. 
 
 

test RMSE for each model was averaged over each month 
for Figure 5. Overall, deep learning models predicted SIC 
with higher accuracy during months with stable changes in 
ice, and displayed poor accuracy during periods with high ice 
variability. RMSE is high for February and March as well as 
October through December. These periods mark the beginning 
of the melting and freezing seasons, respectively [30]. The 
models were not able to fully capture the rapidly changing 
atmospheric and oceanic conditions during these periods [20]. 
SIC test RMSE for each model was averaged over each year 
for Figure 6. This figure clearly shows a positive relationship 
between RMSE and elapsed time since the end of the model 



 

 
 

Fig. 7: Multi-task CNN derived SIE predictions and Multi-task 
ConvLSTM SIE predictions vs. actual SIE values in million km2. 

 

training dataset. The increasing disparity between the testing 
and training periods due to changing climatic conditions may 
contribute to the trend seen in Figure 6. In order to obtain 
accurate predictions, models may need to be re-trained on 
more recent data. 

Figures 5 and 6 confirm the relatively poor performance 
of the Multi-Task CNN model for SIC prediction. The Multi- 
Task CNN results in higher RMSE values than the base and 
extent CNNs across all months and years in the testing period. 
This confirms the high SIC RMSE value in Table II. The 
Multi-Task ConvLSTM and base ConvLSTM models have 
comparable performance across the time for SIC prediction. 
However, a clear distinction can be seen for February and 
October in Figure 5, for which the Multi-Task ConvLSTM 
model maintains a stable RMSE of around 8%, while the base 
ConvLSTM SIC RMSE spikes to greater than 9%. 

 

D. Model Comparison on Sea Ice Extent Forecasting 
The SIE forecating performance of all seven models are 

shown in the last two columns of Table II. It indicates that 
our Multi-Task ConvLSTM model has the best performance 
with test data. Note that all RMSE values stated in this section 
refer to test RMSE, unless otherwise specified. The lowest 
SIE RMSE value was attained by the Multi-Task ConvLSTM 
model, at 0.303 million km2. Two time series models, VAR 
and LSTM, provided the next-best performance. The LSTM, 
without any convolutional layers and thus without spatial 
information, reached an SIE RMSE of 0.347 million km2. 
Vector Autoregression, the baseline model for SIE, reached 
an RMSE of 0.424 million km2. 

Each of the three aforementioned time series models had a 
lower SIE RMSE than any CNN model. The best-performing 
CNN model was the Multi-Task CNN, with an SIE RMSE 
of 0.536 million km2, 0.233 million km2 greater than the 
Multi-Task ConvLSTM SIE RMSE. The extent loss CNN had 
a marginally higher SIE RMSE of 0.571 million km2. The 
base CNN, which was not provided any information about ice 
extent in the input data or loss function, had an SIE RMSE of 

0.868 million km2. The SIE predicted values for the base CNN 
and extent loss CNN were calculated from the SIC predicted 
values using Equation (3). 

Figure 7 shows the Multi-Task CNN predicted SIE values in 
blue and the real SIE values in black. The general time-series 
trend of SIE is captured well. For the majority of months, 
especially during periods of steady melting or freezing, the 
model performance is exceptional. However, the Multi-Task 
CNN overestimates SIE maximums and underestimates SIE 
minimums. For September 2020, the Multi-Task CNN model 
overestimates SIE by nearly 1 million km2. The significant 
improvement in performance by the Multi-Task ConvLSTM 
is clearly seen in Figure 7, which also shows Multi-Task 
ConvLSTM predicted SIE in red and real SIE values in black. 
This model again accurately captures the general 3time-series 
trend of SIE, but the major improvement comes in predicting 
the SIE maxima and minima. The Multi-Task ConvLSTM is 
able to consistently predict SIE maxima with high accuracy, 
and SIE minima with only slight overestimates. Predicting sea 
ice during the March maximum and September minimum has 
traditionally been a highly difficult task [24], highlighting the 
particular benefits of the Multi-Task ConvLSTM. 

These results indicate that 1) multi-task learning is greatly 
beneficial for SIE prediction, 2) time-series models perform 
significantly better for SIE prediction and 3) models cannot 
accurately predict SIE solely based on SIC. 

Based on conclusion 2), it is important to note the significant 
underperformance in SIE prediction from one time-series 
model, the ConvLSTM. This underperformance is due to the 
fact that the ConvLSTM was predicting derived SIE values, 
while all other time-series models made predictions based on 
actual SIE values. 

E. Discussion and Related Work Comparison 
As shown in Table II, multi-task models offered the clearest 

benefits for predicting SIE. During model training, learning to 
optimize for SIC may have provided valuable information for 
minimizing SIE error. On the contrary, the current results do 
not indicate a benefit for SIC prediction from having models 
learn SIE in conjunction. As mentioned in IV-C1, uncertainty 
remains in the satellite-retrieved SIC dataset, and it should be 
taken into account along with the prediction errors. However, 
addressing uncertainties related to observational datasets was 
beyond the scope of this study. 

To further compare our work with related studies, Table 
III presents the SIC RMSE values for related studies as well 
as our best-performing models. From the table, we can see 
different methods vary in terms of whether additional physical 
variables except sea ice variable are used, temporal resolution, 
forecast lead time and train/test data. Each model from this 
study in Table III outperforms each model from related studies, 
with the exception of 5.76% by [27]. Work [27] uses all 
past data starting 1988 to forecast next month’s SIC, so its 
train datasets range from 12 to 29 years. Because it does not 
have static train/test data split like other studies, its result 
is not directly comparable. So our best model (Base CNN) 



TABLE III: Comparison with related studies on SIC prediction performance. 
 

Paper Model Data Physical 
Variables 

Temporal 
Resolution Lead Time Train Data Test Data RMSE NRMSE 

Liu et al. [28] ConvLSTM 25x25 km ✓ Daily 1 day 9 years 1 year 11.2% NA 
Liu et al. [28] CNN 25x25 km ✓ Daily 1 day 9 years 1 year 13.7% NA 

Kim et al. [27] CNN 25x25 km ✓ Monthly 1 month 12-29 years 
(dynamic) 18 years 5.76% 0.1615 

Chi et al. [7] LSTM 25x25 km X Monthly 1 month 36 years 1 year 8.89% NA 
This work ConvLSTM 25x25 km ✓ Monthly 1 month 33 years 7 years 8.161% 0.396 
This work Base CNN 25x25 km ✓ Monthly 1 month 33 years 7 years 7.106% 0.345 
This work Multi-Task CNN 25x25 km ✓ Monthly 1 month 33 years 7 years 7.527% 0.365 

This work Multi-Task 
ConvLSTM 25x25 km ✓ Monthly 1 month 33 years 7 years 7.155% 0.347 

TABLE IV: Comparison with related studies on SIE prediction performance. 
 

Paper Model Data Physical 
Variables Train Data Test Data RMSE NRMSE 

Ali et al. [2] Attention-based 
Ensemble LSTM 

Spatially 
daily and 
inputs 

averaged 
monthly 

✓ 34 years 5 years 0.586 million km2 0.0567 

This work LSTM Spatially 
daily inputs 

averaged ✓ 33 years 7 years 0.347 million km2 0.0305 

This work Base CNN 25x25 km monthly 
averaged ✓ 33 years 7 years 0.631 million km2 0.0607 

This work Multi-Task CNN 25x25 km monthly 
averaged ✓ 33 years 7 years 0.536 million km2 0.0516 

This work Multi-Task 
ConvLSTM 

25x25 km monthly 
averaged ✓ 33 years 7 years 0.303 million km2 0.0292 

 
is 1.78% better than the best SIC prediction result, namely 
[7], from related work. Table III also shows our model results 
represent a major improvement over prior results using similar 
ConvLSTM and CNN based models respectively. 

Similarly, Table IV displays the SIE RMSE values for our 
best-performing models and related work. The Multi-Task 
ConvLSTM, and Multi-Task CNN outperform the work by 
Ali et al. SIE RMSE of 0.586 million km2. Our best model, 
namely Multi-Task ConvLSTM, has less RMSE by 0.283 
million km2. This confirms the value of multi-task learning, 
which by simultaneously optimizing for both SIC and SIE 
helps the model improve SIE prediction performance. 

We also note that Tables III and IV show that none of the 
related studies can can predict SIC and SIE simultaneously. 
While our two multi-task deep learning models can achieve 
both predictions with good performance. 

 
VI. CONCLUSIONS 

In this paper, we introduced two types of Multi-Task deep 
learning models, Multi-Task CNN and Multi-Task ConvL- 
STM, to simultaneously forecast spatial pixel-wise sea ice 
concentration (SIC) and temporal total sea ice extent (SIE) val- 
ues. We considered sea ice, atmospheric, and meteorological 
data in image time-series form, allowing our models to learn 
fluctuations in data’s spatial and temporal dimensions. Our 
models included a branched multi-task architecture and custom 
loss function. The models’ multi-task structures allowed them 
to effectively learn to predict SIC images and SIE values, 
making the optimization process more efficient with the use 
of multiple branches and outputs. The use of a custom loss 
function forced the model to ignore land pixels when making 

image predictions; therefore, the models learned to only focus 
on predicting sea-ice values. To assess the performance of our 
models, we conducted experiments on 34 years of training data 
and 7 years of testing data, comparing the results of the models 
against each other and sea ice prediction models from other 
literature. The results of our experiments indicated that multi- 
task modeling performs comparably to or better than state-of- 
the-art deep learning models in both SIC and SIE prediction 
while learning both tasks simultaneously. We found that, out of 
all models we developed, the Multi-Task ConvLSTM achieved 
the best training and testing accuracies for SIC and SIE before 
post-processing. 

We anticipate that this work and results will be useful 
for developing forecasts of ice extent alongside concentra- 
tion forecasts, both of which are important characteristics of 
Arctic ice. Additional analysis may elucidate spatiotemporal 
relationships between SIC and SIE. We also believe that this 
work highlights the merits of multi-task deep learning, and 
provides a valuable template for further applications. 

For future research, we will mainly focus on following 
facets: 1) eliminate the need for model post-processing by 
using a scaled activation function, 2) evaluate the performance 
of multi-task models on lead times greater than one month, 3) 
perform extensive hyperparameter tests to reduce overfitting 
and achieve optimal model performance, 4) incorporate prob- 
abilistic modeling to capture data and model uncertainties. 
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