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Fig. 1. Frames from an animation of an unfortunate and hollow, yet energetic, bunny fracturing on the ground.

Compelling animation of fracture is a vital challenge for computer graphics. Methods based on continuum mechanics are physically
accurate, but computationally expensive since they require computing elastic deformation. Inmany applications, this elastic deformation
is imperceptible, so simulation methods based on rigid body dynamic with breakable constraints are popular in practice. Simply
deleting constraints when thresholds on force or displacement are reached ignores the elastic energy that is stored just before fracture,
which is captured by continuum mechanics based methods. Our approach computes the energy stored in these constraints when they
are broken, and reintroduces it to the system as kinetic energy. As a result, our method is able to animate energetic fracture scenarios
with results comparable to continuum mechanics approaches, but with the computational efficiency of rigid body simulation.
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1 INTRODUCTION

The creation of large-scale scenes of destruction has emerged as one of the greatest successes of physics-based animation.
In these animations, man-made materials experience extreme forces that lead to failure, with the two most common
failure modes being plastic deformation and fracture. In this paper, we limit our discussion to fracture.
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2 Li, Andrews, Jones, and Bargteil

Two general approaches have emerged for animating fracture. The first approach uses continuum mechanics to
model internal elastic stress and, when the stress exceeds a threshold, update the object’s topology and/or geometry.
The second approach foregoes elasticity computations and instead treats objects as rigid bodies. Typically, objects are
“pre-scored”—broken up into a set of pieces—as a pre-process, either by an artist or with some (semi-)automatic tool.
Then, during simulation each piece of the initial object is treated as an individual rigid body and constraints are added
between the individual pieces that make up the object, resulting in behavior resembling a single rigid object. When the
magnitude of the constraint forces exceeds a threshold, the constraints are simply removed, creating the fracture effect.
Both of these approaches have been successfully applied in video games and film and resulted in Academy Awards in
2015.

Of course, there are tradeoffs between the two approaches. The primary advantages of the rigid body approach are
simplicity and speed; modeling elasticity is inherently more complex and involves non-trivial computational costs. For
nearly rigid man-made materials there is no visible elastic deformation and these computations are arguably wasted.
On the other hand, this internal elastic energy is partly transformed into kinetic energy of individual shards when
fracture occurs, which is an important aspect of realistic fracture animation. This phenomenon is missing from existing
rigid-body based approaches. We address this limitation by measuring the energy stored in the constraints and explicitly
converting this to kinetic energy by applying impulses when the constraints are removed. In other words, we energize
rigid body fracture!

As our results demonstrate, transferring the internal constraint energy to kinetic energy produces much livelier
simulations of fracture. We provide artists with a single parameter, similar to a coefficient of restitution, that determines
how much of the internal energy is transferred. While values in the range [0, 1] are physically valid, artists can create
even more energetic environments by choosing values greater than 1. Our simple approach is effective for simulating
brittle fracture of near rigid man-made materials.

2 RELATEDWORK

Since the pioneering work of Terzopoulos and Fleischer [1988], simulation methods based on continuum mechanics
have been used to animate fracture. O’Brien and colleagues [O’Brien et al. 2002; O’Brien and Hodgins 1999] proposed
using the finite element method (FEM) to simulate fracture. Many later approaches have also been based on tetrahedral
finite elements [Clausen et al. 2013; Wicke et al. 2010]. Bao et al. [2007] approximate brittle fracture by a quasistatic
stress analysis. Zheng and James [2010] used a similar approach to synthesize sounds of brittle objects fracturing. They
compute a fracture impulse model that assumes unused strain energy in an FEM simulation is converted into kinetic
and sound energy.

Parker and O’Brien [2009] demonstrated that an optimized FEM implementation was suitable for interactive applica-
tions. Surface-only fracture simulations based on the boundary element method have been introduced recently [Hahn
and Wojtan 2016; Zhu et al. 2015]. While not based on continuum mechanics, mass-spring models are also commonly
used to animate deformable and fracturing bodies [Norton et al. 1991]. As noted by Jones et al. [2016], these approaches
spend computational effort modeling objects as elastic bodies, but many objects we desire to animate do not show
visually perceptible elastic deformations. We model objects primarily as rigid bodies, yet our approach is able to produce
explosive fracture behavior similar to these elasticity-based approaches, but with much lower computational overhead.

To avoid simulating imperceptible elastic behavior, fracture simulators built on rigid body dynamics models are
common in practice. Zafar et al. [2010] use a rigid body physics engine to create complex scenes involving thousands of
bodies to simulate destruction of buildings. Numerous point-to-point constraints between objects give the appearance of
Manuscript submitted to ACM
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a rigid structure. Once constraint displacements or constraint impulses surpass a user-defined threshold, the constraints
are removed from the simulation thus giving the appearance of fracture. This is equivalent to fracture by pre-scoring
the objects that has been used by others [Jones et al. 2016; Weinstein et al. 2008]. To semiautomatically generate fracture
pieces, Su et al. [2009] precompute a fracture patten which is aligned with run-time impacts, while Müller et al. [2013]
use a geometric approach to generate dynamic fracture patterns at run-time, achieving sharp contours and localized
fracture. Our approach describes an improved method for simulating these objects after pre-scoring, and is therefore
complementary to these approaches.

3 METHODOLOGY

3.1 Notation

Uppercase boldface is used to indicate a matrix quantity, whereas lowercase boldface indicates a vector. A single
subscript ·i is used to denote column i of a matrix or element index i of a vector. A double subscript ·i, j denotes a row i

and column j of a matrix.

3.2 Constrained rigid body simulation

Most modern constrained rigid body simulation engines, such as the Open Dynamics Engine (ODE) [Smith 2007] and
Bullet Physics [Coumans 2014], solve the following linear system at each time step:[

M −JT

J Σ

] [
v
λ

]
=

[
p + hfext
− 1
h Γϕ

]
. (1)

The first line of the linear system in Eq. 1 is a velocity-level formulation of the Newton-Euler equations of motion
whereM is the mass and inertia matrix for all bodies in the system, p is the momentum, and fext are the external forces
acting on the system (e.g., gravity). The second line are the constraint equations which couple the velocities v of bodies
in the system. Here, ϕ are the constraint equations or “gap” functions, J J is the constraint Jacobian matrix and λ are
the Lagrange multipliers, which are the impulses that enforce the constraints.

Forming the Schur complement of the linear system in Eq. 1 gives the reduced system

(Σ + JM−1JT )λ = −Γ
ϕ

h
− JM−1(p + hfext ), (2)

which is the linear system used by the solvers in most rigid body physics engines. Here, Σ and Γ are diagonal matrices
with positive coefficients. Σ adds compliance to the system and determines the “softness" of the constraints and is
often referred to as the constraint force mixing (CFM) term. It is clear from Equation (2) that a diagonal Σ improves
the numerical conditioning of the resulting linear system. Γ determines how much of the constraint error should be
corrected in the next time step and it is often referred to as the error reduction parameter (ERP). Similar terms are found
in most rigid body physics engines such as Bullet and ODE.

3.3 Spring-damper constraints

Together with constraint violations ϕ, the matrices Σ and Γ permit a Baumgarte stabilization of constraints in the
system. We can therefore reinterpret constraint forces as arising from a spring-damper system [Erleben et al. 2005].
With this is mind, we compute the diagonal matrices of stiffness K and damping B coefficients for the system as

Ki,i =
Γi,i
hΣi,i

, Bi,i =
(1 − Γi,i )

Γi,i
(3)
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4 Li, Andrews, Jones, and Bargteil

where matrix subscript i,i is the diagonal entry corresponding to the ith constraint. Note that for damping to remain
positive and physically plausible, the values of the ERP must be in the range 0 < Γi,i ≤ 1.

3.4 Potential energy

The potential energy stored in a constraint at the time of fracture can be computed using the constraint violation and
the stiffness as

E =
1
2
ϕTi Ki,iϕi .

Recalling that constraint impulses are generated as part of a spring-damper equation, the potential energy may
alternatively be computed using the approximation λi ≈ hKi,iϕi , such that

E =
1
2
h−2λi

TCi,iλi ,

where C = K−1 is the compliance, or inverse of the stiffness matrix. This is trivial to compute since K is assumed to
be diagonal and non-zero entries are computed according to Eq. 3. Also, note that in the above equation the scaling
factor h−2 is used to recover the constraint forces from the impulses λi , thus giving an energy computation that is
independent of the simulation time step.

3.5 Fracturing

Fracturing occurs by disabling or removing a constraint whenever the impulses at a previous time step exceed a
user-defined threshold ϵ , or

λi > ϵ .

Our objective is therefore to compute a plausible change for the velocity of bodies that were previously coupled by
the constraint before fracture. In other words, to convert the stored potential energy into kinetic energy. The kinetic
energy of the system can be written as 1

2v
TMv. We wish to introduce a change in velocity ∆v to the current velocities

v such that
1
2
(v + ∆v)TM(v + ∆v) −

1
2
vTMv = E.

Expanding the first term and simplifying gives
1
2
∆vTM∆v + vTM∆v = E, (4)

Note that since p = Mv, the second term on the left-hand side of Eq. 4 is simply a dot product between the current
momentum and the change in velocity ∆v. Our preliminary experiments indicate that, in many cases, this term has a
nominal effect. Furthermore, this term is dependent on the current velocities of bodies in the simulation, which clearly
should not affect the response due to an elastic potential. Also, if velocities do become very large, this could mean our
method is difficult to tune and may even introduce instabilities.

Rather, we found it sufficient to compute the change in velocity using the approximation
1
2
∆vTM∆v = αE, (5)

where α is a user-determined value that, similar to a coefficient of restitution, determines the amount of elastic energy
that is converted to kinetic energy. Physically valid values are in the range [0, 1], but users may choose values larger
than 1 for artistic effect. Also, rather than computing a change in the velocities of all bodies in the system, v, we instead
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Fig. 2. A two-body system coupled by a single constraint. A free-body diagram for body1 shows the forces and torques introduced by
the constraint impulse λ which is applied at the attachment location. Similar forces and torques affect body2 during the simulation.

take a more pragmatic approach and compute an impulse based on the mass of the participating bodies and the direction
of the forces and torques applied by the constraint.

Although the change in velocity could be introduced over a short period of time (e.g. several time steps), we found it
sufficient to compute an impulse µ that is applied over a single time step. We next discuss how to compute this impulse.

3.6 Computing impulses

We compute an impulse as a force to be applied at the attachment, or “pivot”, point of the fractured constraint. This
involves computing an impulse GT µ, where matrix G encodes the direction of the impulse and µ is the magnitude. The
change of velocity ∆v due to an applied impulse is determined by the mass matrix, such that

M∆v = GT µ . (6)

Note that the right hand side essentially contains generalized forces applied to the bodies over a time step, h, which

can be written as GT µ = h
[
fT1 τT1 . . . fTm τTm

]T
. Here, f and τ are the linear and angular forces (torques)

respectively. Note that the Jacobian matrix J similarly maps between the constraint impulses λ and the generalized
forces applied over a time step by JT λ.

3.6.1 Direction of the impulse. We compute a direction based on the impulse, λi , of the fracture constraint at the
previous time step. Specifically, we choose a direction that is orthogonal to both the torque and linear forces applied by
the pre-fracture constraint. We find that this not only produces lively motion, but produces motion in directions that
correspond to the moment introduced by bending or stretching deformations, even if these deformations are very small.

Figure 2 shows a simple two-body system with an applied constraint impulse that we use in our analysis. Although
the figure represents a 2D example, it is straightforward to extend the analysis to 3D. From the torque τ 1 and linear
force f1 affecting the first body, a direction for the post-fracture impulse is simply computed as

l̂1 = −
τ 1 × f1
∥τ 1 × f1∥

,
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6 Li, Andrews, Jones, and Bargteil

Fig. 3. A beam pinned between two posts as a block strikes at high velocity. Each frame shows the aftereffects of fracture for various
values of α (left to right): α of 0, 0.5, 1, and 1.5. Larger values exaggerate the effect.

Fig. 4. A plate made up of 25 cubes lands on a sphere and breaks. Each frame shows the aftereffects of fracture for α values (left to
right): 0, 0.5, 1, and 1.5. Larger values exaggerate the effect.

which gives a normalized 3D vector. In the case that τ 1 is small, we simply compute a random direction orthogonal to
f1. The process is similar for the second body.

An impulse that is applied at the constraint attachment point in the direction l̂1 produces a torque due to moment
arm r1. This gives a directionG =

[
0 . . . l̂1 (l̂1 × r1) . . . 0

]
, where only entries pertaining to the first body are non-zero.

From Eq. 6, we get∆v = M−1GT µ. Substituting into Eq. 5, we get the quadratic equation
1
2
µTGM−1GT µ = α . (7)

Since we only apply an impulse in a single direction, G is a row vector and the solution to Eq. 7 is simply

µ =
√
2α mG E

where the effective mass “seen" by the impulse at the attachment point is

mG = (GM−1GT )−1. (8)

Note thatmG is a scalar quantity and may be computed efficiently since it only involves a single body in the system,
which means that M in Eq. 8 is a 6x6 matrix with a special form. Also, in considering just a single body in the impulse
calculation, we ignore coupling due to any remaining constraints in the system; we also ignore damping. Therefore, a
change in velocity ∆v is not guaranteed. However, these approximations do simplify the computation and improve the
tractability of our method.

4 RESULTS

To demonstrate our approach, we present three didactic examples and one more practical example.

Beam. In the first example a beam is pre-scored into two pieces and is placed in front of two goal posts as a block is
pushed through the goal. The collision leads to the removal of the constraints holding the pieces together and the beam
fractures. The accompanying animation shows the default behavior as well as several animations with different values
for our energy transfer parameter, α .
Manuscript submitted to ACM
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Fig. 5. A chain is attached at each end to a pair of blue cubes that are slowly driven apart until the chain breaks, creating a recoil
motion. Each frame shows the aftereffects of fracture for α values (left to right): 0, 0.5, 1, and 2. Larger values exaggerate the effect.

Fig. 6. A hollow bunny lands on the floor and breaks into 10 pieces. Left to right, the parameter values α used by our method are 0,
0.5, 1, and 2. Larger values exaggerate the effect.

Thin Plate. In our second example a plate is pre-scored into a number of blocks and dropped on a sphere. The impact
leads to fracture. Again we show results for different parameter values in the accompanying video.

Chain. Our final didactic example is of a chain breaking. In this example, there is no torque induced by the constraint
forces so the direction of the applied impulse is chosen arbitrarily in the plane tangent to the constraint force. Figure 5
demonstrates that using our method results in the chain recoiling, which is a plausible response for this type of fracture.

Bunny. Our final example is of a hollow bunny falling on a sphere. To create this example, we began with a coarse
volumetric tetrahedralization of the bunny and removed tetrahedra from the interior. To pre-score the mesh we randomly
chose a number of seed tetrahedra and performed a round-robin flood fill from those seeds to create ten disjoint pieces.
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8 Li, Andrews, Jones, and Bargteil

Constraints were placed at the vertices of faces incident to two pieces. The complexity of the example is roughly
analogous to what one might expect in current video games.

The beam, plate, and bunny examples were performed with Bullet Physics, while the chain example was performed in
Vortex, demonstrating that our approach can easily be incorporated into a variety of constrained rigid-body simulators.

Limitations. One limitation of our approach is that the effects are less perceivable as the stiffness of constraints is
reduced. However, we note that in these cases the kinetic behavior at the time of fracture is typically dominated by
error build in the other constraints. For instance, consider modeling an elastic rod as series of bodies and compliant
constraints. As the rod stretches and fracturing eventually occurs, constraint impulses acting to reduce Φ will dominate
the overall motion.

We also observed that impulses added to the system by our method sometimes caused undesired fracturing. In such
cases an effective solution was to simply limit the rate at which constraints are removed. For instance, in the chain
example, this rate is one constraint per ≈ 0.3 s of simulation time. This also prevents the entire chain from breaking at
once, since tension in the chain is uniform across all constraints at the time of fracture, and therefore all constraints
become candidates for fracture. A more realistic approach would be to remove a constraint, restore the configuration of
bodies (positions, velocities, and forces) to the beginning of the time step, and re-run the simulation. However, this
comes with an increased computational and storage overhead.

5 CONCLUSION AND FUTUREWORK

Our method could be extended to offer more control over the final motion of fractured bodies in order to create other
effects. Although we choose an impulse direction based on the moment and linear force of JT λ, other directions could
be computed and impulses applied. For example, the original constraint direction could also be used. The user could
then use a convex weighting scheme to distribute the elastic energy in each direction. For instance, this might allow
the user to control the outward motion versus recoil in the chain example. One potential difficulty with using the
constraint direction is that multiple constraints often work in the same direction, as with a taut chain where each
the constraints on each link are all aligned. In this case, an impulse in the constraint direction would be immediately
cancelled. Similarly, recent work has addressed instabilities for stiff multibody simulation by computing a damping
term which is applied in the nullspace directions of the constraints [Andrews et al. 2017; Tournier et al. 2015]. These
directions could also be used by our energized fracture method.

It would also be interesting to explore simulations where fracture is computed dynamically, i.e. the geometry is not
pre-scored. Our general approach should be applicable in such scenarios driven by rigid body simulation, though one
would need to estimate the energy that is lost during fracture. The approach could even be used to add non-physical
energy to elastic simulations, which already transfer the stored elastic enery into kinetic energy.

Another interesting avenue for future work would be to couple our approach for rigid body fracture with the example-
based rigid body plasticity of Jones and colleagues [2016]. The two methods are complementary and presumably would
work well to achieve both brittle fracture and plastic deformation, however it may prove challenging to more closely
couple the two approaches to achieve ductile fracture effects.
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